1
|
Ensing J, Ide AD, Gilliland C, Tsurho V, Caza I, Stratman AN, Lanning NJ, Grainger S. The E3 Ubiquitin Ligase Trip12 attenuates Wnt9a/Fzd9b signaling during hematopoietic stem cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620301. [PMID: 39484584 PMCID: PMC11527353 DOI: 10.1101/2024.10.25.620301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Wnt signaling is essential for both the development and homeostasis of diverse cellular lineages, including hematopoietic stem cells. Organism-wide, Wnt signals are tightly regulated, as overactivation of the pathway can lead to tumorigenesis. Although numerous Wnt ligands and Frizzled (Fzd) receptors exist, how particular Wnt/Fzd pairings are established and how their signals are regulated is poorly understood. We have previously identified the requirements of the cognate pairing of Wnt9a and Fzd9b for early hematopoietic stem cell proliferation. However, the specific signals governing activation, but equally important, the molecular mechanisms required to turn the signal 'off,' are unknown. Here, we show that the E3 ubiquitin ligase Trip12 (thyroid hormone receptor interactor 12) is specifically required to ubiquitinate the third intracellular loop of Fzd9b at K437, targeting it for lysosomal degradation. In contrast to other ubiquitin ligases described to regulate the cell surface availability of multiple Fzds broadly, our data indicate that Trip12 is selective for Fzd9b. We further demonstrate that this occurs through ubiquitination at K437 of Fzd9b in the third intracellular loop, ultimately leading to a decrease in Fzd9b receptor availability and in Wnt9a/Fzd9b signaling that impacts hematopoietic stem cell proliferation in zebrafish. Our results point to specific mechanisms driving the availability of different Fzd receptors. Determining how particular Fzd abundance is regulated at the membrane will be critical to developing specific therapies for human intervention.
Collapse
Affiliation(s)
- Jessica Ensing
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Amber D. Ide
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Carla Gilliland
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Visakuo Tsurho
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Isabella Caza
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Amber N. Stratman
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA RRID: SCR_000343
| | - Nathan J. Lanning
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| |
Collapse
|
2
|
Zhang Y, Zhang C, Peng C, Jia J. Unraveling the crosstalk: circRNAs and the wnt signaling pathway in cancers of the digestive system. Noncoding RNA Res 2024; 9:853-864. [PMID: 38586314 PMCID: PMC10995981 DOI: 10.1016/j.ncrna.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 04/09/2024] Open
Abstract
Circular RNA (circRNA) is a unique type of noncoding RNA molecule characterized by its closed-loop structure. Functionally versatile, circRNAs play pivotal roles in gene expression regulation, protein activity modulation, and participation in cell signaling processes. In the context of cancers of the digestive system, the Wnt signaling pathway holds particular significance. Anomalous activation of the Wnt pathway serves as a primary catalyst for the development of colorectal cancer. Extensive research underscores the notable participation of circRNAs associated with the Wnt pathway in the progression of digestive system tumors. These circRNAs exhibit pronounced dysregulation across esophageal cancer, gastric cancer, liver cancer, colorectal cancer, pancreatic cancer, and cholangiocarcinoma. Furthermore, the altered expression of circRNAs linked to the Wnt pathway correlates with prognostic factors in digestive system tumors. Additionally, circRNAs related to the Wnt pathway showcase potential as diagnostic, therapeutic, and prognostic markers within the realm of digestive system tumors. This comprehensive review outlines the interplay between circRNAs and the Wnt signaling pathway in cancers of the digestive system. It seeks to provide a comprehensive perspective on their association while delving into ongoing research that explores the clinical applications of circRNAs associated with the Wnt pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Nguyen N, Carpenter KA, Ensing J, Gilliland C, Rudisel EJ, Mu EM, Thurlow KE, Triche TJ, Grainger S. EGFR-dependent endocytosis of Wnt9a and Fzd9b promotes β-catenin signaling during hematopoietic stem cell development in zebrafish. Sci Signal 2024; 17:eadf4299. [PMID: 38626007 PMCID: PMC11103623 DOI: 10.1126/scisignal.adf4299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
Cell-to-cell communication through secreted Wnt ligands that bind to members of the Frizzled (Fzd) family of transmembrane receptors is critical for development and homeostasis. Wnt9a signals through Fzd9b, the co-receptor LRP5 or LRP6 (LRP5/6), and the epidermal growth factor receptor (EGFR) to promote early proliferation of zebrafish and human hematopoietic stem cells during development. Here, we developed fluorescently labeled, biologically active Wnt9a and Fzd9b fusion proteins to demonstrate that EGFR-dependent endocytosis of the ligand-receptor complex was required for signaling. In human cells, the Wnt9a-Fzd9b complex was rapidly endocytosed and trafficked through early and late endosomes, lysosomes, and the endoplasmic reticulum. Using small-molecule inhibitors and genetic and knockdown approaches, we found that Wnt9a-Fzd9b endocytosis required EGFR-mediated phosphorylation of the Fzd9b tail, caveolin, and the scaffolding protein EGFR protein substrate 15 (EPS15). LRP5/6 and the downstream signaling component AXIN were required for Wnt9a-Fzd9b signaling but not for endocytosis. Knockdown or loss of EPS15 impaired hematopoietic stem cell development in zebrafish. Other Wnt ligands do not require endocytosis for signaling activity, implying that specific modes of endocytosis and trafficking may represent a method by which Wnt-Fzd specificity is established.
Collapse
Affiliation(s)
- Nicole Nguyen
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Kelsey A. Carpenter
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Jessica Ensing
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Carla Gilliland
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Emma J. Rudisel
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Emily M. Mu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Kate E. Thurlow
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
- Van Andel Institute Graduate School, Grand Rapids, Michigan, 49503, USA
| | - Timothy J. Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| |
Collapse
|
4
|
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090758. [PMID: 36140143 PMCID: PMC9496589 DOI: 10.3390/bios12090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.
Collapse
|
5
|
Kumar D, Kashyap MK, Yu Z, Spaanderman I, Villa R, Kipps TJ, La Clair JJ, Burkart MD, Castro JE. Modulation of RNA splicing associated with Wnt signaling pathway using FD-895 and pladienolide B. Aging (Albany NY) 2022; 14:2081-2100. [PMID: 35230971 PMCID: PMC8954975 DOI: 10.18632/aging.203924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Alterations in RNA splicing are associated with different malignancies, including leukemia, lymphoma, and solid tumors. The RNA splicing modulators such as FD-895 and pladienolide B have been investigated in different malignancies to target/modulate spliceosome for therapeutic purpose. Different cell lines were screened using an RNA splicing modulator to test in vitro cytotoxicity and the ability to modulate RNA splicing capability via induction of intron retention (using RT-PCR and qPCR). The Cignal Finder Reporter Array evaluated [pathways affected by the splice modulators in HeLa cells. Further, the candidates associated with the pathways were validated at protein level using western blot assay, and gene-gene interaction studies were carried out using GeneMANIA. We show that FD-895 and pladienolide B induces higher apoptosis levels than conventional chemotherapy in different solid tumors. In addition, both agents modulate Wnt signaling pathways and mRNA splicing. Specifically, FD-895 and pladienolide B significantly downregulates Wnt signaling pathway-associated transcripts (GSK3β and LRP5) and both transcript and proteins including LEF1, CCND1, LRP6, and pLRP6 at the transcript, total protein, and protein phosphorylation's levels. These results indicate FD-895 and pladienolide B inhibit Wnt signaling by decreasing LRP6 phosphorylation and modulating mRNA splicing through induction of intron retention in solid tumors.
Collapse
Affiliation(s)
- Deepak Kumar
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- ThermoFisher Scientific, Carlsbad, CA 92008, USA
| | - Manoj K. Kashyap
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Haryana 122413, India
| | - Zhe Yu
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ide Spaanderman
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Reymundo Villa
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- CLL Research Consortium and Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Januario E. Castro
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- CLL Research Consortium and Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Hematology-Oncology Division, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
6
|
Waghmare I, Page-McCaw A. Regulation of Wnt distribution and function by Drosophila glypicans. J Cell Sci 2022; 135:274233. [PMID: 35112708 PMCID: PMC8918805 DOI: 10.1242/jcs.259405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extracellular distribution of secreted Wnt proteins is crucial for their ability to induce a response in target cells at short and long ranges to ensure proper development. Wnt proteins are evolutionarily conserved ligands that are lipid-modified, and their hydrophobic nature interferes with their solubility in the hydrophilic extracellular environment. This raises the question of how Wnt proteins spread extracellularly despite their lipid modifications, which are essential for both their secretion and function. Seminal studies on Drosophila Wingless (Wg), a prototypical Wnt, have discovered multiple mechanisms by which Wnt proteins spread. A central theme emerges from these studies: the Wnt lipid moiety is shielded from the aqueous environment, allowing the ligands to spread and remain viable for signaling. Wnt distribution in vivo is primarily facilitated by glypicans, which are cell-surface heparan sulfate proteoglycans, and recent studies have further provided mechanistic insight into how glypicans facilitate Wnt distribution. In this Review, we discuss the many diverse mechanisms of Wnt distribution, with a particular focus on glypican-mediated mechanisms.
Collapse
|
7
|
Liu B, Li Y, Zhang L. Analysis and Visualization of Spatial Transcriptomic Data. Front Genet 2022; 12:785290. [PMID: 35154244 PMCID: PMC8829434 DOI: 10.3389/fgene.2021.785290] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
Human and animal tissues consist of heterogeneous cell types that organize and interact in highly structured manners. Bulk and single-cell sequencing technologies remove cells from their original microenvironments, resulting in a loss of spatial information. Spatial transcriptomics is a recent technological innovation that measures transcriptomic information while preserving spatial information. Spatial transcriptomic data can be generated in several ways. RNA molecules are measured by in situ sequencing, in situ hybridization, or spatial barcoding to recover original spatial coordinates. The inclusion of spatial information expands the range of possibilities for analysis and visualization, and spurred the development of numerous novel methods. In this review, we summarize the core concepts of spatial genomics technology and provide a comprehensive review of current analysis and visualization methods for spatial transcriptomics.
Collapse
|
8
|
Pechmann M, Prpic NM. The T-box gene optomotor-blind organizes proximodistal leg patterning in the beetle Tribolium castaneum by repressing dorsal Dpp pathway activity. Dev Biol 2021; 482:124-134. [PMID: 34942194 DOI: 10.1016/j.ydbio.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 11/03/2022]
Abstract
Leg axis formation in Drosophila is organized by Wingless (Wg) and Decapentaplegic (Dpp) that control a number of downstream factors to pattern the dorsoventral (DV) and proximodistal (PD) axis. The T-box genes are important downstream factors mainly involved in dorsoventral leg axis formation. The ventral side is specified by H15 and midline, whereas optomotor-blind (omb) and Dorsocross (Doc1) are factors to specify dorsal cell fates. We show here that omb also organizes PD leg axis patterning in the beetle Tribolium castaneum. In the legs, Tc-omb is expressed along the dorsal side and represses ventral factors like wg and H15. Intriguingly, removing Tc-omb function leads to the activation of the Dpp pathway along the dorsal side of the legs, thus mimicking normal dpp expression in Drosophila. Dpp activity along the dorsal side leads to altered expression of proximal-distal patterning genes such as Distal-less (Dll) and dachshund (dac). Our results indicate a cell-autonomous activation of Dll and repression of dac by dpp. These findings are compatible with the cross-regulatory "cascade model" of proximal-distal leg imaginal disc patterning of Drosophila.
Collapse
Affiliation(s)
- Matthias Pechmann
- Universität zu Köln, Biozentrum Köln, Institut für Zoologie, Zülpicher Straße 47b, 50674, Köln, Germany.
| | - Nikola-Michael Prpic
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Heinrich-Buff-Ring 38, 35392, Gießen, Germany.
| |
Collapse
|
9
|
Magny EG, Platero AI, Bishop SA, Pueyo JI, Aguilar-Hidalgo D, Couso JP. Pegasus, a small extracellular peptide enhancing short-range diffusion of Wingless. Nat Commun 2021; 12:5660. [PMID: 34580289 PMCID: PMC8476528 DOI: 10.1038/s41467-021-25785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Small Open Reading Frames (smORFs) coding for peptides of less than 100 amino-acids are an enigmatic and pervasive gene class, found in the tens of thousands in metazoan genomes. Here we reveal a short 80 amino-acid peptide (Pegasus) which enhances Wingless/Wnt1 protein short-range diffusion and signalling. During Drosophila wing development, Wingless has sequential functions, including late induction of proneural gene expression and wing margin development. Pegasus mutants produce wing margin defects and proneural expression loss similar to those of Wingless. Pegasus is secreted, and co-localizes and co-immunoprecipitates with Wingless, suggesting their physical interaction. Finally, measurements of fixed and in-vivo Wingless gradients support that Pegasus increases Wingless diffusion in order to enhance its signalling. Our results unveil a new element in Wingless signalling and clarify the patterning role of Wingless diffusion, while corroborating the link between small open reading frame peptides, and regulation of known proteins with membrane-related functions.
Collapse
Affiliation(s)
- Emile G Magny
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Ana Isabel Platero
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Sarah A Bishop
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain.,Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Jose I Pueyo
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Daniel Aguilar-Hidalgo
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Juan Pablo Couso
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
10
|
Mii Y, Nakazato K, Pack CG, Ikeda T, Sako Y, Mochizuki A, Taira M, Takada S. Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos. eLife 2021; 10:55108. [PMID: 33904408 PMCID: PMC8139832 DOI: 10.7554/elife.55108] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanism of intercellular transport of Wnt ligands is still a matter of debate. To better understand this issue, we examined the distribution and dynamics of Wnt8 in Xenopus embryos. While Venus-tagged Wnt8 was found on the surfaces of cells close to Wnt-producing cells, we also detected its dispersal over distances of 15 cell diameters. A combination of fluorescence correlation spectroscopy and quantitative imaging suggested that only a small proportion of Wnt8 ligands diffuses freely, whereas most Wnt8 molecules are bound to cell surfaces. Fluorescence decay after photoconversion showed that Wnt8 ligands bound on cell surfaces decrease exponentially, suggesting a dynamic exchange of bound forms of Wnt ligands. Mathematical modeling based on this exchange recapitulates a graded distribution of bound, but not free, Wnt ligands. Based on these results, we propose that Wnt distribution in tissues is controlled by a dynamic exchange of its abundant bound and rare free populations.
Collapse
Affiliation(s)
- Yusuke Mii
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | - Chan-Gi Pack
- Cellular Informatics Laboratory, RIKEN, Wako, Japan.,ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Takafumi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, Wako, Japan
| | - Atsushi Mochizuki
- Theoretical Biology Laboratory, RIKEN, Wako, Japan.,Laboratory of Mathematical Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Shinji Takada
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
11
|
Colozza G, Koo BK. Wnt/β-catenin signaling: Structure, assembly and endocytosis of the signalosome. Dev Growth Differ 2021; 63:199-218. [PMID: 33619734 PMCID: PMC8251975 DOI: 10.1111/dgd.12718] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Wnt/β‐catenin signaling is an ancient pathway that regulates key aspects of embryonic development, cell differentiation, proliferation, and adult stem cell homeostasis. Work from different laboratories has shed light on the molecular mechanisms underlying the Wnt pathway, including structural details of ligand–receptor interactions. One key aspect that has emerged from multiple studies is that endocytosis of the receptor complex plays a crucial role in fine‐tuning Wnt/β‐catenin signaling. Endocytosis is a key process involved in both activation as well as attenuation of Wnt signaling, but how this is regulated is still poorly understood. Importantly, recent findings show that Wnt also regulates central metabolic pathways such as the acquisition of nutrients through actin‐driven endocytic mechanisms. In this review, we propose that the Wnt pathway displays diverse characteristics that go beyond the regulation of gene expression, through a connection with the endocytic machinery.
Collapse
Affiliation(s)
- Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
12
|
Graykowski DR, Wang YZ, Upadhyay A, Savas JN. The Dichotomous Role of Extracellular Vesicles in the Central Nervous System. iScience 2020; 23:101456. [PMID: 32835924 PMCID: PMC7452271 DOI: 10.1016/j.isci.2020.101456] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/20/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication. Interest in the role of central nervous system (CNS)-derived EVs has been increasing; however, some skepticism of their importance has persisted because many aspects of their biology remain elusive. This ambiguity is largely due to technical barriers that hamper our ability to achieve a comprehensive understanding of their molecular components and mechanisms responsible for their transmission and uptake. However, accumulating evidence supports the notion that EVs play important roles in basic physiological processes within the CNS during neurodevelopment and synaptic plasticity. Interestingly, EVs also act to spread toxic polypeptides in neurodegenerative diseases. Developing a more profound understanding of the role that EVs play in the CNS could lead to the identification of biomarkers and potential vehicles for drug delivery. Here we highlight our current understanding of CNS EVs and summarize our current understanding of their complex role in the CNS.
Collapse
Affiliation(s)
- David R. Graykowski
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi-Zhi Wang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey N. Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
13
|
Wnt/β-catenin Signaling in Tissue Self-Organization. Genes (Basel) 2020; 11:genes11080939. [PMID: 32823838 PMCID: PMC7464740 DOI: 10.3390/genes11080939] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Across metazoans, animal body structures and tissues exist in robust patterns that arise seemingly out of stochasticity of a few early cells in the embryo. These patterns ensure proper tissue form and function during early embryogenesis, development, homeostasis, and regeneration. Fundamental questions are how these patterns are generated and maintained during tissue homeostasis and regeneration. Though fascinating scientists for generations, these ideas remain poorly understood. Today, it is apparent that the Wnt/β-catenin pathway plays a central role in tissue patterning. Wnt proteins are small diffusible morphogens which are essential for cell type specification and patterning of tissues. In this review, we highlight several mechanisms described where the spatial properties of Wnt/β-catenin signaling are controlled, allowing them to work in combination with other diffusible molecules to control tissue patterning. We discuss examples of this self-patterning behavior during development and adult tissues' maintenance. The combination of new physiological culture systems, mathematical approaches, and synthetic biology will continue to fuel discoveries about how tissues are patterned. These insights are critical for understanding the intricate interplay of core patterning signals and how they become disrupted in disease.
Collapse
|
14
|
van Amerongen R. Celebrating Discoveries in Wnt Signaling: How One Man Gave Wings to an Entire Field. Cell 2020; 181:487-491. [PMID: 32234518 DOI: 10.1016/j.cell.2020.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This year's Gairdner Foundation Award for Biomedical Research goes to Roel Nusse for his pioneering work on the Wnt signaling pathway and its many roles in development, cancer, and stem cells.
Collapse
Affiliation(s)
- Renée van Amerongen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Wilson DH, Jarman EJ, Mellin RP, Wilson ML, Waddell SH, Tsokkou P, Younger NT, Raven A, Bhalla SR, Noll ATR, Olde Damink SW, Schaap FG, Chen P, Bates DO, Banales JM, Dean CH, Henderson DJ, Sansom OJ, Kendall TJ, Boulter L. Non-canonical Wnt signalling regulates scarring in biliary disease via the planar cell polarity receptors. Nat Commun 2020; 11:445. [PMID: 31974352 PMCID: PMC6978415 DOI: 10.1038/s41467-020-14283-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
The number of patients diagnosed with chronic bile duct disease is increasing and in most cases these diseases result in chronic ductular scarring, necessitating liver transplantation. The formation of ductular scaring affects liver function; however, scar-generating portal fibroblasts also provide important instructive signals to promote the proliferation and differentiation of biliary epithelial cells. Therefore, understanding whether we can reduce scar formation while maintaining a pro-regenerative microenvironment will be essential in developing treatments for biliary disease. Here, we describe how regenerating biliary epithelial cells express Wnt-Planar Cell Polarity signalling components following bile duct injury and promote the formation of ductular scars by upregulating pro-fibrogenic cytokines and positively regulating collagen-deposition. Inhibiting the production of Wnt-ligands reduces the amount of scar formed around the bile duct, without reducing the development of the pro-regenerative microenvironment required for ductular regeneration, demonstrating that scarring and regeneration can be uncoupled in adult biliary disease and regeneration.
Collapse
Affiliation(s)
- D H Wilson
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - E J Jarman
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - R P Mellin
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
- Infectious Diseases and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - M L Wilson
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - S H Waddell
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - P Tsokkou
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - N T Younger
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - A Raven
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - S R Bhalla
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Centre for Cancer Science, Queen's Medical Centre, Nottingham, UK
| | - A T R Noll
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
| | - S W Olde Damink
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - F G Schaap
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - P Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - D O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Centre for Cancer Science, Queen's Medical Centre, Nottingham, UK
- COMPARE University of Birmingham and University of Nottingham Midlands, Birmingham, UK
| | - J M Banales
- Biodonostia HRI, CIBERehd, Ikerbasque, San Sebastian, Spain
| | - C H Dean
- National Heart and Lung Institute, Imperial College London, London, UK
| | - D J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - O J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - T J Kendall
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - L Boulter
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK.
| |
Collapse
|
16
|
Kenwrick K, Mukherjee A, Renault AD. Hmgcr promotes a long-range signal to attract Drosophila germ cells independently of Hedgehog. J Cell Sci 2019; 132:jcs.232637. [PMID: 31719159 DOI: 10.1242/jcs.232637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/31/2019] [Indexed: 11/20/2022] Open
Abstract
During development, many cell types migrate along stereotyped routes determined through deployment of cell surface or secreted guidance molecules. Although we know the identity of many of these molecules, the distances over which they natively operate can be difficult to determine. Here, we have quantified the range of an attractive signal for the migration of Drosophila germ cells. Their migration is guided by an attractive signal generated by the expression of genes in the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (Hmgcr) pathway, and by a repulsive signal generated by the expression of Wunens. We demonstrate that the attractive signal downstream of Hmgcr is cell-contact independent and acts at long range, the extent of which depends on Hmgcr levels. This range would be sufficient to reach all of the germ cells for their entire migration. Furthermore, Hmgcr-mediated attraction does not require Wunens but can operate simultaneously with Wunen-mediated repulsion. Finally, several papers posit Hedgehog (Hh) as being the germ cell attractant downstream of H mgcr Here, we provide evidence that this is not the case.
Collapse
Affiliation(s)
- Kim Kenwrick
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Amrita Mukherjee
- Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
| | - Andrew D Renault
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
17
|
Affiliation(s)
- Richard A. Stewart
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aravinda-Bharathi Ramakrishnan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ken M. Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
18
|
Wingless Signaling: A Genetic Journey from Morphogenesis to Metastasis. Genetics 2018; 208:1311-1336. [PMID: 29618590 DOI: 10.1534/genetics.117.300157] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
This FlyBook chapter summarizes the history and the current state of our understanding of the Wingless signaling pathway. Wingless, the fly homolog of the mammalian Wnt oncoproteins, plays a central role in pattern generation during development. Much of what we know about the pathway was learned from genetic and molecular experiments in Drosophila melanogaster, and the core pathway works the same way in vertebrates. Like most growth factor pathways, extracellular Wingless/Wnt binds to a cell surface complex to transduce signal across the plasma membrane, triggering a series of intracellular events that lead to transcriptional changes in the nucleus. Unlike most growth factor pathways, the intracellular events regulate the protein stability of a key effector molecule, in this case Armadillo/β-catenin. A number of mysteries remain about how the "destruction complex" destabilizes β-catenin and how this process is inactivated by the ligand-bound receptor complex, so this review of the field can only serve as a snapshot of the work in progress.
Collapse
|
19
|
Beaven R, Denholm B. Release and spread of Wingless is required to pattern the proximo-distal axis of Drosophila renal tubules. eLife 2018; 7:e35373. [PMID: 30095068 PMCID: PMC6086663 DOI: 10.7554/elife.35373] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 01/06/2023] Open
Abstract
Wingless/Wnts are signalling molecules, traditionally considered to pattern tissues as long-range morphogens. However, more recently the spread of Wingless was shown to be dispensable in diverse developmental contexts in Drosophila and vertebrates. Here we demonstrate that release and spread of Wingless is required to pattern the proximo-distal (P-D) axis of Drosophila Malpighian tubules. Wingless signalling, emanating from the midgut, directly activates odd skipped expression several cells distant in the proximal tubule. Replacing Wingless with a membrane-tethered version that is unable to diffuse from the Wingless producing cells results in aberrant patterning of the Malpighian tubule P-D axis and development of short, deformed ureters. This work directly demonstrates a patterning role for a released Wingless signal. As well as extending our understanding about the functional modes by which Wnts shape animal development, we anticipate this mechanism to be relevant to patterning epithelial tubes in other organs, such as the vertebrate kidney.
Collapse
Affiliation(s)
- Robin Beaven
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Barry Denholm
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
20
|
Tacchelly-Benites O, Wang Z, Yang E, Benchabane H, Tian A, Randall MP, Ahmed Y. Axin phosphorylation in both Wnt-off and Wnt-on states requires the tumor suppressor APC. PLoS Genet 2018; 14:e1007178. [PMID: 29408853 PMCID: PMC5800574 DOI: 10.1371/journal.pgen.1007178] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/30/2017] [Indexed: 12/24/2022] Open
Abstract
The aberrant activation of Wnt signal transduction initiates the development of 90% of colorectal cancers, the majority of which arise from inactivation of the tumor suppressor Adenomatous polyposis coli (APC). In the classical model for Wnt signaling, the primary role of APC is to act, together with the concentration-limiting scaffold protein Axin, in a “destruction complex” that directs the phosphorylation and consequent proteasomal degradation of the transcriptional activator β-catenin, thereby preventing signaling in the Wnt-off state. Following Wnt stimulation, Axin is recruited to a multiprotein “signalosome” required for pathway activation. Whereas it is well-documented that APC is essential in the destruction complex, APC’s role in this complex remains elusive. Here, we demonstrate in Drosophila that Axin exists in two distinct phosphorylation states in Wnt-off and Wnt-on conditions, respectively, that underlie its roles in the destruction complex and signalosome. These two Axin phosphorylation states are catalyzed by glycogen synthase kinase 3 (GSK3), and unexpectedly, completely dependent on APC in both unstimulated and Wnt-stimulated conditions. In a major revision of the classical model, we show that APC is essential not only in the destruction complex, but also for the rapid transition in Axin that occurs after Wnt stimulation and Axin’s subsequent association with the Wnt co-receptor LRP6/Arrow, one of the earliest steps in pathway activation. We propose that this novel requirement for APC in Axin regulation through phosphorylation both prevents signaling in the Wnt-off state and promotes signaling immediately following Wnt stimulation. The Wnt signal transduction pathway directs fundamental cellular processes during development and in homeostasis. Wnt signaling is deregulated in 90% of colorectal cancers, most of which are triggered by inactivation of the tumor suppressor Adenomatous polyposis coli (APC). In the classical model, APC’s sole role in Wnt signaling is to target the transcriptional coactivator β-catenin for phosphorylation and subsequent degradation, and thereby to inhibit signaling in the unstimulated state. However, the mechanisms by which APC functions remain unknown. Herein, we provide evidence in Drosophila that supports a major role for APC in the direct regulation of the scaffold protein Axin in both Wnt-on and Wnt-off conditions. Our results indicate that APC promotes Axin phosphorylation, which is required not only to inhibit signaling in the unstimulated state, but also to activate signaling following Wnt stimulation. These unanticipated findings support a more active and multifaceted role for APC in Wnt signaling than previously known, and force revision of the current model for APC function.
Collapse
Affiliation(s)
- Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Eungi Yang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Michael P. Randall
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- * E-mail:
| |
Collapse
|
21
|
Wils LJ, Bijlsma MF. Epigenetic regulation of the Hedgehog and Wnt pathways in cancer. Crit Rev Oncol Hematol 2018; 121:23-44. [DOI: 10.1016/j.critrevonc.2017.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
|
22
|
Driehuis E, Clevers H. WNT signalling events near the cell membrane and their pharmacological targeting for the treatment of cancer. Br J Pharmacol 2017; 174:4547-4563. [PMID: 28244067 PMCID: PMC5727251 DOI: 10.1111/bph.13758] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
WNT signalling is an essential signalling pathway for all multicellular animals. Although first described more than 30 years ago, new components and regulators of the pathway are still being discovered. Considering its importance in both embryonic development and adult homeostasis, it is not surprising that this pathway is often deregulated in human diseases such as cancer. Recently, it became clear that in addition to cytoplasmic components such as β-catenin, other, membrane-bound or extracellular, components of the WNT pathway are also altered in cancer. This review gives an overview of the recent discoveries on WNT signalling events near the cell membrane. Furthermore, membrane-associated components of the WNT pathway, which are more accessible for therapeutic intervention, as well therapeutic approaches that already target those components will be discussed. In this way, we hope to stimulate the development of effective anti-cancer therapies that target this fascinating pathway. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Else Driehuis
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW)UtrechtThe Netherlands
- University medical center (UMC)UtrechtThe Netherlands
| | - Hans Clevers
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW)UtrechtThe Netherlands
- University medical center (UMC)UtrechtThe Netherlands
- Princess Maxime Center (PMC)UtrechtThe Netherlands
| |
Collapse
|
23
|
Gao H, He F, Lin X, Wu Y. Drosophila VAMP7 regulates Wingless intracellular trafficking. PLoS One 2017; 12:e0186938. [PMID: 29065163 PMCID: PMC5655445 DOI: 10.1371/journal.pone.0186938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022] Open
Abstract
Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.
Collapse
Affiliation(s)
- Han Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fang He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Yihui Wu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Ahmad SM. Conserved signaling mechanisms in Drosophila heart development. Dev Dyn 2017; 246:641-656. [PMID: 28598558 PMCID: PMC11546222 DOI: 10.1002/dvdy.24530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates. Mechanisms bringing about the regulation and combinatorial integration of these diverse signaling pathways in Drosophila are also described. This synopsis of our present state of knowledge of conserved signaling pathways in Drosophila cardiogenesis and the means by which it was acquired should facilitate our understanding of and investigations into related processes in vertebrates. Developmental Dynamics 246:641-656, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
25
|
Ishiguro H, Okubo T, Kuwabara Y, Kimura M, Mitsui A, Sugito N, Ogawa R, Katada T, Tanaka T, Shiozaki M, Mizoguchi K, Samoto Y, Matsuo Y, Takahashi H, Takiguchi S. NOTCH1 activates the Wnt/β-catenin signaling pathway in colon cancer. Oncotarget 2017; 8:60378-60389. [PMID: 28947978 PMCID: PMC5601146 DOI: 10.18632/oncotarget.19534] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
PURPOSE AND METHODS The translocation of β-catenin/CTNNB1 to the nucleus activates Wnt signaling and cell proliferation; however, the precise mechanism underlying this phenomenon remains unknown. Previous reports have provided evidence that NOTCH1 is involved in the Wnt signaling pathway. Therefore, we sought to determine the mechanism by which NOTCH1 influences the Wnt/β-catenin pathway. We constructed a vector expressing the NOTCH1 intracellular domain (NICD1) and transfected the vector into HCT116 which has low expression of NICD1. Furthermore, inhibition of NOTCH signal pathway in SW480 which has abundant NICD1 expression, was performed by transfection of siNICD1 or DAPT, gamma secretase inhibitor, treatment. In addition, we evaluated NICD1 and β-catenin localization in colon cancer cell lines and in 189 colon cancer tissue samples and analyzed the correlation between the nuclear localization of NICD1 and the clinicopathological features of colon cancer patients. RESULTS Immunohistochemical assays demonstrated that NICD1 and β-catenin exhibited a similar localization pattern in colon cancer tissues. In addition, we found that NICD1 induced the translocation of β-catenin to the nucleus and that NICD1 and β-catenin co-localized in the nucleus. Overexpression of NICD1 increased luciferase activity of Wnt signal pathway. On the other hand, reduction of NICD1 reduced luciferase activity of Wnt signaling pathway. In the 189 analyzed colon cancer cases, multivariate COX regression analysis demonstrated the independent prognostic impact of nuclear localization of NICD1(p=0.0376). CONCLUSION NOTCH1 plays a key role in the Wnt pathway and activation of NOTCH1 is associated with the translocation of β-catenin to the nucleus.
Collapse
Affiliation(s)
- Hideyuki Ishiguro
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Tomotaka Okubo
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yoshiyuki Kuwabara
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Masahiro Kimura
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Akira Mitsui
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Nobuyoshi Sugito
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Ryo Ogawa
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takeyasu Katada
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Tatsuya Tanaka
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Midori Shiozaki
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Koji Mizoguchi
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yosuke Samoto
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yoichi Matsuo
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hiroki Takahashi
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| | - Shuji Takiguchi
- Nagoya City University Graduate School of Medicine, Department of Gastroenterological Surgery, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
26
|
Mills KM, Szczerkowski JLA, Habib SJ. Wnt ligand presentation and reception: from the stem cell niche to tissue engineering. Open Biol 2017; 7:rsob.170140. [PMID: 28814649 PMCID: PMC5577451 DOI: 10.1098/rsob.170140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cells reside in niches where spatially restricted signals maintain a delicate balance between stem cell self-renewal and differentiation. Wnt family proteins are particularly suited for this role as they are modified by lipids, which constrain and spatially regulate their signalling range. In recent years, Wnt/β-catenin signalling has been shown to be essential for the self-renewal of a variety of mammalian stem cells. In this review, we discuss Wnt-responsive stem cells in their niche, and mechanisms by which Wnt ligands are presented to responsive cells. We also highlight recent progress in molecular visualization that has allowed for the monitoring of Wnt signalling within the stem cell compartment and new approaches to recapitulate this niche signalling in vitro Indeed, new technologies that present Wnt in a localized manner and mimic the three-dimensional microenvironment of stem cells will advance our understanding of Wnt signalling in the stem cell niche. These advances will expand current horizons to exploit Wnt ligands in the rapidly evolving fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Kate M Mills
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - James L A Szczerkowski
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| |
Collapse
|
27
|
Lowndes M, Junyent S, Habib SJ. Constructing cellular niche properties by localized presentation of Wnt proteins on synthetic surfaces. Nat Protoc 2017; 12:1498-1512. [PMID: 28686585 DOI: 10.1038/nprot.2017.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wnt signaling is crucial during embryonic development and for the maintenance of adult tissues. Depending on the tissue type, the Wnt pathway can promote stem cell self-renewal and/or direct lineage commitment. Wnt proteins are subject to lipid modification, often restricting them to act in a localized manner on responsive cells. Most methods for inducing Wnt signaling in stem cell cultures do not control the spatial presentation of the protein. To recreate the local presentation of Wnt proteins often seen in vivo, we previously developed a method to immobilize the protein onto synthetic surfaces. Here we describe a detailed protocol based on covalent binding of nucleophilic groups on Wnt proteins to activated carboxylic acid (COOH) or glutaraldehyde (COH) groups functionalized on synthetic surfaces. As an example, we describe how this method can be used to covalently immobilize Wnt3a proteins on microbeads or a glass surface. This procedure requires ∼3 h and allows for the hydrophobic protein to be stored in the absence of detergent. The immobilization efficiency of active Wnt proteins can be assessed using different T-cell factor (TCF) reporter assays as a readout for Wnt/β-catenin-dependent transcription. Immobilization efficiency can be measured 12-18 h after seeding the cells and takes 2-4 h. The covalent immobilization of Wnt proteins can also be used for single-cell analysis using Wnt-coated microbeads (12-18 h of live imaging) and to create a Wnt platform on a glass surface for stem cell maintenance and cell population analysis (3 d). The simple chemistry used for Wnt immobilization allows for adaptation to new materials and other developmental signals. Therefore, this method can also be incorporated into tissue engineering platforms in which depletion of the stem cell pool restricts the complexity and maturity of the tissue developed.
Collapse
Affiliation(s)
- Molly Lowndes
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| |
Collapse
|
28
|
Dickinson WJ, Yang Y, Schuske K, Akam M. CONSERVATION OF MOLECULAR PREPATTERNS DURING THE EVOLUTION OF CUTICLE MORPHOLOGY IN DROSOPHILA LARVAE. Evolution 2017; 47:1396-1406. [PMID: 28564885 DOI: 10.1111/j.1558-5646.1993.tb02162.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1992] [Accepted: 12/29/1992] [Indexed: 11/29/2022]
Abstract
We are using patterns of cuticle specialization in Drosophila larvae as models to investigate the molecular, genetic, and developmental bases of morphological evolution. Members of the virilis species group differ markedly from one another in the distribution of hairs on the dorsal surface of first instar larvae. In particular, characteristic bands of hairs cover about 20% of each trunk segment in some species but about 70% in others. These major types do not correlate with recently proposed phylogenetic relationships, suggesting that similar phenotypes have arisen independently in different lineages. The patterns of expression of several genes that control or reflect intrasegmental patterning are indistinguishable in species with very different cuticle morphologies. We conclude that, in this case, morphology probably has evolved via altered response to a conserved molecular prepattern.
Collapse
Affiliation(s)
- W J Dickinson
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112
| | | | - Kim Schuske
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, 94305-5020
| | - Michael Akam
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, Cambridge, CB2 1QR, UK
| |
Collapse
|
29
|
Williams TA, Nagy LM. Linking gene regulation to cell behaviors in the posterior growth zone of sequentially segmenting arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:380-394. [PMID: 27720841 DOI: 10.1016/j.asd.2016.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Virtually all arthropods all arthropods add their body segments sequentially, one by one in an anterior to posterior progression. That process requires not only segment specification but typically growth and elongation. Here we review the functions of some of the key genes that regulate segmentation: Wnt, caudal, Notch pathway, and pair-rule genes, and discuss what can be inferred about their evolution. We focus on how these regulatory factors are integrated with growth and elongation and discuss the importance and challenges of baseline measures of growth and elongation. We emphasize a perspective that integrates the genetic regulation of segment patterning with the cellular mechanisms of growth and elongation.
Collapse
Affiliation(s)
| | - Lisa M Nagy
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
30
|
Chassot AA, Le Rolle M, Jourden M, Taketo MM, Ghyselinck NB, Chaboissier MC. Constitutive WNT/CTNNB1 activation triggers spermatogonial stem cell proliferation and germ cell depletion. Dev Biol 2017; 426:17-27. [PMID: 28456466 DOI: 10.1016/j.ydbio.2017.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/27/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023]
Abstract
The differentiation of germ cells into oogonia or spermatogonia is the first step that eventually gives rise to fully mature gametes. In the female fetal gonad, the RSPO1/WNT/CTNNB1 signalling pathway is involved in primordial germ cell proliferation and differentiation into female germ cells, which are able to enter meiosis. In the postnatal testis, the WNT/CTNNB1 pathway also mediates proliferation of spermatogonial stem cells and progenitor cells. Here we show that forced activation of the WNT/CTNNB1 pathway in fetal gonocytes using transgenic mice leads to deregulated spermatogonial proliferation, and exhaustion of the spermatocytes by apoptosis, resulting in a hypoplastic testis. These findings demonstrate that a finely tuned timing in WNT/CTNNB1 signalling activity is required for spermatogenesis.
Collapse
Affiliation(s)
| | | | | | - Maketo M Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University Yoshida-Konoe-cho, Sakyo, Kyoto, Japan
| | - Norbert B Ghyselinck
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moleculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, F-67404 Illkirch, France
| | | |
Collapse
|
31
|
Munusamy P, Zolotarov Y, Meteignier LV, Moffett P, Strömvik MV. De novo computational identification of stress-related sequence motifs and microRNA target sites in untranslated regions of a plant translatome. Sci Rep 2017; 7:43861. [PMID: 28276452 PMCID: PMC5343461 DOI: 10.1038/srep43861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/31/2017] [Indexed: 01/24/2023] Open
Abstract
Gene regulation at the transcriptional and translational level leads to diversity in phenotypes and function in organisms. Regulatory DNA or RNA sequence motifs adjacent to the gene coding sequence act as binding sites for proteins that in turn enable or disable expression of the gene. Whereas the known DNA and RNA binding proteins range in the thousands, only a few motifs have been examined. In this study, we have predicted putative regulatory motifs in groups of untranslated regions from genes regulated at the translational level in Arabidopsis thaliana under normal and stressed conditions. The test group of sequences was divided into random subgroups and subjected to three de novo motif finding algorithms (Seeder, Weeder and MEME). In addition to identifying sequence motifs, using an in silico tool we have predicted microRNA target sites in the 3′ UTRs of the translationally regulated genes, as well as identified upstream open reading frames located in the 5′ UTRs. Our bioinformatics strategy and the knowledge generated contribute to understanding gene regulation during stress, and can be applied to disease and stress resistant plant development.
Collapse
Affiliation(s)
- Prabhakaran Munusamy
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Yevgen Zolotarov
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | | | - Peter Moffett
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Martina V Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| |
Collapse
|
32
|
A Comparative Perspective on Wnt/β-Catenin Signalling in Cell Fate Determination. Results Probl Cell Differ 2017; 61:323-350. [PMID: 28409312 DOI: 10.1007/978-3-319-53150-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin pathway is an ancient and highly conserved signalling pathway that plays fundamental roles in the regulation of embryonic development and adult homeostasis. This pathway has been implicated in numerous cellular processes, including cell proliferation, differentiation, migration, morphological changes and apoptosis. In this chapter, we aim to illustrate with specific examples the involvement of Wnt/β-catenin signalling in cell fate determination. We discuss the roles of the Wnt/β-catenin pathway in specifying cell fate throughout evolution, how its function in patterning during development is often reactivated during regeneration and how perturbation of this pathway has negative consequences for the control of cell fate.The origin of all life was a single cell that had the capacity to respond to cues from the environment. With evolution, multicellular organisms emerged, and as a result, subsets of cells arose to form tissues able to respond to specific instructive signals and perform specialised functions. This complexity and specialisation required two types of messages to direct cell fate: intra- and intercellular. A fundamental question in developmental biology is to understand the underlying mechanisms of cell fate choice. Amongst the numerous external cues involved in the generation of cellular diversity, a prominent pathway is the Wnt signalling pathway in all its forms.
Collapse
|
33
|
Ishiguro H, Wakasugi T, Terashita Y, Sakamoto N, Tanaka T, Mizoguchi K, Sagawa H, Okubo T, Takeyama H. Decreased expression of CDH1 or CTNNB1 affects poor prognosis of patients with esophageal cancer. World J Surg Oncol 2016; 14:240. [PMID: 27600761 PMCID: PMC5012100 DOI: 10.1186/s12957-016-0956-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022] Open
Abstract
Background E-cadherin/CDH1 is one of the proteins involved in cell adhesion, and it is known that decreased expression of E-cadherin induces lymph node metastasis in esophageal cancer. Beta catenin/CTNNB1, which is an important component of the Wnt signaling pathway, binds to E-cadherin at the cell membrane, where the complex of these two proteins functions in the stabilization of cell adhesion. However, its role in the pathogenesis of esophageal cancer is still unknown. Methods This study included 86 patients with esophageal cancer who underwent surgery between 1998 and 2007. The expression of the E-cadherin/CDH1 gene product (E-cadherin/CDH1) and that of the beta catenin/CTNNB1 protein in the cell membrane were analyzed by immunohistochemistry. We examined the correlations among CDH1 or CTNNB1 expression, clinicopathological factors, and the prognosis of patients with ESCC. Results CDH1 and CTNNB1 were expressed in 52.3 % (45/86) and 36.0 % (31/86) of tumor samples, respectively. Both CDH1 and CTNNB1 were co-expressed in 22.1 % (19/86) of esophageal cancer tissues. CDH1 expression correlated with the p-stage (stages I–II vs stages III–IV, p = 0.032), T factor (T1–2 vs T3–4, p = 0.0088), and lymphatic invasion (p = 0.019). However, CDH1 expression did not correlate with the N factor or the blood vessel invasion. CTNNB1 expression correlated with the T factor (T1–2 vs T3–4, p = 0.0015), p-stage (stages I–II vs stages III–IV, p = 0.030), and lymphatic invasion (p = 0.007). The CDH1(+)/CTNNB1(+) phenotype was inversely correlated with the T factor, N factor, p-stage, lymphatic invasion, and blood vessel invasion. Furthermore, patients whose tumors were double-positive for CDH1 and CTNNB1 had a significantly higher survival rate than those whose tumors were negative for CDH1 or CTNNB1 (log-rank test, p = 0.0192). The T factor and N factor had a strong negative correlation with double-positive tumors. These were both independent prognostic factors, as was the double-positive phenotype. A univariate analysis indicated that the T factor, the N factor, and CDH1 and CTNNB1 co-expression were significant variables that predicted survival (hazard ratio, 2.387; 95 % confidence interval, 1.115–5.102; p = 0.025). Conclusions Decreased expression of CDH1 or CTNNB1 in the cell membranes of cancer cells is associated with poor survival of patients with esophageal cancer.
Collapse
Affiliation(s)
- Hideyuki Ishiguro
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Takehiro Wakasugi
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yukio Terashita
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Nobuhiro Sakamoto
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tatsuya Tanaka
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Koji Mizoguchi
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hiroyuki Sagawa
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tomotaka Okubo
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hiromitsu Takeyama
- Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
34
|
Clark E, Akam M. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network. eLife 2016; 5:e18215. [PMID: 27525481 PMCID: PMC5035143 DOI: 10.7554/elife.18215] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/14/2016] [Indexed: 01/08/2023] Open
Abstract
The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Lowndes M, Rotherham M, Price JC, El Haj AJ, Habib SJ. Immobilized WNT Proteins Act as a Stem Cell Niche for Tissue Engineering. Stem Cell Reports 2016; 7:126-37. [PMID: 27411105 PMCID: PMC4944585 DOI: 10.1016/j.stemcr.2016.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 11/18/2022] Open
Abstract
The timing, location, and level of WNT signaling are highly regulated during embryonic development and for the maintenance of adult tissues. Consequently the ability to provide a defined and directed source of WNT proteins is crucial to fully understand its role in tissue development and to mimic its activity in vitro. Here we describe a one-step immobilization technique to covalently bind WNT3A proteins as a basal surface with easy storage and long-lasting activity. We show that this platform is able to maintain adult and embryonic stem cells while also being adaptable for 3D systems. Therefore, this platform could be used for recapitulating specific stem cell niches with the goal of improving tissue engineering.
Collapse
Affiliation(s)
- Molly Lowndes
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Michael Rotherham
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Joshua C Price
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK; Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Alicia J El Haj
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, UK.
| |
Collapse
|
36
|
Wnt pathway activation by ADP-ribosylation. Nat Commun 2016; 7:11430. [PMID: 27138857 PMCID: PMC4857404 DOI: 10.1038/ncomms11430] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 03/23/2016] [Indexed: 01/12/2023] Open
Abstract
Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)--known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly.
Collapse
|
37
|
Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 2016; 530:340-3. [DOI: 10.1038/nature16937] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
|
38
|
Gomez-Lamarca MJ, Snowdon LA, Seib E, Klein T, Bray SJ. Rme-8 depletion perturbs Notch recycling and predisposes to pathogenic signaling. J Cell Biol 2015; 210:303-18. [PMID: 26169355 PMCID: PMC4508892 DOI: 10.1083/jcb.201411001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
The retromer-associated DNAJ protein Rme-8 is necessary for normal Notch recycling, and reductions in Rme-8 sensitize cells so that additional loss-of-sorting retromer or ESCRT-0 components have catastrophic effects. Notch signaling is a major regulator of cell fate, proliferation, and differentiation. Like other signaling pathways, its activity is strongly influenced by intracellular trafficking. Besides contributing to signal activation and down-regulation, differential fluxes between trafficking routes can cause aberrant Notch pathway activation. Investigating the function of the retromer-associated DNAJ protein Rme-8 in vivo, we demonstrate a critical role in regulating Notch receptor recycling. In the absence of Rme-8, Notch accumulated in enlarged tubulated Rab4-positive endosomes, and as a consequence, signaling was compromised. Strikingly, when the retromer component Vps26 was depleted at the same time, Notch no longer accumulated and instead was ectopically activated. Likewise, depletion of ESCRT-0 components Hrs or Stam in combination with Rme-8 also led to high levels of ectopic Notch activity. Together, these results highlight the importance of Rme-8 in coordinating normal endocytic recycling route and reveal that its absence predisposes toward conditions in which pathological Notch signaling can occur.
Collapse
Affiliation(s)
- Maria J Gomez-Lamarca
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | - Laura A Snowdon
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | - Ekatarina Seib
- Institute of Genetics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| |
Collapse
|
39
|
Meinhardt H. Models for patterning primary embryonic body axes: The role of space and time. Semin Cell Dev Biol 2015; 42:103-17. [PMID: 26126935 DOI: 10.1016/j.semcdb.2015.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/23/2015] [Indexed: 11/19/2022]
Abstract
Models for the generation and interpretation of spatial patterns are discussed. Crucial for these processes is an intimate link between self-enhancing and antagonistic reactions. For spatial patterning, long-ranging antagonistic reactions are required that restrict the self-enhancing reactions to generate organizing regions. Self-enhancement is also required for a permanent switch-like activation of genes. This self-enhancement is antagonized by the mutual repression of genes, making sure that in a particular cell only one gene of a set of possible genes become activated - a long range inhibition in the 'gene space'. The understanding how the main body axes are initiated becomes more straightforward if the evolutionary ancestral head/brain pattern and the trunk pattern is considered separately. To activate a specific gene at particular concentration of morphogenetic gradient, observations are compatible with a systematic and time-requiring 'promotion' from one gene to the next until the local concentration is insufficient to accomplish a further promotion. The achieved determination is stable against a fading of the morphogen, as required to allow substantial growth. Minor modifications lead to a purely time-dependent activation of genes; both mechanisms are involved to pattern the anteroposterior axis. A mutual activation of cell states that locally exclude each other accounts for many features of the segmental patterning of the trunk. A possible scenario for the evolutionary invention of segmentation is discussed that is based on a reemployment of interactions involved in asexual reproduction.
Collapse
Affiliation(s)
- Hans Meinhardt
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstr. 35, D-72076 Tübingen, Germany.
| |
Collapse
|
40
|
Feng Q, Gao N. Keeping Wnt signalosome in check by vesicular traffic. J Cell Physiol 2015; 230:1170-80. [PMID: 25336320 DOI: 10.1002/jcp.24853] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
Wg/Wnts are paracrine and autocrine ligands that activate distinct signaling pathways while being internalized through surface receptors. Converging and contrasting views are shaping our understanding of whether, where, and how endocytosis may modulate Wnt signaling. We gather considerable amount of evidences to elaborate the point that signal-receiving cells utilize distinct, flexible, and sophisticated vesicular trafficking mechanisms to keep Wnt signaling activity in check. Same molecules in a highly context-dependent fashion serve as regulatory hub for various signaling purposes: amplification, maintenance, inhibition, and termination. Updates are provided for the regulatory mechanisms related to the three critical cell surface complexes, Wnt-Fzd-LRP6, Dkk1-Kremen-LRP6, and R-spondin-LGR5-RNF43, which potently influence Wnt signaling. We pay particular attentions to how cells achieve sustained and delicate control of Wnt signaling strength by employing comprehensive aspects of vesicular trafficking.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | |
Collapse
|
41
|
The role of Bro1- domain-containing protein Myopic in endosomal trafficking of Wnt/Wingless. Dev Biol 2014; 392:93-107. [DOI: 10.1016/j.ydbio.2014.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/24/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022]
|
42
|
Linnemannstöns K, Ripp C, Honemann-Capito M, Brechtel-Curth K, Hedderich M, Wodarz A. The PTK7-related transmembrane proteins off-track and off-track 2 are co-receptors for Drosophila Wnt2 required for male fertility. PLoS Genet 2014; 10:e1004443. [PMID: 25010066 PMCID: PMC4091708 DOI: 10.1371/journal.pgen.1004443] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 05/02/2014] [Indexed: 02/03/2023] Open
Abstract
Wnt proteins regulate many developmental processes and are required for tissue homeostasis in adult animals. The cellular responses to Wnts are manifold and are determined by the respective Wnt ligand and its specific receptor complex in the plasma membrane. Wnt receptor complexes contain a member of the Frizzled family of serpentine receptors and a co-receptor, which commonly is a single-pass transmembrane protein. Vertebrate protein tyrosine kinase 7 (PTK7) was identified as a Wnt co-receptor required for control of planar cell polarity (PCP) in frogs and mice. We found that flies homozygous for a complete knock-out of the Drosophila PTK7 homolog off track (otk) are viable and fertile and do not show PCP phenotypes. We discovered an otk paralog (otk2, CG8964), which is co-expressed with otk throughout embryonic and larval development. Otk and Otk2 bind to each other and form complexes with Frizzled, Frizzled2 and Wnt2, pointing to a function as Wnt co-receptors. Flies lacking both otk and otk2 are viable but male sterile due to defective morphogenesis of the ejaculatory duct. Overexpression of Otk causes female sterility due to malformation of the oviduct, indicating that Otk and Otk2 are specifically involved in the sexually dimorphic development of the genital tract. Wnts are secreted, growth factor-like proteins that are important for the development of many tissues and organs in animals. They are also required in adult animals and humans for controlling the balance between growth and differentiation. Wnts are bound at the cell surface by Wnt receptors, which are dimers composed of a Frizzled protein and a co-receptor. Here we have analyzed the Drosophila Wnt co-receptors Off-track (Otk) and Off-track 2 (Otk2), which are closely related to vertebrate Protein tyrosine kinase 7 (PTK7). We found that in contrast to PTK7 in mice and frogs, which controls planar cell polarity (PCP), Otk and Otk2 together are needed in males for development of the ejaculatory duct, a tube-like organ that transports the mature sperm. Our data furthermore indicate that Otk and Otk2 are co-receptors for Wnt2. The sterile phenotype of Wnt2 mutant males is not identical to that of otk, otk2 double mutants, so additional Wnts may be involved in this process. Interestingly, the function of Wnt2 in male fertility appears to be evolutionarily conserved, because male mice mutant for Wnt7A, the vertebrate homolog of Drosophila Wnt2, are sterile due to abnormal development of the vas deferens, which corresponds to the fly ejaculatory duct.
Collapse
Affiliation(s)
- Karen Linnemannstöns
- Stem Cell Biology, Institute for Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
| | - Caroline Ripp
- Stem Cell Biology, Institute for Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
| | - Mona Honemann-Capito
- Stem Cell Biology, Institute for Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
| | - Katja Brechtel-Curth
- Stem Cell Biology, Institute for Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
| | - Marie Hedderich
- Institute for Developmental Biochemistry, University of Goettingen, Goettingen, Germany
| | - Andreas Wodarz
- Stem Cell Biology, Institute for Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
| |
Collapse
|
43
|
Bejsovec A. Wingless/Wnt signaling in Drosophila: the pattern and the pathway. Mol Reprod Dev 2013; 80:882-94. [PMID: 24038436 DOI: 10.1002/mrd.22228] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/07/2013] [Indexed: 01/09/2023]
Abstract
Wnt signaling generates pattern in all animal embryos, from flies and worms to humans, and promotes the undifferentiated, proliferative state critical for stem cells in adult tissues. Inappropriate Wnt pathway activation is the major cause of colorectal cancers, a leading cause of cancer death in humans. Although this pathway has been studied extensively for years, large gaps remain in our understanding of how it switches on and off, and how its activation changes cellular behaviors. Much of what is known about the pathway comes from genetic studies in Drosophila, where a single Wnt molecule, encoded by wingless (wg), directs an array of cell-fate decisions similar to those made by the combined activities of all 19 Wnt family members in vertebrates. Although Wg specifies fate in many tissues, including the brain, limbs, and major organs, the fly embryonic epidermis has proven to be a very powerful system for dissecting pathway activity. It is a simple, accessible tissue, with a pattern that is highly sensitive to small changes in Wg pathway activity. This review discusses what we have learned about Wnt signaling from studying mutations that disrupt epidermal pattern in the fly embryo, highlights recent advances and controversies in the field, and sets these issues in the context of questions that remain about how this essential signaling pathway functions.
Collapse
Affiliation(s)
- Amy Bejsovec
- Department of Biology, Duke University, Durham, North Carolina
| |
Collapse
|
44
|
Schaub C, Frasch M. Org-1 is required for the diversification of circular visceral muscle founder cells and normal midgut morphogenesis. Dev Biol 2013; 376:245-59. [PMID: 23380635 DOI: 10.1016/j.ydbio.2013.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/23/2013] [Indexed: 02/08/2023]
Abstract
The T-Box family of transcription factors plays fundamental roles in the generation of appropriate spatial and temporal gene expression profiles during cellular differentiation and organogenesis in animals. In this study we report that the Drosophila Tbx1 orthologue optomotor-blind-related-gene-1 (org-1) exerts a pivotal function in the diversification of circular visceral muscle founder cell identities in Drosophila. In embryos mutant for org-1, the specification of the midgut musculature per se is not affected, but the differentiating midgut fails to form the anterior and central midgut constrictions and lacks the gastric caeca. We demonstrate that this phenotype results from the nearly complete loss of the founder cell specific expression domains of several genes known to regulate midgut morphogenesis, including odd-paired (opa), teashirt (tsh), Ultrabithorax (Ubx), decapentaplegic (dpp) and wingless (wg). To address the mechanisms that mediate the regulatory inputs from org-1 towards Ubx, dpp, and wg in these founder cells we genetically dissected known visceral mesoderm specific cis-regulatory-modules (CRMs) of these genes. The analyses revealed that the activities of the dpp and wg CRMs depend on org-1, the CRMs are bound by Org-1 in vivo and their T-Box binding sites are essential for their activation in the visceral muscle founder cells. We conclude that Org-1 acts within a well-defined signaling and transcriptional network of the trunk visceral mesoderm as a crucial founder cell-specific competence factor, in concert with the general visceral mesodermal factor Biniou. As such, it directly regulates several key genes involved in the establishment of morphogenetic centers along the anteroposterior axis of the visceral mesoderm, which subsequently organize the formation of midgut constrictions and gastric caeca and thereby determine the morphology of the midgut.
Collapse
Affiliation(s)
- Christoph Schaub
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | |
Collapse
|
45
|
Beckett K, Monier S, Palmer L, Alexandre C, Green H, Bonneil E, Raposo G, Thibault P, Le Borgne R, Vincent JP. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes. Traffic 2013; 14:82-96. [PMID: 23035643 PMCID: PMC4337976 DOI: 10.1111/tra.12016] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/28/2022]
Abstract
Wingless acts as a morphogen in Drosophila wing discs, where it specifies cell fates and controls growth several cell diameters away from its site of expression. Thus, despite being acylated and membrane associated, Wingless spreads in the extracellular space. Recent studies have focussed on identifying the route that Wingless follows in the secretory pathway and determining how it is packaged for release. We have found that, in medium conditioned by Wingless-expressing Drosophila S2 cells, Wingless is present on exosome-like vesicles and that this fraction activates signal transduction. Proteomic analysis shows that Wingless-containing exosome-like structures contain many Drosophila proteins that are homologous to mammalian exosome proteins. In addition, Evi, a multipass transmembrane protein, is also present on exosome-like vesicles. Using these exosome markers and a cell-based RNAi assay, we found that the small GTPase Rab11 contributes significantly to exosome production. This finding allows us to conclude from in vivo Rab11 knockdown experiments, that exosomes are unlikely to contribute to Wingless secretion and gradient formation in wing discs. Consistent with this conclusion, extracellularly tagged Evi expressed from a Bacterial Artificial Chromosome is not released from imaginal disc Wingless-expressing cells.
Collapse
Affiliation(s)
- Karen Beckett
- Division of Developmental Biology, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lauffenburger DA, Chu L, French A, Oehrtman G, Reddy C, Wells A, Niyogi S, Wiley HS. Engineering dynamics of growth factors and other therapeutic ligands. Biotechnol Bioeng 2012; 52:61-80. [PMID: 18629852 DOI: 10.1002/(sici)1097-0290(19961005)52:1<61::aid-bit6>3.0.co;2-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peptide growth factors and other receptor-binding cytokine ligands are of interest in contemporary molecular health care approaches in applications such as wound healing, tissue regeneration, and gene therapy. Development of effective technologies based on operation of these regulatory molecules requires an ability to deliver the ligands to target cells in a reliable and well-characterizable manner. Quantitative information concerning the fate of peptide ligands within tissues is necessary for adequate interpretation of experimental observations at the tissue level and for truly rational engineering design of ligand-based therapies. To address this need, we are undertaking efforts to elucidate effects of key molecular and cellular parameters on temporal and spatial distribution of cytokines in cell population and cell/matrix systems. In this article we summarize some of our recent findings on dynamics of growth factor depletion by cellular endocytic trafficking, growth factor transport through cellular matrices, and growth factor production and release by autocrine cell systems. (c) 1996 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- D A Lauffenburger
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Wnt proteins comprise a major family of signaling molecules that orchestrate and influence a myriad of cell biological and developmental processes. Although our understanding of the role of Wnt signaling in regulating development and affecting disease, such as cancer, has been ever increasing, the study of the Wnt proteins themselves has been painstaking and slow moving. Despite advances in the biochemical characterization of Wnt proteins, many mysteries remain unsolved. In contrast to other developmental signaling molecules, such as fibroblast growth factors (FGF), transforming growth factors (TGFβ), and Sonic hedgehog (Shh), Wnt proteins have not conformed to many standard methods of protein production, such as bacterial overexpression, and analysis, such as ligand-receptor binding assays. The reasons for their recalcitrant nature are likely a consequence of the complex set of posttranslational modifications involving several highly specialized and poorly characterized processing enzymes. With the recent description of the first Wnt protein structure, the time is ripe to uncover and possibly resolve many of the remaining issues surrounding Wnt proteins and their interactions. Here we describe the process of maturation of Wnt from its initial translation to its eventual release from a cell and interactions in the extracellular environment.
Collapse
Affiliation(s)
- Karl Willert
- Department of Cellular and Molecular Medicine, University of California, San Diego, California 92093, USA.
| | | |
Collapse
|
48
|
Abstract
The WNT signal transduction cascade controls myriad biological phenomena throughout development and adult life of all animals. In parallel, aberrant Wnt signaling underlies a wide range of pathologies in humans. In this Review, we provide an update of the core Wnt/β-catenin signaling pathway, discuss how its various components contribute to disease, and pose outstanding questions to be addressed in the future.
Collapse
Affiliation(s)
- Hans Clevers
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands.
| | | |
Collapse
|
49
|
Abstract
The Wingless (Wg) pathway represents one of the best-characterized intercellular signaling networks. Studies performed in Drosophila over the last 30 years have contributed to our understanding of the role of Wg signaling in the regulation of tissue growth, polarity, and patterning. These studies have revealed mechanisms conserved in the vertebrate Wnt pathways and illustrate the elegance of using the Drosophila model to understand evolutionarily conserved modes of gene regulation. In this article, we describe the function of Wg signaling in patterning the Drosophila embryonic epidermis and wing imaginal disc. As well, we present an overview of the establishment of the Wg morphogen gradient and discuss the differential modes of Wg-regulated gene expression.
Collapse
Affiliation(s)
- Sharan Swarup
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
50
|
Herr P, Basler K. Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev Biol 2012; 361:392-402. [DOI: 10.1016/j.ydbio.2011.11.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 11/15/2022]
|