1
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis and maintain translational repression of maternal mRNA and oocyte quality. Mol Biol Cell 2024; 35:ar131. [PMID: 39167497 PMCID: PMC11481691 DOI: 10.1091/mbc.e24-05-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo Caenorhabditis elegans oogenesis model to characterize the properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and three other translational regulators. We demonstrate that MEX-3 undergoes phase separation and appears to have intrinsic gel-like properties in vitro. We also identify novel roles for the chaperonin-containing tailless complex polypeptide 1 (CCT) chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. The CCT chaperonin and actin also oppose the expansion of endoplasmic reticulum sheets that may promote ectopic condensation of RNA-binding proteins. These novel regulators of condensation are also required for the translational repression of maternal mRNA which is essential for oocyte quality and fertility. The identification of this regulatory network may also have implications for understanding the role of hMex3 phase transitions in cancer.
Collapse
Affiliation(s)
- Mohamed T. Elaswad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Mingze Gao
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Victoria E. Tice
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Cora G. Bright
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Grace M. Thomas
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Chloe Munderloh
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | | | - Christya N. Haddad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Ulysses G. Johnson
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859
| | - Ashley N. Cichon
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Jennifer A. Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| |
Collapse
|
2
|
Yuan Y, Fang A, Zhang M, Zhou M, Fu ZF, Zhao L. Lassa virus Z protein hijacks the autophagy machinery for efficient transportation by interrupting CCT2-mediated cytoskeleton network formation. Autophagy 2024:1-18. [PMID: 39007910 DOI: 10.1080/15548627.2024.2379099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
The Lassa virus (LASV) is a widely recognized virulent pathogen that frequently results in lethal viral hemorrhagic fever (VHF). Earlier research has indicated that macroautophagy/autophagy plays a role in LASV replication, but, the precise mechanism is unknown. In this present study, we show that LASV matrix protein (LASV-Z) is essential for blocking intracellular autophagic flux. LASV-Z hinders actin and tubulin folding by interacting with CCT2, a component of the chaperonin-containing T-complexes (TRiC). When the cytoskeleton is disrupted, lysosomal enzyme transit is hampered. In addition, cytoskeleton disruption inhibits the merge of autophagosomes with lysosomes, resulting in autophagosome accumulation that promotes the budding of LASV virus-like particles (VLPs). Inhibition of LASV-Z-induced autophagosome accumulation blocks the LASV VLP budding process. Furthermore, it is found that glutamine at position 29 and tyrosine at position 48 on LASV-Z are important in interacting with CCT2. When these two sites are mutated, LASV-mut interacts with CCT2 less efficiently and can no longer inhibit the autophagic flux. These findings demonstrate a novel strategy for LASV-Z to hijack the host autophagy machinery to accomplish effective transportation.Abbreviation: 3-MA: 3-methyladenine; ATG5: autophagy related 5; ATG7: autophagy related 7; Baf-A1: bafilomycin A1; CCT2: chaperonin containing TCP1 subunit 2; co-IP: co-immunoprecipitation; CTSD: cathepsin D; DAPI: 4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EGFR: epidermal growth factor receptor; GFP: green fluorescent protein; hpi: hours post-infection; hpt: hours post-transfection; LAMP1: lysosomal-associated membrane protein 1; LASV: lassa virus; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mCherry: red fluorescent protein; PM: plasma membrane; SQSTM1/p62: sequestosome 1; STX6: syntaxin 6; VLP: virus-like particle; TEM: transmission electron microscopy; TRiC: chaperonin-containing T-complex; WB: western blotting; μm: micrometer; μM: micromole.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mai Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis to maintain translational repression of maternal mRNA and oocyte quality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601596. [PMID: 39005301 PMCID: PMC11244991 DOI: 10.1101/2024.07.01.601596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo C. elegans oogenesis model to determine the intrinsic properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and the Lsm protein, CAR-1. We demonstrate that MEX-3 undergoes liquid-liquid phase separation and appears to have intrinsic gel-like properties in vitro . We also identify novel roles for the CCT chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. CCT and actin also oppose the expansion of ER sheets that may promote ectopic condensation of RNA-binding proteins that are associated with de-repression of maternal mRNA. This regulatory network is essential to preserve oocyte quality, prevent infertility, and may have implications for understanding the role of hMex3 phase transitions in cancer. Significance statement The molecular mechanisms that regulate phase transitions of oogenic RNA-binding proteins are critical to elucidate but are not fully understood.We identify novel regulators of RNA-binding protein phase transitions in maturing oocytes that are required to maintain translational repression of maternal mRNAs and oocyte quality.This study is the first to elucidate a regulatory network involving the CCT chaperonin, actin, and the ER for phase transitions of RNA-binding proteins during oogenesis. Our findings for the conserved MEX-3 protein may also be applicable to better understanding the role of hMex3 phase transitions in cancer.
Collapse
|
4
|
Bley H, Krisp C, Schöbel A, Hehner J, Schneider L, Becker M, Stegmann C, Heidenfels E, Nguyen-Dinh V, Schlüter H, Gerold G, Herker E. Proximity labeling of host factor ANXA3 in HCV infection reveals a novel LARP1 function in viral entry. J Biol Chem 2024; 300:107286. [PMID: 38636657 PMCID: PMC11101947 DOI: 10.1016/j.jbc.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.
Collapse
Affiliation(s)
- Hanna Bley
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Christoph Krisp
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Schöbel
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Julia Hehner
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Miriam Becker
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Cora Stegmann
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Elisa Heidenfels
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Van Nguyen-Dinh
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Gerold
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Eva Herker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
5
|
Chen B, Weng Y, Li M, Bian Z, Tao Y, Zhou W, Lu H, He S, Liao R, Huang J, Wang Q, Xu M, Ge Y, Cao W, Lei M, Zhang Y. LINC02454-CCT complex interaction is essential for telomerase activity and cell proliferation in head and neck squamous cell carcinoma. Cancer Lett 2024; 588:216734. [PMID: 38401886 DOI: 10.1016/j.canlet.2024.216734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Telomerase activity is upregulated in head and neck squamous cell carcinoma (HNSCC), yet its regulatory mechanisms remain unclear. Here, we identified a cancer-specific lncRNA (LINC02454) associated with poor prognosis by using LncRNA chip of our HNSCC cohorts and external datasets. Through employing negative-stain transmission electron microscopy (NS-TEM), we discovered an interaction between LINC02454 and CCT complex which would augment telomerase activity for maintaining telomere homeostasis. Supporting this, in the telomerase repeat amplification protocol (TRAP) assay and quantitative fluorescence in situ hybridization (Q-FISH) analysis, LINC02454 depletion significantly reduced telomerase activity and shortened telomere length. Consistently, pathways related to telomerase, mitosis, and apoptosis were significantly impacted upon LINC02454 knockdown in RNAseq analysis. Functionally, LINC02454-deficient cells exhibited a more significant senescence phenotype in β-galactosidase staining, cell cycle, and apoptosis assays. We further confirmed the role of LINC02454 in HNSCC proliferation through a combination of in vitro and in vivo experiments. The therapeutic potential of targeting LINC02454 was verified by adenovirus-shRNA approach in HNSCC patient-derived xenograft (PDX) models. In summary, our findings provided valuable insights into the molecular mechanisms of HNSCC tumorigenesis and potential targets for future treatment modalities.
Collapse
Affiliation(s)
- Biying Chen
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yue Weng
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingyue Li
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhouliang Bian
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Ye Tao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenkai Zhou
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Hong Lu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shufang He
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rijing Liao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Huang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Wang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Ming Xu
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yunhui Ge
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
6
|
Zeng C, Han S, Pan Y, Huang Z, Zhang B, Zhang B. Revisiting the chaperonin T-complex protein-1 ring complex in human health and disease: A proteostasis modulator and beyond. Clin Transl Med 2024; 14:e1592. [PMID: 38363102 PMCID: PMC10870801 DOI: 10.1002/ctm2.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Disrupted protein homeostasis (proteostasis) has been demonstrated to facilitate the progression of various diseases. The cytosolic T-complex protein-1 ring complex (TRiC/CCT) was discovered to be a critical player in orchestrating proteostasis by folding eukaryotic proteins, guiding intracellular localisation and suppressing protein aggregation. Intensive investigations of TRiC/CCT in different fields have improved the understanding of its role and molecular mechanism in multiple physiological and pathological processes. MAIN BODY In this review, we embark on a journey through the dynamic protein folding cycle of TRiC/CCT, unraveling the intricate mechanisms of its substrate selection, recognition, and intriguing folding and assembly processes. In addition to discussing the critical role of TRiC/CCT in maintaining proteostasis, we detail its involvement in cell cycle regulation, apoptosis, autophagy, metabolic control, adaptive immunity and signal transduction processes. Furthermore, we meticulously catalogue a compendium of TRiC-associated diseases, such as neuropathies, cardiovascular diseases and various malignancies. Specifically, we report the roles and molecular mechanisms of TRiC/CCT in regulating cancer formation and progression. Finally, we discuss unresolved issues in TRiC/CCT research, highlighting the efforts required for translation to clinical applications, such as diagnosis and treatment. CONCLUSION This review aims to provide a comprehensive view of TRiC/CCT for researchers to inspire further investigations and explorations of potential translational possibilities.
Collapse
Affiliation(s)
- Chenglong Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Binhao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of EducationWuhanChina
- Key Laboratory of Organ Transplantation, National Health CommissionWuhanChina
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| |
Collapse
|
7
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
8
|
Stephan OOH. Effects of environmental stress factors on the actin cytoskeleton of fungi and plants: Ionizing radiation and ROS. Cytoskeleton (Hoboken) 2023; 80:330-355. [PMID: 37066976 DOI: 10.1002/cm.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Actin is an abundant and multifaceted protein in eukaryotic cells that has been detected in the cytoplasm as well as in the nucleus. In cooperation with numerous interacting accessory-proteins, monomeric actin (G-actin) polymerizes into microfilaments (F-actin) which constitute ubiquitous subcellular higher order structures. Considering the extensive spatial dimensions and multifunctionality of actin superarrays, the present study analyses the issue if and to what extent environmental stress factors, specifically ionizing radiation (IR) and reactive oxygen species (ROS), affect the cellular actin-entity. In that context, this review particularly surveys IR-response of fungi and plants. It examines in detail which actin-related cellular constituents and molecular pathways are influenced by IR and related ROS. This comprehensive survey concludes that the general integrity of the total cellular actin cytoskeleton is a requirement for IR-tolerance. Actin's functions in genome organization and nuclear events like chromatin remodeling, DNA-repair, and transcription play a key role. Beyond that, it is highly significant that the macromolecular cytoplasmic and cortical actin-frameworks are affected by IR as well. In response to IR, actin-filament bundling proteins (fimbrins) are required to stabilize cables or patches. In addition, the actin-associated factors mediating cellular polarity are essential for IR-survivability. Moreover, it is concluded that a cellular homeostasis system comprising ROS, ROS-scavengers, NADPH-oxidases, and the actin cytoskeleton plays an essential role here. Consequently, besides the actin-fraction which controls crucial genome-integrity, also the portion which facilitates orderly cellular transport and polarized growth has to be maintained in order to survive IR.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, 91058, Germany
| |
Collapse
|
9
|
Wang S, Duan X, Wang S, Hao L, Zhang Y, Xu C, Yu Y, Xiang L, Jiang F, Heinlein M, Li T, Zhang W. A chaperonin containing T-complex polypeptide-1 facilitates the formation of the PbWoxT1-PbPTB3 ribonucleoprotein complex for long-distance RNA trafficking in Pyrus betulaefolia. THE NEW PHYTOLOGIST 2023; 238:1115-1128. [PMID: 36751904 DOI: 10.1111/nph.18789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Numerous plant endogenous mRNAs move via phloem and thus affect the growth and development of long-distant organs. mRNAs are transported with RNA-binding proteins forming a ribonucleoprotein complex. However, it remains elusive how such RNP complex assembles and facilitates mRNA trafficking. Protease digestion and RNA immunoprecipitation were used to investigate the RNP assembly function of the complete Chaperonin Containing T-complex Polypeptide-1. In situ hybridization, hairy root transformation, microprojectile bombardment, and grafting experiments demonstrate the role of CCT complex in the transport of a PbWoxT1-PbPTB3 RNP complex in Pyrus betulaefolia. PbCCT5 silenced caused defective movement of GFP-PbPTB3 and GFP-PbWoxT1 from hairy roots to new leaves via the phloem. PbCCT5 is shown to interact with PbPTB3. PbCCT complex enhanced PbPTB3 stabilization and permitted assembly of PbWoxT1 and PbPTB3 into an RNP complex. Furthermore, silencing of individual CCT subunits inhibited the intercellular movement of GFP-PbPTB3 and long-distance trafficking of PbWoxT1 and PbPTB3 in grafted plants. Taken together, the CCT complex assembles PbPTB3 and PbWoxT1 into an RNP complex in the phloem in order to facilitate the long-distance trafficking of PbWoxT1 in P. betulaefolia. This study therefore provides important insights into the mechanism of RNP complex formation and transport.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Xuwei Duan
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Shengyuan Wang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Li Hao
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yi Zhang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Chaoran Xu
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yunfei Yu
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Ling Xiang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Feng Jiang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Manfred Heinlein
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Tianzhong Li
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Wenna Zhang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
10
|
Di Camillo B, Puricelli L, Iori E, Toffolo GM, Tessari P, Arrigoni G. Modeling SILAC Data to Assess Protein Turnover in a Cellular Model of Diabetic Nephropathy. Int J Mol Sci 2023; 24:ijms24032811. [PMID: 36769128 PMCID: PMC9917874 DOI: 10.3390/ijms24032811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Protein turnover rate is finely regulated through intracellular mechanisms and signals that are still incompletely understood but that are essential for the correct function of cellular processes. Indeed, a dysfunctional proteostasis often impacts the cell's ability to remove unfolded, misfolded, degraded, non-functional, or damaged proteins. Thus, altered cellular mechanisms controlling protein turnover impinge on the pathophysiology of many diseases, making the study of protein synthesis and degradation rates an important step for a more comprehensive understanding of these pathologies. In this manuscript, we describe the application of a dynamic-SILAC approach to study the turnover rate and the abundance of proteins in a cellular model of diabetic nephropathy. We estimated protein half-lives and relative abundance for thousands of proteins, several of which are characterized by either an altered turnover rate or altered abundance between diabetic nephropathic subjects and diabetic controls. Many of these proteins were previously shown to be related to diabetic complications and represent therefore, possible biomarkers or therapeutic targets. Beside the aspects strictly related to the pathological condition, our data also represent a consistent compendium of protein half-lives in human fibroblasts and a rich source of important information related to basic cell biology.
Collapse
Affiliation(s)
- Barbara Di Camillo
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
- Correspondence: (B.D.C.); (G.A.)
| | - Lucia Puricelli
- Department of Medicine, University of Padova, 35128 Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Elisabetta Iori
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Gianna Maria Toffolo
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Paolo Tessari
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Giorgio Arrigoni
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, 35128 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (B.D.C.); (G.A.)
| |
Collapse
|
11
|
Chen Y, Kang J, Zhen R, Zhang L, Chen C. A genome-wide CRISPR screen identifies the CCT chaperonin as a critical regulator of vesicle trafficking. FASEB J 2023; 37:e22757. [PMID: 36607310 DOI: 10.1096/fj.202201580r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Vesicle trafficking is a fundamental cellular process that controls the transport of various proteins and cargos between cellular compartments in eukaryotes. Using a combination of genome-wide CRISPR screening in mammalian cells and RNAi screening in Caenorhabditis elegans, we identify chaperonin containing TCP-1 subunit 4 (CCT4) as a critical regulator of protein secretion and vesicle trafficking. In C. elegans, deficiency of cct-4 as well as other CCT subunits impairs the trafficking of endocytic markers in intestinal cells, and this defect resembles that of dyn-1 RNAi worms. Consistent with these findings, the silencing of CCT4 in human cells leads to defective endosomal trafficking, and this defect can be rescued by the dynamin activator Ryngo 1-23. These results suggest that the cytosolic chaperonin CCT may regulate vesicle trafficking by promoting the folding of dynamin in addition to its known substrate tubulin. Our findings establish an essential role for the CCT chaperonin in regulating vesicle trafficking, and provide new insights into the regulation of vesicle trafficking and the cellular function of the cytosolic chaperonin.
Collapse
Affiliation(s)
- Yongtian Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jing Kang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ru Zhen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liyang Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Caiyong Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
13
|
Boshoff A. Chaperonin: Co-chaperonin Interactions. Subcell Biochem 2023; 101:213-246. [PMID: 36520309 DOI: 10.1007/978-3-031-14740-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Co-chaperonins function together with chaperonins to mediate ATP-dependent protein folding in a variety of cellular compartments. Chaperonins are evolutionarily conserved and form two distinct classes, namely, group I and group II chaperonins. GroEL and its co-chaperonin GroES form part of group I and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo conformational rearrangements that enable protein folding to occur. GroES forms a lid over the chamber and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. Group II chaperonins are functionally similar to group I chaperonins but differ in structure and do not require a co-chaperonin. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances, co-chaperonins display contrasting functions to those of chaperonins. Human HSP60 (HSPD) continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10 on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.
Collapse
Affiliation(s)
- Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
14
|
Jiang L, Liu J. Prefoldin 6 promotes glioma progression via the AKT signalling pathway. Cell Biol Int 2023; 47:52-62. [PMID: 36300673 DOI: 10.1002/cbin.11895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 01/01/2023]
Abstract
Gliomas are one of the most aggressive primary tumours, accounting for 81% of malignant brain tumours, and are associated with a significant mortality. Therefore, the elucidation of the molecular mechanism underlying glioma progression and identification of promising treatment targets are necessary. Here, the expression of prefoldin (PFDN) 6 in human glioma tissues and cell lines was evaluated using immunohistochemistry and quantitative polymerase chain reaction. Celigo and CCK-8 assays were performed for assessing cell viability. Flow cytometry was used to analyse apoptosis and cell cycle distribution. Wound-healing and transwell assays were performed to observe cell migration. Lastly, xenograft models were developed for the in vivo validation of the results, and a human phospho-kinase array was used to explore the downstream signalling pathways. PFDN6 was upregulated in gliomas, and PFDN6 overexpression was significantly correlated with a low survival rate, estimated glomerular filtration rate (EGFR) expression, and tumour grade and recurrence. Moreover, PFDN6 knockdown significantly attenuated cell proliferation and migration, induced apoptosis, and blocked cell cycle progression in the G2 phase, which was further confirmed in the in vivo experiments. Mechanistically, the effects of PFDN6 may be mediated via the AKT signalling pathway. In conclusion, we showed that PFDN6 promotes glioma development by activating AKT signalling and emphasised the potential of PFDN6 as a crucial target in glioma therapy.
Collapse
Affiliation(s)
- Lianglei Jiang
- Department of Neurosurgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Jun Liu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
15
|
Yao M, Wang R, Chen Y, He P, Wei E, Zhu F, Wang Q, Zhang Y, Tang X, Shen Z. Identification and subcellular localization analysis of CCTα in microsporidian Nosema bombycis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105309. [PMID: 35636694 DOI: 10.1016/j.meegid.2022.105309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
CCT is a chaperonin which is widely present in eukaryotic cells and mainly involves in the folding and assembly of cytoskeletal proteins β-tubulin and actin. The alpha subunit of CCT(CCTα) plays a pivotal role in the folding and assembly of cytoskeletal protein(s) as an individuals or complexes. In this study, we report cloning, characterization and expression of the CCTα of Nosema bombycis (NbCCTα) for the first time. The NbCCTα gene contains a complete ORF of 1629 bp in length that encodes a 542-amino acid polypeptide. The NbCCTα is 59.662 kDa molecular weight in size with an isoelectric point (pI) of 5.81, no signal peptide or transmembrane domain. The IFA results showed that the NbCCTα was co-localized with actin and β-tubulin in the cytoplasm, nucleus, nuclear membrane and plasma membrane of N. bombycis in the process of proliferation. qPCR analysis showed that the relative expression level of NbCCTα increased from 24 h to 96 h post-infection (hp.i) of N. bombycis, and reached the highest at 96 hp.i. The relative expression level of NbCCTα gene after RNAi was restrained at a low level from 48 hp.i to 96 hp.i. Knockdown of NbCCTα gene down-regulated the expression of Nbβ-tubulin and Nbactin genes. These results imply that NbCCTα may play an important role in the lifecycle of N. bombycis.
Collapse
Affiliation(s)
- Mingshuai Yao
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Jiangsu Collage of Tourism, Yangzhou 215000, Jiangsu Province, China
| | - Runpeng Wang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Ying Chen
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Ping He
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Erjun Wei
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Feng Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, Shandong Province, China
| | - Qiang Wang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Xudong Tang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China.
| |
Collapse
|
16
|
Ti SC. Reconstituting Microtubules: A Decades-Long Effort From Building Block Identification to the Generation of Recombinant α/β-Tubulin. Front Cell Dev Biol 2022; 10:861648. [PMID: 35573669 PMCID: PMC9096264 DOI: 10.3389/fcell.2022.861648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules are cytoskeletal filaments underlying the morphology and functions of all eukaryotic cells. In higher eukaryotes, the basic building blocks of these non-covalent polymers, ɑ- and β-tubulins, are encoded by expanded tubulin family genes (i.e., isotypes) at distinct loci in the genome. While ɑ/β-tubulin heterodimers have been isolated and examined for more than 50 years, how tubulin isotypes contribute to the microtubule organization and functions that support diverse cellular architectures remains a fundamental question. To address this knowledge gap, in vitro reconstitution of microtubules with purified ɑ/β-tubulin proteins has been employed for biochemical and biophysical characterization. These in vitro assays have provided mechanistic insights into the regulation of microtubule dynamics, stability, and interactions with other associated proteins. Here we survey the evolving strategies of generating purified ɑ/β-tubulin heterodimers and highlight the advances in tubulin protein biochemistry that shed light on the roles of tubulin isotypes in determining microtubule structures and properties.
Collapse
|
17
|
Huang W, Li JY, Wu YY, Liao TL, Nielsen BL, Liu HJ. p17-Modulated Hsp90/Cdc37 Complex Governs Oncolytic Avian Reovirus Replication by Chaperoning p17, Which Promotes Viral Protein Synthesis and Accumulation of Viral Proteins σC and σA in Viral Factories. J Virol 2022; 96:e0007422. [PMID: 35107368 PMCID: PMC8941905 DOI: 10.1128/jvi.00074-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
In this work we have determined that heat shock protein 90 (Hsp90) is essential for avian reovirus (ARV) replication by chaperoning the ARV p17 protein. p17 modulates the formation of the Hsp90/Cdc37 complex by phosphorylation of Cdc37, and this chaperone machinery protects p17 from ubiquitin-proteasome degradation. Inhibition of the Hsp90/Cdc37 complex by inhibitors (17-N-allylamino-17-demethoxygeldanamycin 17-AGG, and celastrol) or short hairpin RNAs (shRNAs) significantly reduced expression levels of viral proteins and virus yield, suggesting that the Hsp90/Cdc37 chaperone complex functions in virus replication. The expression levels of p17 were decreased at the examined time points (2 to 7 h and 7 to 16 h) in 17-AAG-treated cells in a dose-dependent manner while the expression levels of viral proteins σA, σC, and σNS were decreased at the examined time point (7 to 16 h). Interestingly, the expression levels of σC, σA, and σNS proteins increased along with coexpression of p17 protein. p17 together with the Hsp90/Cdc37 complex does not increase viral genome replication but enhances viral protein stability, maturation, and virus production. Virus factories of ARV are composed of nonstructural proteins σNS and μNS. We found that the Hsp90/Cdc37 chaperone complex plays an important role in accumulation of the outer-capsid protein σC, inner core protein σA, and nonstructural protein σNS of ARV in viral factories. Depletion of Hsp90 inhibited σA, σC, and p17 proteins colocalized with σNS in viral factories. This study provides novel insights into p17-modulated formation of the Hsp90/Cdc37 chaperone complex governing virus replication via stabilization and maturation of viral proteins and accumulation of viral proteins in viral factories for virus assembly. IMPORTANCE Molecular mechanisms that control stabilization of ARV proteins and the intermolecular interactions among inclusion components remain largely unknown. Here, we show that the ARV p17 is an Hsp90 client protein. The Hsp90/Cdc37 chaperone complex is essential for ARV replication by protecting p17 chaperone from ubiquitin-proteasome degradation. p17 modulates the formation of Hsp90/Cdc37 complex by phosphorylation of Cdc37, and this chaperone machinery protects p17 from ubiquitin-proteasome degradation, suggesting a feedback loop between p17 and the Hsp90/Cdc37 chaperone complex. p17 together with the Hsp90/Cdc37 complex does not increase viral genome replication but enhances viral protein stability and virus production. Depletion of Hsp90 prevented viral proteins σA, σC, and p17 from colocalizing with σNS in viral factories. Our findings elucidate that the Hsp90/Cdc37 complex chaperones p17, which, in turn, promotes the synthesis of viral proteins σA, σC, and σNS and facilitates accumulation of the outer-capsid protein σC and inner core protein σA in viral factories for virus assembly.
Collapse
Affiliation(s)
- Wei‐Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jyun-Yi Li
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
18
|
Bieniussa L, Jain I, Bosch Grau M, Juergens L, Hagen R, Janke C, Rak K. Microtubule and auditory function - an underestimated connection. Semin Cell Dev Biol 2022; 137:74-86. [PMID: 35144861 DOI: 10.1016/j.semcdb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
Abstract
The organ of Corti, located in the cochlea within the inner ear is the receptor organ for hearing. It converts auditory signals into neuronal action potentials that are transmitted to the brain for further processing. The mature organ of Corti consists of a variety of highly differentiated sensory cells that fulfil unique tasks in the processing of auditory signals. The actin and microtubule cytoskeleton play essential function in hearing, however so far, more attention has been paid to the role of actin. Microtubules play important roles in maintaining cellular structure and intracellular transport in virtually all eukaryotic cells. Their functions are controlled by interactions with a large variety of microtubule-associated proteins (MAPs) and molecular motors. Current advances show that tubulin posttranslational modifications, as well as tubulin isotypes could play key roles in modulating microtubule properties and functions in cells. These mechanisms could have various effects on the stability and functions of microtubules in the highly specialised cells of the cochlea. Here, we review the current understanding of the role of microtubule-regulating mechanisms in the function of the cochlea and their implications for hearing, which highlights the importance of microtubules in the field of hearing research.
Collapse
Affiliation(s)
- Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Germany
| | - Ipsa Jain
- Institute of Stem cell Biology and Regenerative Medicine, Bangalore, India
| | - Montserrat Bosch Grau
- Genetics and Physiology of Hearing Laboratory, Institute Pasteur, 75015 Paris, France
| | - Lukas Juergens
- Department of Ophthalmology, University of Duesseldorf, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Germany
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Germany.
| |
Collapse
|
19
|
Date Y, Matsuura A, Itakura E. Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT. Cell Death Dis 2022; 8:37. [PMID: 35079001 PMCID: PMC8789831 DOI: 10.1038/s41420-022-00828-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/11/2021] [Accepted: 01/07/2022] [Indexed: 12/26/2022]
Abstract
Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system.
Collapse
|
20
|
Huang WR, Li JY, Liao TL, Yeh CM, Wang CY, Wen HW, Hu NJ, Wu YY, Hsu CY, Chang YK, Chang CD, Nielsen BL, Liu HJ. Molecular chaperone TRiC governs avian reovirus replication by protecting outer-capsid protein σC and inner core protein σA and non-structural protein σNS from ubiquitin- proteasome degradation. Vet Microbiol 2021; 264:109277. [PMID: 34826648 DOI: 10.1016/j.vetmic.2021.109277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/27/2021] [Accepted: 11/07/2021] [Indexed: 01/15/2023]
Abstract
Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.
Collapse
Affiliation(s)
- Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jyun-Yi Li
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chuan-Ming Yeh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan; Bioproduction Reearch Institute, National Institute of Advanced Industrial Science and Technology, Tsukaba, Japan
| | - Chi-Young Wang
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Nien-Jen Hu
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chao-Yu Hsu
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan; Division of Urology, Department of Surgery, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Yu-Kang Chang
- Department of Medical Research, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan; Depertment of Nursing, Jen-Teh Junior College of Medicine and Management, Taiwan
| | - Ching-Dong Chang
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
21
|
Machida K, Miyawaki S, Kanzawa K, Hakushi T, Nakai T, Imataka H. An in Vitro Reconstitution System Defines the Defective Step in the Biogenesis of Mutated β-Actin Proteins. ACS Synth Biol 2021; 10:3158-3166. [PMID: 34752068 DOI: 10.1021/acssynbio.1c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro reconstitution of whole cellular events is one of the important goals in synthetic biology. Using a cell-free protein synthesis (CFPS) system reconstituted with human translation factors and chaperones, we reproduced the biogenesis of β-actin, synthesis, folding, and polymerization in a test tube. This system enabled us to define which step of the β-actin biogenesis was defective in genetic mutations related to diseases. Hence, the CFPS system reconstituted with human factors may be a useful tool for analyzing proteostasis in eukaryotes.
Collapse
Affiliation(s)
- Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Shoma Miyawaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Kuru Kanzawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Taiki Hakushi
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Tomonori Nakai
- Graduate School of Life Science, University of Hyogo, Himeji 671-2201, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| |
Collapse
|
22
|
Iyer K, Chand K, Mitra A, Trivedi J, Mitra D. Diversity in heat shock protein families: functional implications in virus infection with a comprehensive insight of their role in the HIV-1 life cycle. Cell Stress Chaperones 2021; 26:743-768. [PMID: 34318439 PMCID: PMC8315497 DOI: 10.1007/s12192-021-01223-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of cellular proteins that are induced during stress conditions such as heat stress, cold shock, UV irradiation and even pathogenic insult. They are classified into families based on molecular size like HSP27, 40, 70 and 90 etc, and many of them act as cellular chaperones that regulate protein folding and determine the fate of mis-folded or unfolded proteins. Studies have also shown multiple other functions of these proteins such as in cell signalling, transcription and immune response. Deregulation of these proteins leads to devastating consequences, such as cancer, Alzheimer's disease and other life threatening diseases suggesting their potential importance in life processes. HSPs exist in multiple isoforms, and their biochemical and functional characterization still remains a subject of active investigation. In case of viral infections, several HSP isoforms have been documented to play important roles with few showing pro-viral activity whereas others seem to have an anti-viral role. Earlier studies have demonstrated that HSP40 plays a pro-viral role whereas HSP70 inhibits HIV-1 replication; however, clear isoform-specific functional roles remain to be established. A detailed functional characterization of all the HSP isoforms will uncover their role in cellular homeostasis and also may highlight some of them as potential targets for therapeutic strategies against various viral infections. In this review, we have tried to comprehend the details about cellular HSPs and their isoforms, their role in cellular physiology and their isoform-specific functions in case of virus infection with a specific focus on HIV-1 biology.
Collapse
Affiliation(s)
- Kruthika Iyer
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Kailash Chand
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Alapani Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Jay Trivedi
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Debashis Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
23
|
Green AM, DeWeerd RA, O'Leary DR, Hansen AR, Hayer KE, Kulej K, Dineen AS, Szeto JH, Garcia BA, Weitzman MD. Interaction with the CCT chaperonin complex limits APOBEC3A cytidine deaminase cytotoxicity. EMBO Rep 2021; 22:e52145. [PMID: 34347354 DOI: 10.15252/embr.202052145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
The APOBEC3 cytidine deaminases are implicated as the cause of a prevalent somatic mutation pattern found in cancer genomes. The APOBEC3 enzymes act as viral restriction factors by mutating viral genomes. Mutation of the cellular genome is presumed to be an off-target activity of the enzymes, although the regulatory measures for APOBEC3 expression and activity remain undefined. It is therefore difficult to predict circumstances that enable APOBEC3 interaction with cellular DNA that leads to mutagenesis. The APOBEC3A (A3A) enzyme is the most potent deaminase of the family. Using proteomics, we evaluate protein interactors of A3A to identify potential regulators. We find that A3A interacts with the chaperonin-containing TCP-1 (CCT) complex, a cellular machine that assists in protein folding and function. Importantly, depletion of CCT results in A3A-induced DNA damage and cytotoxicity. Evaluation of cancer genomes demonstrates an enrichment of A3A mutational signatures in cancers with silencing mutations in CCT subunit genes. Together, these data suggest that the CCT complex interacts with A3A, and that disruption of CCT function results in increased A3A mutational activity.
Collapse
Affiliation(s)
- Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel A DeWeerd
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - David R O'Leary
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ava R Hansen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Katharina E Hayer
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katarzyna Kulej
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ariel S Dineen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julia H Szeto
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
24
|
Weng H, Feng X, Lan Y, Zheng Z. TCP1 regulates PI3K/AKT/mTOR signaling pathway to promote proliferation of ovarian cancer cells. J Ovarian Res 2021; 14:82. [PMID: 34162426 PMCID: PMC8223286 DOI: 10.1186/s13048-021-00832-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE TCP1 is one of the eight subunits of the TCP1 ring complex (TRiC) or the multi-protein mammalian cytosolic chaperone complex. TRiC participates in protein folding and regulates the expression of multiple signaling proteins and cytoskeletal components in cells. Although the clinical importance of its subunits has been clarified in various carcinomas, the function of TCP1 in ovarian cancer (OC) remains unclear. We aimed to identify the association between the expression of TCP1 and the development of epithelial OC (EOC) and patient prognosis, and explore the underlying mechanisms of TCP1 on the tumor progression of OC cells. METHODS TCP1 protein expression was tested in various ovarian tissues by immunohistochemistry, and the correlation between TCP1 expression and clinical physiologic or pathologic parameters of patients with EOC was analyzed. The relationship between TCP1 expression and the prognosis of patients with OC was investigated and analyzed using the Kaplan-Meier (KM) plotter online database. The expression level of TCP1 was then tested in different OC cell lines by Western blotting. Further, a model using OC cell line A2780 was constructed to study the functions of TCP1 in growth, migration, and invasion of human EOC cells. Finally, the possible regulating signaling pathways were discussed. RESULTS TCP1 protein expression in OC or borderline tissues was significantly higher than that in benign ovarian tumors and normal ovarian tissue. The upregulated expression of TCP1 in OC was positively associated with the differentiation grade and FIGO stage of tumors and predicted poor clinical outcomes. Compared with IOSE-80 cells, TCP1 protein was overexpressed in A2780 cells. TCP1 knockdown using shRNA lentivirus inhibited the viability of A2780 cells. Western blotting showed that the phosphatidylinositol-3 kinase (PI3K) signaling pathway was activated in the tumor invasion in EOC driven by TCP1. CONCLUSION Upregulated TCP1 is correlated with the poor prognosis of patients with OC. The mechanism of cancer progression promoted by TCP1 upregulation may be linked to the activation of the PI3K signaling pathway, and TCP1 may serve as a novel target for the treatment of OC.
Collapse
Affiliation(s)
- Huixi Weng
- Department of Ob & Gyn, Fujian Medical University Union Hospital, 29#, Xinquan Road, Gulou District, Fuzhou, 350001 Fujian China
| | - Xiushan Feng
- Department of Ob & Gyn, Fujian Medical University Union Hospital, 29#, Xinquan Road, Gulou District, Fuzhou, 350001 Fujian China
| | - Yu Lan
- Department of Ob & Gyn, Fujian Medical University Union Hospital, 29#, Xinquan Road, Gulou District, Fuzhou, 350001 Fujian China
| | - Zhiqun Zheng
- Department of Ob & Gyn, Fujian Medical University Union Hospital, 29#, Xinquan Road, Gulou District, Fuzhou, 350001 Fujian China
| |
Collapse
|
25
|
Zamel J, Cohen S, Zohar K, Kalisman N. Facilitating In Situ Cross-Linking and Mass Spectrometry by Antibody-Based Protein Enrichment. J Proteome Res 2021; 20:3701-3708. [PMID: 34151562 DOI: 10.1021/acs.jproteome.1c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross-linking of living cells followed by mass spectrometry identification of cross-linked peptides (in situ CLMS) is an emerging technology to study protein structures in their native environment. One of the inherent difficulties of this technology is the high complexity of the samples following cell lysis. Currently, this difficulty largely limits the identification of cross-links to the more abundant proteins in the cell. Here, we describe a targeted approach in which an antibody is used to purify a specific protein-of-interest out of the cell lysate. Mass spectrometry analysis of the protein material that binds to the antibody can then identify considerably more cross-links on the target protein. By using an antibody against the CCT chaperonin, we identified over 200 cross-links that provide in situ evidence for the subunit arrangement of the CCT particle and its interactions with prefoldin. Similar targeting with an antibody against tubulin provided in situ evidence for the structure of the microtubule. Finally, the approach was also successful in identifying cross-links within a protein that expresses at a low level. These results demonstrate the general utility of antibody-based sample simplification for in situ CLMS and greatly expand the scope of protein systems that are amenable to in situ structural studies.
Collapse
Affiliation(s)
- Joanna Zamel
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shon Cohen
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Keren Zohar
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nir Kalisman
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
26
|
Oftedal BE, Maio S, Handel AE, White MPJ, Howie D, Davis S, Prevot N, Rota IA, Deadman ME, Kessler BM, Fischer R, Trede NS, Sezgin E, Maizels RM, Holländer GA. The chaperonin CCT8 controls proteostasis essential for T cell maturation, selection, and function. Commun Biol 2021; 4:681. [PMID: 34083746 PMCID: PMC8175432 DOI: 10.1038/s42003-021-02203-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
T cells rely for their development and function on the correct folding and turnover of proteins generated in response to a broad range of molecular cues. In the absence of the eukaryotic type II chaperonin complex, CCT, T cell activation induced changes in the proteome are compromised including the formation of nuclear actin filaments and the formation of a normal cell stress response. Consequently, thymocyte maturation and selection, and T cell homeostatic maintenance and receptor-mediated activation are severely impaired. In the absence of CCT-controlled protein folding, Th2 polarization diverges from normal differentiation with paradoxical continued IFN-γ expression. As a result, CCT-deficient T cells fail to generate an efficient immune protection against helminths as they are unable to sustain a coordinated recruitment of the innate and adaptive immune systems. These findings thus demonstrate that normal T cell biology is critically dependent on CCT-controlled proteostasis and that its absence is incompatible with protective immunity.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Clinical Science, University of Bergen, Bergen, Norway, K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| | - Stefano Maio
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Adam E Handel
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Duncan Howie
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Simon Davis
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Nicolas Prevot
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ioanna A Rota
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Mary E Deadman
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Nikolaus S Trede
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Georg A Holländer
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Paediatric Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
27
|
The Chaperonin GroESL Facilitates Caulobacter crescentus Cell Division by Supporting the Functions of the Z-Ring Regulators FtsA and FzlA. mBio 2021; 12:mBio.03564-20. [PMID: 33947758 PMCID: PMC8262945 DOI: 10.1128/mbio.03564-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The highly conserved chaperonin GroESL performs a crucial role in protein folding; however, the essential cellular pathways that rely on this chaperone are underexplored. Loss of GroESL leads to severe septation defects in diverse bacteria, suggesting the folding function of GroESL may be integrated with the bacterial cell cycle at the point of cell division. Here, we describe new connections between GroESL and the bacterial cell cycle using the model organism Caulobacter crescentus. Using a proteomics approach, we identify candidate GroESL client proteins that become insoluble or are degraded specifically when GroESL folding is insufficient, revealing several essential proteins that participate in cell division and peptidoglycan biosynthesis. We demonstrate that other cell cycle events, such as DNA replication and chromosome segregation, are able to continue when GroESL folding is insufficient. We further find that deficiency of two FtsZ-interacting proteins, the bacterial actin homologue FtsA and the constriction regulator FzlA, mediate the GroESL-dependent block in cell division. Our data show that sufficient GroESL is required to maintain normal dynamics of the FtsZ scaffold and divisome functionality in C. crescentus. In addition to supporting divisome function, we show that GroESL is required to maintain the flow of peptidoglycan precursors into the growing cell wall. Linking a chaperone to cell division may be a conserved way to coordinate environmental and internal cues that signal when it is safe to divide.
Collapse
|
28
|
Prefoldin subunits (PFDN1-6) serve as poor prognostic markers in gastric cancer. Biosci Rep 2021; 40:221904. [PMID: 31957800 PMCID: PMC7024841 DOI: 10.1042/bsr20192712] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
Prefoldin subunits (PFDN), primarily known for co-chaperone function associated with cytoskeletal rearrangement, have been found involved in epithelial–mesenchymal transition (EMT) and cancer progression. However, studies focusing on the roles of PFDN in gastric cancer (GC) remain limited. The present study aims to evaluate the prognostic values of PFDN in GC. Prognostic roles of PFDNs were analyzed via the Kaplan–Meier platform, followed by subset analysis within various clinical parameters. High mRNA expression of PFDN2, PFDN3 and PFDN4 displayed poor overall survival (OS) while PFDN5 displayed favorable OS. In HER2+ subset, PFDN2, PFDN3, PFDN4 and PFDN6 displayed poor OS. In human epidermal growth factor receptor 2 (HER2−) subset, PFDN2, PFDN3 and PFDN4 displayed poor OS. In intestinal type subset, PFDN1 and PFDN2 displayed poor OS. In diffuse-type subset, PFDN2 and PFDN6 displayed poor OS. In moderate differentiation type subset, PFDN1 displayed poor OS. In poor differentiation type subset, PFDN2 and PFDN6 displayed poor OS. In metastasis negative subset, PFDN1, PFDN2 and PFDN6 displayed poor OS. In lymph node (LN) positive subset, PFDN2 and PFDN5 displayed poor OS. The present study provided insightful clues into the poor prognostic values of PFDNs in GC patients.
Collapse
|
29
|
Horianopoulos LC, Kronstad JW. Chaperone Networks in Fungal Pathogens of Humans. J Fungi (Basel) 2021; 7:209. [PMID: 33809191 PMCID: PMC7998936 DOI: 10.3390/jof7030209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
The heat shock proteins (HSPs) function as chaperones to facilitate proper folding and modification of proteins and are of particular importance when organisms are subjected to unfavourable conditions. The human fungal pathogens are subjected to such conditions within the context of infection as they are exposed to human body temperature as well as the host immune response. Herein, the roles of the major classes of HSPs are briefly reviewed and their known contributions in human fungal pathogens are described with a focus on Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. The Hsp90s and Hsp70s in human fungal pathogens broadly contribute to thermotolerance, morphological changes required for virulence, and tolerance to antifungal drugs. There are also examples of J domain co-chaperones and small HSPs influencing the elaboration of virulence factors in human fungal pathogens. However, there are diverse members in these groups of chaperones and there is still much to be uncovered about their contributions to pathogenesis. These HSPs do not act in isolation, but rather they form a network with one another. Interactions between chaperones define their specific roles and enhance their protein folding capabilities. Recent efforts to characterize these HSP networks in human fungal pathogens have revealed that there are unique interactions relevant to these pathogens, particularly under stress conditions. The chaperone networks in the fungal pathogens are also emerging as key coordinators of pathogenesis and antifungal drug tolerance, suggesting that their disruption is a promising strategy for the development of antifungal therapy.
Collapse
Affiliation(s)
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
30
|
Structural and functional dissection of reovirus capsid folding and assembly by the prefoldin-TRiC/CCT chaperone network. Proc Natl Acad Sci U S A 2021; 118:2018127118. [PMID: 33836586 PMCID: PMC7980406 DOI: 10.1073/pnas.2018127118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.
Collapse
|
31
|
Zhang YC, Bai YF, Yuan JF, Shen XL, Xu YL, Jian XX, Li S, Song ZQ, Hu HB, Li PY, Tu HQ, Han QY, Wang N, Li AL, Zhang XM, Wu M, Zhou T, Li HY. CEP55 promotes cilia disassembly through stabilizing Aurora A kinase. J Cell Biol 2021; 220:211702. [PMID: 33475699 PMCID: PMC7829976 DOI: 10.1083/jcb.202003149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia protrude from the cell surface and have diverse roles during development and disease, which depends on the precise timing and control of cilia assembly and disassembly. Inactivation of assembly often causes cilia defects and underlies ciliopathy, while diseases caused by dysfunction in disassembly remain largely unknown. Here, we demonstrate that CEP55 functions as a cilia disassembly regulator to participate in ciliopathy. Cep55-/- mice display clinical manifestations of Meckel-Gruber syndrome, including perinatal death, polycystic kidneys, and abnormalities in the CNS. Interestingly, Cep55-/- mice exhibit an abnormal elongation of cilia on these tissues. Mechanistically, CEP55 promotes cilia disassembly by interacting with and stabilizing Aurora A kinase, which is achieved through facilitating the chaperonin CCT complex to Aurora A. In addition, CEP55 mutation in Meckel-Gruber syndrome causes the failure of cilia disassembly. Thus, our study establishes a cilia disassembly role for CEP55 in vivo, coupling defects in cilia disassembly to ciliopathy and further suggesting that proper cilia dynamics are critical for mammalian development.
Collapse
Affiliation(s)
- Yu-Cheng Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yun-Feng Bai
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jin-Feng Yuan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xiao-Lin Shen
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Ling Xu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xiao-Xiao Jian
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Sen Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Zeng-Qing Song
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Huai-Bin Hu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Pei-Yao Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China,School of Medicine, Tsinghua University, Beijing, China
| | - Hai-Qing Tu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Qiu-Ying Han
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Na Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ai-Ling Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xue-Min Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Min Wu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China,Min Wu:
| | - Tao Zhou
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China,Tao Zhou:
| | - Hui-Yan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China,School of Basic Medical Sciences, Fudan University, Shanghai, China,Correspondence to Hui-Yan Li:
| |
Collapse
|
32
|
Zheng J, Lu T, Zhou C, Cai J, Zhang X, Liang J, Sui X, Chen X, Chen L, Sun Y, Zhang J, Chen W, Zhang Y, Yao J, Chen G, Yang Y. Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Protect Liver Ischemia/Reperfusion Injury by Reducing CD154 Expression on CD4+ T Cells via CCT2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903746. [PMID: 32999825 PMCID: PMC7509664 DOI: 10.1002/advs.201903746] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/14/2020] [Indexed: 05/07/2023]
Abstract
As a cause of postoperative complications and early hepatic failure after liver transplantation, liver ischemia/reperfusion injury (IRI) still has no effective treatment during clinical administration. Although the therapeutic potential of mesenchymal stem cells (MSCs) for liver IRI has been previously shown, the underlying mechanisms are not completely clear. It is accepted that MSC-derived extracellular vesicles (MSC-EVs) are newly uncovered messengers for intercellular communication. Herein, it is reported that umbilical cord-derived MSCs (UC-MSCs) improve liver IRI in mice through their secreted EVs. It is also visualized that UC-MSC-EVs mainly concentrate in liver after 6 h of reperfusion. Furthermore, UC-MSC-EVs are found to significantly modulate the membranous expression of CD154 of intrahepatic CD4+ T cells, which is an initiation of inflammatory response in liver and can aggravate liver IRI. Mechanistically, protein mass spectrum analysis is performed and it is revealed that Chaperonin containing TCP1 subunit 2 (CCT2) enriches in UC-MSC-EVs, which regulates the calcium channels to affect Ca2+ influx and suppress CD154 synthesis in CD4+ T cells. In conclusion, these results highlight the therapeutic potential of UC-MSC-EVs in attenuating liver IRI. This finding suggests that CCT2 from UC-MSC-EVs can modulate CD154 expression of intrahepatic CD4+ T cells during liver IRI through the Ca2+-calcineurin-NFAT1 signaling pathway.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Chaorong Zhou
- Department of Hepatic Surgery and Liver Transplantation CenterThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
- The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510630China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Xiaomei Zhang
- Organ Transplantation Research Center of Guangdong ProvinceKey Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Jinliang Liang
- Organ Transplantation Research Center of Guangdong ProvinceKey Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Xin Sui
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Xiaoyan Chen
- Biological Treatment CenterThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Yao Sun
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Wenjie Chen
- Biological Treatment CenterThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| |
Collapse
|
33
|
Dong Y, Lu S, Wang Z, Liu L. CCTs as new biomarkers for the prognosis of head and neck squamous cancer. Open Med (Wars) 2020; 15:672-688. [PMID: 33313411 PMCID: PMC7706129 DOI: 10.1515/med-2020-0114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/30/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
The chaperonin-containing T-complex protein 1 (CCT) subunits participate in diverse diseases. However, little is known about their expression and prognostic values in human head and neck squamous cancer (HNSC). This article aims to evaluate the effects of CCT subunits regarding their prognostic values for HNSC. We mined the transcriptional and survival data of CCTs in HNSC patients from online databases. A protein-protein interaction network was constructed and a functional enrichment analysis of target genes was performed. We observed that the mRNA expression levels of CCT1/2/3/4/5/6/7/8 were higher in HNSC tissues than in normal tissues. Survival analysis revealed that the high mRNA transcriptional levels of CCT3/4/5/6/7/8 were associated with a low overall survival. The expression levels of CCT4/7 were correlated with advanced tumor stage. And the overexpression of CCT4 was associated with higher N stage of patients. Validation of CCTs' differential expression and prognostic values was achieved by the Human Protein Atlas and GEO datasets. Mechanistic exploration of CCT subunits by the functional enrichment analysis suggests that these genes may influence the HNSC prognosis by regulating PI3K-Akt and other pathways. This study implies that CCT3/4/6/7/8 are promising biomarkers for the prognosis of HNSC.
Collapse
Affiliation(s)
- Yanbo Dong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing 100050, China
| | - Siyu Lu
- Department of Emergency, Aviation General Hospital, Beijing 100012, China
| | - Zhenxiao Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing 100050, China
| | - Liangfa Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing 100050, China
| |
Collapse
|
34
|
Fusella F, Seclì L, Cannata C, Brancaccio M. The one thousand and one chaperones of the NF-κB pathway. Cell Mol Life Sci 2020; 77:2275-2288. [PMID: 31811308 PMCID: PMC11104964 DOI: 10.1007/s00018-019-03402-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
The NF-κB pathway represents a crucial signaling mechanism in sensing and integrating a multitude of environmental and intracellular stimuli and directing a coordinated response that from the cellular level may impact on the entire organism. A plethora of chaperone proteins work at multiple steps of the pathway, from membrane receptor activation to transcription factor binding to DNA. Indeed, chaperones are required to assist protein conformational changes, to assemble supramolecular complexes and to regulate protein ubiquitination, required for pathway activation. Some chaperones acquired a role as integral components of the signaling complexes, needed for signal progression. Here we describe the chaperones involved in the NF-κB pathway and their specific roles in the different contexts.
Collapse
Affiliation(s)
- Federica Fusella
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Cristiana Cannata
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
35
|
Hallal S, Russell BP, Wei H, Lee MYT, Toon CW, Sy J, Shivalingam B, Buckland ME, Kaufman KL. Extracellular Vesicles from Neurosurgical Aspirates Identifies Chaperonin Containing TCP1 Subunit 6A as a Potential Glioblastoma Biomarker with Prognostic Significance. Proteomics 2020; 19:e1800157. [PMID: 30451371 DOI: 10.1002/pmic.201800157] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/01/2018] [Indexed: 12/13/2022]
Abstract
Glioblastoma, WHO-grade IV glioma, carries a dismal prognosis owing to its infiltrative growth and limited treatment options. Glioblastoma-derived extracellular vesicles (EVs; 30-1000 nm membranous particles) influence the microenvironment to mediate tumor aggressiveness and carry oncogenic cargo across the blood-brain barrier into the circulation. As such, EVs are biomarker reservoirs with enormous potential for assessing glioblastoma tumors in situ. Neurosurgical aspirates are rich sources of EVs, isolated directly from glioma microenvironments. EV proteomes enriched from glioblastoma (n = 15) and glioma grade II-III (n = 7) aspirates are compared and 298 differentially-abundant proteins (p-value < 0.00496) are identified using quantitative LC-MS/MS. Along with previously reported glioblastoma-associated biomarkers, levels of all eight subunits of the key molecular chaperone, T-complex protein 1 Ring complex (TRiC), are higher in glioblastoma-EVs, including CCT2, CCT3, CCT5, CCT6A, CCT7, and TCP1 (p < 0.00496). Analogous increases in TRiC transcript levels and DNA copy numbers are detected in silico; CCT6A has the greatest induction of expression and amplification in glioblastoma and shows a negative association with survival (p = 0.006). CCT6A is co-localized with EGFR at 7p11.2, with a strong tendency for co-amplification (p < 0.001). Immunohistochemistry corroborates the CCT6A proteomics measurements and indicated a potential link between EGFR and CCT6A tissue expression. Putative EV-biomarkers described here should be further assessed in peripheral blood.
Collapse
Affiliation(s)
- Susannah Hallal
- Brainstorm Brain Cancer Research, Brain and Mind Centre, University of Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia
| | | | - Heng Wei
- Brainstorm Brain Cancer Research, Brain and Mind Centre, University of Sydney, NSW, Australia.,Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Maggie Yuk T Lee
- Brainstorm Brain Cancer Research, Brain and Mind Centre, University of Sydney, NSW, Australia.,Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | - Joanne Sy
- Brainstorm Brain Cancer Research, Brain and Mind Centre, University of Sydney, NSW, Australia.,Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Brindha Shivalingam
- Brainstorm Brain Cancer Research, Brain and Mind Centre, University of Sydney, NSW, Australia.,Department of Neurosurgery, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Michael E Buckland
- Brainstorm Brain Cancer Research, Brain and Mind Centre, University of Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Kimberley L Kaufman
- Brainstorm Brain Cancer Research, Brain and Mind Centre, University of Sydney, NSW, Australia.,Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,School of Life and Environmental Science, University of Sydney, NSW, Australia
| |
Collapse
|
36
|
Abstract
This chronologue seeks to document the discovery and development of an understanding of oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is organized into various topics of physiology and mechanism, for each of which a chronologic order is generally followed. The text is liberally illustrated to provide firsthand inspection of the key pieces of experimental data that propelled this field. Because of the length and depth of this piece, the use of the outline as a guide for selected reading is encouraged, but it should also be of help in pursuing the text in direct order.
Collapse
|
37
|
The TRiC/CCT Chaperonin and Its Role in Uncontrolled Proliferation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:21-40. [PMID: 32297209 DOI: 10.1007/978-3-030-40204-4_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cell cycle is a sophisticated space-time regulated mechanism where a wide variety of protein modules and complexes associate functioning in a concerted manner to regulate and transfer the genetic material to daughter cells. CCT (chaperonin containing TCP-1, also known as TRiC) is a molecular machine that forms a high molecular weight complex (1000 KDa). CCT is emerging as a key molecule during mitosis due to its essential role in the folding of many important proteins involved in cell division (Cdh1, Plk1, p27, Cdc20, PP2a regulatory subunits, tubulin or actin) suggesting its involvement in uncontrolled proliferation. The assembly is formed by eight different subunits called CCTα, β, γ, δ, ε, ζ, η and θ in mammals corresponding to CCT1-8 in yeast. CCT/TRiC is organized in a unique intra- and inter-ring arrangement. The chaperonin monomers share a common domain structure including an equatorial domain, which contains all the inter-ring contacts, most of the intra-ring contacts and the ATP binding site, whose binding and hydrolysis triggers the conformational changes that take place during the functional cycle. All chaperonins display an open substrate-receptive conformation, where the unfolded protein is recognized and trapped, and a closed conformation where the substrate is isolated from the bulk of the intracellular environment. In this chapter we discuss the complex set of intra- and inter-ring allosteric signals during chaperonin function.
Collapse
|
38
|
Berger J, Berger S, Li M, Jacoby AS, Arner A, Bavi N, Stewart AG, Currie PD. In Vivo Function of the Chaperonin TRiC in α-Actin Folding during Sarcomere Assembly. Cell Rep 2019; 22:313-322. [PMID: 29320728 DOI: 10.1016/j.celrep.2017.12.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/11/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
The TCP-1 ring complex (TRiC) is a multi-subunit group II chaperonin that assists nascent or misfolded proteins to attain their native conformation in an ATP-dependent manner. Functional studies in yeast have suggested that TRiC is an essential and generalized component of the protein-folding machinery of eukaryotic cells. However, TRiC's involvement in specific cellular processes within multicellular organisms is largely unknown because little validation of TRiC function exists in animals. Our in vivo analysis reveals a surprisingly specific role of TRiC in the biogenesis of skeletal muscle α-actin during sarcomere assembly in myofibers. TRiC acts at the sarcomere's Z-disk, where it is required for efficient assembly of actin thin filaments. Binding of ATP specifically by the TRiC subunit Cct5 is required for efficient actin folding in vivo. Furthermore, mutant α-actin isoforms that result in nemaline myopathy in patients obtain their pathogenic conformation via this function of TRiC.
Collapse
Affiliation(s)
- Joachim Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia.
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia
| | - Mei Li
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia; Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Arie S Jacoby
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Navid Bavi
- Department of Physiology, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia.
| |
Collapse
|
39
|
Wang L, Cheng B, Li H, Wang Y. Proteomics analysis of preadipocytes between fat and lean broilers. Br Poult Sci 2019; 60:522-529. [PMID: 31132862 DOI: 10.1080/00071668.2019.1621989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1. Reducing excessive chicken body fat deposition is a main goal of the poultry industry. Preadipocytes are important in adipose tissue growth and development. 2. To discover proteins related to chicken fat deposition, two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) was used to identify differentially expressed proteins in preadipocytes derived from Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF). 3. A total of 46 differentially expressed protein spots were found in the preadipocytes between fat and lean broilers. Matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) analysis showed the protein spots corresponded to 33 different proteins. The proteins were mainly related to biological oxidation, cell proliferation, cytoskeleton, lipid metabolism, molecular chaperone, protein synthesis and signal transduction. 4. From the perspective of protein expression, these results lay a foundation for further study of the genetic mechanism of broiler adipose tissue growth and development.
Collapse
Affiliation(s)
- L Wang
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Chicken Genetics and Breeding , Harbin , P. R. China.,Department of Education of Heilongjiang Province, Key Laboratory of Animal Genetics, Breeding and Reproduction , Harbin , P. R. China.,College of Animal Science and Technology, Northeast Agricultural University , Harbin , P. R. China
| | - B Cheng
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Chicken Genetics and Breeding , Harbin , P. R. China.,Department of Education of Heilongjiang Province, Key Laboratory of Animal Genetics, Breeding and Reproduction , Harbin , P. R. China.,College of Animal Science and Technology, Northeast Agricultural University , Harbin , P. R. China
| | - H Li
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Chicken Genetics and Breeding , Harbin , P. R. China.,Department of Education of Heilongjiang Province, Key Laboratory of Animal Genetics, Breeding and Reproduction , Harbin , P. R. China.,College of Animal Science and Technology, Northeast Agricultural University , Harbin , P. R. China
| | - Y Wang
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Chicken Genetics and Breeding , Harbin , P. R. China.,Department of Education of Heilongjiang Province, Key Laboratory of Animal Genetics, Breeding and Reproduction , Harbin , P. R. China.,College of Animal Science and Technology, Northeast Agricultural University , Harbin , P. R. China
| |
Collapse
|
40
|
Gestaut D, Roh SH, Ma B, Pintilie G, Joachimiak LA, Leitner A, Walzthoeni T, Aebersold R, Chiu W, Frydman J. The Chaperonin TRiC/CCT Associates with Prefoldin through a Conserved Electrostatic Interface Essential for Cellular Proteostasis. Cell 2019; 177:751-765.e15. [PMID: 30955883 DOI: 10.1016/j.cell.2019.03.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/03/2018] [Accepted: 03/04/2019] [Indexed: 01/02/2023]
Abstract
Maintaining proteostasis in eukaryotic protein folding involves cooperation of distinct chaperone systems. To understand how the essential ring-shaped chaperonin TRiC/CCT cooperates with the chaperone prefoldin/GIMc (PFD), we integrate cryoelectron microscopy (cryo-EM), crosslinking-mass-spectrometry and biochemical and cellular approaches to elucidate the structural and functional interplay between TRiC/CCT and PFD. We find these hetero-oligomeric chaperones associate in a defined architecture, through a conserved interface of electrostatic contacts that serves as a pivot point for a TRiC-PFD conformational cycle. PFD alternates between an open "latched" conformation and a closed "engaged" conformation that aligns the PFD-TRiC substrate binding chambers. PFD can act after TRiC bound its substrates to enhance the rate and yield of the folding reaction, suppressing non-productive reaction cycles. Disrupting the TRiC-PFD interaction in vivo is strongly deleterious, leading to accumulation of amyloid aggregates. The supra-chaperone assembly formed by PFD and TRiC is essential to prevent toxic conformations and ensure effective cellular proteostasis.
Collapse
Affiliation(s)
- Daniel Gestaut
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Soung Hun Roh
- Department of Biological Science, Seoul National University, Seoul, South Korea
| | - Boxue Ma
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Grigore Pintilie
- Department of Biological Science, Seoul National University, Seoul, South Korea
| | - Lukasz A Joachimiak
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, UTSouthwestern, North Campus, Dallas, TX 75390, USA
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Thomas Walzthoeni
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Molecular Life Sciences, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland; Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Tenorio R, Fernández de Castro I, Knowlton JJ, Zamora PF, Sutherland DM, Risco C, Dermody TS. Function, Architecture, and Biogenesis of Reovirus Replication Neoorganelles. Viruses 2019; 11:v11030288. [PMID: 30901959 PMCID: PMC6466366 DOI: 10.3390/v11030288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Most viruses that replicate in the cytoplasm of host cells form neoorganelles that serve as sites of viral genome replication and particle assembly. These highly specialized structures concentrate viral proteins and nucleic acids, prevent the activation of cell-intrinsic defenses, and coordinate the release of progeny particles. Reoviruses are common pathogens of mammals that have been linked to celiac disease and show promise for oncolytic applications. These viruses form nonenveloped, double-shelled virions that contain ten segments of double-stranded RNA. Replication organelles in reovirus-infected cells are nucleated by viral nonstructural proteins µNS and σNS. Both proteins partition the endoplasmic reticulum to form the matrix of these structures. The resultant membranous webs likely serve to anchor viral RNA⁻protein complexes for the replication of the reovirus genome and the assembly of progeny virions. Ongoing studies of reovirus replication organelles will advance our knowledge about the strategies used by viruses to commandeer host biosynthetic pathways and may expose new targets for therapeutic intervention against diverse families of pathogenic viruses.
Collapse
Affiliation(s)
- Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Isabel Fernández de Castro
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Jonathan J Knowlton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Paula F Zamora
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Terence S Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
42
|
Abstract
The eukaryotic group II chaperonin TRiC/CCT assists the folding of 10% of cytosolic proteins including many key structural and regulatory proteins. TRiC plays an essential role in maintaining protein homeostasis, and dysfunction of TRiC is closely related to human diseases including cancer and neurodegenerative diseases. TRiC consists of eight paralogous subunits, each of which plays a specific role in the assembly, allosteric cooperativity, and substrate recognition and folding of this complex macromolecular machine. TRiC-mediated substrate folding is regulated through its ATP-driven conformational changes. In recent years, progresses have been made on the structure, subunit arrangement, conformational cycle, and substrate folding of TRiC. Additionally, accumulating evidences also demonstrate the linkage between TRiC oligomer or monomer and diseases. In this review, we focus on the TRiC structure itself, TRiC assisted substrate folding, TRiC and disease, and the potential therapeutic application of TRiC in various diseases.
Collapse
Affiliation(s)
- Mingliang Jin
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Caixuan Liu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenyu Han
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yao Cong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
43
|
Sokolov M, Yadav RP, Brooks C, Artemyev NO. Chaperones and retinal disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:85-117. [PMID: 30635087 DOI: 10.1016/bs.apcsb.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Defects in protein folding and trafficking are a common cause of photoreceptor degeneration, causing blindness. Photoreceptor cells present an unusual challenge to the protein folding and transport machinery due to the high rate of protein synthesis, trafficking and the renewal of the outer segment, a primary cilium that has been modified into a specialized light-sensing compartment. Phototransduction components, such as rhodopsin and cGMP-phosphodiesterase, and multimeric ciliary transport complexes, such as the BBSome, are hotspots for mutations that disrupt proteostasis and lead to the death of photoreceptors. In this chapter, we review recent studies that advance our understanding of the chaperone and transport machinery of phototransduction proteins.
Collapse
Affiliation(s)
- Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
44
|
Syed A, Lukacsovich T, Pomeroy M, Bardwell AJ, Decker GT, Waymire KG, Purcell J, Huang W, Gui J, Padilla EM, Park C, Paul A, Pham TBT, Rodriguez Y, Wei S, Worthge S, Zebarjedi R, Zhang B, Bardwell L, Marsh JL, MacGregor GR. Miles to go (mtgo) encodes FNDC3 proteins that interact with the chaperonin subunit CCT3 and are required for NMJ branching and growth in Drosophila. Dev Biol 2018; 445:37-53. [PMID: 30539716 DOI: 10.1016/j.ydbio.2018.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/01/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022]
Abstract
Analysis of mutants that affect formation and function of the Drosophila larval neuromuscular junction (NMJ) has provided valuable insight into genes required for neuronal branching and synaptic growth. We report that NMJ development in Drosophila requires both the Drosophila ortholog of FNDC3 genes; CG42389 (herein referred to as miles to go; mtgo), and CCT3, which encodes a chaperonin complex subunit. Loss of mtgo function causes late pupal lethality with most animals unable to escape the pupal case, while rare escapers exhibit an ataxic gait and reduced lifespan. NMJs in mtgo mutant larvae have dramatically reduced branching and growth and fewer synaptic boutons compared with control animals. Mutant larvae show normal locomotion but display an abnormal self-righting response and chemosensory deficits that suggest additional functions of mtgo within the nervous system. The pharate lethality in mtgo mutants can be rescued by both low-level pan- and neuronal-, but not muscle-specific expression of a mtgo transgene, supporting a neuronal-intrinsic requirement for mtgo in NMJ development. Mtgo encodes three similar proteins whose domain structure is most closely related to the vertebrate intracellular cytosolic membrane-anchored fibronectin type-III domain-containing protein 3 (FNDC3) protein family. Mtgo physically and genetically interacts with Drosophila CCT3, which encodes a subunit of the TRiC/CCT chaperonin complex required for maturation of actin, tubulin and other substrates. Drosophila larvae heterozygous for a mutation in CCT3 that reduces binding between CCT3 and MTGO also show abnormal NMJ development similar to that observed in mtgo null mutants. Hence, the intracellular FNDC3-ortholog MTGO and CCT3 can form a macromolecular complex, and are both required for NMJ development in Drosophila.
Collapse
Affiliation(s)
- Adeela Syed
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Tamás Lukacsovich
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Miles Pomeroy
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - A Jane Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Gentry Thomas Decker
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA
| | - Katrina G Waymire
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Judith Purcell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Weijian Huang
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - James Gui
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Emily M Padilla
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Cindy Park
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Antor Paul
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Thai Bin T Pham
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Yanete Rodriguez
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Stephen Wei
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Shane Worthge
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Ronak Zebarjedi
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Bing Zhang
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA.
| | - Grant R MacGregor
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA.
| |
Collapse
|
45
|
The structure and evolution of eukaryotic chaperonin-containing TCP-1 and its mechanism that folds actin into a protein spring. Biochem J 2018; 475:3009-3034. [DOI: 10.1042/bcj20170378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
Actin is folded to its native state in eukaryotic cytosol by the sequential allosteric mechanism of the chaperonin-containing TCP-1 (CCT). The CCT machine is a double-ring ATPase built from eight related subunits, CCT1–CCT8. Non-native actin interacts with specific subunits and is annealed slowly through sequential binding and hydrolysis of ATP around and across the ring system. CCT releases a folded but soft ATP-G-actin monomer which is trapped 80 kJ/mol uphill on the folding energy surface by its ATP-Mg2+/Ca2+ clasp. The energy landscape can be re-explored in the actin filament, F-actin, because ATP hydrolysis produces dehydrated and more compact ADP-actin monomers which, upon application of force and strain, are opened and closed like the elements of a spring. Actin-based myosin motor systems underpin a multitude of force generation processes in cells and muscles. We propose that the water surface of F-actin acts as a low-binding energy, directional waveguide which is recognized specifically by the myosin lever-arm domain before the system engages to form the tight-binding actomyosin complex. Such a water-mediated recognition process between actin and myosin would enable symmetry breaking through fast, low energy initial binding events. The origin of chaperonins and the subsequent emergence of the CCT–actin system in LECA (last eukaryotic common ancestor) point to the critical role of CCT in facilitating phagocytosis during early eukaryotic evolution and the transition from the bacterial world. The coupling of CCT-folding fluxes to the cell cycle, cell size control networks and cancer are discussed together with directions for further research.
Collapse
|
46
|
Petyuk VA, Chang R, Ramirez-Restrepo M, Beckmann ND, Henrion MYR, Piehowski PD, Zhu K, Wang S, Clarke J, Huentelman MJ, Xie F, Andreev V, Engel A, Guettoche T, Navarro L, De Jager P, Schneider JA, Morris CM, McKeith IG, Perry RH, Lovestone S, Woltjer RL, Beach TG, Sue LI, Serrano GE, Lieberman AP, Albin RL, Ferrer I, Mash DC, Hulette CM, Ervin JF, Reiman EM, Hardy JA, Bennett DA, Schadt E, Smith RD, Myers AJ. The human brainome: network analysis identifies HSPA2 as a novel Alzheimer’s disease target. Brain 2018; 141:2721-2739. [PMID: 30137212 PMCID: PMC6136080 DOI: 10.1093/brain/awy215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
Our hypothesis is that changes in gene and protein expression are crucial to the development of late-onset Alzheimer’s disease. Previously we examined how DNA alleles control downstream expression of RNA transcripts and how those relationships are changed in late-onset Alzheimer’s disease. We have now examined how proteins are incorporated into networks in two separate series and evaluated our outputs in two different cell lines. Our pipeline included the following steps: (i) predicting expression quantitative trait loci; (ii) determining differential expression; (iii) analysing networks of transcript and peptide relationships; and (iv) validating effects in two separate cell lines. We performed all our analysis in two separate brain series to validate effects. Our two series included 345 samples in the first set (177 controls, 168 cases; age range 65–105; 58% female; KRONOSII cohort) and 409 samples in the replicate set (153 controls, 141 cases, 115 mild cognitive impairment; age range 66–107; 63% female; RUSH cohort). Our top target is heat shock protein family A member 2 (HSPA2), which was identified as a key driver in our two datasets. HSPA2 was validated in two cell lines, with overexpression driving further elevation of amyloid-β40 and amyloid-β42 levels in APP mutant cells, as well as significant elevation of microtubule associated protein tau and phosphorylated-tau in a modified neuroglioma line. This work further demonstrates that studying changes in gene and protein expression is crucial to understanding late onset disease and further nominates HSPA2 as a specific key regulator of late-onset Alzheimer’s disease processes.10.1093/brain/awy215_video1awy215media15824729224001.
Collapse
Affiliation(s)
- Vladislav A Petyuk
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rui Chang
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel Ramirez-Restrepo
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Noam D Beckmann
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc Y R Henrion
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kuixi Zhu
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sven Wang
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Clarke
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Matthew J Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Fang Xie
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Victor Andreev
- Arbor Research Collaborative for Health, 340 E Huron St # 300, Ann Arbor, MI, USA
| | - Anzhelika Engel
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Loida Navarro
- Roche Sequencing, 4300 Hacienda Drive, Pleasanton, CA, USA
| | - Philip De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- New York Genome Center, New York NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Christopher M Morris
- Newcastle Brain Tissue Resource, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Ian G McKeith
- NIHR Biomedical Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Robert H Perry
- Neuropathology and Cellular Pathology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, UK
| | - Simon Lovestone
- University of Oxford, Medical Sciences Division, Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Randall L Woltjer
- Neuropathology Core of the Layton Aging and Alzheimer’s Disease Center, Oregon Health and Science University, Portland, OR, USA
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Geriatrics Research, Education, and Clinical Center, VAAAHS, Ann Arbor, MI, USA
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; CIBERNED; Hospitalet de Llobregat, Spain
| | - Deborah C Mash
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christine M Hulette
- Department of Pathology, Division of Neuropathology, Duke University Medical Center, Durham, NC, USA
| | - John F Ervin
- Kathleen Price Bryan Brain Bank, Department of Medicine, Division of Neurology, Duke University, Durham, NC, USA
| | - Eric M Reiman
- The Arizona Alzheimer’s Consortium, Phoenix, Arizona, USA
- Banner Alzheimer’s Institute, Phoenix, Arizona, USA
| | - John A Hardy
- Department of Molecular Neuroscience and Reta Lila Research Laboratories, University College London Institute of Neurology, London, UK
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Eric Schadt
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Amanda J Myers
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdepartmental Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdepartmental Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
47
|
Pathway of Actin Folding Directed by the Eukaryotic Chaperonin TRiC. Cell 2018; 174:1507-1521.e16. [PMID: 30100183 DOI: 10.1016/j.cell.2018.07.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/20/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
The hetero-oligomeric chaperonin of eukarya, TRiC, is required to fold the cytoskeletal protein actin. The simpler bacterial chaperonin system, GroEL/GroES, is unable to mediate actin folding. Here, we use spectroscopic and structural techniques to determine how TRiC promotes the conformational progression of actin to the native state. We find that actin fails to fold spontaneously even in the absence of aggregation but populates a kinetically trapped, conformationally dynamic state. Binding of this frustrated intermediate to TRiC specifies an extended topology of actin with native-like secondary structure. In contrast, GroEL stabilizes bound actin in an unfolded state. ATP binding to TRiC effects an asymmetric conformational change in the chaperonin ring. This step induces the partial release of actin, priming it for folding upon complete release into the chaperonin cavity, mediated by ATP hydrolysis. Our results reveal how the unique features of TRiC direct the folding pathway of an obligate eukaryotic substrate.
Collapse
|
48
|
Murine cytomegalovirus M72 promotes acute virus replication in vivo and is a substrate of the TRiC/CCT complex. Virology 2018; 522:92-105. [PMID: 30029015 DOI: 10.1016/j.virol.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 01/30/2023]
Abstract
Betaherpesvirus dUTPase homologs are core herpesvirus proteins, but little is known about their role during infection. Human cytomegalovirus (HCMV) UL72 and murine cytomegalovirus (MCMV) M72 have been designated dUTPase homologs, and previous studies indicate UL72 is dispensable for replication and enzymatically inactive. Here, we report the initial characterization of MCMV M72. M72 does not possess dUTPase activity, and is expressed as a leaky-late gene product with multiple protein isoforms. Importantly, M72 augments MCMV replication in vitro and during the early stage of acute infection in vivo. We identify and confirm interaction of M72 with the eukaryotic chaperonin tailless complex protein -1 (TCP-1) ring complex (TRiC) or chaperonin containing tailless complex polypeptide 1 (CCT). Accumulating biochemical evidence indicates M72 forms homo-oligomers and is a substrate of TRiC/CCT. Taken together, we provide the first evidence of M72's contribution to viral pathogenesis, and identify a novel interaction with the TRiC/CCT complex.
Collapse
|
49
|
Abstract
Viruses are molecular machines sustained through a life cycle that requires replication within host cells. Throughout the infectious cycle, viral and cellular components interact to advance the multistep process required to produce progeny virions. Despite progress made in understanding the virus-host protein interactome, much remains to be discovered about the cellular factors that function during infection, especially those operating at terminal steps in replication. In an RNA interference screen, we identified the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC; also called CCT for chaperonin containing TCP-1) as a cellular factor required for late events in the replication of mammalian reovirus. We discovered that TRiC functions in reovirus replication through a mechanism that involves folding the viral σ3 major outer-capsid protein into a form capable of assembling onto virus particles. TRiC also complexes with homologous capsid proteins of closely related viruses. Our data define a critical function for TRiC in the viral assembly process and raise the possibility that this mechanism is conserved in related non-enveloped viruses. These results also provide insight into TRiC protein substrates and establish a rationale for the development of small-molecule inhibitors of TRiC as potential antiviral therapeutics.
Collapse
|
50
|
Feng Q, Shao S. In vitro reconstitution of translational arrest pathways. Methods 2018; 137:20-36. [DOI: 10.1016/j.ymeth.2017.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023] Open
|