1
|
Forero SA, Liu S, Shetty N, Ophir AG. Re-wiring of the bonded brain: Gene expression among pair bonded female prairie voles changes as they transition to motherhood. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12906. [PMID: 38861664 PMCID: PMC11166254 DOI: 10.1111/gbb.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Motherhood is a costly life-history transition accompanied by behavioral and neural plasticity necessary for offspring care. Motherhood in the monogamous prairie vole is associated with decreased pair bond strength, suggesting a trade-off between parental investment and pair bond maintenance. Neural mechanisms governing pair bonds and maternal bonds overlap, creating possible competition between the two. We measured mRNA expression of genes encoding receptors for oxytocin (oxtr), dopamine (d1r and d2r), mu-opioids (oprm1a), and kappa-opioids (oprk1a) within three brain areas processing salience of sociosensory cues (anterior cingulate cortex; ACC), pair bonding (nucleus accumbens; NAc), and maternal care (medial preoptic area; MPOA). We compared gene expression differences between pair bonded prairie voles that were never pregnant, pregnant (~day 16 of pregnancy), and recent mothers (day 3 of lactation). We found greater gene expression in the NAc (oxtr, d2r, oprm1a, and oprk1a) and MPOA (oxtr, d1r, d2r, oprm1a, and oprk1a) following the transition to motherhood. Expression for all five genes in the ACC was greatest for females that had been bonded for longer. Gene expression within each region was highly correlated, indicating that oxytocin, dopamine, and opioids comprise a complimentary gene network for social signaling. ACC-NAc gene expression correlations indicated that being a mother (oxtr and d1r) or maintaining long-term pair bonds (oprm1a) relies on the coordination of different signaling systems within the same circuit. Our study suggests the maternal brain undergoes changes that prepare females to face the trade-off associated with increased emotional investment in offspring, while also maintaining a pair bond.
Collapse
MESH Headings
- Animals
- Female
- Arvicolinae/genetics
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Pair Bond
- Maternal Behavior/physiology
- Nucleus Accumbens/metabolism
- Pregnancy
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Gyrus Cinguli/metabolism
- Preoptic Area/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
Collapse
Affiliation(s)
| | - Sydney Liu
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | - Netra Shetty
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | | |
Collapse
|
2
|
Menon R, Neumann ID. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat Rev Neurosci 2023; 24:761-777. [PMID: 37891399 DOI: 10.1038/s41583-023-00759-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors - such as social isolation, exposure to social defeat or social trauma, and partner loss - are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Neumann ID. Monitoring oxytocin signaling in the brain: More than a love story. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100206. [PMID: 38108033 PMCID: PMC10724740 DOI: 10.1016/j.cpnec.2023.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 12/19/2023] Open
Abstract
More than any other neuropeptide, oxytocin (OXT) is attracting the attention of neurobiologists, psychologists, psychiatrists, evolutionary biologists and even economists. It is often called a "love hormone" due to its many prosocial functions described in vertebrates including mammals and humans, especially its ability to support "bonding behaviour". Oxytocin plays an important role in female reproduction, as it promotes labour during parturition, enables milk ejection in lactation and is essential for related reproductive behaviours. Therefore, it particularly attracts the interest of many female researchers. In this short narrative review I was invited to provide a personal overview on my scientific journey closely linked to my research on the brain OXT system and the adventures associated with starting my research career behind the Iron Curtain.
Collapse
Affiliation(s)
- Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Centre of Neurosciences, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Salles A, Neunuebel J. What do mammals have to say about the neurobiology of acoustic communication? MOLECULAR PSYCHOLOGY : BRAIN, BEHAVIOR, AND SOCIETY 2023; 2:5. [PMID: 38827277 PMCID: PMC11141777 DOI: 10.12688/molpsychol.17539.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Auditory communication is crucial across taxa, including humans, because it enables individuals to convey information about threats, food sources, mating opportunities, and other social cues necessary for survival. Comparative approaches to auditory communication will help bridge gaps across taxa and facilitate our understanding of the neural mechanisms underlying this complex task. In this work, we briefly review the field of auditory communication processing and the classical champion animal, the songbird. In addition, we discuss other mammalian species that are advancing the field. In particular, we emphasize mice and bats, highlighting the characteristics that may inform how we think about communication processing.
Collapse
Affiliation(s)
- Angeles Salles
- Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Joshua Neunuebel
- Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
5
|
Marazziti D, Carter CS, Carmassi C, Della Vecchia A, Mucci F, Pagni G, Carbone MG, Baroni S, Giannaccini G, Palego L, Dell’Osso L. Sex matters: The impact of oxytocin on healthy conditions and psychiatric disorders. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 13:100165. [PMID: 36590869 PMCID: PMC9800179 DOI: 10.1016/j.cpnec.2022.100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Oxytocin (OT) is involved in the regulation of physiological processes and emotional states, with increasing evidence for its beneficial actions being mediated by the autonomic and immune systems. Growing evidence suggests that OT plays a role in the pathophysiology of different psychiatric disorders. Given the limited information in humans the aim of this study was to retrospectively explore plasma OT levels in psychiatric patients, particularly focusing on sex-related differences, as compared with healthy controls. The patients studied here were divided into three groups diagnosed with obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD) or major depressive disorder (MDD). Plasma OT levels were significantly different between healthy men and women, with the latter showing higher values, while none of the three psychiatric groups showed sex-related differences in the parameters measured here. The intergroup analyses showed that the OT levels were significantly higher in OCD, lower in PTSD and even more reduced in MDD patients than in healthy subjects. These differences were also confirmed when gender was considered, with the exception of PTSD men, in whom OT levels were similar to those of healthy men. The present results indicated that OT levels were higher amongst healthy women than men, while a sex difference was less apparent or reversed in psychiatric patients. Reductions in sex differences in psychopathologies may be related to differential vulnerabilities in processes associated with basic adaptive and social functions.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, University of Pisa, Italy,Saint Camillus International University of Health and Medical Sciences – UniCamillus, Rome, Italy,Corresponding author. Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN, USA,Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Federico Mucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy,Department of Psychiatry, North-Western Tuscany Region NHS Local Health Unit, Lucca Zone, Lucca, Italy
| | - Giovanni Pagni
- Department of Psychiatry, North-Western Tuscany Region NHS Local Health Unit, Lunigiana Zone, Aulla, Italy
| | - Manuel G. Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Varese, Italy
| | - Stefano Baroni
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | | | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
6
|
Carter CS. Sex, love and oxytocin: Two metaphors and a molecule. Neurosci Biobehav Rev 2022; 143:104948. [PMID: 36347382 PMCID: PMC9759207 DOI: 10.1016/j.neubiorev.2022.104948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Dozens of studies, most conducted in the last four decades, have implicated oxytocin, as well as vasopressin and their receptors, in processes that mediate selective sociality and the consequences of early experience. Oxytocin is critical for the capacity to experience emotional safety and healthy sexuality. Oxytocin also plays a central role in almost every aspect of physical and mental health, including the coordination of sociality and loving relationships with physiological reactions to challenges across the lifespan. Species, including prairie voles, that share with humans the capacity for selective social bonds have been a particularly rich source of insights into the behavioral importance of peptides. The purpose of this historical review is to describe the discovery of a central role for oxytocin in behavioral interactions associated with love, and in the capacity to use sociality to anticipate and cope with challenges across the lifespan - a process that here is called "sociostasis."
Collapse
Affiliation(s)
- C Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA; Kinsey Institute, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
7
|
Putnam PT, Chang SWC. Interplay between the oxytocin and opioid systems in regulating social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210050. [PMID: 35858101 PMCID: PMC9272147 DOI: 10.1098/rstb.2021.0050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 07/30/2023] Open
Abstract
The influence of neuromodulators on brain activity and behaviour is undeniably profound, yet our knowledge of the underlying mechanisms, or ability to reliably reproduce effects across varying conditions, is still lacking. Oxytocin, a hormone that acts as a neuromodulator in the brain, is an example of this quandary; it powerfully shapes behaviours across nearly all mammalian species, yet when manipulated exogenously can produce unreliable or sometimes unexpected behavioural results across varying contexts. While current research is rapidly expanding our understanding of oxytocin, interactions between oxytocin and other neuromodulatory systems remain underappreciated in the current literature. This review highlights interactions between oxytocin and the opioid system that serve to influence social behaviour and proposes a parallel-mechanism hypothesis to explain the supralinear effects of combinatorial neuropharmacological approaches. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Philip T. Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Putnam PT, Chang SWC. Oxytocin does not stand alone. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210047. [PMID: 35858106 PMCID: PMC9272150 DOI: 10.1098/rstb.2021.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Philip T. Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Abstract
Prairie voles have emerged as an important rodent model for understanding the neuroscience of social behavior. Prairie voles are well known for their capacity for pair bonding and alloparental care. These behavioral phenomena overlap with human social behavior but are not commonly observed in traditional rodent models. In this article, we highlight the many benefits of using prairie voles in neuroscience research. We begin by describing the advantages of using diverse and non-traditional study models. We then focus on social behaviors, including pair bonding, alloparental care, and peer interactions, that have brought voles to the forefront of social neuroscience. We describe many additional features of prairie vole biology and behavior that provide researchers with opportunities to address an array of research questions. We also survey neuroethological methods that have been used with prairie voles, from classic to modern techniques. Finally, we conclude with a discussion of other vole species, particularly meadow voles, and their own unique advantages for neuroscience studies. This article provides a foundation for researchers who are new to working with voles, as well as for experienced neuroscientists who want to expand their research scope. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- William M. Kenkel
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716
| | - Morgan L. Gustison
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Annaliese K. Beery
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
10
|
Madrigal MP, Jurado S. Specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain. Commun Biol 2021; 4:586. [PMID: 33990685 PMCID: PMC8121848 DOI: 10.1038/s42003-021-02110-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin (OXT) and arginine vasopressin (AVP) support a broad range of behaviors and homeostatic functions including sex-specific and context-appropriate social behaviors. Although the alterations of these systems have been linked with social-related disorders such as autism spectrum disorder, their formation and developmental dynamics remain largely unknown. Using novel brain clearing techniques and 3D imaging, we have reconstructed the specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain with unprecedented cellular resolution. A systematic quantification indicates that OXT and AVP neurons in the hypothalamus display distinctive developmental dynamics and high cellular plasticity from embryonic to early postnatal stages. Our findings reveal new insights into the specification and consolidation of neuropeptidergic systems in the developing CNS.
Collapse
Affiliation(s)
- María Pilar Madrigal
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Alicante, Spain
| | - Sandra Jurado
- grid.466805.90000 0004 1759 6875Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
11
|
Rani B, Santangelo A, Romano A, Koczwara JB, Friuli M, Provensi G, Blandina P, Casarrubea M, Gaetani S, Passani MB, Costa A. Brain histamine and oleoylethanolamide restore behavioral deficits induced by chronic social defeat stress in mice. Neurobiol Stress 2021; 14:100317. [PMID: 33869681 PMCID: PMC8039856 DOI: 10.1016/j.ynstr.2021.100317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022] Open
Abstract
The physiological mechanisms underlying the complex interplay between life stressors and metabolic factors is receiving growing interest and is being analyzed as one of the many factors contributing to depressive illness. The brain histaminergic system modulates neuronal activity extensively and we demonstrated that its integrity is necessary for peripheral signals such as the bioactive lipid mediator oleoylethanolamide (OEA) to exert its central actions. Here, we investigated the role of brain histamine and its interaction with OEA in response to chronic social defeat stress (CSDS), a preclinical protocol widely used to study physio-pathological mechanisms underlying symptoms observed in depression. Both histidine decarboxylase null (HDC-/-) and HDC+/+ mice were subjected to CSDS for 21 days and treated with either OEA or vehicle daily, starting 10 days after CSDS initiation, until sacrifice. Undisturbed mice served as controls. To test the hypothesis of a histamine-OEA interplay on behavioral responses affected by chronic stress, tests encompassing the social, ethological and memory domains were used. CSDS caused cognitive and social behavior impairments in both genotypes, however, only stressed HDC+/+ mice responded to the beneficial effects of OEA. To detect subtle behavioral features, an advanced multivariate approach known as T-pattern analysis was used. It revealed unexpected differences of the organization of behavioral sequences during mice social interaction between the two genotypes. These data confirm the centrality of the neurotransmitter histamine as a modulator of complex behavioral responses and directly implicate OEA as a protective agent against social stress consequences in a histamine dependent fashion.
Collapse
Affiliation(s)
- Barbara Rani
- Dipartimento di Scienze della Salute, Università di Firenze (I), Italy
| | - Andrea Santangelo
- Dipartimento di Scienze della Salute, Università di Firenze (I), Italy
| | - Adele Romano
- Dipartimento di Fisiologia e Farmacologia 'V. Erspamer', Sapienza Università di Roma, Roma, Italy
| | - Justyna Barbara Koczwara
- Dipartimento di Fisiologia e Farmacologia 'V. Erspamer', Sapienza Università di Roma, Roma, Italy
| | - Marzia Friuli
- Dipartimento di Fisiologia e Farmacologia 'V. Erspamer', Sapienza Università di Roma, Roma, Italy
| | - Gustavo Provensi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del bambino (Neurofarba) Università di Firenze Viale Pieraccini 6, 50139, Firenze Italy
| | - Patrizio Blandina
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del bambino (Neurofarba) Università di Firenze Viale Pieraccini 6, 50139, Firenze Italy
| | - Maurizio Casarrubea
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (Bi.N.D.), Sezione di Fisiologia Umana "Giuseppe Pagano", Università degli Studi di Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Silvana Gaetani
- Dipartimento di Fisiologia e Farmacologia 'V. Erspamer', Sapienza Università di Roma, Roma, Italy
| | | | - Alessia Costa
- Dipartimento di Scienze della Salute, Università di Firenze (I), Italy
| |
Collapse
|
12
|
Carter CS, Kenkel WM, MacLean EL, Wilson SR, Perkeybile AM, Yee JR, Ferris CF, Nazarloo HP, Porges SW, Davis JM, Connelly JJ, Kingsbury MA. Is Oxytocin "Nature's Medicine"? Pharmacol Rev 2021; 72:829-861. [PMID: 32912963 PMCID: PMC7495339 DOI: 10.1124/pr.120.019398] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxytocin is a pleiotropic, peptide hormone with broad implications for general health, adaptation, development, reproduction, and social behavior. Endogenous oxytocin and stimulation of the oxytocin receptor support patterns of growth, resilience, and healing. Oxytocin can function as a stress-coping molecule, an anti-inflammatory, and an antioxidant, with protective effects especially in the face of adversity or trauma. Oxytocin influences the autonomic nervous system and the immune system. These properties of oxytocin may help explain the benefits of positive social experiences and have drawn attention to this molecule as a possible therapeutic in a host of disorders. However, as detailed here, the unique chemical properties of oxytocin, including active disulfide bonds, and its capacity to shift chemical forms and bind to other molecules make this molecule difficult to work with and to measure. The effects of oxytocin also are context-dependent, sexually dimorphic, and altered by experience. In part, this is because many of the actions of oxytocin rely on its capacity to interact with the more ancient peptide molecule, vasopressin, and the vasopressin receptors. In addition, oxytocin receptor(s) are epigenetically tuned by experience, especially in early life. Stimulation of G-protein–coupled receptors triggers subcellular cascades allowing these neuropeptides to have multiple functions. The adaptive properties of oxytocin make this ancient molecule of special importance to human evolution as well as modern medicine and health; these same characteristics also present challenges to the use of oxytocin-like molecules as drugs that are only now being recognized.
Collapse
Affiliation(s)
- C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - William M Kenkel
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Evan L MacLean
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Steven R Wilson
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Allison M Perkeybile
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Jason R Yee
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Craig F Ferris
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Hossein P Nazarloo
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Stephen W Porges
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - John M Davis
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Jessica J Connelly
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Marcy A Kingsbury
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| |
Collapse
|
13
|
Effects of Stroking on Salivary Oxytocin and Cortisol in Guide Dogs: Preliminary Results. Animals (Basel) 2020; 10:ani10040708. [PMID: 32325673 PMCID: PMC7222818 DOI: 10.3390/ani10040708] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
This pilot study aimed at investigating how salivary oxytocin levels are affected by human interaction and isolation in eight guide dogs (six Labrador retrievers and two golden retrievers; four males and four females, 21.87 ± 1.36 months old) just before assignment to the blind person. Each dog engaged, at one-week intervals, in a positive (5 min of affiliative interaction with their trainer) and a negative (5 min of isolation) condition. Saliva samples used for Enzyme Immunoassay (EIA) quantification of salivary oxytocin were collected before and immediately after both experimental conditions. In order to assess potential hypothalamic pituitary adrenal (HPA) axis activation that could have affected oxytocin levels, saliva samples were collected 15 min after both experimental conditions for EIA quantification of salivary cortisol and a behavioral assessment was performed during the negative condition. The results were compared using the Wilcoxon test (p < 0.05). Oxytocin concentrations showed a statistically significant increase after the positive interaction (p = 0.036) and no difference after the negative one (p = 0.779). Moreover, no difference (p = 0.263) was found between the cortisol concentrations after each experimental condition and no signs of distress were observed during the isolation phase. These preliminary findings support the hypothesis that stroking dogs has positive effects on their emotional state independently of hypothalamic pituitary adrenal axis activation.
Collapse
|
14
|
Freeman AR, Aulino EA, Caldwell HK, Ophir AG. Comparison of the distribution of oxytocin and vasopressin 1a receptors in rodents reveals conserved and derived patterns of nonapeptide evolution. J Neuroendocrinol 2020; 32:e12828. [PMID: 31925983 DOI: 10.1111/jne.12828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
Oxytocin (OT) and vasopressin (VP) are known modulators of social behaviour across rodents. Research has revealed the location of action of these nonapeptides through localization of their associated receptors, which include the oxytocin receptor (OTR) and the vasopressin 1a receptor (V1aR). As research into these complex systems has progressed, studies investigating how these systems modulate behaviour have remained relatively narrow in scope (ie, focused on how a single brain region shapes behaviour in only a handful of species). However, the brain regions that regulate social behaviour are part of interconnected neural networks for which coordinated activity enables behavioural variation. Thus, to better understand how nonapeptide systems have evolved under different selective pressures among rodent species, we conducted a meta-analysis using a multivariate comparative method to examine the patterns of OTR and V1aR density expression in this taxon. Several brain regions were highly correlated based on their OTR and V1aR binding patterns across species, supporting the notion that the distribution of these receptors is highly conserved in rodents. However, our results also revealed that specific patterns of V1aR density differed from OTR density, and within-genus variance for V1aR was low compared to between-genus variance, suggesting that these systems have responded and evolved quite differently to selective pressures over evolutionary time. We propose that, in addition to examining single brain regions of interest, taking a broad comparative approach when studying the OT and VP systems is important for understanding how the systemic action of nonapeptides modulate social behaviour across species.
Collapse
Affiliation(s)
| | | | - Heather K Caldwell
- Department of Biological Sciences, Kent State University, Kent, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | | |
Collapse
|
15
|
Duque JF, Rasmussen T, Rodriguez A, Stevens JR. The role of mesotocin on social bonding in pinyon jays. Ethology 2020. [DOI: 10.1111/eth.12990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Juan F. Duque
- University of Nebraska‐Lincoln Lincoln Nebraska
- Arcadia University Glenside Pennsylvania
| | | | | | | |
Collapse
|
16
|
Ménard S, Gelez H, Girard-Bériault F, Coria-Avila G, Pfaus JG. Differential role of oxytocin and vasopressin in the conditioned ejaculatory preference of the male rat. Physiol Behav 2019; 208:112577. [DOI: 10.1016/j.physbeh.2019.112577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 01/23/2023]
|
17
|
Abstract
Genetic monogamy is rare-at least at the level of a species-and monogamy can exist in the absence of sexual fidelity. Rather than focusing on mating exclusivity, it has become common to use the term "social monogamy" to describe a cluster of social features, including the capacity for selective and lasting social bonds, central to what humans call "love." Socially monogamous mammals often exhibit selective aggression toward strangers and form extended families. These features of social monogamy in mammals are supported by patterns of hormonal function originating in the neurobiology of maternity, including oxytocin, as well as a more primitive vasopressin pathway. Another key feature of social monogamy is reduced sexual dimorphism. Processes associated with sexual differentiation offer clues to the mysteries surrounding the evolution of monogamy. Although there is consistency in the necessary ingredients, it is likely that there is no single recipe for social monogamy. As reviewed here, genes for steroids and peptides and their receptors are variable and are subject to epigenetic regulation across the lifespan permitting individual, gender and species variations and providing substrates for evolution. Reduced sensitivity to gonadal androgens, and a concurrent increased reliance on vasopressin (for selective defense) and oxytocin (for selective affiliation) may have offered pathways to the emergence of social monogamy.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN, United States
| | | |
Collapse
|
18
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Abstract
The neuropeptide oxytocin (OT) has a solid reputation as a facilitator of social interactions such as parental and pair bonding, trust, and empathy. The many results supporting a pro-social role of OT have generated the hypothesis that impairments in the endogenous OT system may lead to antisocial behavior, most notably social withdrawal or pathological aggression. If this is indeed the case, administration of exogenous OT could be the "serenic" treatment that psychiatrists have for decades been searching for.In the present review, we list and discuss the evidence for an endogenous "hypo-oxytocinergic state" underlying aggressive and antisocial behavior, derived from both animal and human studies. We furthermore examine the reported effects of synthetic OT administration on aggression in rodents and humans.Although the scientific findings listed in this review support, in broad lines, the link between a down-regulated or impaired OT system activity and increased aggression, the anti-aggressive effects of synthetic OT are less straightforward and require further research. The rather complex picture that emerges adds to the ongoing debate questioning the unidirectional pro-social role of OT, as well as the strength of the effects of intranasal OT administration in humans.
Collapse
Affiliation(s)
- Trynke R de Jong
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, 93053, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
20
|
Greenwood MA, Hammock EAD. Oxytocin receptor binding sites in the periphery of the neonatal mouse. PLoS One 2017; 12:e0172904. [PMID: 28235051 PMCID: PMC5325587 DOI: 10.1371/journal.pone.0172904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/10/2017] [Indexed: 01/08/2023] Open
Abstract
Oxytocin (OXT) is a pleiotropic regulator of physiology and behavior. An emerging body of evidence demonstrates a role for OXT in the transition to postnatal life of the infant. To identify potential sites of OXT action via the OXT receptor (OXTR) in the newborn mouse, we performed receptor autoradiography on 20 μm sagittal sections of whole postnatal day 0 male and female mice on a C57BL/6J background using the 125iodinated ornithine vasotocin analog ([125I]-OVTA) radioligand. A competitive binding assay on both wild-type (WT) and OXTR knockout (OXTR KO) tissue was used to assess the selectivity of [125I]-OVTA for neonatal OXTR. Radioactive ligand (0.05 nM [125I]-OVTA) was competed against concentrations of 0 nM, 10 nM, and 1000 nM excess unlabeled OXT. Autoradiographs demonstrated the high selectivity of the radioligand for infant peripheral OXTR. Specific ligand binding activity for OXTR was observed in the oronasal cavity, the eye, whisker pads, adrenal gland, and anogenital region in the neonatal OXTR WT mouse, but was absent in neonatal OXTR KO. Nonspecific binding was observed in areas with a high lipid content such as the scapular brown adipose tissue and the liver: in these regions, binding was present in both OXTR WT and KO mice, and could not be competed away with OXT in either WT or KO mice. Collectively, these data confirm novel OXT targets in the periphery of the neonate. These peripheral OXTR sites, coupled with the immaturity of the neonate’s own OXT system, suggest a role for exogenous OXT in modulating peripheral physiology and development.
Collapse
Affiliation(s)
- Maria A. Greenwood
- Program in Neuroscience, The Florida State University, Tallahassee, FL, United States of America
- Department of Psychology, The Florida State University, Tallahassee, FL, United States of America
| | - Elizabeth A. D. Hammock
- Program in Neuroscience, The Florida State University, Tallahassee, FL, United States of America
- Department of Psychology, The Florida State University, Tallahassee, FL, United States of America
- * E-mail:
| |
Collapse
|
21
|
Tissier ML, Handrich Y, Dallongeville O, Robin JP, Habold C. Diets derived from maize monoculture cause maternal infanticides in the endangered European hamster due to a vitamin B3 deficiency. Proc Biol Sci 2017; 284:20162168. [PMID: 28100816 PMCID: PMC5310035 DOI: 10.1098/rspb.2016.2168] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/19/2016] [Indexed: 02/03/2023] Open
Abstract
From 1735 to 1940, maize-based diets led to the death of hundreds of thousands of people from pellagra, a complex disease caused by tryptophan and vitamin B3 deficiencies. The current cereal monoculture trend restricts farmland animals to similarly monotonous diets. However, few studies have distinguished the effects of crop nutritional properties on the reproduction of these species from those of other detrimental factors such as pesticide toxicity or agricultural ploughing. This study shows that maize-based diets cause high rates of maternal infanticides in the European hamster, a farmland species on the verge of extinction in Western Europe. Vitamin B3 supplementation is shown to effectively restore reproductive success in maize-fed females. This study pinpoints how nutritional deficiencies caused by maize monoculture could affect farmland animal reproduction and hence their fitness.
Collapse
Affiliation(s)
- Mathilde L Tissier
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Yves Handrich
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | | | - Jean-Patrice Robin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Caroline Habold
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
22
|
Carter CS. The Oxytocin-Vasopressin Pathway in the Context of Love and Fear. Front Endocrinol (Lausanne) 2017; 8:356. [PMID: 29312146 PMCID: PMC5743651 DOI: 10.3389/fendo.2017.00356] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022] Open
Abstract
Vasopressin (VP) and oxytocin (OT) are distinct molecules; these peptides and their receptors [OT receptor (OTR) and V1a receptor (V1aR)] also are evolved components of an integrated and adaptive system, here described as the OT-VP pathway. The more ancient peptide, VP, and the V1aRs support individual survival and play a role in defensive behaviors, including mobilization and aggression. OT and OTRs have been associated with positive social behaviors and may function as a biological metaphor for social attachment or "love." However, complex behavioral functions, including selective sexual behaviors, social bonds, and parenting require combined activities of OT and VP. The behavioral effects of OT and VP vary depending on perceived emotional context and the history of the individual. Paradoxical or contextual actions of OT also may reflect differential interactions with the OTR and V1aR. Adding to the complexity of this pathway is the fact that OT and VP receptors are variable, across species, individuals, and brain region, and these receptors are capable of being epigenetically tuned. This variation may help to explain experience-related individual and sex differences in behaviors that are regulated by these peptides, including the capacity to form social attachments and the emotional consequences of these attachments.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute and Department of Biology, Indiana University, Bloomington, IN, United States
- *Correspondence: C. Sue Carter,
| |
Collapse
|
23
|
Harrison N, C. Lopes P, König B. Oxytocin administration during early pair formation delays communal nursing in female house mice. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2016.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Abstract
Oxytocin is a hypothalamic neuropeptide first recognized as a regulator of parturition and lactation which has recently gained attention for its ability to modulate social behaviors. In this chapter, we review several aspects of the oxytocinergic system, focusing on evidence for release of oxytocin and its receptor distribution in the cortex as the foundation for important networks that control social behavior. We examine the developmental timeline of the cortical oxytocin system as demonstrated by RNA, autoradiographic binding, and protein immunohistochemical studies, and describe how that might shape brain development and behavior. Many recent studies have implicated oxytocin in cognitive processes such as processing of sensory stimuli, social recognition, social memory, and fear. We review these studies and discuss the function of oxytocin in the young and adult cortex as a neuromodulator of central synaptic transmission and mediator of plasticity.
Collapse
|
25
|
Harrison N, Lopes PC, König B. Oxytocin and Social Preference in Female House Mice (Mus musculus domesticus). Ethology 2016. [DOI: 10.1111/eth.12505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicola Harrison
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| | - Patricia C. Lopes
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| | - Barbara König
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| |
Collapse
|
26
|
Yee JR, Kenkel WM, Frijling JL, Dodhia S, Onishi KG, Tovar S, Saber MJ, Lewis GF, Liu W, Porges SW, Carter CS. Oxytocin promotes functional coupling between paraventricular nucleus and both sympathetic and parasympathetic cardioregulatory nuclei. Horm Behav 2016; 80:82-91. [PMID: 26836772 PMCID: PMC5768414 DOI: 10.1016/j.yhbeh.2016.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/29/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023]
Abstract
The neuropeptide oxytocin (OXT) facilitates prosocial behavior and selective sociality. In the context of stress, OXT also can down-regulate hypothalamic-pituitary-adrenal (HPA) axis activity, leading to consideration of OXT as a potential treatment for many socioaffective disorders. However, the mechanisms through which administration of exogenous OXT modulates social behavior in stressful environmental contexts are not fully understood. Here, we investigate the hypothesis that autonomic pathways are components of the mechanisms through which OXT aids the recruitment of social resources in stressful contexts that may elicit mobilized behavioral responses. Female prairie voles (Microtus ochrogaster) underwent a stressor (walking in shallow water) following pretreatment with intraperitoneal OXT (0.25mg/kg) or OXT antagonist (OXT-A, 20mg/kg), and were allowed to recover with or without their sibling cagemate. Administration of OXT resulted in elevated OXT concentrations in plasma, but did not dampen the HPA axis response to a stressor. However, OXT, but not OXT-A, pretreatment prevented the functional coupling, usually seen in the absence of OXT, between paraventricular nucleus (PVN) activity as measured by c-Fos immunoreactivity and HPA output (i.e. corticosterone release). Furthermore, OXT pretreatment resulted in functional coupling between PVN activity and brain regions regulating both sympathetic (i.e. rostral ventrolateral medulla) and parasympathetic (i.e. dorsal vagal complex and nucleus ambiguous) branches of the autonomic nervous system. These findings suggest that OXT increases central neural control of autonomic activity, rather than strictly dampening HPA axis activity, and provides a potential mechanism through which OXT may facilitate adaptive and context-dependent behavioral and physiological responses to stressors.
Collapse
Affiliation(s)
- Jason R Yee
- Northeastern University, United States; The Kinsey Institute at Indiana University, United States.
| | - William M Kenkel
- Northeastern University, United States; The Kinsey Institute at Indiana University, United States
| | | | | | | | | | | | - Gregory F Lewis
- The University of North Carolina at Chapel Hill, United States
| | | | - Stephen W Porges
- The Kinsey Institute at Indiana University, United States; The University of North Carolina at Chapel Hill, United States
| | - C Sue Carter
- The Kinsey Institute at Indiana University, United States
| |
Collapse
|
27
|
Finkenwirth C, Martins E, Deschner T, Burkart JM. Oxytocin is associated with infant-care behavior and motivation in cooperatively breeding marmoset monkeys. Horm Behav 2016; 80:10-18. [PMID: 26836769 DOI: 10.1016/j.yhbeh.2016.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/22/2015] [Accepted: 01/29/2016] [Indexed: 01/26/2023]
Abstract
The neurohormone oxytocin (OT) is positively involved in the regulation of parenting and social bonding in mammals, and may thus also be important for the mediation of alloparental care. In cooperatively breeding marmosets, infants are raised in teamwork by parents and adult and sub-adult non-reproductive helpers (usually older siblings). Despite high intrinsic motivation, which may be mediated by hormonal priming, not all individuals are always equally able to contribute to infant-care due to competition among care-takers. Among the various care-taking behaviors, proactive food sharing may reflect motivational levels best, since it can be performed ad libitum by several individuals even if competition among surplus care-takers constrains access to infants. Our aim was to study the link between urinary OT levels and care-taking behaviors in group-living marmosets, while taking affiliation with other adults and infant age into account. Over eight reproductive cycles, 26 individuals were monitored for urinary baseline OT, care-taking behaviors (baby-licking, -grooming, -carrying, and proactive food sharing), and adult-directed affiliation. Mean OT levels were generally highest in female breeders and OT increased significantly in all individuals after birth. During early infancy, high urinary OT levels were associated with increased infant-licking but low levels of adult-affiliation, and during late infancy, with increased proactive food sharing. Our results show that, in marmoset parents and alloparents, OT is positively involved in the regulation of care-taking, thereby reflecting the changing needs during infant development. This particularly included behaviors that are more likely to reflect intrinsic care motivation, suggesting a positive link between OT and motivational regulation of infant-care.
Collapse
Affiliation(s)
- Christa Finkenwirth
- Anthropological Institute and Museum, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Eloisa Martins
- Anthropological Institute and Museum, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Tobias Deschner
- Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Judith M Burkart
- Anthropological Institute and Museum, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
28
|
Baniel A, Cowlishaw G, Huchard E. Stability and strength of male-female associations in a promiscuous primate society. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2100-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Leong KC, Zhou L, Ghee SM, See RE, Reichel CM. Oxytocin decreases cocaine taking, cocaine seeking, and locomotor activity in female rats. Exp Clin Psychopharmacol 2016; 24:55-64. [PMID: 26523890 PMCID: PMC4821810 DOI: 10.1037/pha0000058] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxytocin has been shown to decrease cocaine taking and seeking in male rats, suggesting potential treatment efficacy for drug addiction. In the present study, we extended these findings to the assessment of cocaine seeking and taking in female rats. Further, we made direct comparisons of oxytocin's impact on cocaine induced locomotor activity in both males and females. In females, systemic oxytocin (0.3, 1.0, 3.0 mg/kg) attenuated lever pressing for cocaine during self-administration and oxytocin (1.0 mg/kg) attenuated cue-induced cocaine seeking following extinction. Cocaine increased baseline locomotor activity to a greater degree in females relative to males. Oxytocin (0.1, 0.3, 1.0, and 3.0 mg/kg) reduced cocaine-induced locomotor activity in females, but not significantly in males. These data illustrate sex similarities in oxytocin's attenuation of cocaine seeking, but sex differences in cocaine-induced locomotor effects. While reductions in cocaine seeking cannot be attributed to a reduction in locomotor activity in males, attenuation of locomotor function cannot be entirely ruled out as an explanation for a decrease in cocaine seeking in females suggesting that oxytocin's effect on cocaine seeking may be mediated by different mechanisms in male and females.
Collapse
|
30
|
Romano A, Tempesta B, Micioni Di Bonaventura MV, Gaetani S. From Autism to Eating Disorders and More: The Role of Oxytocin in Neuropsychiatric Disorders. Front Neurosci 2016; 9:497. [PMID: 26793046 PMCID: PMC4709851 DOI: 10.3389/fnins.2015.00497] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (oxy) is a pituitary neuropeptide hormone synthesized from the paraventricular and supraoptic nuclei within the hypothalamus. Like other neuropeptides, oxy can modulate a wide range of neurotransmitter and neuromodulator activities. Additionally, through the neurohypophysis, oxy is secreted into the systemic circulation to act as a hormone, thereby influencing several body functions. Oxy plays a pivotal role in parturition, milk let-down and maternal behavior and has been demonstrated to be important in the formation of pair bonding between mother and infants as well as in mating pairs. Furthermore, oxy has been proven to play a key role in the regulation of several behaviors associated with neuropsychiatric disorders, including social interactions, social memory response to social stimuli, decision-making in the context of social interactions, feeding behavior, emotional reactivity, etc. An increasing body of evidence suggests that deregulations of the oxytocinergic system might be involved in the pathophysiology of certain neuropsychiatric disorders such as autism, eating disorders, schizophrenia, mood, and anxiety disorders. The potential use of oxy in these mental health disorders is attracting growing interest since numerous beneficial properties are ascribed to this neuropeptide. The present manuscript will review the existing findings on the role played by oxy in a variety of distinct physiological and behavioral functions (Figure 1) and on its role and impact in different psychiatric disorders. The aim of this review is to highlight the need of further investigations on this target that might contribute to the development of novel more efficacious therapies.
Oxytocin regulatory control of different and complex processes. ![]()
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| | - Bianca Tempesta
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| | | | - Silvana Gaetani
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| |
Collapse
|
31
|
Finkenwirth C, van Schaik C, Ziegler TE, Burkart JM. Strongly bonded family members in common marmosets show synchronized fluctuations in oxytocin. Physiol Behav 2015; 151:246-51. [PMID: 26232089 PMCID: PMC5916785 DOI: 10.1016/j.physbeh.2015.07.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022]
Abstract
Oxytocin is a key regulator of social bonding and is positively linked to affiliation and prosocial behavior in several mammal species. In chimpanzees, this link is dyad-specific as affiliative interactions only elicit high oxytocin release if they involve strongly bonded individuals. These studies involved isolated dyads and sampling events. Little is known about the role of oxytocin in affiliation and social bonding, and about potential long-term patterns of bonding-related and dyad-specific oxytocin effects within highly affiliative and cooperative social groups. Our aim was to investigate whether bonding-related oxytocin signatures linked to dyadic affiliation are present in family groups of cooperatively breeding marmoset monkeys (Callithrix jacchus) that show high levels of cohesion and cooperation. In 30 dyads from four family groups and one pair, we measured urinary baseline oxytocin over six weeks and analyzed the link to bond strength (mean dyadic affiliation). Strongly bonded dyads showed synchronized longitudinal fluctuations of oxytocin, indicating that dyad-specific oxytocin effects can also be traced in the group context and in an interdependent species. We discuss these results in light of the potential function of differentiated relationships between marmoset dyads other than the breeding pair, and the role of oxytocin as a mediator for social bonding.
Collapse
Affiliation(s)
- Christa Finkenwirth
- Anthropological Institute and Museum, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Carel van Schaik
- Anthropological Institute and Museum, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Toni E Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Judith M Burkart
- Anthropological Institute and Museum, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
32
|
Neurobiological Correlates of Psychosocial Deprivation in Children: A Systematic Review of Neuroscientific Contributions. CHILD & YOUTH CARE FORUM 2015. [DOI: 10.1007/s10566-015-9340-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Beckes L, IJzerman H, Tops M. Toward a radically embodied neuroscience of attachment and relationships. Front Hum Neurosci 2015; 9:266. [PMID: 26052276 PMCID: PMC4439542 DOI: 10.3389/fnhum.2015.00266] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 04/23/2015] [Indexed: 11/20/2022] Open
Abstract
Attachment theory (Bowlby, 1969/1982) posits the existence of internal working models as a foundational feature of human bonds. Radical embodied approaches instead suggest that cognition requires no computation or representation, favoring a cognition situated in a body in an environmental context with affordances for action (Chemero, 2009; Barrett, 2011; Wilson and Golonka, 2013; Casasanto and Lupyan, 2015). We explore whether embodied approaches to social soothing, interpersonal warmth, separation distress, and support seeking could replace representational constructs such as internal working models with a view of relationship cognition anchored in the resources afforded to the individual by their brain, body, and environment in interaction. We review the neurobiological bases for social attachments and relationships and attempt to delineate how these systems overlap or don’t with more basic physiological systems in ways that support or contradict a radical embodied explanation. We suggest that many effects might be the result of the fact that relationship cognition depends on and emerges out of the action of neural systems that regulate several clearly physically grounded systems. For example, the neuropeptide oxytocin appears to be central to attachment and pair-bond behavior (Carter and Keverne, 2002) and is implicated in social thermoregulation more broadly, being necessary for maintaining a warm body temperature (for a review, see IJzerman et al., 2015b). Finally, we discuss the most challenging issues around taking a radically embodied perspective on social relationships. We find the most crucial challenge in individual differences in support seeking and responses to social contact, which have long been thought to be a function of representational structures in the mind (e.g., Baldwin, 1995). Together we entertain the thought to explain such individual differences without mediating representations or computations, but in the end propose a hybrid model of radical embodiment and internal representations.
Collapse
Affiliation(s)
- Lane Beckes
- Department of Psychology, Bradley University, Peoria IL, USA
| | - Hans IJzerman
- Department of Clinical Psychology, VU University Amsterdam Amsterdam, Netherlands ; Tilburg School of Behavioral and Social Sciences, Tilburg University Tilburg, Netherlands
| | - Mattie Tops
- Department of Clinical Psychology, VU University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
34
|
Li Y, Lian Z, Wang B, Tai F, Wu R, Hao P, Qiao X. Natural variation in paternal behavior is associated with central estrogen receptor alpha and oxytocin levels. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:285-93. [DOI: 10.1007/s00359-015-0979-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 12/07/2014] [Accepted: 01/09/2015] [Indexed: 01/10/2023]
|
35
|
Hammock EAD. Developmental perspectives on oxytocin and vasopressin. Neuropsychopharmacology 2015; 40:24-42. [PMID: 24863032 PMCID: PMC4262889 DOI: 10.1038/npp.2014.120] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/08/2022]
Abstract
The related neuropeptides oxytocin and vasopressin are involved in species-typical behavior, including social recognition behavior, maternal behavior, social bonding, communication, and aggression. A wealth of evidence from animal models demonstrates significant modulation of adult social behavior by both of these neuropeptides and their receptors. Over the last decade, there has been a flood of studies in humans also implicating a role for these neuropeptides in human social behavior. Despite popular assumptions that oxytocin is a molecule of social bonding in the infant brain, less mechanistic research emphasis has been placed on the potential role of these neuropeptides in the developmental emergence of the neural substrates of behavior. This review summarizes what is known and assumed about the developmental influence of these neuropeptides and outlines the important unanswered questions and testable hypotheses. There is tremendous translational need to understand the functions of these neuropeptides in mammalian experience-dependent development of the social brain. The activity of oxytocin and vasopressin during development should inform our understanding of individual, sex, and species differences in social behavior later in life.
Collapse
Affiliation(s)
- Elizabeth A D Hammock
- Vanderbilt Kennedy Center and Department of Pediatrics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
36
|
Qiao X, Yan Y, Tai F, Wu R, Hao P, Fang Q, Zhang S. Levels of central oxytocin and glucocorticoid receptor and serum adrenocorticotropic hormone and corticosterone in mandarin voles with different levels of sociability. Behav Brain Res 2014; 274:226-34. [DOI: 10.1016/j.bbr.2014.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/05/2014] [Accepted: 08/09/2014] [Indexed: 12/30/2022]
|
37
|
Madularu D, Athanassiou M, Yee JR, Kenkel WM, Carter CS, Mumby DG. Oxytocin and object preferences in the male prairie vole. Peptides 2014; 61:88-92. [PMID: 25219944 DOI: 10.1016/j.peptides.2014.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The neuropeptide oxytocin has been previously associated with social attachment behaviors in various species. Studies in socially monogamous prairie voles (Microtus ochrogaster) and other species have implicated oxytocin in partner preferences and other social behaviors. In the present study male prairie voles were injected intraperitoneally with either oxytocin or the selective oxytocin antagonist, L-368,899, and were assessed for object preference (for small inanimate toys) 30-min after injection. Object preferences were assessed in animals tested alone or in the presence of their sibling cage mate. Saline-treated controls displayed preferences for the novel object, both when tested alone and in pairs, while oxytocin-treated voles did not demonstrate an object preference, regardless of whether tested alone or in pairs. Finally, oxytocin antagonist treated voles showed preference for the novel object, but only when tested in pairs. These data support a possible involvement of oxytocin and oxytocin receptors in object preference.
Collapse
Affiliation(s)
| | | | - Jason R Yee
- Northeastern University, MA 02115, United States.
| | | | - C Sue Carter
- University of North Carolina, Chapel Hill 27599, United States.
| | | |
Collapse
|
38
|
Kenkel WM, Yee JR, Carter CS. Is oxytocin a maternal-foetal signalling molecule at birth? Implications for development. J Neuroendocrinol 2014; 26:739-49. [PMID: 25059673 DOI: 10.1111/jne.12186] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 01/08/2023]
Abstract
The neuropeptide oxytocin was first noted for its capacity to promote uterine contractions and facilitate delivery in mammals. The study of oxytocin has grown to include awareness that this peptide is a neuromodulator with broad effects throughout the body. Accumulating evidence suggests that oxytocin is a powerful signal to the foetus, helping to prepare the offspring for the extrauterine environment. Concurrently, the use of exogenous oxytocin or other drugs to manipulate labour has become common practice. The use of oxytocin to expedite labour and minimise blood loss improves both infant and maternal survival under some conditions. However, further investigations are needed to assess the developmental consequences of changes in oxytocin, such as those associated with pre-eclampsia or obstetric manipulations associated with birth. This review focuses on the role of endogenous and exogenous oxytocin as a neurochemical signal to the foetal nervous system. We also examine the possible developmental consequences, including those associated with autism spectrum disorder, that arise from exogenous oxytocin supplementation during labour.
Collapse
Affiliation(s)
- W M Kenkel
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | | |
Collapse
|
39
|
Centrally-administered oxytocin promotes preference for familiar objects at a short delay in ovariectomized female rats. Behav Brain Res 2014; 274:164-7. [PMID: 25127685 DOI: 10.1016/j.bbr.2014.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 11/20/2022]
Abstract
Oxytocin has been previously associated with social attachment behaviors in various species, however, most studies focused on partner preference in the socially-monogamous prairie vole. In these, oxytocin treatment was shown to promote partner preference, such that females receiving either central or pulsatile peripheral administration would spend more time with a familiar male. This behavioral outcome was blocked by oxytocin receptor antagonist treatment. The aim of the current study was to further explore the preference-inducing properties of oxytocin by examining its effects on object preference on ovariectomized female rats. In other words, we assessed whether these effects would apply to objects and if they would be persistent across species. Eight rats were infused with oxytocin into the left ventricle and object preference was assessed at two delays: 30min and 4h. At the 30min delay, oxytocin-treated animals showed preference for the familiar object, whereas saline-treated controls exhibited preference for the novel object. At the 4h delay, both groups showed novel-object preference. Our findings show that oxytocin modulates object preference in the female rat at a shorter delay, similar to the findings from partner-preference studies in the prairie vole, suggesting that the mechanisms driving object preference might be in part similar to those responsible for partner preference.
Collapse
|
40
|
Veening JG, de Jong TR, Waldinger MD, Korte SM, Olivier B. The role of oxytocin in male and female reproductive behavior. Eur J Pharmacol 2014; 753:209-28. [PMID: 25088178 DOI: 10.1016/j.ejphar.2014.07.045] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/30/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023]
Abstract
Oxytocin (OT) is a nonapeptide with an impressive variety of physiological functions. Among them, the 'prosocial' effects have been discussed in several recent reviews, but the direct effects on male and female sexual behavior did receive much less attention so far. As our contribution to honor the lifelong interest of Berend Olivier in the control mechanisms of sexual behavior, we decided to explore the role of OT in the present review. In the successive sections, some physiological mechanisms and the 'pair-bonding' effects of OT will be discussed, followed by sections about desire, female appetitive and copulatory behavior, including lordosis and orgasm. At the male side, the effects on erection and ejaculation are reviewed, followed by a section about 'premature ejaculation' and a possible role of OT in its treatment. In addition to OT, serotonin receives some attention as one of the main mechanisms controlling the effects of OT. In the succeeding sections, the importance of OT for 'the fruits of labor' is discussed, as it plays an important role in both maternal and paternal behavior. Finally, we pay attention to an intriguing brain area, the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl), apparently functioning in both sexual and aggressive behavior, which are at first view completely opposite behavioral systems.
Collapse
Affiliation(s)
- J G Veening
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands; Department of Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - T R de Jong
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, 93053 Regensburg, Germany
| | - M D Waldinger
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| | - S M Korte
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| | - B Olivier
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
41
|
Lieberwirth C, Wang Z. Social bonding: regulation by neuropeptides. Front Neurosci 2014; 8:171. [PMID: 25009457 PMCID: PMC4067905 DOI: 10.3389/fnins.2014.00171] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/05/2014] [Indexed: 11/13/2022] Open
Abstract
Affiliative social relationships (e.g., among spouses, family members, and friends) play an essential role in human society. These relationships affect psychological, physiological, and behavioral functions. As positive and enduring bonds are critical for the overall well-being of humans, it is not surprising that considerable effort has been made to study the neurobiological mechanisms that underlie social bonding behaviors. The present review details the involvement of the nonapeptides, oxytocin (OT), and arginine vasopressin (AVP), in the regulation of social bonding in mammals including humans. In particular, we will discuss the role of OT and AVP in the formation of social bonds between partners of a mating pair as well as between parents and their offspring. Furthermore, the role of OT and AVP in the formation of interpersonal bonding involving trust is also discussed.
Collapse
Affiliation(s)
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
42
|
Calcagnoli F, de Boer SF, Althaus M, den Boer JA, Koolhaas JM. Antiaggressive activity of central oxytocin in male rats. Psychopharmacology (Berl) 2013; 229:639-51. [PMID: 23624810 DOI: 10.1007/s00213-013-3124-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/15/2013] [Indexed: 02/04/2023]
Abstract
RATIONALE A substantial body of research suggests that the neuropeptide oxytocin promotes social affiliative behaviors in a wide range of animals including humans. However, its antiaggressive action has not been unequivocally demonstrated in male laboratory rodents. OBJECTIVE Our primary goal was to examine the putative serenic effect of oxytocin in a feral strain (wild type Groningen, WTG) of rats that generally show a much broader variation and higher levels of intermale aggression than commonly used laboratory strains of rats. METHODS Resident animals were intracerebroventricularly (icv) administered with different doses of synthetic oxytocin and oxytocin receptor antagonist, alone and in combination, in order to manipulate brain oxytocin functioning and to assess their behavioral response to an intruder. RESULTS Our data clearly demonstrate that acute icv administered oxytocin produces dose-dependent and receptor-selective changes in social behavior, reducing aggression and potentiating social exploration. These antiaggressive effects are stronger in the more offensive rats. On the other hand, administration of an oxytocin receptor antagonist tends to increase (nonsignificantly) aggression only in low-medium aggressive animals. CONCLUSIONS These results suggest that transiently enhancing brain oxytocin function has potent antiaggressive effects, whereas its attenuation tends to enhance aggressiveness. In addition, a possible inverse relationship between trait aggression and endogenous oxytocinergic signaling is revealed. Overall, this study emphasizes the importance of brain oxytocinergic signaling for regulating intermale offensive aggression. This study supports the suggestion that oxytocin receptor agonists could clinically be useful for curbing heightened aggression seen in a range of neuropsychiatric disorders like antisocial personality disorder, autism, and addiction.
Collapse
Affiliation(s)
- Federica Calcagnoli
- Department of Behavioral Physiology, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands,
| | | | | | | | | |
Collapse
|
43
|
Carson DS, Guastella AJ, Taylor ER, McGregor IS. A brief history of oxytocin and its role in modulating psychostimulant effects. J Psychopharmacol 2013; 27:231-47. [PMID: 23348754 DOI: 10.1177/0269881112473788] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past century, the polypeptide oxytocin has played an important role in medicine with major highlights including the identification of its involvement in parturition and the milk let-down reflex. Oxytocin is now implicated in an extensive range of psychological phenomena including reward and memory processes and has been investigated as a treatment for several psychiatric disorders including addiction, anxiety, autism, and schizophrenia. In this review, we first provide an historical overview of oxytocin and describe key aspects of its physiological activity. We then outline some pharmacological limitations in this field of research before highlighting the role of oxytocin in a wide range of behavioral and neuronal processes. Finally, we review evidence for a modulatory role of oxytocin with regard to psychostimulant effects. Key findings suggest that oxytocin attenuates a broad number of cocaine and methamphetamine induced behaviors and associated neuronal activity in rodents. Evidence also outlines a role for oxytocin in the prosocial effects of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) in both rodents and humans. Clinical trials should now investigate the effectiveness of oxytocin as a novel intervention for psychostimulant addiction and should aim to determine its specific role in the therapeutic properties of MDMA that are currently being investigated.
Collapse
Affiliation(s)
- Dean S Carson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Rd, MSLS, Mail Code 5485, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
44
|
Moscovice LR, Ziegler TE. Peripheral oxytocin in female baboons relates to estrous state and maintenance of sexual consortships. Horm Behav 2012; 62:592-7. [PMID: 22986337 PMCID: PMC3514909 DOI: 10.1016/j.yhbeh.2012.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 11/29/2022]
Abstract
The neuro-hypophysial hormone oxytocin (OT) has been implicated in female reproductive and maternal behaviors and in the formation of pair bonds in monogamous species. Here we measure variation in urinary OT concentrations in relation to reproductive biology and socio-sexual behavior in a promiscuously breeding species, the chacma baboon (Papio hamadryas ursinus). Subjects were members of a habituated group of baboons in the Okavango Delta, Botswana. We collected behavioral data and urine samples from n=13 cycling females across their estrous cycles and during and outside short-term, exclusive sexual consortships. Samples were analyzed via enzyme immunoassay (EIA) and we used linear mixed models (LMM) to explore the relationship between peripheral OT and a female's estrous stage and consortship status, her previous reproductive experience and fertility. We also used a Pearson's correlation to examine the relationship between OT concentrations of consorting females and their extent of behavioral coordination with their consort partners. The results of the LMM indicate that only estrous stage had a significant influence on OT levels. Females had higher OT levels during their periovulatory period than during other stages of their estrous cycle. There were no differences in the OT levels between consorting and non-consorting periovulatory females. However, among consorting females, there was a significant positive relationship between urinary OT levels and the maintenance of close proximity between consort partners. Our results suggest that physiological and behavioral changes associated with the initiation and maintenance of short-term inter-sexual relationships in baboons correspond with changes in peripheral OT.
Collapse
Affiliation(s)
- Liza R. Moscovice
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
- Correspondence: Liza R. Moscovice, Department of Primatology, Max Planck Institute for Evolutionary Anthropology. Deutscher Platz 6, D-04103 Leipzig, Germany. Phone: 00 49 341 3550 209 Fax: 00 49 341 3550 299
| | - Toni E. Ziegler
- Wisconsin Regional Primate Research Center, University of Wisconsin, 1220 Capitol Court, Madison, WI 53715. USA.
| |
Collapse
|
45
|
Pedersen A, Tomaszycki ML. Oxytocin antagonist treatments alter the formation of pair relationships in zebra finches of both sexes. Horm Behav 2012; 62:113-9. [PMID: 22633910 DOI: 10.1016/j.yhbeh.2012.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 01/23/2023]
Abstract
Oxytocin and vasopressin are known to be important in affiliative behaviors. Although these peptides have been shown to be involved in monogamous pairing behavior in a few mammalian species, their role across monogamous species is not well understood. In particular, monogamy is most common in birds, yet the role of mesotocin and vasotocin (avian homologues of oxytocin and vasopressin) in pair relationships has not been established in any avian species. The goal of the present study was to investigate the effects of an oxytocin antagonist on pairing and pairing-related behaviors in the monogamous zebra finch. To accomplish this, we systemically administered one of three doses of an oxytocin antagonist (1 μg, 5 μg, or 10 μg) or a vehicle to adult male and female zebra finches (in separate experiments) with no prior pairing experience. Subjects were observed over three days and allowed to choose mates. We found that oxytocin antagonists increased the latency to pair and decreased pair formation in both sexes. The effects of these treatments on overall pairing behaviors were more pronounced in females than in males, suggesting sexually differentiated effects on motivation to contact conspecifics. Treatments also reduced courtship, as measured by directed singing, in males. These results suggest that nonapeptides play a key role in pair formation in zebra finches of both sexes, similar to findings in other monogamous species.
Collapse
Affiliation(s)
- A Pedersen
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
46
|
REFERENCES. Monogr Soc Res Child Dev 2012. [DOI: 10.1111/j.1540-5834.2011.00672.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Pfaus JG, Kippin TE, Coria-Avila GA, Gelez H, Afonso VM, Ismail N, Parada M. Who, what, where, when (and maybe even why)? How the experience of sexual reward connects sexual desire, preference, and performance. ARCHIVES OF SEXUAL BEHAVIOR 2012; 41:31-62. [PMID: 22402996 DOI: 10.1007/s10508-012-9935-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although sexual behavior is controlled by hormonal and neurochemical actions in the brain, sexual experience induces a degree of plasticity that allows animals to form instrumental and Pavlovian associations that predict sexual outcomes, thereby directing the strength of sexual responding. This review describes how experience with sexual reward strengthens the development of sexual behavior and induces sexually-conditioned place and partner preferences in rats. In both male and female rats, early sexual experience with partners scented with a neutral or even noxious odor induces a preference for scented partners in subsequent choice tests. Those preferences can also be induced by injections of morphine or oxytocin paired with a male rat's first exposure to scented females, indicating that pharmacological activation of opioid or oxytocin receptors can "stand in" for the sexual reward-related neurochemical processes normally activated by sexual stimulation. Conversely, conditioned place or partner preferences can be blocked by the opioid receptor antagonist naloxone. A somatosensory cue (a rodent jacket) paired with sexual reward comes to elicit sexual arousal in male rats, such that paired rats with the jacket off show dramatic copulatory deficits. We propose that endogenous opioid activation forms the basis of sexual reward, which also sensitizes hypothalamic and mesolimbic dopamine systems in the presence of cues that predict sexual reward. Those systems act to focus attention on, and activate goal-directed behavior toward, reward-related stimuli. Thus, a critical period exists during an individual's early sexual experience that creates a "love map" or Gestalt of features, movements, feelings, and interpersonal interactions associated with sexual reward.
Collapse
Affiliation(s)
- James G Pfaus
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Social interactions have long-term physiological, psychological, and behavioral consequences. Social isolation is a well-recognized but little understood risk factor and prognostic marker of disease; it can have profoundly detrimental effects on both mental and physical well-being, particularly during states of compromised health. In contrast, the health benefits associated with social support (both reduced risk and improved recovery) are evident in a variety of illnesses and injury states; however, the mechanisms by which social interactions influence disease pathogenesis remain largely unidentified. The substantial health impact of the psychosocial environment can occur independently of traditional disease risk factors and is not accounted for solely by peer-encouraged development of health behaviors. Instead, social interactions are capable of altering shared pathophysiological mechanisms of multiple disease states in distinct measurable ways. Converging evidence from animal models of injury and disease recapitulates the physiological benefits of affiliative social interactions and establishes several endogenous mechanisms (inflammatory signals, glucocorticoids, and oxytocin) by which social interactions influence health outcomes. Taken together, both clinical and animal research are undoubtedly necessary to develop a complete mechanistic understanding of social influences on health.
Collapse
|
49
|
Vardenafil Enhances Oxytocin Expression in the Paraventricular Nucleus without Sexual Stimulation. Int Neurourol J 2010; 14:213-9. [PMID: 21253331 PMCID: PMC3021811 DOI: 10.5213/inj.2010.14.4.213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/15/2010] [Indexed: 11/08/2022] Open
Abstract
Purpose Oxytocin is associated with the ability to form normal social attachments. c-Fos is an immediate early gene whose expression is used as a marker for stimulus-induced changes in neurons. The effect of phosphodiesterase-5 (PDE-5) inhibitors on oxytocin activation in the brain without sexual stimuli has not yet been reported. In the present study, we investigated the effects of vardenafil on oxytocin and c-Fos expression in the paraventricular nucleus (PVN) of conscious rats. Methods Male Sprague-Dawley rats weighing 300±10 g were divided into 6 groups (n=5 in each group): the control group, the 1-day-0.5 mg/kg, the 1-day-1 mg/kg, the 1-day-2 mg/kg, the 3-day-1 mg/kg, and the 7-day-1 mg/kg vardenafil administration group. The experiment was conducted without sexual stimulation. Vardenafil was orally administered. The animals in the control group received an equivalent amount of distilled water orally. The expression of oxytocin and c-Fos in the PVN was detected by immunohistochemistry. Results Oxytocin expression in the PVN was increased by 1 day administration of 2 mg/kg vardenafil, and this effect of vardenafil appeared in a duration-dependent manner. c-Fos in the oxytocin neurons of the PVN was increased by 1 day administration of 2 mg/kg vardenafil, and this effect of vardenafil also appeared in a duration-dependent manner. These results showed that vardenafil augments the expression of oxytocin with activation of oxytocin neurons in the PVN. Conclusions In this study, we showed that the PDE-5 inhibitor, vardenafil directly enhances oxytocin expression and also activates oxytocin neurons in the PVN, which indicates that vardenafil may exert positive effects on affiliation behavior and social interaction.
Collapse
|
50
|
Song Z, Tai F, Yu C, Wu R, Zhang X, Broders H, He F, Guo R. Sexual or paternal experiences alter alloparental behavior and the central expression of ERα and OT in male mandarin voles (Microtus mandarinus). Behav Brain Res 2010; 214:290-300. [DOI: 10.1016/j.bbr.2010.05.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 11/29/2022]
|