1
|
White AM, Craig AJ, Richie DL, Corley C, Sadek SM, Barton HN, Gipson CD. Nicotine is an Immunosuppressant: Implications for Women's Health and Disease. J Neuroimmunol 2024; 397:578468. [PMID: 39461120 DOI: 10.1016/j.jneuroim.2024.578468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
A plethora of evidence supports that nicotine, the primary alkaloid in tobacco products that is generally accepted for maintaining use, is immunoregulatory and may function as an immunosuppressant. Women have unique experiences with use of nicotine-containing products and also undergo significant reproductive transitions throughout their lifespan which may be impacted by nicotine use. Within the extant literature, there is conflicting evidence that nicotine may confer beneficial health effects in specific disease states (e.g., in ulcerative colitis). Use prevalence of nicotine-containing products is exceptionally high in individuals presenting with some comorbid disease states that impact immune system health and can be a risk factor for the development of diseases which disproportionately impact women; however, the mechanisms underlying these relationships are largely unclear. Further, little is known regarding the impacts of nicotine's immunosuppressive effects on women's health during the menopausal transition, which is arguably an inflammatory event characterized by a pro-inflammatory peri-menopause period. Given that post-menopausal women are at a higher risk than men for the development of neurodegenerative diseases such as Alzheimer's disease and are also more vulnerable to negative health effects associated with diseases such as HIV-1 infection, it is important to understand how use of nicotine-containing products may impact the immune milieu in women. In this review, we define instances in which nicotine use confers immunosuppressive, anti-inflammatory, or pro-inflammatory effects in the context of comorbid disease states, and focus on how nicotine impacts neuroimmune signaling to maintain use. We posit that regardless of potential health benefits, nicotine use cessation should be a priority in the clinical care of women. The synthesis of this review demonstrates the importance of systematically defining the relationships between volitional nicotine use, immune system function, and comorbid disease states in women to better understand how nicotine impacts women's health and disease.
Collapse
Affiliation(s)
- Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley J Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Daryl L Richie
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Christa Corley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah M Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Heather N Barton
- Beebe Health, Gastroenterology and Internal Medicine, Lewes, Delaware, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Zhao L, Lai Y, Jiao H, Li J, Lu K, Huang J. CRISPR-mediated Sox9 activation and RelA inhibition enhance cell therapy for osteoarthritis. Mol Ther 2024; 32:2549-2562. [PMID: 38879753 PMCID: PMC11405173 DOI: 10.1016/j.ymthe.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Osteoarthritis (OA) is a painful and debilitating disease affecting over 500 million people worldwide. Intraarticular injection of mesenchymal stromal cells (MSCs) shows promise for the clinical treatment of OA, but the lack of consistency in MSC preparation and application makes it difficult to further optimize MSC therapy and to properly evaluate the clinical outcomes. In this study, we used Sox9 activation and RelA inhibition, both mediated by the CRISPR-dCas9 technology simultaneously, to engineer MSCs with enhanced chondrogenic potential and downregulated inflammatory responses. We found that both Sox9 and RelA could be fine-tuned to the desired levels, which enhances the chondrogenic and immunomodulatory potentials of the cells. Intraarticular injection of modified cells significantly attenuated cartilage degradation and palliated OA pain compared with the injection of cell culture medium or unmodified cells. Mechanistically, the modified cells promoted the expression of factors beneficial to cartilage integrity, inhibited the production of catabolic enzymes in osteoarthritic joints, and suppressed immune cells. Interestingly, a substantial number of modified cells could survive in the cartilaginous tissues including articular cartilage and meniscus. Together, our results suggest that CRISPR-dCas9-based gene regulation is useful for optimizing MSC therapy for OA.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Ke Lu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
3
|
Zhuang X, Xia Y, Liu Y, Guo T, Xia Z, Wang Z, Zhang G. SCG5 and MITF may be novel markers of copper metabolism immunorelevance in Alzheimer's disease. Sci Rep 2024; 14:13619. [PMID: 38871989 DOI: 10.1038/s41598-024-64599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
The slow-developing neurological disorder Alzheimer's disease (AD) has no recognized etiology. A bioinformatics investigation verified copper metabolism indicators for AD development. GEO contributed AD-related datasets GSE1297 and GSE5281. Differential expression analysis and WGCNA confirmed biomarker candidate genes. Each immune cell type in AD and control samples was scored using single sample gene set enrichment analysis. Receiver Operating Characteristic (ROC) analysis, short Time-series Expression Miner (STEM) grouping, and expression analysis between control and AD samples discovered copper metabolism indicators that impacted AD progression. We test clinical samples and cellular function to ensure study correctness. Biomarker-targeting miRNAs and lncRNAs were predicted by starBase. Trust website anticipated biomarker-targeting transcription factors. In the end, Cytoscape constructed the TF/miRNA-mRNA and lncRNA-miRNA networks. The DGIdb database predicted biomarker-targeted drugs. We identified 57 differentially expressed copper metabolism-related genes (DE-CMRGs). Next, fourteen copper metabolism indicators impacting AD progression were identified: CCK, ATP6V1E1, SYT1, LDHA, PAM, HPRT1, SCG5, ATP6V1D, GOT1, NFKBIA, SPHK1, MITF, BRCA1, and CD38. A TF/miRNA-mRNA regulation network was then established with two miRNAs (hsa-miR-34a-5p and 34c-5p), six TFs (NFKB1, RELA, MYC, HIF1A, JUN, and SP1), and four biomarkers. The DGIdb database contained 171 drugs targeting ten copper metabolism-relevant biomarkers (BRCA1, MITF, NFKBIA, CD38, CCK2, HPRT1, SPHK1, LDHA, SCG5, and SYT1). Copper metabolism biomarkers CCK, ATP6V1E1, SYT1, LDHA, PAM, HPRT1, SCG5, ATP6V1D, GOT1, NFKBIA, SPHK1, MITF, BRCA1, and CD38 alter AD progression, laying the groundwork for disease pathophysiology and novel AD diagnostic and treatment.
Collapse
Affiliation(s)
- Xianbo Zhuang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng, China
| | - Yitong Xia
- School of Rehabilitation Medicine, Jining Medical University, Jining, China
| | - Yingli Liu
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng, China
| | - Tingting Guo
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Shandong Sub-Centre, Liaocheng, China
- Department of Neurology, the Second People's Hospital of Liaocheng, Liaocheng, China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China.
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng, China.
| |
Collapse
|
4
|
Zhang T, Zhong Y, Shi Y, Feng C, Xu L, Chen Z, Sun X, Zhao Y, Sun X. Multi-omics reveals that 5-O-methylvisammioside prevention acute liver injury in mice by regulating the TNF/MAPK/NF-κB/arachidonic acid pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155550. [PMID: 38522313 DOI: 10.1016/j.phymed.2024.155550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The pathogenesis of acute liver injury (ALI) has been a pressing issue in the medical scientific community. We previously found that 5-O-methylvisammioside (MeV) from Saposhnikovia divaricata (Turcz.) Schischk has excellent anti-inflammatory properties. However, the mechanism by which MeV protects against ALI still needs to be deeply investigated. PURPOSE In the present study, we established an acetaminophen (APAP) -induced ALI mouse model and pre-protected the mice with MeV. METHODS & RESULTS Our findings indicate that MeV (5 and 10 mg/kg) lowered the blood levels of alanine aminotransferase and aspartate aminotransferase and reduced the infiltration of inflammatory cells in the liver. MeV initially showed an inhibitory effect on ALI. We then analyzed the molecular mechanisms underlying the effects of MeV by transcriptomic and metabolomic analyzes. Through transcriptomic analysis, we identified 4675 differentially expressed genes between the APAP+MeV group and the APAP-induced ALI group, which were mainly enriched in the MAPK pathway, the TNF pathway, and the NF-κB pathway. Through metabolomic analysis, we found that 249 metabolites in the liver were differentially regulated between the APAP+MeV group and the APAP- induced ALI group, which were mainly enriched in the arachidonic acid pathway. The mRNA expression levels of key genes (encoding TNF-α, p38, AP-1, RelB, IL-1β, and Ptges), as determined by RT-PCR analysis, were consistent with the RNA-seq data. The ELISA results indicate that MeV markedly decreased the serum levels of TNF-α and IL-1β in mice. Finally, the key proteins in the NF-κB and MAPK pathways were examined using immunoblotting. The results showed that MeV decreased IκB-α phosphorylation and inhibited the nuclear translocation of NF-κB. In addition, MeV reduced the hepatic inflammatory burst mainly by inhibiting the phosphorylation of p38 and JNK in the MAPK pathway. CONCLUSION The present study demonstrated (i) that MeV could ameliorate APAP-induced ALI by inhibiting arachidonic acid metabolism and the TNF, MAPK, and NF-κB pathways, and (ii) that MeV is a promising drug candidate for the prevention of ALI.
Collapse
Affiliation(s)
- Tingwen Zhang
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Yue Zhong
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Yan Shi
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Chengcheng Feng
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Lu Xu
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Zheng Chen
- Jilin Hospital of Integrated Traditional Chinese and Western Medicine, No.9 Changchun Road, Chuanying District, Jilin City, Jilin Province, China
| | - Xin Sun
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, No. 2888, Xincheng Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Xialin Sun
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China.
| |
Collapse
|
5
|
Purandare N, Kunji Y, Xi Y, Romero R, Gomez-Lopez N, Fribley A, Grossman LI, Aras S. Lipopolysaccharide induces placental mitochondrial dysfunction in murine and human systems by reducing MNRR1 levels via a TLR4-independent pathway. iScience 2022; 25:105342. [PMID: 36339251 PMCID: PMC9633742 DOI: 10.1016/j.isci.2022.105342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/20/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Mitochondria play a key role in placental growth and development, and mitochondrial dysfunction is associated with inflammation in pregnancy pathologies. However, the mechanisms whereby placental mitochondria sense inflammatory signals are unknown. Mitochondrial nuclear retrograde regulator 1 (MNRR1) is a bi-organellar protein responsible for mitochondrial function, including optimal induction of cellular stress-responsive signaling pathways. Here, in a lipopolysaccharide-induced model of systemic placental inflammation, we show that MNRR1 levels are reduced both in mouse placental tissues in vivo and in human trophoblastic cell lines in vitro. MNRR1 reduction is associated with mitochondrial dysfunction, enhanced oxidative stress, and activation of pro-inflammatory signaling. Mechanistically, we uncover a non-conventional pathway independent of Toll-like receptor 4 (TLR4) that results in ATM kinase-dependent threonine phosphorylation that stabilizes mitochondrial protease YME1L1, which targets MNRR1. Enhancing MNRR1 levels abrogates the bioenergetic defect and induces an anti-inflammatory phenotype. We therefore propose MNRR1 as an anti-inflammatory therapeutic in placental inflammation.
Collapse
Affiliation(s)
- Neeraja Purandare
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University; Detroit, MI 48201, USA
| | - Yusef Kunji
- Center for Molecular Medicine and Genetics, Wayne State University; Detroit, MI 48201, USA
| | - Yue Xi
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48104, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University; Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Andrew Fribley
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lawrence I. Grossman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University; Detroit, MI 48201, USA
| | - Siddhesh Aras
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University; Detroit, MI 48201, USA
| |
Collapse
|
6
|
Walser M, Mayor J, Rothenberger S. Designed Ankyrin Repeat Proteins: A New Class of Viral Entry Inhibitors. Viruses 2022; 14:2242. [PMID: 36298797 PMCID: PMC9611651 DOI: 10.3390/v14102242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 08/08/2023] Open
Abstract
Designed ankyrin repeat proteins (DARPins) are engineered proteins comprising consensus designed ankyrin repeats as scaffold. Tightly packed repeats form a continuous hydrophobic core and a large groove-like solvent-accessible surface that creates a binding surface. DARPin domains recognizing a target of interest with high specificity and affinity can be generated using a synthetic combinatorial library and in vitro selection methods. They can be linked together in a single molecule to build multispecific and multifunctional proteins without affecting expression or function. The modular architecture of DARPins offers unprecedented possibilities of design and opens avenues for innovative antiviral strategies.
Collapse
Affiliation(s)
- Marcel Walser
- Molecular Partners AG, Wagistrasse 14, 8952 Zurich-Schlieren, Switzerland
| | - Jennifer Mayor
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| | - Sylvia Rothenberger
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| |
Collapse
|
7
|
Tufan AB, Lazarow K, Kolesnichenko M, Sporbert A, von Kries JP, Scheidereit C. TSG101 associates with PARP1 and is essential for PARylation and DNA damage-induced NF-κB activation. EMBO J 2022; 41:e110372. [PMID: 36124865 DOI: 10.15252/embj.2021110372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
In a genome-wide screening for components of the dsDNA-break-induced IKK-NF-κB pathway, we identified scores of regulators, including tumor susceptibility gene TSG101. TSG101 is essential for DNA damage-induced formation of cellular poly(ADP-ribose) (PAR). TSG101 binds to PARP1 and is required for PARP1 activation. This function of TSG101 is independent of its role in the ESCRT-I endosomal sorting complex. In the absence of TSG101, the PAR-dependent formation of a nuclear PARP1-IKKγ signalosome, which triggers IKK activation, is impaired. According to its requirement for PARP1 and NF-κB activation, TSG101-deficient cells are defective in DNA repair and apoptosis protection. Loss of TSG101 results in PARP1 trapping at damage sites and mimics the effect of pharmacological PARP inhibition. We also show that the loss of TSG101 in connection with inactivated tumor suppressors BRCA1/2 in breast cancer cells is lethal. Our results imply TSG101 as a therapeutic target to achieve synthetic lethality in cancer treatment.
Collapse
Affiliation(s)
- Ahmet Buğra Tufan
- Laboratory for Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Katina Lazarow
- Leibniz-Forschungsinstitut for Molecular Pharmacology (FMP), Berlin, Germany
| | - Marina Kolesnichenko
- Laboratory for Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anje Sporbert
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Advanced Light Microscopy Technology Platform, Berlin, Germany
| | | | - Claus Scheidereit
- Laboratory for Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
8
|
Hong H, Lou S, Zheng F, Gao H, Wang N, Tian S, Huang G, Zhao H. Hydnocarpin D attenuates lipopolysaccharide-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154143. [PMID: 35537248 DOI: 10.1016/j.phymed.2022.154143] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a complex pulmonary destructive disease with limited therapeutic approaches. Hydnocarpin D (HD) is a flavonolignan isolated from Hydnocarpus wightiana which possesses antioxidant and anti-inflammatory properties. However, whether HD has beneficial effects on ALI as well as its underlying mechanism remains to be elucidated. PURPOSE This study evaluated the protective effect of HD in ALI and the underlying molecular mechanisms. METHODS In vivo, the role of HD on lipopolysaccharide (LPS)-induced ALI in mice was tested by determination of neutrophil infiltration, levels of inflammatory cytokines, lung histology and edema, vascular and alveolar barrier disruption. In vitro, murine macrophage RAW 264.7 cells were used to investigate the molecular mechanisms RESULTS: Administration of HD protected mice against LPS-induced ALI, including ameliorating the histological alterations in the lung tissues, and decreasing lung edema, protein content of bronchoalveolar lavage fluid, infiltration of inflammatory cell and secretion of cytokines. Moreover, HD blocked the phosphorylation of TLR-4, NF-κB, and ERK in LPS-induced lung injury. In vitro, HD inhibited LPS-induced oxidative stress and inflammation in RAW 264.7 cells, which largely depend upon the upregulation of antioxidant defensive Nrf2 pathway, thereby suppressing LPS-activated proinflammatory mediator secretion, NLRP3 inflammasome, and MAPK/NF-κB signaling pathway. CONCLUSION HD attenuates oxidative stress and inflammation against LPS-induced ALI via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway, and is a promising novel therapeutic candidate for ALI.
Collapse
Affiliation(s)
- Huanwu Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siyue Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fanli Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hang Gao
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Nina Wang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Shasha Tian
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guozheng Huang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China.
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
9
|
Zhang Q, Li J, Weng L. Identification and Validation of Aging-Related Genes in Alzheimer’s Disease. Front Neurosci 2022; 16:905722. [PMID: 35615282 PMCID: PMC9124812 DOI: 10.3389/fnins.2022.905722] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
Aging is recognized as the key risk factor for Alzheimer’s disease (AD). This study aimed to identify and verify potential aging-related genes associated with AD using bioinformatics analysis. Aging-related differential expression genes (ARDEGs) were determined by the intersection of limma test, weighted correlation network analysis (WGCNA), and 1153 aging and senescence-associated genes. Potential biological functions and pathways of ARDEGs were determined by GO, KEGG, GSEA, and GSVA. Then, LASSO algorithm was used to identify the hub genes and the diagnostic ability of the five ARDEGs in discriminating AD from the healthy control samples. Further, the correlation between hub ARDEGs and clinical characteristics was explored. Finally, the expression level of the five ARDEGs was validated using other four GEO datasets and blood samples of patients with AD and healthy individuals. Five ARDEGs (GFAP, PDGFRB, PLOD1, MAP4K4, and NFKBIA) were obtained. For biological function analysis, aging, cellular senescence, and Ras protein signal transduction regulation were enriched. Diagnostic ability of the five ARDEGs in discriminating AD from the control samples demonstrated a favorable diagnostic value. Eventually, quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) validation test revealed that compared with healthy controls, the mRNA expression level of PDGFRB, PLOD1, MAP4K4, and NFKBIA were elevated in AD patients. In conclusion, this study identified four ARDEGs (PDGFRB, PLOD1, MAP4K4, and NFKBIA) associated with AD. They provide an insight into potential novel biomarkers for diagnosing AD and monitoring progression.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- *Correspondence: Ling Weng,
| |
Collapse
|
10
|
Yang L, Zheng W, Xin S, Lv X, Sun Y, Xu T. microRNA-122 regulates NF-κB signaling pathway by targeting IκBα in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2022; 122:345-351. [PMID: 35182723 DOI: 10.1016/j.fsi.2022.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The inhibitory protein IκBα plays a key role in the inflammatory process and immune response by regulating the activity of the transcription factor NF-κB. microRNA (miR) is a small non-coding RNA that can regulate many biochemical processes, such as cell growth, proliferation, and immune response. In this study, it was first predicted that IκBα is the target of miR-122 through bioinformatics, and it was confirmed by dual fluorescence experiments. Then we found that miR-122 can inhibit the expression of IκBα at the mRNA and protein levels, thereby promoting the p65-activated NF-κB pathway. It is speculated that miR-122 plays an important role in the innate immunity of teleost fish. This study will help to further understand miRNAs regulatory mechanism in teleost fish.
Collapse
Affiliation(s)
- Liyuan Yang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shiying Xin
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
11
|
Abstract
Two decades of research have established that Nuclear Factor-κB (NF-κB) signaling plays a critical role in reprogramming the fat cell transcriptome towards inflammation in response to overnutrition and metabolic stress. Several groups have suggested that inhibition of NF-κB signaling could have metabolic benefits for obesity-associated adipose tissue inflammation. However, two significant problems arise with this approach. The first is how to deliver general NF-κB inhibitors into adipocytes without allowing these compounds to disrupt normal functioning in cells of the immune system. The second issue is that general inhibition of canonical NF-κB signaling in adipocytes will likely lead to a massive increase in adipocyte apoptosis under conditions of metabolic stress, leading full circle into a secondary inflammation (However, this problem may not be true for non-canonical NF-κB signaling.). This review will focus on the research that has examined canonical and non-canonical NF-κB signaling in adipocytes, focusing on genetic studies that examine loss-of-function of NF-κB specifically in fat cells. Although the development of general inhibitors of canonical NF-κB signaling seems unlikely to succeed in alleviating adipose tissue inflammation in humans, the door remains open for more targeted therapeutics. In principle, these would include compounds that interrogate NF-κB DNA binding, protein-protein interactions, or post-translational modifications that partition NF-κB activity towards some genes and away from others in adipocytes. I also discuss the possibility for inhibitors of non-canonical NF-κB signaling to realize success in mitigating fat cell dysfunction in obesity. To plant the seeds for such approaches, much biochemical “digging” in adipocytes remains; this includes identifying—in an unbiased manner–NF-κB direct and indirect targets, genomic DNA binding sites for all five NF-κB subunits, NF-κB protein-protein interactions, and post-translational modifications of NF-κB in fat cells.
Collapse
|
12
|
Li G, Wang Y, Li X, Wang Y, Huang X, Gao J, Hu X. Developing PspCas13b-based enhanced RESCUE system, eRESCUE, with efficient RNA base editing. Cell Commun Signal 2021; 19:84. [PMID: 34380502 PMCID: PMC8356384 DOI: 10.1186/s12964-021-00716-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
RNA base editing is potential for cellular function research and genetic diseases treating. There are two main RNA base editors, REPAIR and RESCUE, for in vitro use. REPAIR was developed by fusing inactivated Cas13 (dCas13) with the adenine deaminase domain of ADAR2, which efficiently performs adenosine-to-inosine (A-to-I) RNA editing. RESCUE, which performs both cytidine-to-uridine (C-to-U) and A-to-I RNA editing, was developed by fusing inactivated Cas13 (dCas13) with the evolved ADAR2. However, the relatively low editing efficiency of the RESCUE system limits its broad application. Here, we constructed an enhanced RESCUE (eRESCUE) system; this dPspCas13b-RESCUE-NES system was generated by fusing inactivated PspCas13b with the evolved ADAR2. We determined the endogenous mRNA A-to-I and C-to-U editing efficiency mediated by the dPspCas13b-RESCUE-NES system in HEK-293T cells. This new RNA base editor was then used to induce 177Ser/Gly conversion of inhibitor kappa B kinase β (IKKβ) by changing the genetic code from AGU to GGU. The results showed that the eRESCUE editor mediates more efficient A-to-I and C-to-U RNA editing than the RESCUE RNA editor, as was previously reported. The 177Ser/Gly conversion of IKKβ, accomplished by converting the genetic code from AGU to GGU, resulted in a decrease in the phosphorylation of IKKβ and downregulation of downstream IKKβ-related genes. In summary, we developed a more efficient RNA base editor, eRESCUE, which may provide a useful tool for biomedical research and genetic disease treatment. Video Abstract
Collapse
Affiliation(s)
- Guo Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,College of Biological Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yihan Wang
- National Research Institute for Family Planning, 12 Dahuisi Road, Haidian District, Beijing, 100081, China.,Graduate School of Peking, Union Medical College, 9 Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| | - Xiangyang Li
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai, 200031, China
| | - Yuzhe Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong New Area, Shanghai, 200031, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jianen Gao
- National Research Institute for Family Planning, 12 Dahuisi Road, Haidian District, Beijing, 100081, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China. .,College of Biological Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
13
|
Van Booven D, Zarnowski O, Perez M, Sarria L, Collado F, Hansotia K, Riegle S, Finger T, Fletcher MA, Klimas NG, Nathanson L. The effect of stress on the transcriptomes of circulating immune cells in patients with Gulf War Illness. Life Sci 2021; 281:119719. [PMID: 34144055 DOI: 10.1016/j.lfs.2021.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
AIMS In an effort to gain further insight into the underlying mechanisms tied to disease onset and progression of Gulf War Illness (GWI), our team evaluated GWI patient response to stress utilizing RNA-Seq. MAIN METHODS The protocol included blood collection before exercise challenge (baseline), at maximal exertion, and after exercise challenge (recovery - four hours post-exercise challenge). Peripheral blood mononuclear cell (PBMC) transcriptomics data were analyzed to understand why GWI patients process stressors differently from their healthy counterparts. KEY FINDINGS Our findings validate previously identified dysregulation of immune and inflammatory pathways among GWI patients as well as highlight novel immune and inflammatory markers of disease activity. These results provide a foundation for future research efforts in understanding GWI pathophysiology and creating targeted treatments. SIGNIFICANCE Gulf War Illness is a complex, chronic, and debilitating multi-system illness impacting 25%-30% of the U.S. troops deployed to the 1990-1991 Gulf War. The condition is characterized by medically unexplained fatigue and affects multiple organ systems. Because the underlying mechanisms are largely unknown, patients receive symptom-based treatment, rather than targeting fundamental biological processes. To the best of our knowledge, this is the first study that applies RNA-Seq to analyze the effect of GWI, and the response to stressors in GWI, on the transcriptomic changes in circulating immune cells.
Collapse
Affiliation(s)
- Derek Van Booven
- Dr. J. P. Hussman Institute for Human Genomics Miller School of Medicine University of Miami, Miami, FL, United States of America
| | - Oskar Zarnowski
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America; Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Melanie Perez
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America; Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Leonor Sarria
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Fanny Collado
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL, United States of America; South Florida Veterans Affairs Foundation for Research and Education Inc, Fort Lauderdale, FL, United States of America
| | - Kyle Hansotia
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States of America; Farquhar Honors College, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Sean Riegle
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Tali Finger
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Mary Ann Fletcher
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America; Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL, United States of America
| | - Nancy G Klimas
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America; Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL, United States of America
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America.
| |
Collapse
|
14
|
Sarabia I, Novis CL, Macedo AB, Takata H, Nell R, Kakazu JC, Furler RL, Shakya B, Schubert HL, Hill CP, DePaula-Silva AB, Spivak AM, Trautmann L, Planelles V, Bosque A. Activation of the Anti-Oxidative Stress Response Reactivates Latent HIV-1 Through the Mitochondrial Antiviral Signaling Protein Isoform MiniMAVS. Front Immunol 2021; 12:682182. [PMID: 34194436 PMCID: PMC8236643 DOI: 10.3389/fimmu.2021.682182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 01/26/2023] Open
Abstract
The mitochondrial antiviral signaling protein (MAVS) is part of the cell's innate immune mechanism of defense. MAVS mRNA is bicistronic and can give rise to a full length-MAVS and a shorter isoform termed miniMAVS. In response to viral infections, viral RNA can be sensed by the cytosolic RNA sensors retinoic acid-inducible gene I (RIG-I) and/or melanoma differentiation-associated protein 5 (MDA5) and activate NF-κB through interaction with MAVS. MAVS can also sense cellular stress and activate an anti-oxidative stress (AOS) response through the activation of NF-κB. Because NF-κB is a main cellular transcription factor for HIV-1, we wanted to address what role MAVS plays in HIV-1 reactivation from latency in CD4 T cells. Our results indicate that RIG-I agonists required full length-MAVS whereas the AOS response induced by Dynasore through its catechol group can reactivate latent HIV-1 in a MAVS dependent manner through miniMAVS isoform. Furthermore, we uncover that PKC agonists, a class of latency-reversing agents, induce an AOS response in CD4 T cells and require miniMAVS to fully reactivate latent HIV-1. Our results indicate that the AOS response, through miniMAVS, can induce HIV-1 transcription in response to cellular stress and targeting this pathway adds to the repertoire of approaches to reactivate latent HIV-1 in 'shock-and-kill' strategies.
Collapse
Affiliation(s)
- Indra Sarabia
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Camille L. Novis
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Amanda B. Macedo
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Hiroshi Takata
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Racheal Nell
- Department of Medicine, Division of Infectious Diseases, University of Utah, Salt Lake City, UT, United States
| | - Juyeon C. Kakazu
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Robert L. Furler
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Binita Shakya
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Ana Beatriz DePaula-Silva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Adam M. Spivak
- Department of Medicine, Division of Infectious Diseases, University of Utah, Salt Lake City, UT, United States
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Vicente Planelles
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
15
|
Wigner P, Grębowski R, Bijak M, Saluk-Bijak J, Szemraj J. The Interplay between Oxidative Stress, Inflammation and Angiogenesis in Bladder Cancer Development. Int J Mol Sci 2021; 22:ijms22094483. [PMID: 33923108 PMCID: PMC8123426 DOI: 10.3390/ijms22094483] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
In 2018, 550,000 people were diagnosed with bladder cancer (BC), of which nearly 200,000 people died. Moreover, men are 4 times more likely than women to be diagnosed with BC. The risk factors include exposure to environmental and occupational chemicals, especially tobacco smoke, benzidine and genetic factors. Despite numerous studies, the molecular basis of BC development remains unclear. A growing body of evidence suggests that inflammation, oxidant-antioxidant imbalance and angiogenesis disorders may play a significant role in the development and progression of bladder cancer. The patients with bladder cancer were characterised by an increased level of reactive oxygen species (ROS), the products of lipid peroxidation, proinflammatory cytokines and proangiogenic factors as compared to controls. Furthermore, it was shown that polymorphisms localised in genes associated with these pathways may modulate the risk of BC. Interestingly, ROS overproduction may induce the production of proinflammatory cytokines, which finally activated angiogenesis. Moreover, the available literature shows that both inflammation and oxidative stress may lead to activation of angiogenesis and tumour progression in BC patients.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-635-44-85; Fax: +48-42-635-44-84
| | - Radosław Grębowski
- Department of Urology, Provincial Integrated Hospital in Plock, 09-400 Plock, Poland;
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
16
|
Clathrin- and dynamin-dependent endocytosis limits canonical NF-κB signaling triggered by lymphotoxin β receptor. Cell Commun Signal 2020; 18:176. [PMID: 33148272 PMCID: PMC7640449 DOI: 10.1186/s12964-020-00664-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
Background Lymphotoxin β receptor (LTβR) is a member of tumor necrosis factor receptor (TNFR) superfamily which regulates the immune response. At the cellular level, upon ligand binding, the receptor activates the pro-inflammatory NF-κB and AP-1 pathways. Yet, the intracellular distribution of LTβR, the routes of its endocytosis and their connection to the signaling activation are not characterized. Here, we investigated the contribution of LTβR internalization to its signaling potential. Methods Intracellular localization of LTβR in unstimulated and stimulated cells was analyzed by confocal microscopy. Endocytosis impairment was achieved through siRNA- or CRISPR/Cas9-mediated depletion, or chemical inhibition of proteins regulating endocytic routes. The activation of LTβR-induced signaling was examined. The levels of effector proteins of the canonical and non-canonical branches of the NF-κB pathway, and the phosphorylation of JNK, Akt, ERK1/2, STAT1 and STAT3 involved in diverse signaling cascades, were measured by Western blotting. A transcriptional response to LTβR stimulation was assessed by qRT-PCR analysis. Results We demonstrated that LTβR was predominantly present on endocytic vesicles and the Golgi apparatus. The ligand-bound pool of the receptor localized to endosomes and was trafficked towards lysosomes for degradation. Depletion of regulators of different endocytic routes (clathrin-mediated, dynamin-dependent or clathrin-independent) resulted in the impairment of LTβR internalization, indicating that this receptor uses multiple entry pathways. Cells deprived of clathrin and dynamins exhibited enhanced activation of canonical NF-κB signaling represented by increased degradation of IκBα inhibitor and elevated expression of LTβR target genes. We also demonstrated that clathrin and dynamin deficiency reduced to some extent LTβR-triggered activation of the non-canonical branch of the NF-κB pathway. Conclusions Our work shows that the impairment of clathrin- and dynamin-dependent internalization amplifies a cellular response to LTβR stimulation. We postulate that receptor internalization restricts responsiveness of the cell to subthreshold stimuli. Video Abstract
Graphical abstract ![]()
Supplementary information Supplementary information accompanies this paper at 10.1186/s12964-020-00664-0.
Collapse
|
17
|
Sarais F, Rebl H, Verleih M, Ostermann S, Krasnov A, Köllner B, Goldammer T, Rebl A. Characterisation of the teleostean κB-Ras family: The two members NKIRAS1 and NKIRAS2 from rainbow trout influence the activity of NF-κB in opposite ways. FISH & SHELLFISH IMMUNOLOGY 2020; 106:1004-1013. [PMID: 32890762 DOI: 10.1016/j.fsi.2020.08.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Two structurally similar NF-κB-inhibitor-interacting Ras-like proteins (NKIRAS) regulate the activity of the transcription factor NF-κB and thereby control several early immune mechanisms in mammals. We identified the orthologous sequences of NKIRAS1 and NKIRAS2 from the rainbow trout Oncorhynchus mykiss. The level of sequence identity was similarly high (≥68%) between the two and in comparison to their mammalian counterparts. Strikingly, NKIRAS2 was present as four transcript variants. These variants differed only in length and in the nucleotide composition of their 5' termini and were most likely generated by splicing along unconventional splice sites. The shortest NKIRAS2 variant was most strongly expressed in a lymphocyte-enriched population, while NKIRAS1 was most strongly expressed in cells of myeloid origin. Fluorescent-labelled NKIRAS1 and NKIRAS2 proteins from rainbow trout were detected in close association with the p65 subunit of NF-κB in the nucleus and cytoplasm of CHSE-214 cells. Subsequent reporter-gene experiments revealed that NKIRAS1 and a longer NKIRAS2 variant in rainbow trout decreased the level of activated NF-κB, while the two shortest NKIRAS2 variants increased the NF-κB activity. In addition, the overexpression of the shortest NKIRAS2 variant in CHSE-214 cells induced a stronger transcription of the genes encoding the pro-inflammatory cytokines TNF, CXCL8, and IL1B compared to non-transfected control cells. This is the first characterisation of NKIRAS orthologues in bony fish and provides additional information to the as yet underexplored inhibition pathways of NF-κB in lower vertebrates.
Collapse
Affiliation(s)
- Fabio Sarais
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Henrike Rebl
- Rostock University Medical Center, Department of Cell Biology, Rostock, Germany
| | - Marieke Verleih
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Sven Ostermann
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Aleksei Krasnov
- Nofima AS, Norwegian Institute of Food, Fisheries & Aquaculture Research, Ås, Norway
| | - Bernd Köllner
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany; University of Rostock, Faculty of Agriculture and Environmental Sciences, Rostock, Germany
| | - Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.
| |
Collapse
|
18
|
Darbinian N, Darbinyan A, Merabova N, Gomberg R, Chabriere E, Simm M, Selzer ME, Amini S. DING Protein Inhibits Transcription of HIV-1 Gene through Suppression of Phosphorylation of NF-κB p65. ACTA ACUST UNITED AC 2020; 6. [PMID: 34307877 PMCID: PMC8296972 DOI: 10.16966/2380-5536.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Introduction: Novel plant DING proteins (full-length 38 kDa p38SJ, and 27 kDa p27SJ) exhibit phosphatase activity and modulate HIV-1 gene transcription. Previously, we demonstrated that DING regulates HIV-1 gene transcription by dephosphorylation and inactivation of CTD RNA polymerase II, the major elongating factor of HIV-1 Long Terminal Repeats (LTR). Because the transcription of HIV-1 is controlled by several viral and cellular factors, including p65/p50 subunits of NF-κB, we hypothesized that DING phosphatase can also affect the phosphorylation and activity of p65 NF-κB, in addition to C-terminal Domain (CTD) of RNA Polymerase II (RNAPII), to suppress HIV-1 gene transcription and inhibit HIV-1 infection. Methods: Here, we describe the inhibition of HIV-1 infection and the p65/p50 NF-κB phosphorylation by DING protein, analyzed by ELISA and northern-blot assays, western-blot assays, cell fractionation, and promoter-reporter assays in DING-expressing cells, using a pTet-on inducible system. Results: Results from HIV-1 infection assays demonstrate a strong inhibition of HIV-1 and HIV-LTR RNA expression by DING protein, determined by p24 ELISA and by northern blot assay. Results from the western blot assays and cell fractionation assays show that there is an increase in the level of hypo-phosphorylated form of p65 NF-κB in DING-expressing cells. Both fractions of p65/p50, nuclear or cytoplasmic, are affected by DING phosphatase, but more cytoplasmic accumulation of p65 NF-κB was found in the presence of DING, suggesting that subsequent activation and nuclear import of active NF-κB is affected by DING. The major portion of nuclear p65 was dephosphorylated in DING-expressing cells. The promoter-reporter assay demonstrated that DING-mediated dephosphorylation and dysregulation of NF-κB p65 lead to the suppression of its binding to HIV-1 LTR, and resulted in the inhibition of p65-mediated activation of LTR transcription. Mapping of the region within LTR that was affected by DING revealed that both, NF-κB and CTD RNA Polymerase II binding sites were important, and cooperativity of these cellular factors was diminished by DING. In addition, mapping of the region within DING-p38SJ that affected LTR transcription, revealed that phosphate-binding domain is essential for this inhibitory activity. Conclusion: We have demonstrated the effect of DING phosphatases on HIV-1 infection, phosphorylation of p65 NF-κB, and transcription of HIV-1 LTR. Our studies suggest that one possible mechanism by which DING can regulate the expression of HIV-1 LTR can be through dysregulation of the transcription factor NF-κB p65 by preventing its phosphorylation and translocation to the nucleus and binding to the HIV-1 LTR, an action that could contribute to the utility of DING p38SJ as an antiviral agent. Importantly, DING not only inhibits HIV-1 LTR gene transcription in the presence of increased p65 NF-κB, but also suppresses HIV-1 infection. DING protein improved inhibitory effects of the known anti-retroviral drugs, Tenofovir (TFV) and Emtricitabine (FTS) on HIV-1, since in the combination with these drugs; the suppression of HIV-1 by DNG was significantly higher when it was in combination with these drugs, compared to controls or cases without DING. Thus, our data support the use of neuroprotective DING proteins as novel therapeutic antiviral drugs that suppress HIV-1 LTR transcription by interfering with the function of NF-κB.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, USA
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, USA
| | - Rebeccah Gomberg
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, USA
| | - Erik Chabriere
- Aix-Marseille Université, Institut Universitaire de France, IHU Mediterranée Infection, France
| | - Malgorzata Simm
- University of Pikeville, Kentucky College of Osteopathic Medicine, USA
| | - Michael E Selzer
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, USA
| |
Collapse
|
19
|
Fei X, He Y, Chen J, Man W, Chen C, Sun K, Ding B, Wang C, Xu R. The role of Toll-like receptor 4 in apoptosis of brain tissue after induction of intracerebral hemorrhage. J Neuroinflammation 2019; 16:234. [PMID: 31771613 PMCID: PMC6880548 DOI: 10.1186/s12974-019-1634-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Background Inflammation and apoptosis caused by intracerebral hemorrhage (ICH) are two important factors that affect patient prognosis and survival. Toll-like receptor 4 (TLR4) triggers activation of the inflammatory pathway, causing synthesis and release of inflammatory factors. The inflammatory environment also causes neuronal apoptosis. However, no studies have reported the role of TLR4 in inflammation and apoptosis. Methods We performed survival curve analysis and behavioral scores on TLR4 knockout mice and wild-type mice after inducing ICH. We used TLR4 knockout mice and wild-type mice to make ICH models with type VII collagenase and explored the link between TLR4 in inflammation and apoptosis. We used Western blot to detect the expression of apoptosis-related proteins, inflammatory factors, and their receptors at different time points after ICH induction. The effects of TLR4 on apoptosis were observed by TUNEL, Hoechst, and HE staining techniques. The association with TLR4 in inflammation and apoptosis was explored using IL-1β and TNF-α antagonists. Data conforming to a normal distribution are expressed as mean ± standard deviation. Grade and quantitative data were compared with rank sum test and t test between two groups. P < 0.05 was considered statistically significant. Results TLR4 knockout significantly increased the survival rate of ICH mice. The scores of TLR4 knockout mice were significantly lower than those of wild-type mice. We found that TLR4 knockout mice significantly inhibited apoptosis and the expression of inflammatory factors after the induction of ICH. The apoptosis of ICH-induced mice was significantly improved after injecting IL-1β and TNF-α antagonists. Moreover, the anti-apoptotic effect of the antagonist in wild-type mice is more pronounced. A single injection of the antagonist failed to improve apoptosis in TLR4 knockout mice. Conclusions We conclude that TLR4-induced inflammation after ICH promotes neuronal apoptosis. IL-1β and TNF-α antagonists attenuate this apoptotic effect. Therefore, targeting TLR4 in patients with clinical ICH may attenuate inflammatory response, thereby attenuating apoptosis and improving prognosis.
Collapse
Affiliation(s)
- Xiaowei Fei
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.,Affiliated Bayi Brain Hospital, General Army Hospital, Beijing, 10000, China.,Dapartment of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Yeting He
- Department of Neurosurgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, China
| | - Jia Chen
- Affiliated BaYi Children's Hospital, Clinical Medical College in The Seventh Medical Center of PLA General Hospital, Southern Medical University, Beijing, China
| | - Weitao Man
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Chen Chen
- Affiliated Bayi Brain Hospital, General Army Hospital, Beijing, 10000, China
| | - Kai Sun
- Affiliated Bayi Brain Hospital, General Army Hospital, Beijing, 10000, China
| | - Boyun Ding
- Affiliated Bayi Brain Hospital, General Army Hospital, Beijing, 10000, China
| | - Chongwu Wang
- Affiliated Bayi Brain Hospital, General Army Hospital, Beijing, 10000, China.
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China. .,Affiliated Bayi Brain Hospital, General Army Hospital, Beijing, 10000, China.
| |
Collapse
|
20
|
Yadav D, Nath Mishra B, Khan F. 3D-QSAR and docking studies on ursolic acid derivatives for anticancer activity based on bladder cell line T24 targeting NF-kB pathway inhibition. J Biomol Struct Dyn 2019; 37:3822-3837. [PMID: 30261824 DOI: 10.1080/07391102.2018.1528888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023]
Abstract
Bladder cancer is the common reason for mortality worldwide, and its increasing rate announces as a significant area of research in drug designing. The side effects and toxicity of existing drugs and the consequence of gradual cancer cell resistance against the available therapy make the treatment poor. Globally, there is a continuous high demand to develop new, more potent, and easily affordable drugs against cancer. The current research article illustrates the application of developed three-dimensional quantitative structure-activity relationship (3D-QSAR) based on human bladder cancer cell line T24 in vitro anticancer activity. The derived QSAR model has been used for prediction of natural compounds and analogs with 80% similarity of the most active compound of the dataset. The developed model describes the structure-activity relationship for terpenes and their derivatives at the molecular level. The developed comparative molecular field analysis (CoMFA) model shows a satisfactory cross-validation correlation coefficient (q2) of 0.54 and a regression correlation coefficient (r2) of 0.86. In order to evaluate the compliance with electronic pharmacokinetic parameters, Lipinski's rule of five filter, absorption, distribution, metabolism, and excretion (ADME) and toxicity of predicted compounds have been calculated. Furthermore, molecular-docking study has been performed to prioritize these predicted compounds based on their docking score and binding pocket similarity through the identified potential anticancer targets. Finally, two compounds T9 and B42 have been identified as the best hit because these two fall within the standard limits of all filters and show a good binding affinity. Conclusively, all satisfactory results strongly suggest that the derived 3D-QSAR model and obtained candidate's binding structures are reasonable in the prediction of a new antagonist's activity. The strategy adopted in the present research is expected to be of immense importance and a great support in the identification and optimization of lead in the early and advance drug discovery.
Collapse
Affiliation(s)
- Deepika Yadav
- a Department of Metabolic and Structural Biology , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India
- b Department of Biotechnology , Institute of Engineering and Technology (Dr. A.P.J. Abdul Kalam Technical University) , Lucknow , Uttar Pradesh , India
| | - Bhartendu Nath Mishra
- b Department of Biotechnology , Institute of Engineering and Technology (Dr. A.P.J. Abdul Kalam Technical University) , Lucknow , Uttar Pradesh , India
| | - Feroz Khan
- a Department of Metabolic and Structural Biology , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India
| |
Collapse
|
21
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
22
|
Zhuo J, Wang X. Combination of targeting CD24 and inhibiting autophagy suppresses the proliferation and enhances the apoptosis of colorectal cancer cells. Mol Med Rep 2019; 20:539-548. [PMID: 31180548 PMCID: PMC6579989 DOI: 10.3892/mmr.2019.10288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
CD24 can regulate angiogenesis, drug sensitivity and the progression of colorectal cancer (CRC). However, whether CD24 regulates autophagy and apoptosis in CRC cells remains to be fully elucidated. The present study investigated the functional role of the altered expression of CD24 in the autophagy and apoptosis of HCT116 and HT29 human CRC cells. The results revealed lower expression levels of CD24 in HCT116 cells but higher levels in HT29 cells. Inducing the overexpression or the knockdown of CD24 did not affect the viability or spontaneous apoptosis of HCT116 and HT29 cells, respectively. Induction of the overexpression of CD24 significantly decreased the relative expression levels of Beclin‑1, autophagy‑related (Atg)3 and Atg5, and the numbers of microtubule‑associated protein‑1 light chain‑3 (LC3)‑positive puncta, but increased the expression of p62 in HCT116 cells. By contrast, CD24 silencing increased the expression of Beclin‑1, Atg3 and Atg5, and the numbers of LC3‑positive puncta, but decreased the expression of p62 in HT29 cells. Treatment with 3‑methyladenine, or the knockdown of Atg5 by specific small interfering RNA to attenuate autophagy significantly enhanced the viability of CD24‑overexpressing HCT116 cells, but reduced the viability of CD24‑silenced HT29 cells, relative to their controls. As a result, the attenuation of autophagy significantly decreased the frequency of apoptotic CD24‑overexpressing HCT116 cells, but increased the percentages of apoptotic CD24‑silenced HT29 cells. The overexpression of CD24 promoted the activation of nuclear factor (NF)‑κBp65, whereas CD24 silencing attenuated its activation in CRC cells. Inhibition of the activation of NF‑κB enhanced the CD24 overexpression‑induced decrease in autophagy, but attenuated the CD24 silencing‑induced increase in autophagy in CRC cells. Therefore, CD24 inhibited the autophagy of CRC cells, and the combination of targeting CD24 and inhibiting autophagy promoted the apoptosis of CRC cells. Conceivably, these findings may aid in the design of novel therapies for the intervention of CRC.
Collapse
Affiliation(s)
- Jingwei Zhuo
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xinying Wang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
23
|
Jin J, Xu W, Wan B, Wang X, Zhou Z, Miao Y, Lv T, Song Y. Topotecan Alleviates Lipopolysaccharide-Mediated Acute Lung Injury Via the NF-κB Signaling Pathway. J Surg Res 2019; 235:83-92. [DOI: 10.1016/j.jss.2018.08.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
|
24
|
Zhang Y, Federation AJ, Kim S, O'Keefe JP, Lun M, Xiang D, Brown JD, Steinhauser ML. Targeting nuclear receptor NR4A1-dependent adipocyte progenitor quiescence promotes metabolic adaptation to obesity. J Clin Invest 2018; 128:4898-4911. [PMID: 30277475 DOI: 10.1172/jci98353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
Adipocyte turnover in adulthood is low, suggesting that the cellular source of new adipocytes, the adipocyte progenitor (AP), resides in a state of relative quiescence. Yet the core transcriptional regulatory circuitry (CRC) responsible for establishing a quiescent state and the physiological significance of AP quiescence are incompletely understood. Here, we integrate transcriptomic data with maps of accessible chromatin in primary APs, implicating the orphan nuclear receptor NR4A1 in AP cell-state regulation. NR4A1 gain and loss of function in APs ex vivo decreased and enhanced adipogenesis, respectively. Adipose tissue of Nr4a1-/- mice demonstrated higher proliferative and adipogenic capacity compared with that of WT mice. Transplantation of Nr4a1-/- APs into the subcutaneous adipose tissue of WT obese recipients improved metrics of glucose homeostasis relative to administration of WT APs. Collectively, these data identify NR4A1 as a previously unrecognized constitutive regulator of AP quiescence and suggest that augmentation of adipose tissue plasticity may attenuate negative metabolic sequelae of obesity.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander J Federation
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA.,Altius Institute for Biomedical Sciences, Seattle, Washington, USA
| | - Soomin Kim
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - John P O'Keefe
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mingyue Lun
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Dongxi Xiang
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan D Brown
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew L Steinhauser
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Zierau O, Helle J, Schadyew S, Morgenroth Y, Bentler M, Hennig A, Chittur S, Tenniswood M, Kretzschmar G. Role of miR-203 in estrogen receptor-mediated signaling in the rat uterus and endometrial carcinoma. J Cell Biochem 2018; 119:5359-5372. [PMID: 29331043 DOI: 10.1002/jcb.26675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023]
Abstract
The role of microRNAs (miRNA) in estrogen receptor (ER) signaling in the uterus and in endometrial cancer is not well understood. We therefore analyzed miRNA expression in uterine samples from a standard 3-day uterotrophic assay using young female adult rats to identify E2-regulated miRNAs. Microarray analysis identified 47 E2 down-regulated miRNAs including miR-30a, and 25 E2up-regulated miRNAs including miR-672, miR-203, and miR-146b. The strongly E2-upregulated miR-203 was selected for further analysis. miR-203 was deleted in the rat endometrial adenocarcinoma cell line, RUCA-I, using CRISPR/CAS9. Five clones devoid of miR-203 expression were generated. Proliferation was reduced and G2-arrest was observed in all miR-203 deficient RUCA-I clones. Transfection with a miR-203-3p mimic partially rescues this effect. Comparison of mRNA expression in three miR-203 knockout clones to wild type RUCA-I cells reveals 566 miR-203-upregulated and 592 miR-203-downregulated genes. 43 of the genes that are upregulated by miR-203 knockout in vitro are downregulated in the uterus by E2. Of these Acer2, Zbtb20, Ptn, Rcbtb2, Mum1l1, Hmgn3, and Nfat5 possess one or more seed sequence matches in their 3'-UTR that are predicted to be targets of miR-203. These data demonstrate the importance of E2 regulated miRNAs in general, and miR-203 in particular, for E2 regulated gene expression and physiological processes including proliferation and cell migration, in the uterus as well as in the etiology of endometrial carcinomas.
Collapse
Affiliation(s)
- Oliver Zierau
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Janina Helle
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Sabina Schadyew
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Yanni Morgenroth
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Martin Bentler
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Alexander Hennig
- Institute for Immunology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sridar Chittur
- Cancer Research Center and Department of Biomedical Sciences, University at Albany, Rensselae, New York
| | - Martin Tenniswood
- Cancer Research Center and Department of Biomedical Sciences, University at Albany, Rensselae, New York
| | - Georg Kretzschmar
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
26
|
Deletion of the K1L Gene Results in a Vaccinia Virus That Is Less Pathogenic Due to Muted Innate Immune Responses, yet Still Elicits Protective Immunity. J Virol 2017; 91:JVI.00542-17. [PMID: 28490586 DOI: 10.1128/jvi.00542-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
All viruses strategically alter the antiviral immune response to their benefit. The vaccinia virus (VACV) K1 protein has multiple immunomodulatory effects in tissue culture models of infection, including NF-κB antagonism. However, the effect of K1 during animal infection is poorly understood. We determined that a K1L-less vaccinia virus (vΔK1L) was less pathogenic than wild-type VACV in intranasal and intradermal models of infection. Decreased pathogenicity was correlated with diminished virus replication in intranasally infected mice. However, in intradermally inoculated ears, vΔK1L replicated to levels nearly identical to those of VACV, implying that the decreased immune response to vΔK1L infection, not virus replication, dictated lesion size. Several lines of evidence support this theory. First, vΔK1L induced slightly less edema than vK1L, as revealed by histopathology and noninvasive quantitative ultrasound technology (QUS). Second, infiltrating immune cell populations were decreased in vΔK1L-infected ears. Third, cytokine and chemokine gene expression was decreased in vΔK1L-infected ears. While these results identified the biological basis for smaller lesions, they remained puzzling; because K1 antagonizes NF-κB in vitro, antiviral gene expression was expected to be higher during vΔK1L infection. Despite these diminished innate immune responses, vΔK1L vaccination induced a protective VACV-specific CD8+ T cell response and protected against a lethal VACV challenge. Thus, vΔK1L is the first vaccinia virus construct reported that caused a muted innate immune gene expression profile and decreased immune cell infiltration in an intradermal model of infection yet still elicited protective immunity.IMPORTANCE The vaccinia virus (VACV) K1 protein inhibits NF-κB activation among its other antagonistic functions. A virus lacking K1 (vΔK1L) was predicted to be less pathogenic because it would trigger a more robust antiviral immune response than VACV. Indeed, vΔK1L was less pathogenic in intradermally infected mouse ear pinnae. However, vΔK1L infection unexpectedly elicited dramatically reduced infiltration of innate immune cells into ears. This was likely due to decreased expression of cytokine and chemokine genes in vΔK1L-infected ears. As such, our finding contradicted observations from cell culture systems. Interestingly, vΔK1L conferred protective immunity against lethal VACV challenge. This suggests that the muted immune response triggered during vΔK1L infection remained sufficient to mount an effective protective response. Our results highlight the complexity and unpredictable nature of virus-host interactions, a relationship that must be understood to better comprehend virus pathogenesis or to manipulate viruses for use as vaccines.
Collapse
|
27
|
Ma X, Liu X, Zhou D, Bai Y, Gao B, Zhang Z, Qin Z. The NF-κB pathway participates in the response to sulfide stress in Urechis unicinctus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:229-238. [PMID: 27633672 DOI: 10.1016/j.fsi.2016.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 05/26/2023]
Abstract
The NF-κB pathway is known to be involved in regulating apoptosis, inflammation and immunity in organisms. In this study, we first identified full-length cDNA sequences of two key molecules in the NF-κB pathway, namely, NEMO and p65, and characterized their responses in the hindgut of Urechis unicinctus (Echiura, Urechidae) exposed to sulfide. The full-length of cDNA was 2491 bp for U. unicinctus NEMO (UuNEMO) and 1971 bp for U. unicinctus p65 (Uup65), and both polyclonal antibodies were prepared using UuNEMO or Uup65 expressed prokaryotically with the sequence of their whole open reading frame. Immunoprecipitation and Western blotting showed that the NF-κB pathway was activated in U. unicinctus exposed to sulfide, in which the content of UuNEMO ubiquitination and nuclear Uup65 increased significantly (p < 0.05) in hindgut tissue of U. unicinctus exposed to sulfide. Furthermore, the mRNA level of UuBcl-xL, a downstream anti-apoptosis gene of the NF-κB pathway, increased significantly (p < 0.05) from 48 h to 72 h and the mRNA level of UuBax, a Bcl-xL antagonist gene, decreased significantly (p < 0.05) at 48 h in the hindgut of U. unicinctus exposed to 50 μM sulfide. During the 150 μM sulfide exposure, the level of UuBcl-xL showed no obvious change, whereas the UuBax mRNA level increased significantly (p < 0.05) at 72 h post-exposure to 150 μM sulfide. We suggested that the activated NF-κB pathway up-regulates UuBcl-xL expression, and evokes an anti-apoptotic response to resist sulfide damage at 50 μM in U. unicinctus. Meanwhile, a Bax-mediated pro-apoptotic response occurs when U. unicinctus is exposed to 150 μM sulfide.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaolong Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Di Zhou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yajiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Beibei Gao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
28
|
Webb LV, Ley SC, Seddon B. TNF activation of NF-κB is essential for development of single-positive thymocytes. J Exp Med 2016; 213:1399-407. [PMID: 27432943 PMCID: PMC4986527 DOI: 10.1084/jem.20151604] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/27/2016] [Indexed: 01/19/2023] Open
Abstract
Seddon and colleagues study mice whose T cells lack both of the catalytic subunits of the IKK complex and show that impaired TNF receptor activation of NF-κB is responsible for their block in thymocyte development. NF-κB activation has been implicated at multiple stages of thymic development of T cells, during which it is thought to mediate developmental signals originating from the T cell receptor (TCR). However, the Card11–Bcl10–Malt1 (CBM) complex that is essential for TCR activation of NF-κB in peripheral T cells is not required for thymocyte development. It has remained unclear whether the TCR activates NF-κB independent of the CBM complex in thymocyte development or whether another NF-κB activating receptor is involved. In the present study, we generated mice in which T cells lacked expression of both catalytic subunits of the inhibitor of κB kinase (IKK) complex, IKK1 and IKK2, to investigate this question. Although early stages of T cell development were unperturbed, maturation of CD4 and CD8 single-positive (SP) thymocytes was blocked in mice lacking IKK1/2 in the T cell lineage. We found that IKK1/2-deficient thymocytes were specifically sensitized to TNF-induced cell death in vitro. Furthermore, the block in thymocyte development in IKK1/2-deficient mice could be rescued by blocking TNF with anti-TNF mAb or by ablation of TNFRI expression. These experiments reveal an essential role for TNF activation of NF-κB to promote the survival and development of single positive T cells in the thymus.
Collapse
Affiliation(s)
- Louise V Webb
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, England, UK
| | - Steven C Ley
- Francis Crick Institute, Mill Hill Laboratories, London NW7 1AA, England, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, England, UK
| |
Collapse
|
29
|
Waguia Kontchou C, Tzivelekidis T, Gentle IE, Häcker G. Infection of epithelial cells withChlamydia trachomatisinhibits TNF-induced apoptosis at the level of receptor internalization while leaving non-apoptotic TNF-signalling intact. Cell Microbiol 2016; 18:1583-1595. [DOI: 10.1111/cmi.12598] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Collins Waguia Kontchou
- Institute of Medical Microbiology and Hygiene; University Medical Centre Freiburg; Hermann-Herder-Str. 11 D-79104 Freiburg Germany
| | - Tina Tzivelekidis
- Institute of Medical Microbiology and Hygiene; University Medical Centre Freiburg; Hermann-Herder-Str. 11 D-79104 Freiburg Germany
| | - Ian E Gentle
- Institute of Medical Microbiology and Hygiene; University Medical Centre Freiburg; Hermann-Herder-Str. 11 D-79104 Freiburg Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene; University Medical Centre Freiburg; Hermann-Herder-Str. 11 D-79104 Freiburg Germany
| |
Collapse
|
30
|
Xu F, Li J, Zhang Y, Li X, Zhang Y, Xiang Z, Yu Z. CgIκB3, the third novel inhibitor of NF-kappa B (IκB) protein, is involved in the immune defense of the Pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2015; 46:648-655. [PMID: 26260316 DOI: 10.1016/j.fsi.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Inhibitor of NF-κB (IκB), the important regulator of NF-κB/Rel signaling pathway, plays the crucial role in immune response of both vertebrates and invertebrates. Here, a novel homologue of IκB was cloned from Crassostrea gigas, and designated as CgIκB3. The complete CgIκB3 cDNA was 1282 bp in length, including a 942 bp open reading frame (ORF), a 51 bp 5' UTR and a 289 bp 3' UTR. The ORF encodes a putative protein of 313 amino acids with a predicted molecular weight of approximately 34.7 kDa. Sequence analysis reveals that CgIκB3 contains a conserved degradation motif but with only five ankyrin repeats. Neither a PEST domain nor a C-terminal casein kinase II phosphorylation site was identified through either alignment or bioinformatic prediction. Phylogenetic analysis suggested that CgIκB3 shares common ancestor with CgIκB1 rather CgIκB2, and theoretically it may originate from one duplication event prior to divergence of CgIκB1 and CgIκB2. Tissue expression analyses demonstrated that CgIκB3 mRNA is the most abundant in gills and heart. The expression following PAMP infection showed that CgIκB3 was significantly up-regulated in a similar pattern when challenged with LPS, HKLM or HKVA, respectively. Moreover, similar to CgIκB1 and CgIκB2, CgIκB3 can also inhibit Rel dependent NF-κB activation in HEK293 cells in a dose-dependent manner. In summary, these findings suggest that CgIκB3 can be as the functional inhibitor of NF-κB/Rel and involved in the host defense of C. gigas. The discovery of the third IκB emphasizes the complexity and importance of the regulation on NF-κB activation.
Collapse
Affiliation(s)
- Fengjiao Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Graduate School of the Chinese Academy of Sciences, Beijing 100049, China; Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Xiaomei Li
- School of Biological Science and Technology, Qiongzhou University, Sanya 572022, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| |
Collapse
|
31
|
Liu XH, Bauman WA, Cardozo C. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity. Biochem Biophys Res Commun 2015; 464:208-13. [DOI: 10.1016/j.bbrc.2015.06.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 02/08/2023]
|
32
|
Wang Y, Wei H, Wang X, Du L, Zhang A, Zhou H. Cellular activation, expression analysis and functional characterization of grass carp IκBα: evidence for its involvement in fish NF-κB signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2015; 42:408-412. [PMID: 25434741 DOI: 10.1016/j.fsi.2014.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
IκBα is a well-known member of the inhibitors of kappa B (IκB) family that controls NF-κB signaling by blocking NF-κB translocation from cytoplasm to nucleus. In the present study, an IκBα homologue was identified from grass carp (gcIκBα), showing the structural characteristics of IκB family. Moreover, mRNA expression of this molecule in grass carp periphery blood lymphocytes (PBLs) was enhanced significantly by both LPS and PHA in a time- and dose-dependent manner, indicating the involvement of gcIκBα in fish immune response. Further analysis demonstrated that LPS but not PHA induced gcIκBα phosphorylation and protein degradation in PBLs, implying different signaling pathways mediated by LPS and PHA in gcIκBα expression regulation in grass carp PBLs. In particular, the time-dependent oscillation of gcIκBα phosphorylation and total protein levels induced by LPS is in accordance with the characteristics of mammalian IκBα phosphorylation followed by protein degradation during NF-κB activation. In support of this notion, overexpression of gcIκBα was able to block both basal and LPS-stimulated NF-κB activity in grass carp kidney cell line, indicating the negatively regulatory role of gcIκBα in NF-κB activity as seen in mammals. Therefore, our results not only reveal a dynamic variation of NF-κB activity based on the activation and expression of IκBα for the first time, but also provide the direct evidence for the involvement of IκBα in NF-κB signaling in fish immune cells.
Collapse
Affiliation(s)
- Yanan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
33
|
Zhao Z, Zhong X, Wu T, Yang T, Chen G, Xie X, Wei Y, Ye M, Zhou Y, Du Z. Identification of a NFKBIA polymorphism associated with lower NFKBIA protein levels and poor survival outcomes in patients with glioblastoma multiforme. Int J Mol Med 2014; 34:1233-40. [PMID: 25215581 PMCID: PMC4199416 DOI: 10.3892/ijmm.2014.1932] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/29/2014] [Indexed: 01/25/2023] Open
Abstract
The aberrant constitutive activation of nuclear factor-κB (NF-κB) has been observed in glioblastomas, while NF-κB inhibitor alpha (NFKBIA) inhibits the NF-κB signaling pathway under several physiological processes. However, the contribution of NFKBIA to glioblastomas is poorly understood. In the present study, using gene sequencing, we identified rs1957106 as a novel single nucleotide polymorphism (SNP) in NFKBIA in glioblastoma and found that it was more frequently present in glioblastoma patients. In addition, we examined the association between different genotypes of the rs1957106 SNP of NFKBIA and the gene copy number, mRNA level and protein expression of NFKBIA. The SNP rs1957106 CT and TT genotypes were found to be associated with lower NFKBIA protein levels and a poor prognosis of pateints with glioblastoma. Hence, by identifying rs1957106 as a novel SNP in NFKBIA in glioblastoma patients, we provide a new platform for further investigating the function of NFKBIA in the pathobiology of glioblastoma.
Collapse
Affiliation(s)
- Zhaohui Zhao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xingming Zhong
- Department of Neurosurgery, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| | - Tinfeng Wu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Tianquan Yang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guilin Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xueshun Xie
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yongxin Wei
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ming Ye
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Youxin Zhou
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ziwei Du
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
34
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
35
|
Tien DN, Kishihata M, Yoshikawa A, Hashimoto A, Sabe H, Nishi E, Kamei K, Arai H, Kita T, Kimura T, Yokode M, Ashida N. AMAP1 as a negative-feedback regulator of nuclear factor-κB under inflammatory conditions. Sci Rep 2014; 4:5094. [PMID: 24865276 PMCID: PMC4035583 DOI: 10.1038/srep05094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/07/2014] [Indexed: 12/24/2022] Open
Abstract
NF-κB is a major transcriptional factor regulating many cellular functions including inflammation; therefore, its appropriate control is of high importance. The detailed mechanism of its activation has been well characterized, but that of negative regulation is poorly understood. In this study, we showed AMAP1, an Arf-GTPase activating protein, as a negative feedback regulator for NF-κB by binding with IKKβ, an essential kinase in NF-κB signaling. Proteomics analysis identified AMAP1 as a binding protein with IKKβ. Overexpression of AMAP1 suppressed NF-κB activity by interfering the binding of IKKβ and NEMO, and deletion of AMAP1 augmented NF-κB activity. The activation of NF-κB induced translocation of AMAP1 to cytoplasm from cell membrane and nucleus, which resulted in augmented interaction of AMAP1 and IKKβ. These results demonstrated a novel role of AMAP1 as a negative feedback regulator of NF-κB, and presented it as a possible target for anti-inflammatory treatments.
Collapse
Affiliation(s)
- Dat Nguyen Tien
- 1] Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan [2] Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan [3] Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Masako Kishihata
- 1] Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan [2] Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Ayumu Yoshikawa
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaeko Kamei
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Hidenori Arai
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toru Kita
- Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Noboru Ashida
- 1] Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan [2] Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
36
|
Cai XG, Xia JR, Li WD, Lu FL, Liu J, Lu Q, Zhi H. Anti-fibrotic effects of specific-siRNA targeting of the receptor for advanced glycation end products in a rat model of experimental hepatic fibrosis. Mol Med Rep 2014; 10:306-14. [PMID: 24804792 DOI: 10.3892/mmr.2014.2207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/18/2014] [Indexed: 12/31/2022] Open
Abstract
Since the receptor for advanced glycation end products (RAGE)-ligand axis has been demonstrated to be important in fibrogenesis, rat models may be used to assess whether specific small interfering RNAs (siRNAs) that target RAGE are able to reduce the progression of hepatic fibrosis. However, the effect of RAGE-targeted siRNA on established hepatic fibrosis remains to be elucidated. In the present study, RAGE-specific siRNA expression vectors were constructed prior to the animal experiment. Sprague-Dawley rats were treated initially with olive oil (2 ml/kg) or 50% CCl4 (2 ml/kg; CCl4/olive oil=1:1) twice per week for six weeks to generate the fibrosis model. The rats were then treated with phosphate‑buffered saline, a RAGE-specific siRNA expression vector, at different doses or a non-specific siRNA expression vector twice weekly via tail vein injection for up to six weeks, and were sacrificed at week two, four or six. Compared with the control groups, RAGE‑specific siRNA therapy significantly decreased RAGE mRNA and protein expression in rat livers (P<0.01). Following six weeks of RAGE gene-silencing treatment, the liver function, which was assessed by analyzing serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin (TBIL), improved to varying degrees (P<0.01). The expression of nuclear factor-κB (NF-κB) significantly decreased following RAGE gene‑silencing therapy (P<0.01). In addition, the serum levels of inflammatory cytokines, including tumor necrosis factor‑α (TNF-α) and interleukin-6 (IL-6), and extracellular matrix (ECM) components, including hyaluronic acid (HA), laminin (LN) and procollagen type III (PCIII) also decreased (P<0.01). Furthermore, the expression of α-smooth muscle actin (α-SMA) and collagen I, which indicate the activation of hepatic stellate cells (HSCs), were downregulated following RAGE gene-silencing therapy (P<0.01). Furthermore, the inflammatory activity grade and fibrosis stage of rat livers also significantly improved compared with the control groups following RAGE gene-silencing therapy. Specific targeting of RAGE using siRNA may inhibit RAGE gene expression effectively in the rat hepatic fibrosis model and attenuate the progression of established hepatic fibrosis. This therapeutic effect may be mediated via inhibition of the expression of NF-κB. These findings suggest that RAGE may be a new target to prevent hepatic fibrosis.
Collapse
Affiliation(s)
- Xiao-Gang Cai
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jin-Rong Xia
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Wei-Dong Li
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng-Lin Lu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Juan Liu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Qin Lu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Hong Zhi
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
37
|
Lee REC, Walker SR, Savery K, Frank DA, Gaudet S. Fold change of nuclear NF-κB determines TNF-induced transcription in single cells. Mol Cell 2014; 53:867-79. [PMID: 24530305 DOI: 10.1016/j.molcel.2014.01.026] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 12/12/2013] [Accepted: 01/24/2014] [Indexed: 01/02/2023]
Abstract
In response to tumor necrosis factor (TNF), NF-κB enters the nucleus and promotes inflammatory and stress-responsive gene transcription. Because NF-κB deregulation is associated with disease, one might expect strict control of NF-κB localization. However, nuclear NF-κB levels exhibit considerable cell-to-cell variability, even in unstimulated cells. To resolve this paradox and determine how transcription-inducing signals are encoded, we quantified single-cell NF-κB translocation dynamics and transcription in the same cells. We show that TNF-induced transcription correlates best with fold change in nuclear NF-κB, not absolute nuclear NF-κB abundance. Using computational modeling, we find that an incoherent feedforward loop, from competition for binding to κB motifs, could provide memory of the preligand state necessary for fold-change detection. Experimentally, we observed three gene-specific transcriptional patterns that our model recapitulates by modulating competition strength alone. Fold-change detection buffers against stochastic variation in signaling molecules and explains how cells tolerate variability in NF-κB abundance and localization.
Collapse
Affiliation(s)
- Robin E C Lee
- Department of Cancer Biology and Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah R Walker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kate Savery
- Department of Cancer Biology and Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Suzanne Gaudet
- Department of Cancer Biology and Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Yang Y, Fear J, Hu J, Haecker I, Zhou L, Renne R, Bloom D, McIntyre LM. Leveraging biological replicates to improve analysis in ChIP-seq experiments. Comput Struct Biotechnol J 2014; 9:e201401002. [PMID: 24688750 PMCID: PMC3962196 DOI: 10.5936/csbj.201401002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 12/27/2022] Open
Abstract
ChIP-seq experiments identify genome-wide profiles of DNA-binding molecules including transcription factors, enzymes and epigenetic marks. Biological replicates are critical for reliable site discovery and are required for the deposition of data in the ENCODE and modENCODE projects. While early reports suggested two replicates were sufficient, the widespread application of the technique has led to emerging consensus that the technique is noisy and that increasing replication may be worthwhile. Additional biological replicates also allow for quantitative assessment of differences between conditions. To date it has remained controversial about how to confirm peak identification and to determine signal strength across biological replicates, particularly when the number of replicates is greater than two. Using objective metrics, we evaluate the consistency of biological replicates in ChIP-seq experiments with more than two replicates. We compare several approaches for binding site determination, including two popular but disparate peak callers, CisGenome and MACS2. Here we propose read coverage as a quantitative measurement of signal strength for estimating sample concordance. Determining binding based on genomic features, such as promoters, is also examined. We find that increasing the number of biological replicates increases the reliability of peak identification. Critically, binding sites with strong biological evidence may be missed if researchers rely on only two biological replicates. When more than two replicates are performed, a simple majority rule (>50% of samples identify a peak) identifies peaks more reliably in all biological replicates than the absolute concordance of peak identification between any two replicates, further demonstrating the utility of increasing replicate numbers in ChIP-seq experiments.
Collapse
Affiliation(s)
- Yajie Yang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA ; UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Justin Fear
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA ; UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Irina Haecker
- Department of Applied Entomology, University of Giessen, Giessen, Germany
| | - Lei Zhou
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA ; UF Genetics Institute, University of Florida, Gainesville, Florida, USA ; UF Shands Cancer Center, University of Florida, Gainesville, Florida, USA
| | - David Bloom
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA ; UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Fu K, Sun X, Zheng W, Wier EM, Hodgson A, Tran DQ, Richard S, Wan F. Sam68 modulates the promoter specificity of NF-κB and mediates expression of CD25 in activated T cells. Nat Commun 2013; 4:1909. [PMID: 23715268 PMCID: PMC3684077 DOI: 10.1038/ncomms2916] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/19/2013] [Indexed: 12/23/2022] Open
Abstract
CD25, the alpha chain of the interleukin-2 receptor, is expressed in activated T cells and has a significant role in autoimmune disease and tumorigenesis; however, the mechanisms regulating transcription of CD25 remain elusive. Here we identify the Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel non-Rel component in the nuclear factor-kappaB (NF-κB) complex that confers CD25 transcription. Our results demonstrate that Sam68 has an essential role in the induction and maintenance of CD25 in T cells. T-cell receptor engagement triggers translocation of the inhibitor of NF-κB kinase alpha (IKKα) from the cytoplasm to the nucleus, where it phosphorylates Sam68, causing complex formation with NF-κB in the nucleus. These findings reveal the important roles of KH domain-containing components and their spatial interactions with IKKs in determining the binding targets of NF-κB complexes, thus shedding novel insights into the regulatory specificity of NF-κB.
Collapse
Affiliation(s)
- Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21025, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Fiume G, Rossi A, de Laurentiis A, Falcone C, Pisano A, Vecchio E, Pontoriero M, Scala I, Scialdone A, Masci FF, Mimmi S, Palmieri C, Scala G, Quinto I. Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB. PLoS One 2013; 8:e66087. [PMID: 23776612 PMCID: PMC3679033 DOI: 10.1371/journal.pone.0066087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 05/06/2013] [Indexed: 01/22/2023] Open
Abstract
Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control.
Collapse
Affiliation(s)
- Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
- * E-mail: (GF); (GS); (IQ)
| | - Annalisa Rossi
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Annamaria de Laurentiis
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Cristina Falcone
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Antonio Pisano
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Marilena Pontoriero
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Iris Scala
- Department of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Annarita Scialdone
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Francesca Fasanella Masci
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Giuseppe Scala
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
- * E-mail: (GF); (GS); (IQ)
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- * E-mail: (GF); (GS); (IQ)
| |
Collapse
|
41
|
Atypical IκB proteins - nuclear modulators of NF-κB signaling. Cell Commun Signal 2013; 11:23. [PMID: 23578005 PMCID: PMC3639191 DOI: 10.1186/1478-811x-11-23] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/28/2013] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor κB (NF-κB) controls a multitude of physiological processes such as cell differentiation, cytokine expression, survival and proliferation. Since NF-κB governs embryogenesis, tissue homeostasis and the functions of innate and adaptive immune cells it represents one of the most important and versatile signaling networks known. Its activity is regulated via the inhibitors of NF-κB signaling, the IκB proteins. Classical IκBs, like the prototypical protein IκBα, sequester NF-κB transcription factors in the cytoplasm by masking of their nuclear localization signals (NLS). Thus, binding of NF-κB to the DNA is inhibited. The accessibility of the NLS is controlled via the degradation of IκBα. Phosphorylation of the conserved serine residues 32 and 36 leads to polyubiquitination and subsequent proteasomal degradation. This process marks the central event of canonical NF-κB activation. Once their NLS is accessible, NF-κB transcription factors translocate into the nucleus, bind to the DNA and regulate the transcription of their respective target genes. Several studies described a distinct group of atypical IκB proteins, referred to as the BCL-3 subfamily. Those atypical IκBs show entirely different sub-cellular localizations, activation kinetics and an unexpected functional diversity. First of all, their interaction with NF-κB transcription factors takes place in the nucleus in contrast to classical IκBs, whose binding to NF-κB predominantly occurs in the cytoplasm. Secondly, atypical IκBs are strongly induced after NF-κB activation, for example by LPS and IL-1β stimulation or triggering of B cell and T cell antigen receptors, but are not degraded in the first place like their conventional relatives. Finally, the interaction of atypical IκBs with DNA-associated NF-κB transcription factors can further enhance or diminish their transcriptional activity. Thus, they do not exclusively act as inhibitors of NF-κB activity. The capacity to modulate NF-κB transcription either positively or negatively, represents their most important and unique mechanistic difference to classical IκBs. Several reports revealed the importance of atypical IκB proteins for immune homeostasis and the severe consequences following their loss of function. This review summarizes insights into the physiological processes regulated by this protein class and the relevance of atypical IκB functioning.
Collapse
|
42
|
Sophoricoside isolated from Sophora japonica ameliorates contact dermatitis by inhibiting NF-κB signaling in B cells. Int Immunopharmacol 2013; 15:467-73. [DOI: 10.1016/j.intimp.2013.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/22/2012] [Accepted: 01/31/2013] [Indexed: 11/21/2022]
|
43
|
Keddy PGW, Dunlop K, Warford J, Samson ML, Jones QRD, Rupasinghe HPV, Robertson GS. Neuroprotective and anti-inflammatory effects of the flavonoid-enriched fraction AF4 in a mouse model of hypoxic-ischemic brain injury. PLoS One 2012; 7:e51324. [PMID: 23251498 PMCID: PMC3520852 DOI: 10.1371/journal.pone.0051324] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/31/2012] [Indexed: 11/23/2022] Open
Abstract
We report here neuroprotective and anti-inflammatory effects of a flavonoid-enriched fraction isolated from the peel of Northern Spy apples (AF4) in a mouse of model of hypoxic-ischemic (HI) brain damage. Oral administration of AF4 (50 mg/kg, once daily for 3 days) prior to 50 min of HI completely prevented motor performance deficits assessed 14 days later that were associated with marked reductions in neuronal cell loss in the dorsal hippocampus and striatum. Pre-treatment with AF4 (5, 10, 25 or 50 mg/kg, p.o.; once daily for 3 days) produced a dose-dependent reduction in HI-induced hippocampal and striatal neuron cell loss, with 25 mg/kg being the lowest dose that achieved maximal neuroprotection. Comparison of the effects of 1, 3 or 7 doses of AF4 (25 mg/kg; p.o.) prior to HI revealed that at least 3 doses of AF4 were required before HI to reduce neuronal cell loss in both the dorsal hippocampus and striatum. Quantitative RT-PCR measurements revealed that the neuroprotective effects of AF4 (25 mg/kg; p.o.; once daily for 3 days) in the dorsal hippocampus were associated with a suppression of HI-induced increases in the expression of IL-1β, TNF-α and IL-6. AF4 pre-treatment enhanced mRNA levels for pro-survival proteins such as X-linked inhibitor of apoptosis and erythropoietin following HI in the dorsal hippocampus and striatum, respectively. Primary cultures of mouse cortical neurons incubated with AF4 (1 µg/ml), but not the same concentrations of either quercetin or quercetin-3-O-glucose or its metabolites, were resistant to cell death induced by oxygen glucose deprivation. These findings suggest that the inhibition of HI-induced brain injury produced by AF4 likely involves a transcriptional mechanism resulting from the co-operative actions of various phenolics in this fraction which not only reduce the expression of pro-inflammatory mediators but also enhance pro-survival gene signalling.
Collapse
Affiliation(s)
- Paul G. W. Keddy
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kate Dunlop
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jordan Warford
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michel L. Samson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Quinton R. D. Jones
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
44
|
Yin LL, Lin LL, Zhang L, Li L. Epimedium flavonoids ameliorate experimental autoimmune encephalomyelitis in rats by modulating neuroinflammatory and neurotrophic responses. Neuropharmacology 2012; 63:851-62. [DOI: 10.1016/j.neuropharm.2012.06.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 12/16/2022]
|
45
|
Ding Q, Huang B, Lu J, Liu YJ, Zhong J. Hepatitis C virus NS3/4A protease blocks IL-28 production. Eur J Immunol 2012; 42:2374-82. [PMID: 22685015 DOI: 10.1002/eji.201242388] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type I interferons (IFNs), including IFN-α, -β, and -ω, play a critical role in innate immune responses against viral infection. IFN-λ, including IL-29, IL-28A, and IL-28B, recently identified as a new subfamily of IFN named type III IFN, has also been demonstrated to suppress virus replication in vitro and in vivo. However, the molecular mechanisms that regulate the induction of type III IFNs during viral infection remain elusive. Here, we demonstrate that IL-28 (IFN-λ 2/3) IFN production, similar to type I IFN, represents a primary and direct host response to HCV genomic RNA transfection. IL-28 (IFN-λ2/3) induction by HCV genomic RNA was dependent upon the activation of NF-κB and IRF3. We identified a minimal IL-28 promoter region consisting of putative NF-κB and IRF3-binding sites. Furthermore, we showed that HCV infection can inhibit HCV genomic RNA-induced IL-28 expression, and that the viral NS3/4A protease activity was responsible for this inhibitory effect. Our results present important evidence for the control of type III IFN response by HCV, and shed more light on the molecular mechanisms underlying the persistence of HCV infection.
Collapse
MESH Headings
- 3' Untranslated Regions
- Binding Sites
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/immunology
- DEAD-box RNA Helicases/metabolism
- Genome, Viral
- Hep G2 Cells
- Hepacivirus/enzymology
- Hepacivirus/genetics
- Hepacivirus/immunology
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Humans
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/immunology
- Interferon Regulatory Factor-3/metabolism
- Interferon Type I/genetics
- Interferon Type I/immunology
- Interferon Type I/metabolism
- Interferons
- Interleukins/biosynthesis
- Interleukins/genetics
- Interleukins/immunology
- Interleukins/metabolism
- NF-kappa B/genetics
- NF-kappa B/immunology
- NF-kappa B/metabolism
- Promoter Regions, Genetic
- RNA, Viral/genetics
- RNA, Viral/immunology
- Receptors, Immunologic
- Transcriptional Activation
- Tumor Cells, Cultured
- Up-Regulation
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
- Viral Nonstructural Proteins/metabolism
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Qiang Ding
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
46
|
Lapthorne S, Macsharry J, Scully P, Nally K, Shanahan F. Differential intestinal M-cell gene expression response to gut commensals. Immunology 2012; 136:312-24. [PMID: 22385384 DOI: 10.1111/j.1365-2567.2012.03581.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Different rates of bacterial translocation across the gut mucosa have been reported but few studies have examined translocation of commensals at the level of the gut epithelial microfold (M) cell. We used an in vitro M-cell model to quantify translocation and determine the transcriptional response of M cells to various commensal bacteria. The transport kinetics and gene expression profile of M cells in response to different bacterial strains, namely Lactobacillus salivarius, Escherichia coli and Bacteroides fragilis, was assessed. Bacterial strains translocated across M cells with different efficiencies; E. coli and B. fragilis translocated with equal efficiency whereas L. salivarius translocated with less efficiency. Microarray analysis of the M cell response showed both common and differential gene expression changes between the bacterial strains. In the presence of bacteria, but not control beads, up-regulated genes were mainly involved in transcription regulation whereas pro-inflammatory and stress response genes were primarily up-regulated by E. coli and B. fragilis, but not L. salivarius nor beads. Translocation of bacteria and M-cell gene expression responses were confirmed in murine M cells following bacterial challenge in vivo. These results demonstrate that M cells have the ability to discriminate between different commensal bacteria and modify subsequent immune responses.
Collapse
Affiliation(s)
- Susan Lapthorne
- Alimentary Pharmabiotic Centre, University College Cork, National University of Ireland, Cork, Ireland
| | | | | | | | | |
Collapse
|
47
|
Hinz M, Arslan SÇ, Scheidereit C. It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 2012; 246:59-76. [PMID: 22435547 DOI: 10.1111/j.1600-065x.2012.01102.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory IκB proteins have been discovered as fundamental regulators of the inducible transcription factor nuclear factor-κB (NF-κB). As a generally excepted model, stimulus-dependent destruction of inhibitory IκBs and processing of precursor molecules, both promoted by components of the signal integrating IκB kinase complex, are the key events for the release of various NF-κB/Rel dimers and subsequent transcriptional activation. Intense research of more than 20 years provides evidence that the extending family of IκBs act not simply as reversible inhibitors of NF-κB activation but rather as a complex regulatory module, which assures feedback regulation of the NF-κB system and either can inhibit or promote transcriptional activity in a stimulus-dependent manner. Thus, IκB and NF-κB/Rel family proteins establish a complex interrelationship that allows modulated NF-κB-dependent transcription, tailored to the physiological environment.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
48
|
Baldwin AS. Regulation of cell death and autophagy by IKK and NF-κB: critical mechanisms in immune function and cancer. Immunol Rev 2012; 246:327-45. [PMID: 22435564 DOI: 10.1111/j.1600-065x.2012.01095.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cellular response to survive or to undergo death is fundamental to the benefit of the organism, and errors in this process can lead to autoimmunity and cancer. The transcription factor nuclear factor κB (NF-κB) functions to block cell death through transcriptional induction of genes encoding anti-apoptotic and antioxidant proteins. This is essential for survival of activated cells of the immune system and for cells undergoing a DNA damage response. In Ras-transformed cells and tumors as well as other cancers, NF-κB functions to suppress apoptosis--a hallmark of cancer. Critical prosurvival roles for inhibitor of NF-κB kinase (IKK) family members, including IKKε and TBK1, have been reported, which are both NF-κB-dependent and -independent. While the roles of NF-κB in promoting cell survival in lymphocytes and in cancers is relatively clear, evidence has been presented that NF-κB can promote cell death in particular contexts. Recently, IKK was shown to play a critical role in the induction of autophagy, a metabolic response typically associated with cell survival but which can lead to cell death. This review provides an historical perspective, along with new findings, regarding the roles of the IKK and NF-κB pathways in regulating cell survival.
Collapse
Affiliation(s)
- Albert S Baldwin
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
49
|
Abstract
The nuclear factor-κB (NF-κB) transcription factor family has been considered the central mediator of the inflammatory process and a key participant in innate and adaptive immune responses. Coincident with the molecular cloning of NF-κB/RelA and identification of its kinship to the v-Rel oncogene, it was anticipated that NF-κB itself would be involved in cancer development. Oncogenic activating mutations in NF-κB genes are rare and have been identified only in some lymphoid malignancies, while most NF-κB activating mutations in lymphoid malignancies occur in upstream signaling components that feed into NF-κB. NF-κB activation is also prevalent in carcinomas, in which NF-κB activation is mainly driven by inflammatory cytokines within the tumor microenvironment. Importantly, however, in all malignancies, NF-κB acts in a cell type-specific manner: activating survival genes within cancer cells and inflammation-promoting genes in components of the tumor microenvironment. Yet, the complex biological functions of NF-κB have made its therapeutic targeting a challenge.
Collapse
Affiliation(s)
- Joseph A DiDonato
- Cleveland Clinic Foundation, Department of Cell Biology, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, USA
| | | | | |
Collapse
|
50
|
Regulation of nucleocytoplasmic shuttling of Bruton's tyrosine kinase (Btk) through a novel SH3-dependent interaction with ankyrin repeat domain 54 (ANKRD54). Mol Cell Biol 2012; 32:2440-53. [PMID: 22527282 DOI: 10.1128/mcb.06620-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bruton's tyrosine kinase (Btk), belonging to the Tec family of tyrosine kinases (TFKs), is essential for B-lymphocyte development. Abrogation of Btk signaling causes human X-linked agammaglobulinemia (XLA) and murine X-linked immunodeficiency (Xid). We employed affinity purification of Flag-tagged Btk, combined with tandem mass spectrometry, to capture and identify novel interacting proteins. We here characterize the interaction with ankryin repeat domain 54 protein (ANKRD54), also known as Lyn-interacting ankyrin repeat protein (Liar). While Btk is a nucleocytoplasmic protein, the Liar pool was found to shuttle at a higher rate than Btk. Importantly, our results suggest that Liar mediates nuclear export of both Btk and another TFK, Txk/Rlk. Liar-mediated Btk shuttling was enriched for activation loop, nonphosphorylated Btk and entirely dependent on Btk's SH3 domain. Liar also showed reduced binding to an aspartic acid phosphomimetic SH3 mutant. Three other investigated nucleus-located proteins, Abl, estrogen receptor β (ERβ), and transcription factor T-bet, were all unaffected by Liar. We mapped the interaction site to the C terminus of the Btk SH3 domain. A biotinylated, synthetic Btk peptide, ARDKNGQEGYIPSNYVTEAEDS, was sufficient for this interaction. Liar is the first protein identified that specifically influences the nucleocytoplasmic shuttling of Btk and Txk and belongs to a rare group of known proteins carrying out this activity in a Crm1-dependent manner.
Collapse
|