1
|
Mietlicki-Baase EG, Santollo J, Daniels D. Fluid intake, what's dopamine got to do with it? Physiol Behav 2021; 236:113418. [PMID: 33838203 DOI: 10.1016/j.physbeh.2021.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Maintaining fluid balance is critical for life. The central components that control fluid intake are only partly understood. This contribution to the collection of papers highlighting work by members of the Society for the Study of Ingestive Behavior focuses on the role that dopamine has on fluid intake and describes the roles that various bioregulators can have on thirst and sodium appetite by influencing dopamine systems in the brain. The goal of the review is to highlight areas in need of more research and to propose a framework to guide that research. We hope that this framework will inspire researchers in the field to investigate these interesting questions in order to form a more complete understanding of how fluid intake is controlled.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, United States; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| | - Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Derek Daniels
- Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States; Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| |
Collapse
|
2
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Lamas JA, Mallo F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020; 12:nu12113304. [PMID: 33126672 PMCID: PMC7692797 DOI: 10.3390/nu12113304] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Glucagon like-peptide 1 (GLP-1) within the brain is produced by a population of preproglucagon neurons located in the caudal nucleus of the solitary tract. These neurons project to the hypothalamus and another forebrain, hindbrain, and mesolimbic brain areas control the autonomic function, feeding, and the motivation to feed or regulate the stress response and the hypothalamic-pituitary-adrenal axis. GLP-1 receptor (GLP-1R) controls both food intake and feeding behavior (hunger-driven feeding, the hedonic value of food, and food motivation). The activation of GLP-1 receptors involves second messenger pathways and ionic events in the autonomic nervous system, which are very relevant to explain the essential central actions of GLP-1 as neuromodulator coordinating food intake in response to a physiological and stress-related stimulus to maintain homeostasis. Alterations in GLP-1 signaling associated with obesity or chronic stress induce the dysregulation of eating behavior. This review summarized the experimental shreds of evidence from studies using GLP-1R agonists to describe the neural and endocrine integration of stress responses and feeding behavior.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| | - Salvador Herrera-Pérez
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | | | - José Antonio Lamas
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | - Federico Mallo
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| |
Collapse
|
3
|
Yang JL, Lin YT, Chen WY, Yang YR, Sun SF, Chen SD. The Neurotrophic Function of Glucagon-Like Peptide-1 Promotes Human Neuroblastoma Differentiation via the PI3K-AKT Axis. BIOLOGY 2020; 9:biology9110348. [PMID: 33105690 PMCID: PMC7690389 DOI: 10.3390/biology9110348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/14/2023]
Abstract
Simple Summary The study demonstrated that the treatment with GLP-1 of SH-SY5Y human neuroblastoma cells increased the expression of AMPA receptors, NMDA receptors, dopamine receptors, synaptic proteins-synapsin 1, synaptophysin, and postsynaptic density protein 95, but not muscular and nicotinic acetylcholine receptors. In addition, the biomarker of dividing neuronal cells, vimentin, was decreased after treatment with GLP-1. Tuj1 immunostaining images showed that GLP-1 induced neurite processes and the development of neuronal morphologies. The GLP-1-differentiated neurons were able to be induced to generate action potentials by single cell patch-clamp. Our results also suggested that the PI3K-AKT axis is the dominant signaling pathway promoting the differentiation of SH-SY5Y cells into mature and functional neurons in response to GLP-1 receptor activation. The sequential treatment of retinoic acid and GLP-1 within a serum-free medium is able to trigger the differentiation of SH-SY5Y cells into morphologically and physiologically mature glutamatergic and dopaminergic neurons. Abstract Background: Neurons are terminally-differentiated cells that generally develop from neuronal stem cells stimulated by various neurotrophic factors such as NGF, BDNF, NT3, and NT-4. Neurotrophic factors have multiple functions for neurons, including enabling neuronal development, growth, and protection. Glucagon-like peptide-1 (GLP-1) is an intestinal-secreted incretin that enhances cellular glucose up-take to decrease blood sugar levels. However, many studies suggest that the function of GLP-1 is not limited to the regulation of blood sugar levels. Instead, it may also act as a neurotrophic factor with a role in ensuring neuronal survival and neurite outgrowth, as well as protecting synaptic plasticity and memory formation. Methods: The SH-SY5Y cells were differentiated by sequential treatments of retinoic acid and GLP-1 treatment within polyethylenimine-coated dishes under serum-free Neurobasal medium. PI3K inhibitor (LY294002) and MEK inhibitor (U0126) were used to determine the signaling pathway in regulation of neuronal differentiation. Neuronal marker (TUJ1) and synaptic markers (synapsin 1, synaptophysin, and PSD95) as well as single cell patch-clamp were applied to determine maturity of neurons. Antibodies of AMPA receptor, NMDA receptor subunit 2A, dopamine receptor D1, muscarinic acetylcholine receptor 2, and nicotinic acetylcholine receptor α4 were used to examine the types of differentiated neurons. Results: Our study’s results demonstrated that the treatment with GLP-1 of SH-SY5Y human neuroblastoma cells increased the expression of AMPA receptors, NMDA receptors, dopamine receptors, synaptic proteins-synapsin 1, synaptophysin, and postsynaptic density protein 95, but not muscular and nicotinic acetylcholine receptors. In addition, the biomarker of dividing neuronal cells, vimentin, was decreased after treatment with GLP-1. Tuj1 immunostaining images showed that GLP-1 induced neurite processes and the development of neuronal morphologies. The GLP-1-differentiated neurons were able to be induced to generate action potentials by single cell patch-clamp. Our study also suggested that the PI3K-AKT axis is the dominant signaling pathway promoting the differentiation of SH-SY5Y cells into mature and functional neurons in response to GLP-1 receptor activation. Conclusions: The sequential treatment of retinoic acid and GLP-1 within a serum-free medium is able to trigger the differentiation of SH-SY5Y cells into morphologically and physiologically mature glutamatergic and dopaminergic neurons.
Collapse
Affiliation(s)
- Jenq-Lin Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Kaohsiung City 83301, Taiwan; (J.-L.Y.); (W.-Y.C.); (Y.-R.Y.); (S.-F.S.)
| | - Yu-Ting Lin
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan;
| | - Wei-Yu Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Kaohsiung City 83301, Taiwan; (J.-L.Y.); (W.-Y.C.); (Y.-R.Y.); (S.-F.S.)
| | - Yun-Ru Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Kaohsiung City 83301, Taiwan; (J.-L.Y.); (W.-Y.C.); (Y.-R.Y.); (S.-F.S.)
| | - Shu-Fang Sun
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Kaohsiung City 83301, Taiwan; (J.-L.Y.); (W.-Y.C.); (Y.-R.Y.); (S.-F.S.)
| | - Shang-Der Chen
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Kaohsiung City 83301, Taiwan; (J.-L.Y.); (W.-Y.C.); (Y.-R.Y.); (S.-F.S.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Kaohsiung City 83301, Taiwan
- Correspondence: ; Tel./Fax: +886-7-7317123 (ext. 2293)
| |
Collapse
|
4
|
GLP-1 receptor agonist liraglutide exerts central action to induce β-cell proliferation through medulla to vagal pathway in mice. Biochem Biophys Res Commun 2018; 499:618-625. [DOI: 10.1016/j.bbrc.2018.03.199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 01/17/2023]
|
5
|
Burcelin R, Gourdy P, Dalle S. GLP-1-Based Strategies: A Physiological Analysis of Differential Mode of Action. Physiology (Bethesda) 2014; 29:108-21. [DOI: 10.1152/physiol.00009.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DPP4 inhibitors and GLP-1 receptor agonists used in incretin-based strategies treat Type 2 diabetes with different modes of action. The pharmacological blood GLP-1R agonist concentration targets pancreatic and some extrapancreatic GLP-1R, whereas DPP4i favors the physiological activation of the gut-brain-periphery axis that could allow clinicians to adapt the management of Type 2 diabetes, according to the patient's pathophysiological characteristics.
Collapse
Affiliation(s)
- Rémy Burcelin
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Pierre Gourdy
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
- Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France; and
| | - Stéphane Dalle
- INSERM, U661, Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Universités de Montpellier 1 & 2, Montpellier, France
| |
Collapse
|
6
|
Mussa BM, Verberne AJM. The dorsal motor nucleus of the vagus and regulation of pancreatic secretory function. Exp Physiol 2012; 98:25-37. [PMID: 22660814 DOI: 10.1113/expphysiol.2012.066472] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent investigation of the factors and pathways that are involved in regulation of pancreatic secretory function (PSF) has led to development of a pancreatic vagovagal reflex model. This model consists of three elements, including pancreatic vagal afferents, the dorsal motor nucleus of the vagus (DMV) and pancreatic vagal efferents. The DMV has been recognized as a major component of this model and so this review focuses on the role of this nucleus in regulation of PSF. Classically, the control of the PSF has been viewed as being dependent on gastrointestinal hormones and vagovagal reflex pathways. However, recent studies have suggested that these two mechanisms act synergistically to mediate pancreatic secretion. The DMV is the major source of vagal motor output to the pancreas, and this output is modulated by various neurotransmitters and synaptic inputs from other central autonomic regulatory circuits, including the nucleus of the solitary tract. Endogenously occurring excitatory (glutamate) and inhibitory amino acids (GABA) have a marked influence on DMV vagal output to the pancreas. In addition, a variety of neurotransmitters and receptors for gastrointestinal peptides and hormones have been localized in the DMV, emphasizing the direct and indirect involvement of this nucleus in control of PSF.
Collapse
Affiliation(s)
- Bashair M Mussa
- University of Melbourne, Department of Medicine, Clinical Pharmacology & Therapeutics Unit, Austin Health, Heidelberg, Victoria 3084 Australia
| | | |
Collapse
|
7
|
Abstract
Objective One developing strategy for obesity treatment has been to use combinations of differently acting pharmacotherapies to improve weight loss with fewer adverse effects. The purpose of this study was to determine whether the combination of naltrexone, an opioid antagonist acting on the reward system, and exendin-4, a glucagon-like peptide 1 (GLP-1) agonist, acting on satiety signaling, would produce larger reductions in food intake than either alone in rats. Because the anorectic potencies of both compounds have been associated with nausea and malaise, the influence of these drug combinations on the acquisition of a conditioned taste aversion (CTA) was also determined. Methods In Experiment 1, the acute anorectic effects of naltrexone (0.32–3.2 mg/kg; IP) and exendin-4 (1–10 µg/kg; IP) were assessed alone or in combination. Combinational doses were further investigated by the repeated daily administration of 1 mg/kg naltrexone + 3.2 µg/kg exendin-4 for 4 days. In Experiment 2, both compounds alone or in combination were used as unconditioned stimuli in a series of CTA tests. Results Naltrexone and exendin-4, alone or in combination, suppressed food intake in a dose dependent fashion, and the interaction on food intake between naltrexone and exendin-4 was additive. In the CTA paradigm, naltrexone (1 mg/Kg) alone did not support acquisition, whereas a CTA was evident with doses of Ex-4 (1 or 3.2 µg/Kg). Combinations of naltrexone and exendin-4 also resulted in a more rapid and robust acquisition of a CTA. Conclusion Given that the Nal and Ex-4 combination produces additive effects on not only food intake reduction but also food aversion learning, this specific drug combination does not have the benefit of minimizing the adverse effects associated with each individual drug. These data suggest that it is necessary to evaluate both the positive and adverse effects at early stages of combinational drug development.
Collapse
|
8
|
Abstract
Glucagon-like peptide 1 (GLP-1) is an incretin hormone responsible for amplification of insulin secretion when nutrients are given orally, as opposed to intravenously, and it retains its insulinotropic activity in patients with type 2 diabetes mellitus. GLP-1-based therapies, such as GLP-1 receptor agonists and inhibitors of dipeptidyl peptidase 4, an enzyme that degrades endogenous GLP-1, have established effectiveness in lowering glucose levels and are routinely used to treat patients with type 2 diabetes. These agents regulate glucose metabolism through multiple mechanisms and have several effects on cardiovascular parameters. These effects, possibly independent of the glucose-lowering activity, include changes in blood pressure, endothelial function, body weight, cardiac metabolism, lipid metabolism, left ventricular function, atherosclerosis, and the response to ischemia-reperfusion injury. Thus, GLP-1-based therapies could potentially target both diabetes and cardiovascular disease. This Review highlights the mechanisms targeted by GLP-1-based therapies, and emphasizes current developments in incretin research that are relevant to cardiovascular risk and disease, as well as treatment with GLP-1 receptor agonists.
Collapse
|
9
|
Zhang J, Ritter RC. Circulating GLP-1 and CCK-8 reduce food intake by capsaicin-insensitive, nonvagal mechanisms. Am J Physiol Regul Integr Comp Physiol 2011; 302:R264-73. [PMID: 22031786 DOI: 10.1152/ajpregu.00114.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previous reports suggest that glucagon-like peptide (GLP-1), a peptide secreted from the distal small intestine, is an endocrine satiation signal. Nevertheless, there are conflicting reports regarding the site where circulating GLP-1 acts to reduce food intake. To test the hypothesis that vagal afferents are necessary for reduction of food intake by circulating GLP-1, we measured intake of 15% sucrose during intravenous GLP-1 infusion in intact, vagotomized, and capsaicin-treated rats. We also measured sucrose intake during intravenous infusion of cholecystokinin, a peptide known to reduce food intake via abdominal vagal afferents. We found that reduction of intake by GLP-1 was not diminished by capsaicin treatment or vagotomy. In fact, reduction of sucrose intake by our highest GLP-1 dose was enhanced in vagotomized and capsaicin-treated rats. Intravenous GLP-1 induced comparable increases of hindbrain c-Fos immunoreactivity in intact, capsaicin-treated, and vagotomized rats. Plasma concentrations of active GLP-1 in capsaicin-treated rats did not differ from those of controls during the intravenous infusions. Finally, capsaicin treatment was not associated with altered GLP-1R mRNA in the brain, but nodose ganglia GLP-1R mRNA was significantly reduced in capsaicin-treated rats. Although reduction of food intake by intraperitoneal cholecystokinin was abolished in vagotomized and capsaicin-treated rats, reduction of intake by intravenous cholecystokinin was only partially attenuated. These results indicate that vagal or capsaicin-sensitive neurons are not necessary for reduction of food intake by circulating (endocrine) GLP-1, or cholecystokinin. Vagal participation in satiation by these peptides may be limited to paracrine effects exerted near the sites of their secretion.
Collapse
Affiliation(s)
- Jingchuan Zhang
- Programs in Neuroscience and Dept. of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State Univ., Pullman, WA 99164-6520, USA
| | | |
Collapse
|
10
|
Vrang N, Larsen PJ. Preproglucagon derived peptides GLP-1, GLP-2 and oxyntomodulin in the CNS: role of peripherally secreted and centrally produced peptides. Prog Neurobiol 2010; 92:442-62. [PMID: 20638440 DOI: 10.1016/j.pneurobio.2010.07.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 07/01/2010] [Accepted: 07/10/2010] [Indexed: 12/16/2022]
Abstract
The scientific understanding of preproglucagon derived peptides has provided people with type 2 diabetes with two novel classes of glucose lowering agents, the dipeptidyl peptidase IV (DPP-IV) inhibitors and GLP-1 receptor agonists. For the scientists, the novel GLP-1 agonists, and DPP-IV inhibitors have evolved as useful tools to understand the role of the preproglucagon derived peptides in normal physiology and disease. However, the overwhelming interest attracted by GLP-1 analogues as potent incretins has somewhat clouded the efforts to understand the importance of preproglucagon derived peptides in other physiological contexts. In particular, our neurobiological understanding of the preproglucagon expressing neuronal pathways in the central nervous system as well as the degree to which central GLP-1 receptors are targeted by peripherally administered GLP-1 receptor agonists is still fairly limited. The role of GLP-1 as an anorectic neurotransmitter is well recognized, but clarification of the neuronal targets and physiological basis of this response is further warranted, as is the mapping of GLP-1 sensitive neurons involved in a variety of neuroendocrine and behavioral responses. Further recent evidence points to GLP-1 as a central neuropeptide with neuroprotective capabilities potentially mitigating a wide array of neurodegenerative conditions. It is the aim of the present review to summarize our current understanding of preproglucagon derived peptides as neurotransmitters in the central nervous system.
Collapse
Affiliation(s)
- Niels Vrang
- Gubra ApS, Ridebanevej 12, 1870 Frederiksberg, Denmark.
| | | |
Collapse
|
11
|
|
12
|
Bucinskaite V, Tolessa T, Pedersen J, Rydqvist B, Zerihun L, Holst JJ, Hellström PM. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. Neurogastroenterol Motil 2009; 21:978-e78. [PMID: 19453518 DOI: 10.1111/j.1365-2982.2009.01317.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The vagus nerve plays a role in mediating effects of the two glucagon-like peptides GLP-1 and GLP-2 on gastrointestinal growth, functions and eating behaviour. To obtain electrophysiological and molecular evidence for the contribution of afferent pathways in chemoreception from the gastrointestinal tract, afferent mass activity in the ventral gastric branch of the vagus nerve and gene expression of GLP-1 receptors and GLP-2 receptors in the nodose ganglion were examined in Sprague-Dawley rats. Intravenous administration of GLP-1 (30-1000 pmol kg(-1)), reaching high physiological plasma concentrations, increased vagal afferent mass activity peaking (13-52% above basal level, P < 0.05) 3-5 min after injection. Repeated administration of GLP-1 (1000 pmol kg(-1); five times, 15 min intervals) elicited similar responses. Pretreatment with GLP-1 receptor antagonist exendin(9-39)amide (500 pmol kg(-1)) abolished the GLP-1 response to doses 30-300 pmol kg(-1) but had no effect on the vagal response to gastric distension. For comparison, GLP-2 (1000 pmol kg(-1)) had no effect on vagal afferent activity. Vagal chemoreception of GLP-1 is supported by expression of the GLP-1 receptor gene in the nodose ganglion. However, the GLP-2 receptor was also expressed. To conclude, our results show that peripherally administered GLP-1, differently from GLP-2, activates vagal afferents, with no evidence of desensitisation. The GLP-1 effect was blocked by exendin(9-39)amide, suggesting that GLP-1 receptors on vagal afferent nerves mediate sensory input from the gastrointestinal tract or pancreas; either directly or indirectly via the release of another mediator. GLP-2 receptors appear not be functionally expressed on vagal afferents.
Collapse
Affiliation(s)
- V Bucinskaite
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Holmes GM, Browning KN, Tong M, Qualls-Creekmore E, Travagli RA. Vagally mediated effects of glucagon-like peptide 1: in vitro and in vivo gastric actions. J Physiol 2009; 587:4749-59. [PMID: 19675064 DOI: 10.1113/jphysiol.2009.175067] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a neuropeptide released following meal ingestion that, among other effects, decreases gastric tone and motility. The central targets and mechanism of action of GLP-1 on gastric neurocircuits have not, however, been fully investigated. A high density of GLP-1 containing neurones and receptors are present in brainstem vagal circuits, suggesting that the gastroinhibition may be vagally mediated. We aimed to investigate: (1) the response of identified gastric-projecting neurones of the dorsal motor nucleus of the vagus (DMV) to GLP-1 and its analogues; (2) the effects of brainstem application of GLP-1 on gastric tone; and (3) the vagal pathway utilized by GLP-1 to induce gastroinhibition. We conducted our experiments using whole-cell recordings from identified gastric-projecting DMV neurones and microinjection in the dorsal vagal complex (DVC) of anaesthetized rats while monitoring gastric tone. Perfusion with GLP-1 induced a concentration-dependent excitation of a subpopulation of gastric-projecting DMV neurones. The GLP-1 effects were mimicked by exendin-4 and antagonized by exendin-9-39. In an anaesthetized rat preparation, application of exendin-4 to the DVC decreased gastric tone in a concentration-dependent manner. The gastroinhibitory effects of exendin-4 were unaffected by systemic pretreatment with the pro-motility muscarinic agonist bethanechol, but were abolished by systemic administration of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), or by bilateral vagotomy. Our data indicate that GLP-1 activates selective receptors to excite DMV neurones mainly and that the gastroinhibition observed following application of GLP-1 in the DVC is due to the activation of an inhibitory non-adrenergic, non-cholinergic input to the stomach.
Collapse
Affiliation(s)
- Gregory M Holmes
- Neuroscience, PBRC-Louisiana State University, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
14
|
Cabou C, Campistron G, Marsollier N, Leloup C, Cruciani-Guglielmacci C, Pénicaud L, Drucker DJ, Magnan C, Burcelin R. Brain glucagon-like peptide-1 regulates arterial blood flow, heart rate, and insulin sensitivity. Diabetes 2008; 57:2577-87. [PMID: 18633100 PMCID: PMC2551665 DOI: 10.2337/db08-0121] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 07/08/2008] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To ascertain the importance and mechanisms underlying the role of brain glucagon-like peptide (GLP)-1 in the control of metabolic and cardiovascular function. GLP-1 is a gut hormone secreted in response to oral glucose absorption that regulates glucose metabolism and cardiovascular function. GLP-1 is also produced in the brain, where its contribution to central regulation of metabolic and cardiovascular homeostasis remains incompletely understood. RESEARCH DESIGN AND METHODS Awake free-moving mice were infused with the GLP-1 receptor agonist exendin-4 (Ex4) into the lateral ventricle of the brain in the basal state or during hyperinsulinemic eu-/hyperglycemic clamps. Arterial femoral blood flow, whole-body insulin-stimulated glucose utilization, and heart rates were continuously recorded. RESULTS A continuous 3-h brain infusion of Ex4 decreased femoral arterial blood flow and whole-body glucose utilization in the awake free-moving mouse clamped in a hyperinsulinemic-hyperglycemic condition, only demonstrating that this effect was strictly glucose dependent. However, the heart rate remained unchanged. The metabolic and vascular effects of Ex4 were markedly attenuated by central infusion of the GLP-1 receptor (GLP-1R) antagonist exendin-9 (Ex9) and totally abolished in GLP-1 receptor knockout mice. A correlation was observed between the metabolic rate and the vascular flow in control and Ex4-infused mice, which disappeared in Ex9 and GLP-1R knockout mice. Moreover, hypothalamic nitric oxide synthase activity and the concentration of reactive oxygen species (ROS) were also reduced in a GLP-1R-dependent manner, whereas the glutathione antioxidant capacity was increased. Central GLP-1 activated vagus nerve activity, and complementation with ROS donor dose-dependently reversed the effect of brain GLP-1 signaling on peripheral blood flow. CONCLUSIONS Our data demonstrate that central GLP-1 signaling is an essential component of circuits integrating cardiovascular and metabolic responses to hyperglycemia.
Collapse
Affiliation(s)
- Cendrine Cabou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U858, Institute of Molecular Medicine Rangueil, Toulouse, France
- Université Toulouse III Paul-Sabatier, IFR31, Toulouse, France
- Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Gérard Campistron
- Institut National de la Santé et de la Recherche Médicale (INSERM), U858, Institute of Molecular Medicine Rangueil, Toulouse, France
- Université Toulouse III Paul-Sabatier, IFR31, Toulouse, France
- Faculté des Sciences Pharmaceutiques, Toulouse, France
| | | | - Corinne Leloup
- Université Toulouse III Paul-Sabatier, IFR31, Toulouse, France
- UMR UPS-CNRS 5241, Toulouse, France
| | | | - Luc Pénicaud
- Université Toulouse III Paul-Sabatier, IFR31, Toulouse, France
- UMR UPS-CNRS 5241, Toulouse, France
| | - Daniel J. Drucker
- Banting and Best Diabetes Centre, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U858, Institute of Molecular Medicine Rangueil, Toulouse, France
- Université Toulouse III Paul-Sabatier, IFR31, Toulouse, France
| |
Collapse
|
15
|
Knauf C, Cani PD, Ait-Belgnaoui A, Benani A, Dray C, Cabou C, Colom A, Uldry M, Rastrelli S, Sabatier E, Godet N, Waget A, Pénicaud L, Valet P, Burcelin R. Brain glucagon-like peptide 1 signaling controls the onset of high-fat diet-induced insulin resistance and reduces energy expenditure. Endocrinology 2008; 149:4768-77. [PMID: 18556349 DOI: 10.1210/en.2008-0180] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a peptide released by the intestine and the brain. We previously demonstrated that brain GLP-1 increases glucose-dependent hyperinsulinemia and insulin resistance. These two features are major characteristics of the onset of type 2 diabetes. Therefore, we investigated whether blocking brain GLP-1 signaling would prevent high-fat diet (HFD)-induced diabetes in the mouse. Our data show that a 1-month chronic blockage of brain GLP-1 signaling by exendin-9 (Ex9), totally prevented hyperinsulinemia and insulin resistance in HFD mice. Furthermore, food intake was dramatically increased, but body weight gain was unchanged, showing that brain GLP-1 controlled energy expenditure. Thermogenesis, glucose utilization, oxygen consumption, carbon dioxide production, muscle glycolytic respiratory index, UCP2 expression in muscle, and basal ambulatory activity were all increased by the exendin-9 treatment. Thus, we have demonstrated that in response to a HFD, brain GLP-1 signaling induces hyperinsulinemia and insulin resistance and decreases energy expenditure by reducing metabolic thermogenesis and ambulatory activity.
Collapse
Affiliation(s)
- Claude Knauf
- Institut de Medecine Moleculaire de Rangueil, Toulouse III University, Centre Hospitalier Universitaire Rangueil, BP84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wan S, Browning KN, Travagli RA. Glucagon-like peptide-1 modulates synaptic transmission to identified pancreas-projecting vagal motoneurons. Peptides 2007; 28:2184-91. [PMID: 17889966 DOI: 10.1016/j.peptides.2007.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 12/14/2022]
Abstract
Using a brainstem slice preparation, we aimed to study the pre- and postsynaptic effects of glucagon-like peptide-1 (GLP-1) on synaptic transmission to identified pancreas-projecting vagal motoneurons. Following blockade of GABAergic mediated currents with bicuculline, perfusion with 100 nM GLP-1 increased both amplitude and frequency of excitatory postsynaptic currents (EPSCs) in 21 of 52 neurons. Perfusion with the GLP-1 selective agonist exendin-4 (100 nM), also increased the frequency of spontaneous EPSCs, while pretreatment with the GLP-1 selective antagonist, exendin 9-39, prevented the effects of GLP-1. In the presence of kynurenic acid to block ionotropic glutamatergic currents, perfusion with GLP-1 increased the frequency of inhibitory postsynaptic currents (IPSCs) in 28 of 74 neurons; in 14 of these responsive neurons, GLP-1 also increased IPSC amplitude, indicating actions at both pre- and postsynaptic sites. Perfusion with exendin-4 increased the frequency of spontaneous IPSCs, while pretreatment with exendin 9-39 prevented the effects of GLP-1. These results suggest that GLP-1 modulates both excitatory and inhibitory synaptic inputs to pancreas-projecting vagal motoneurons.
Collapse
Affiliation(s)
- Shuxia Wan
- Research Center of Digestive Diseases, Zhongnan Hospital, Key Laboratory of Allergy and Immune-related Diseases, Department of Physiology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei 430071, PR China
| | | | | |
Collapse
|
17
|
Wan S, Coleman FH, Travagli RA. Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1474-82. [PMID: 17322063 DOI: 10.1152/ajpgi.00562.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) increases pancreatic insulin secretion via a direct action on pancreatic beta-cells. A high density of GLP-1-containing neurons and receptors is also present in brain stem vagal circuits; therefore, the aims of the present study were to investigate 1) whether identified pancreas-projecting neurons of the dorsal motor nucleus of the vagus (DMV) respond to exogenously applied GLP-1, 2) the mechanism(s) of action of GLP-1, and 3) whether the GLP-1-responsive neurons (putative modulators of endocrine secretion) could be distinguished from DMV neurons responsive to peptides that modulate pancreatic exocrine secretion, specifically pancreatic polypeptide (PP). Whole cell recordings were made from identified pancreas-projecting DMV neurons. Perfusion with GLP-1 induced a concentration-dependent depolarization in approximately 50% of pancreas-projecting DMV neurons. The GLP-1 effects were mimicked by exendin-4 and antagonized by exendin-(9-39). In approximately 60% of the responsive neurons, the GLP-1-induced depolarization was reduced by tetrodotoxin (1 microM), suggesting both pre- and postsynaptic sites of action. Indeed, the GLP-1 effects were mediated by actions on potassium currents, GABA-induced currents, or both. Importantly, neurons excited by GLP-1 were unresponsive to PP and vice versa. These data indicate that 1) GLP-1 may act on DMV neurons to control pancreatic endocrine secretion, 2) the effects of GLP-1 on pancreas-projecting DMV neurons are mediated both via a direct excitation of their membrane as well as via an effect on local circuits, and 3) the GLP-1-responsive neurons (i.e., putative endocrine secretion-controlling neurons) could be distinguished from neurons responsive to PP (i.e., putative exocrine secretion-controlling neurons).
Collapse
Affiliation(s)
- S Wan
- Dept. of Neuroscience, Pennington Biomedical Research Center, Louisiana State Univ. System, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
18
|
López M, Tovar S, Vázquez MJ, Williams LM, Diéguez C. Peripheral tissue-brain interactions in the regulation of food intake. Proc Nutr Soc 2007; 66:131-55. [PMID: 17343779 DOI: 10.1017/s0029665107005368] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than 70 years ago the glucostatic, lipostatic and aminostatic hypotheses proposed that the central nervous system sensed circulating levels of different metabolites, changing feeding behaviour in response to the levels of those molecules. In the last 20 years the rapid increase in obesity and associated pathologies in developed countries has involved a substantial increase in the knowledge of the physiological and molecular mechanism regulating body mass. This effort has resulted in the recent discovery of new peripheral signals, such as leptin and ghrelin, as well as new neuropeptides, such as orexins, involved in body-weight homeostasis. The present review summarises research into energy balance, starting from the original classical hypotheses proposing metabolite sensing, through peripheral tissue-brain interactions and coming full circle to the recently-discovered role of hypothalamic fatty acid synthase in feeding regulation. Understanding these molecular mechanisms will provide new pharmacological targets for the treatment of obesity and appetite disorders.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela, C/San Francisco s/n 15782, Santiago de Compostela, A Coruña, Spain
| | | | | | | | | |
Collapse
|
19
|
Rinaman L. Visceral sensory inputs to the endocrine hypothalamus. Front Neuroendocrinol 2007; 28:50-60. [PMID: 17391741 PMCID: PMC1945046 DOI: 10.1016/j.yfrne.2007.02.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/14/2007] [Accepted: 02/14/2007] [Indexed: 02/07/2023]
Abstract
Interoceptive feedback signals from the body are transmitted to hypothalamic neurons that control pituitary hormone release. This review article describes the organization of central neural pathways that convey ascending visceral sensory signals to endocrine neurons in the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus in rats. A special emphasis is placed on viscerosensory inputs to corticotropin releasing factor (CRF)-containing PVN neurons that drive the hypothalamic-pituitary-adrenal axis, and on inputs to magnocellular PVN and SON neurons that release vasopressin (AVP) or oxytocin (OT) from the posterior pituitary. The postnatal development of these ascending pathways also is considered.
Collapse
Affiliation(s)
- Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
20
|
Abstract
The glucoincretins, glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), are intestinal peptides secreted in response to glucose or lipid intake. Data on isolated intestinal tissues, dietary treatments and knockout mice strongly suggest that GIP and GLP-1 secretion requires glucose and lipid metabolism by intestinal cells. However, incretin secretion can also be induced by non-digestible carbohydrates and involves the autonomic nervous system and endocrine factors such as GIP itself and cholecystokinin. The classical pharmacological approach and the recent use of knockout mice for the incretin receptors have shown that a remarkable feature of incretins is the ability to stimulate insulin secretion in the presence of hyperglycaemia only, hence avoiding any hypoglycaemic episode. This important role is the basis of ongoing clinical trials using GLP-1 analogues. Since most of the data concern GLP-1, we will focus on this incretin. In addition, GLP-1 is involved in glucose sensing by the autonomic nervous system of the hepato-portal vein controlling muscle glucose utilization and indirectly insulin secretion. GLP-1 has been shown to decrease glucagon secretion, food intake and gastric emptying, preventing excessive hyperglycaemia and overfeeding. Another remarkable feature of GLP-1 is its secretion by the brain. Recently, elegant data showed that cerebral GLP-1 is involved in cognition and memory. Experiments using knockout mice suggest that the lack of the GIP receptor prevents diet-induced obesity. Consequently, macronutrients controlling intestinal glucose and lipid metabolism would control incretin secretion and would consequently be beneficial for health. The control of incretin secretion represents a major goal for new therapeutic as well as nutrition strategies for treating and/or reducing the risk of hyperglycaemic syndromes, excessive body weight and thus improvement of well-being.
Collapse
Affiliation(s)
- Rémy Burcelin
- UMR 5018 CNRS-UPS and IFR 31, Rangueil Hospital, Toulouse, France.
| |
Collapse
|
21
|
Sowden GL, Drucker DJ, Weinshenker D, Swoap SJ. Oxyntomodulin increases intrinsic heart rate in mice independent of the glucagon-like peptide-1 receptor. Am J Physiol Regul Integr Comp Physiol 2007; 292:R962-70. [PMID: 17038440 DOI: 10.1152/ajpregu.00405.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxyntomodulin (OXM), a postprandially released intestinal hormone, inhibits food intake via the glucagon-like peptide-1 receptor (GLP-1R). Although OXM may have clinical value in treating obesity, the cardiovascular effects of OXM are not well understood. Using telemetry to measure heart rate (HR), body temperature (Tb), and activity in conscious and freely moving mice, we tested 1) whether OXM affects HR and 2) whether this effect is mediated by the GLP-1R. We found that peripherally administered OXM significantly increased HR in wild-type mice, raising HR by >200 beats/min to a maximum of 728 ± 11 beats/min. To determine the extent to which the sympathetic nervous system mediates the tachycardia of OXM, we delivered this hormone to mice deficient in dopamine-β-hydroxylase [ Dbh(−/−) mice], littermate controls [ Dbh(+/−) mice], and autonomically blocked C57Bl mice. OXM increased HR equally in all groups (192 ± 13, 197 ± 21, and 216 ± 11 beats/min, respectively), indicating that OXM elevated intrinsic HR. Intrinsic HR was also vigorously elevated by OXM in Glp-1R(−/−) mice (200 ± 28 beats/min). In addition, peripherally administered OXM inhibited food intake and activity levels in wild-type mice and lowered Tb in autonomically blocked mice. None of these effects were observed in Glp-1R(−/−) mice. These data suggest multiple modes of action of OXM: 1) it directly elevates murine intrinsic HR through a GLP-1R-independent mechanism, perhaps via the glucagon receptor or an unidentified OXM receptor, and 2) it lowers food intake, activity, and Tb in a GLP-1R-dependent fashion.
Collapse
Affiliation(s)
- Gillian L Sowden
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | | | | | | |
Collapse
|
22
|
Nagell CF, Pedersen JF, Holst JJ. The antagonistic metabolite of GLP-1, GLP-1 (9-36)amide, does not influence gastric emptying and hunger sensations in man. Scand J Gastroenterol 2007; 42:28-33. [PMID: 17190759 DOI: 10.1080/00365520600780262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1 (7-36)amide) is an intestinal hormone that is released in response to meal ingestion. GLP-1 reduces postprandial gastric and exocrine pancreatic secretion and is believed to inhibit gastric emptying. Furthermore, GLP-1 may play a role in hunger and thirst regulation. In vivo, GLP-1 is rapidly (within minutes) converted into a metabolite, GLP-1 (9-36)amide, which has been shown to act as a GLP-1 receptor antagonist in vitro and in anaesthetized pigs. The purpose of this study was to assess the effect of infusion of GLP-1 (9-36)amide on hunger ratings and antral emptying of a meal. MATERIAL AND METHODS Six healthy volunteers were tested in a double-blind, placebo-controlled fashion. Antral emptying of a liquid meal and hunger ratings were determined using ultrasound technology and visual analogue scale scoring during infusions of saline or GLP-1 (9-36)amide (5 pmol/kg body wt/min) resulting in supraphysiological concentrations. RESULTS Infusion of GLP-1 (9-36)amide had no effect on gastric emptying or the sensation of hunger compared to saline. CONCLUSIONS Our findings suggests that the rapid formation of the antagonistic metabolite does not influence gastric emptying and hunger ratings in humans even when it is present in supraphysiological concentrations.
Collapse
|
23
|
Nagell CF, Wettergren A, Ørskov C, Holst JJ. Inhibitory effect of GLP-1 on gastric motility persists after vagal deafferentation in pigs. Scand J Gastroenterol 2006; 41:667-72. [PMID: 16716964 DOI: 10.1080/00365520500408253] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Glucagon-like peptide 1 (GLP-1) is an intestinal hormone that is secreted in response to meal ingestion. GLP-1 inhibits gastric emptying and reduces postprandial gastric secretion and may play a physiological regulatory role in controlling appetite and energy intake in humans. The GLP-1 receptors have been identified in several organs including the stomach, brain and pancreas. The GLP-1 mechanism of action on insulin secretion is at least partly mediated via receptors on the pancreatic islet, but the mechanism by which GLP-1 retards gastric emptying is not known and may involve neural interactions, although GLP-1 has no effect on vagally stimulated motor activity of the isolated porcine antrum. MATERIAL AND METHODS Previously, an experimental model was developed with centrally (insulin hypoglycaemia) induced vagally mediated stimulation of antral motility, recorded by force transducers, in anaesthetized pigs. This model has now been developed further to include vagal deafferentation to determine the role of the afferent vagus in mediating the inhibitory effect of GLP-1 on gastric motility. RESULTS Intravenous infusion of GLP-1 resulting in slightly supraphysiological plasma levels inhibited the antral contractile force, with the amplitude falling from 29.9+/-5.7 mm to 14.6+/-3.5 mm (p<0.001). After vagal deafferentation GLP-1 still inhibited antral motility (from 36.6+/-6.4 mm to 25+/-4.4 mm (p<0.019). The decrease in amplitude was the same before and after deafferentation. CONCLUSIONS GLP-1 significantly inhibited centrally induced antral motility and the inhibitory effect of GLP-1 on gastric motility persisted after vagal deafferentation, supporting the hypothesis that the inhibitory effect results from direct interaction of GLP with receptors in the CNS, which in turn reduce vagal efferent output.
Collapse
Affiliation(s)
- Carl Frederik Nagell
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
Our knowledge of the physiological systems controlling energy homeostasis has increased dramatically over the last decade. The roles of peripheral signals from adipose tissue, pancreas, and the gastrointestinal tract reflecting short- and long-term nutritional status are now being described. Such signals influence central circuits in the hypothalamus, brain stem, and limbic system to modulate neuropeptide release and hence food intake and energy expenditure. This review discusses the peripheral hormones and central neuronal pathways that contribute to control of appetite.
Collapse
Affiliation(s)
- Sarah Stanley
- Endocrine Unit, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | |
Collapse
|
26
|
De León DD, Crutchlow MF, Ham JYN, Stoffers DA. Role of glucagon-like peptide-1 in the pathogenesis and treatment of diabetes mellitus. Int J Biochem Cell Biol 2005; 38:845-59. [PMID: 16202636 DOI: 10.1016/j.biocel.2005.07.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 06/28/2005] [Accepted: 07/29/2005] [Indexed: 01/20/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted from enteroendocrine L cells in response to ingested nutrients. The first recognized and most important action of GLP-1 is the potentiation of glucose-stimulated insulin secretion in beta-cells, mediated by activation of its seven transmembrane domain G-protein-coupled receptor. In addition to its insulinotropic actions, GLP-1 exerts islet-trophic effects by stimulating replication and differentiation and by decreasing apoptosis of beta-cells. The GLP-1 receptor is expressed in a variety of other tissues important for carbohydrate metabolism, including pancreatic alpha-cells, hypothalamus and brainstem, and proximal intestinal tract. GLP-1 also appears to exert important actions in liver, muscle and fat. Thus, GLP-1 suppresses glucagon secretion, promotes satiety, delays gastric emptying and stimulates peripheral glucose uptake. The impaired GLP-1 secretion observed in type 2 diabetes suggests that GLP-1 plays a role in the pathogenesis of this disorder. Thus, because of its multiple actions, GLP-1 is an attractive therapeutic target for the treatment of type 2 diabetes, and major interest has resulted in the development of a variety of GLP-1 receptor agonists for this purpose. Ongoing clinical trials have shown promising results and the first analogs of GLP-1 are expected to be available in the near future.
Collapse
Affiliation(s)
- Diva D De León
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | |
Collapse
|
27
|
Roges OA, Baron M, Philis-Tsimikas A. The incretin effect and its potentiation by glucagon-like peptide 1-based therapies: a revolution in diabetes management. Expert Opin Investig Drugs 2005; 14:705-27. [PMID: 16004598 DOI: 10.1517/13543784.14.6.705] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The incretin effect is a phenomenon in which enteral glucose administration provokes greater insulin secretion than intravenous administration. The main incretins, glucose-dependent insulinotropic peptide and glucagon-like peptide (GLP)-1 are defective in Type 2 diabetes; whereas glucose-dependent insulinotropic peptide displays diminished effectiveness, GLP-1 secretion is decreased; thus, GLP-1 was a stronger candidate for a new class of anti-diabetic agents designed to potentiate the incretin effect. In the past decade, GLP-1 mimetics, peptidase inhibitors and GLP-1 have been developed. Early randomised trials show that these agents contribute to glucose homeostasis and enhance beta-cell function, without causing hypoglycaemia or weight gain. This review includes an historical perspective, physiology of incretins, and discussions of the pathophysiology in Type 2 diabetes, pharmacology of the main agents and randomised clinical trials published to date.
Collapse
Affiliation(s)
- Octaviano A Roges
- The Whittier Institute for Diabetes, 9894 Genesee Avenue, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
28
|
Baggio LL, Drucker DJ. Harnessing the therapeutic potential of glucagon-like peptide-1: a critical review. ACTA ACUST UNITED AC 2005; 1:117-25. [PMID: 15765627 DOI: 10.2165/00024677-200201020-00005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is synthesized from proglucagon in enteroendocrine cells and regulates glucose homeostasis via multiple complementary actions on appetite, gastrointestinal motility and islet hormone secretion. GLP-1 is secreted from the distal gut in response to food ingestion, and levels of circulating GLP-1 may be diminished in patients with type 2 diabetes mellitus. GLP-1 administration stimulates glucose-dependent insulin secretion, inhibits glucagon secretion, and lowers blood glucose in normal and diabetic rodents and in humans. GLP-1 exerts additional glucose-lowering actions in patients with diabetes mellitus already treated with metformin or sulfonylurea therapy. GLP-1 inhibits gastric emptying in healthy individuals and those with diabetes mellitus, and excess GLP-1 administration may cause nausea or vomiting in susceptible individuals. Chronic GLP-1 treatment of normal or diabetic rodents is associated with bodyweight loss and GLP-1 agonists transiently inhibit food intake and may prevent bodyweight gain in humans. The potential for GLP-1 therapy to prevent deterioration of beta-cell function is exemplified by studies demonstrating that GLP-1 analogs stimulate proliferation and neogenesis of beta-cells, leading to expansion of beta-cell mass in diabetic rodents. The rapid N-terminal inactivation of bioactive GLP-1 by dipeptidyl peptidase-IV (DPP-IV) limits the utility of the native peptide for the treatment of patients with diabetes mellitus, and has fostered the development of more potent and stable protease-resistant GLP-1 analogs which exhibit longer durations of action. The importance of DPP-IV for glucose control is illustrated by the phenotype of rodents with genetic inactivation of DPP-IV which exhibit reduced glycemic excursion and increased levels of circulating GLP-1 in vivo. Inhibitors of DPP-IV potentiate incretin action by preventing degradation of GLP-1 and glucose-dependent insulinotropic peptide, and lower blood glucose in normal rodents and in experimental models of diabetes mellitus. Hence, orally available DPP-IV inhibitors also represent a new class of therapeutic agents that enhance incretin action for the treatment of patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Laurie L Baggio
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
29
|
Chelikani PK, Haver AC, Reidelberger RD. Intravenous infusion of glucagon-like peptide-1 potently inhibits food intake, sham feeding, and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1695-706. [PMID: 15718384 DOI: 10.1152/ajpregu.00870.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon-like peptide-1(7-36)-amide (GLP-1) is postulated to act as a hormonal signal from gut to brain to inhibit food intake and gastric emptying. A mixed-nutrient meal produces a 2 to 3-h increase in plasma GLP-1. We determined the effects of intravenous infusions of GLP-1 on food intake, sham feeding, and gastric emptying in rats to assess whether GLP-1 inhibits food intake, in part, by slowing gastric emptying. A 3-h intravenous infusion of GLP-1 (0.5-170 pmol.kg(-1).min(-1)) at dark onset dose-dependently inhibited food intake in rats that were normally fed with a potency (mean effective dose) and efficacy (maximal % inhibition) of 23 pmol.kg(-1).min(-1) and 82%, respectively. Similar total doses of GLP-1 administered over a 15-min period were less potent and effective. In gastric emptying experiments, GLP-1 (1.7-50 pmol.kg(-1).min(-1)) dose-dependently inhibited gastric emptying of saline and ingested chow with potencies of 18 and 6 pmol.kg(-1).min(-1) and maximal inhibitions of 74 and 83%, respectively. In sham-feeding experiments, GLP-1 (5-50 pmol.kg(-1).min(-1)) dose-dependently reduced 15% aqueous sucrose intake in a similar manner when gastric cannulas were closed (real feeding) and open (sham feeding). These results demonstrate that intravenous infusions of GLP-1 dose-dependently inhibit food intake, sham feeding, and gastric emptying with a similar potency and efficacy. Thus GLP-1 may inhibit food intake in part by reducing gastric emptying, yet can also inhibit food intake independently of its action to reduce gastric emptying. It remains to be determined whether intravenous doses of GLP-1 that reproduce postprandial increases in plasma GLP-1 are sufficient to inhibit food intake and gastric emptying.
Collapse
Affiliation(s)
- Prasanth K Chelikani
- Department of Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | | | | |
Collapse
|
30
|
Tachibana T, Hirofuji K, Matsumoto M, Furuse M, Hasegawa S, Yoshizawa F, Sugahara K. The hypothalamus is involved in the anorexic effect of glucagon-like peptide-1 in chicks. Comp Biochem Physiol A Mol Integr Physiol 2004; 137:183-8. [PMID: 14720603 DOI: 10.1016/j.cbpb.2003.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was carried out to investigate whether the hypothalamus is involved in the anorexic effect of glucagon-like peptide-1 (GLP-1) in chicks. To examine this, Fos expression in the chick hypothalamus were immunohistochemically detected after intracerebroventricular (ICV) injection of 30-pmol GLP-1. ICV injection of GLP-1 stimulated the expression of Fos-like immunoreactive (FLI) cells in the ventromedial hypothalamic nucleus (VMN). When 15-pmol GLP-1 was directly injected into the chick VMN, the chick's food intake was significantly decreased compared with the control treatment. Microinjection of GLP-1 into the (LHA) also inhibited feeding in chicks, although ICV injection of GLP-1 did not stimulate FLI expression in the brain area. These results suggest that VMN and some brain regions are involved in the anorexic effect of GLP-1 in chicks.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Delgado-Aros S, Vella A, Camilleri M, Low PA, Burton DD, Thomforde GM, Stephens D. Effects of glucagon-like peptide-1 and feeding on gastric volumes in diabetes mellitus with cardio-vagal dysfunction. Neurogastroenterol Motil 2003; 15:435-43. [PMID: 12846732 DOI: 10.1046/j.1365-2982.2003.00422.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) increases gastric volume in humans possibly through the vagus nerve. Gastric volume response to feeding is preserved after vagal denervation in animals. We evaluated gastric volume responses to GLP-1 and placebo in seven diabetic patients with vagal neuropathy in a crossover study. We also compared gastric volume response to feeding in diabetes with that in healthy controls. We measured gastric volume using SPECT imaging. Data are median (interquartile range). In diabetic patients, GLP-1 did not increase gastric volume during fasting [5 mL (-3; 30)] relative to placebo [4 mL (-14; 50) P = 0.5], or postprandially [Delta postprandial minus fasting volume 469 mL (383; 563) with GLP-1 and 452 mL (400; 493) with placebo P = 0.3]. Change in gastric volume over fasting in diabetic patients on placebo was comparable to that of healthy controls [452 mL (400; 493)], P = 0.5. In contrast to effects in health, GLP-1 did not increase gastric volume in diabetics with vagal neuropathy, suggesting GLP-1's effects on stomach volume are vagally mediated. Normal gastric volume response to feeding in diabetics with vagal neuropathy suggests that other mechanisms compensate for vagal denervation.
Collapse
Affiliation(s)
- S Delgado-Aros
- Clinical Enteric Neuroscience Translational & Epidemiological Research Program, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Schick RR, Zimmermann JP, vorm Walde T, Schusdziarra V. Peptides that regulate food intake: glucagon-like peptide 1-(7-36) amide acts at lateral and medial hypothalamic sites to suppress feeding in rats. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1427-35. [PMID: 12776726 DOI: 10.1152/ajpregu.00479.2002] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon-like peptide 1-(7-36) amide (GLP-1) potently inhibits rat feeding behavior after central administration. Because third ventricular injection of GLP-1 appeared to be less effective than lateral ventricular injection, we have reexamined this issue. In addition, we attempted to identify brain regions other than the paraventricular nucleus of the hypothalamus that are sensitive toward GLP-1-induced feeding suppression. Finally, we examined the local role of endogenous GLP-1 by specific GLP-1 receptor blockade. After lateral ventricular injection, GLP-1 significantly inhibited food intake of 24-h-fasted rats in a dose-dependent fashion with a minimal effective dose of 1 microg. After third ventricular injection, GLP-1 (1 microg) was similarly effective in suppressing food intake, which extends previous findings. Intracerebral microinjections of GLP-1 significantly suppressed food intake in the lateral (LH), dorsomedial (DMH), and ventromedial hypothalamus (VMH), but not in the medial nucleus of the amygdala. The minimal effective dose of GLP-1 was 0.3 microg at LH sites and 1 microg at DMH or VMH sites. LH microinjections of exendin-(9-39) amide, a GLP-1 receptor antagonist, at 1 or 2.5 microg did not alter feeding behavior in 24-h-fasted rats. In satiated animals, however, a single LH injection of 1 microg exendin-(9-39) amide significantly augmented food intake, but only during the first 20 min (0.6 vs. 0.1 g). With three repeated injections of 2.5 microg exendin-(9-39) amide every 20 min, 1-h food intake was significantly increased by 300%. These data strongly support and extend the concept of GLP-1 as a physiological regulator of food intake in the hypothalamus.
Collapse
Affiliation(s)
- Rafael R Schick
- Department of Internal Medicine, Federal Armed Forces Hospital, D-89081 Ulm, Germany
| | | | | | | |
Collapse
|
33
|
Golpon HA, Puechner A, Welte T, Wichert PV, Feddersen CO. Vasorelaxant effect of glucagon-like peptide-(7-36)amide and amylin on the pulmonary circulation of the rat. REGULATORY PEPTIDES 2001; 102:81-6. [PMID: 11730979 DOI: 10.1016/s0167-0115(01)00300-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The gastrointestinal peptides glucagon-like peptide-1(7-36)amide (GLP-1) and amylin are currently being tested in clinical trials for the treatment of diabetes mellitus due to their effects in lowering blood glucose. Receptors for these polypeptides also exist in the lung and since polypeptides are known to modulate airway and pulmonary vascular tone, we investigated whether GLP-1 and amylin act similarly in the lung. We compared their effects with the well-known actions of calcitonin gene-related peptide (CGRP) and vasoactive intestinal peptide (VIP). Both GLP-1 and amylin induced a dose-dependent and time-reversible endothelial-dependent relaxation of preconstricted pulmonary artery rings. Amylin was approximately as strong as VIP and CGRP, GLP-1 however, was 2.3-fold less potent. GLP-1 as well as amylin also reduced the vascular tone in the isolated, perfused and ventilated rat lung. In contrast to their action on the pulmonary vasculature, neither GLP-1 nor amylin showed any effect on the tone of isolated preconstricted trachea rings. In conclusion, GLP-1 and amylin represent two additional peptides which may modulate pulmonary vascular tone.
Collapse
Affiliation(s)
- H A Golpon
- Department of Internal Medicine, Philipps University of Marburg, Baldinger Strasse, 35033, Marburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Kieffer TJ, Hussain MA, Habener JF. Glucagon and Glucagon‐like Peptide Production and Degradation. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Dakin CL, Gunn I, Small CJ, Edwards CM, Hay DL, Smith DM, Ghatei MA, Bloom SR. Oxyntomodulin inhibits food intake in the rat. Endocrinology 2001; 142:4244-50. [PMID: 11564680 DOI: 10.1210/endo.142.10.8430] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxyntomodulin is derived from proglucagon processing in the intestine and the central nervous system. To date, no role in the central nervous system has been demonstrated. We report here that oxyntomodulin inhibits refeeding when injected intracerebroventricularly and into the hypothalamic paraventricular nucleus of 24-h fasted rats [intracerebroventricularly and into the paraventricular nucleus, 1 h, oxyntomodulin (1 nmol), 3.1 +/- 0.5 g; saline, 6.2 +/- 0.4 g; P < 0.005]. In addition, oxyntomodulin inhibits food intake in nonfasted rats injected at the onset of the dark phase (intracerebroventricularly, 1 h: oxyntomodulin, 3 nmol, 1.1 +/- 0.19 g vs. saline, 2.3 +/- 0.2 g; P < 0.05). This effect of oxyntomodulin on feeding is of a similar time course and magnitude as that of an equimolar dose of glucagon-like peptide-1. Other proglucagon-derived products investigated [glucagon, glicentin (intracerebroventricularly, 3 nmol; into the paraventricular nucleus, 1 nmol), and spacer peptide-1 (intracerebroventricularly and into the paraventricular nucleus, 3 nmol)] had no effect on feeding at any time point examined. The anorectic effect of oxyntomodulin (intracerebroventricularly, 3 nmol; into the paraventricular nucleus, 1 nmol) was blocked when it was coadministered with the glucagon-like peptide-1 receptor antagonist, exendin-(9-39) (intracerebroventricularly, 100 nmol; into the paraventricular nucleus, 10 nmol). However, oxyntomodulin has a lower affinity for the glucagon-like peptide-1 receptor compared with glucagon-like peptide-1 (IC(50): oxyntomodulin, 8.2 nM; glucagon-like peptide-1, 0.16 nM). One explanation for this is that there might be an oxyntomodulin receptor to which exendin-(9-39) can also bind and act as an antagonist.
Collapse
Affiliation(s)
- C L Dakin
- Endocrine Unit, Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom W12 0NN
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Vara E, Arias-Díaz J, Garcia C, Balibrea JL, Blázquez E. Glucagon-like peptide-1(7-36) amide stimulates surfactant secretion in human type II pneumocytes. Am J Respir Crit Care Med 2001; 163:840-6. [PMID: 11282754 DOI: 10.1164/ajrccm.163.4.9912132] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To determine the influence of glucagon-like peptides on the secretion of human pulmonary surfactant, we used human type II pneumocytes. In these cells, GLP-1(7-36) amide and exendin-4 stimulated phosphatidylcholine secretion (PC) and cAMP formation in a concentration-dependent manner; these effects were reversed by exendin(9-39). No changes were observed with other related peptides. The mechanism by which GLP-1(7-36) amide exerts its stimulatory effect was investigated with various agents that are well known to be stimulators or inhibitors of PC secretion. Thus, 8-bromo-cAMP increased and both Rp-cAMPS and H-89, the latter an inhibitor of protein kinase A (PKA), reduced pulmonary surfactant secretion in type II pneumocytes. Also, GLP-1(7-36) amide and TPA exerted additive effects in stimulating PC secretion, and Calph C, a potent inhibitor of protein kinase C (PKC), blocked most of the effect of GLP-1(7-36) amide. By contrast, both the calcium ionophore A23187 and GLP-1(7-36) amide had additive effects in increasing PC secretion, and the specific inhibitor of Ca(2+)-calmodulin-dependent protein kinase (Ca-CM-PK), KN-62, inhibited the effect of A23187 but did not alter the stimulatory action of GLP-1(7-36) amide. Our findings suggest that both PKA and PKC are involved in the stimulatory effects of GLP-1(7-36) amide on PC secretion, whereas this peptide has no effect on PC secretion through a Ca-CM-PK mechanism.
Collapse
Affiliation(s)
- E Vara
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
37
|
García-Flores M, Zueco JA, Alvarez E, Blázquez E. Expression of glucagon-like peptide-1 (GLP-1) receptor and the effect of GLP-1-(7-36) amide on insulin release by pancreatic islets during rat ontogenic development. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:514-20. [PMID: 11168389 DOI: 10.1046/j.1432-1327.2001.01865.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of glucagon-like peptide-1 (GLP-1) receptor and the effects of GLP-1-(7-36) amide (t-GLP-1) on glucose metabolism and insulin release by pancreatic islets during rat development were studied. GLP-1 receptor mRNA was found in significant amounts in pancreatic islets from all age groups studied, GLP-1 receptor expression being maximal when pancreatic islets were incubated at physiological glucose concentration (5.5 mM), but decreasing significantly when incubated with either 1.67 or 16.7 mM glucose. Glucose utilization and oxidation by pancreatic islets from fetal and adult rats rose as a function of glucose concentration, always being higher in fetal than in adult islets. The addition of t-GLP-1 to the incubation medium did not modify glucose metabolism but gastric inhibitory polypeptide and glucagon significantly increased glucose utilization by fetal and adult pancreatic islets at 16.7 mM glucose. At this concentration, glucose produced a significant increase in insulin release by the pancreatic islets from 10-day-old and 20-day-old suckling rats and adult rats, whereas those from fetuses showed only a significant increase when glucose was raised from 1.67 to 5.5 mM. t-GLP-1 elicited an increase in insulin release by pancreatic islets from all the experimental groups when the higher glucose concentrations were used. Our findings indicate that GLP-1 receptors and the effect of t-GLP-1 on insulin release are already present in the fetus, and they therefore exclude the possibility that alterations in the action of t-GLP-1 are responsible for the unresponsiveness of pancreatic beta cells to glucose in the fetus, but stimulation of t-GLP-1 release by food ingestion in newborns may partially confer glucose competence on beta cells.
Collapse
Affiliation(s)
- M García-Flores
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Rodriquez de Fonseca F, Navarro M, Alvarez E, Roncero I, Chowen JA, Maestre O, Gómez R, Muñoz RM, Eng J, Blázquez E. Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism 2000; 49:709-17. [PMID: 10877194 DOI: 10.1053/meta.2000.6251] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study explores the potential utility of peripheral versus central administration of glucagon-like peptide-1 (GLP-1) receptor agonists in the regulation of feeding behavior in Wistar and Zucker obese rats. Acute central (intracerebroventricular [i.c.v.]) and peripheral (subcutaneous [s.c.]) administration of both GLP-1 (7-36) amide and exendin-4 resulted in a reduction in food intake for at least 4 hours, exendin-4 being much more potent than GLP-1 (7-36) amide, especially after peripheral administration. Both Zucker obese rats (fa/fa) and their lean littermates (Fa/-) responded to acute central and peripheral administration of exendin-4. Moreover, in situ hybridization revealed specific labeling for the mRNA for GLP-1 receptors in several brain areas of both the obese and lean rats. The presence of this receptor was also detected by affinity cross-linking assays. Long-term s.c. administration of exendin-4 (1 single injection per day, 1 hour prior to the onset of the dark phase of the cycle) decreased daily food intake and practically blocked weight gain in obese rats. In contrast to previous studies, these findings show that peripheral (s.c.) administration of both GLP-1 receptor agonists also induces satiety and weight loss in rats, and suggest the potential usefulness of exendin-4 as a therapeutic tool for the treatment of diabetes and/or obesity.
Collapse
Affiliation(s)
- F Rodriquez de Fonseca
- Department of Psychobiology, Faculty of Psychology, Complutense University, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- T J Kieffer
- Department of Medicine, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
40
|
Barragán JM, Eng J, Rodríguez R, Blázquez E. Neural contribution to the effect of glucagon-like peptide-1-(7-36) amide on arterial blood pressure in rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E784-91. [PMID: 10567003 DOI: 10.1152/ajpendo.1999.277.5.e784] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study was designed to determine the contribution of the central nervous system (CNS) to the effects of glucagon-like peptide-1-(7-36) amide (tGLP-1) on arterial blood pressure and heart rate in rats. Accordingly, intracerebroventricular administration of the peptide produced an increase in cardiovascular parameters, which was blocked by previous administration of exendin-(9-39) through the same route, but not when it was intravenously injected. Intravenous administration of tGLP-1 produced a significant increase in arterial blood pressure and heart rate, which was blocked by the previous intracerebroventricular or intravenous administration of exendin-(9-39). Bilateral vagotomy blocked the stimulating effect of intracerebroventricular tGLP-1 administration on arterial blood pressure and heart rate. Also, bilateral vagotomy prevented the blocking effect of intracerebroventricular but not of intravenous exendin-(9-39) on cardiovascular parameters after intravenous administration of tGLP-1. These findings suggest that the action of tGLP-1 on cardiovascular parameters is under a dual control generated in the CNS and in peripheral structures and that the neural information emerging in the brain is transmitted to the periphery through the vagus nerve.
Collapse
Affiliation(s)
- J M Barragán
- Department of Biochemistry, University of Salamanca, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
41
|
Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 1999; 403:261-80. [PMID: 9886047 DOI: 10.1002/(sici)1096-9861(19990111)403:2<261::aid-cne8>3.0.co;2-5] [Citation(s) in RCA: 589] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is derived from the peptide precursor pre-pro-glucagon (PPG) by enzymatic cleavage and acts via its receptor, glucagon-like peptide-1 receptor (GLP-1R). By using riboprobes complementary to PPG and GLP-1R, we described the distribution of PPG and GLP-1R messenger RNAs (mRNAs) in the central nervous system of the rat. PPG mRNA-expressing perikarya were restricted to the nucleus of the solitary tact or to the dorsal and ventral medulla and olfactory bulb. GLP-1R mRNA was detected in numerous brain regions, including the mitral cell layer of the olfactory bulb; temporal cortex; caudal hippocampus; lateral septum; amygdala; nucleus accumbens; ventral pallium; nucleus basalis Meynert; bed nucleus of the stria terminalis; preoptic area; paraventricular, supraoptic, arcuate, and dorsomedial nuclei of the hypothalamus; lateral habenula; zona incerta; substantia innominata; posterior thalamic nuclei; ventral tegmental area; dorsal tegmental, posterodorsal tegmental, and interpeduncular nuclei; substantia nigra, central gray; raphe nuclei; parabrachial nuclei; locus ceruleus, nucleus of the solitary tract; area postrema; dorsal nucleus of the vagus; lateral reticular nucleus; and spinal cord. These studies, in addition to describing the sites of GLP-1 and GLP-1R synthesis, suggest that the efferent connections from the nucleus of the solitary tract are more widespread than previously reported. Although the current role of GLP-1 in regulating neuronal physiology is not known, these studies provide detailed information about the sites of GLP-1 synthesis and potential sites of action, an important first step in evaluating the function of GLP-1 in the brain. The widespread distribution of GLP-1R mRNA-containing cells strongly suggests that GLP-1 not only functions as a satiety factor but also acts as a neurotransmitter or neuromodulator in anatomically and functionally distinct areas of the central nervous system.
Collapse
Affiliation(s)
- I Merchenthaler
- Womens Health Research Institute, Wyeth-Ayerst Research, Radnor, Pennsylvania 19087, USA.
| | | | | |
Collapse
|
42
|
Zueco JA, Esquifino AI, Chowen JA, Alvarez E, Castrillón PO, Blázquez E. Coexpression of glucagon-like peptide-1 (GLP-1) receptor, vasopressin, and oxytocin mRNAs in neurons of the rat hypothalamic supraoptic and paraventricular nuclei: effect of GLP-1(7-36)amide on vasopressin and oxytocin release. J Neurochem 1999; 72:10-6. [PMID: 9886049 DOI: 10.1046/j.1471-4159.1999.0720010.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study was designed to gain better insight into the relationship between glucagon-like peptide-1 (GLP-1) (7-36) amide and vasopressin (AVP) and oxytocin (OX). In situ hybridization histochemistry revealed colocalization of the mRNAs for GLP-1 receptor, AVP, and OX in neurons of the hypothalamic supraoptic and paraventricular nuclei. To determine whether GLP-1(7-36)amide alters AVP and/or OX release, both in vivo and in vitro experimental study designs were used. In vivo, intravenous administration of 1 microg of GLP-1(7-36)amide into the jugular vein significantly decreased plasma AVP and OX concentrations. In vitro incubation of the neurohypophysis with either 0.1 or 1 microg of GLP-1(7-36)amide did not modify the release of AVP. However, addition of 1 microg of GLP-1(7-36)amide to the incubation medium increased slightly the secretion of OX. The coexpression of GLP-1 receptor and AVP mRNAs in hypothalamic supraoptic and paraventricular nuclei gives further support to the already reported central effects of GLP-1 (7-36)amide on AVP. Our findings also suggest a dual secretory response of AVP and OX to the effect of GLP-1 (7-36)amide, which most likely is related to the amount and/or the route of peptide administration.
Collapse
Affiliation(s)
- J A Zueco
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Blázquez E, Alvarez E, Navarro M, Roncero I, Rodríguez-Fonseca F, Chowen JA, Zueco JA. Glucagon-like peptide-1 (7-36) amide as a novel neuropeptide. Mol Neurobiol 1998; 18:157-73. [PMID: 10065878 DOI: 10.1007/bf02914270] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Although earlier studies indicated that GLP-1 (7-36) amide was an intestinal peptide with a potent effect on glucose-dependent insulin secretion, later on it was found that several biological effects of this peptide occur in the brain, rather than in peripheral tissues. Thus, proglucagon is expressed in pancreas, intestine, and brain, but post translational processing of the precursor yields different products in these organs, glucagon-like peptide-1 (7-36) amide being one of the forms produced in the brain. Also, GLP-1 receptor cDNA from human and rat brains has been cloned and sequenced, and the deduced amino acid sequences are the same as those found in pancreatic islets. Through these receptors, GLP-1 (7-36) amide from gut or brain sources induces its effects on the release of neurotransmitters from selective brain nuclei, the inhibition of gastric secretion and motility, the regulation of food and drink intake, thermoregulation, and arterial blood pressure. Central administration (icv) of GLP-1 (7-36) amide produces a marked reduction in food and water intake, and the colocalization of the GLP-1 receptor, GLUT-2, and glucokinase mRNAs in hypothalamic neurons involved in glucose sensing suggests that these cells may be involved in the transduction of signals needed to produce a state of fullness. In addition, GLP-1 (7-36) amide inhibits gastric acid secretion and gastric emptying, but these effects are not found in vagotomized subjects, suggesting a centrally mediated effect. Similar results have been found with the action of this peptide on arterial blood pressure and heart rate in rats. Synthesis of GLP-1 (7-36) amide and its own receptors in the brain together with its abovementioned central physiological effects imply that this peptide may be considered a neuropeptide. Also, the presence of GLP-1 (7-36) amide in the synaptosome fraction and its calcium-dependent release by potassium stimulation, suggest that the peptide may act as a neurotransmitter although further electrophysiological and ultrastructural studies are needed to confirm this possibility.
Collapse
Affiliation(s)
- E Blázquez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Scrocchi LA, Drucker DJ. Effects of aging and a high fat diet on body weight and glucose tolerance in glucagon-like peptide-1 receptor -/- mice. Endocrinology 1998; 139:3127-32. [PMID: 9645685 DOI: 10.1210/endo.139.7.6092] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disruption of glucagon-like peptide-1 (GLP-1) receptor signaling in mice results in mild glucose intolerance, principally due to elimination of the incretin effect of GLP-1. Despite the inhibitory effects of GLP-1 on food intake, 6- to 8-week-old GLP-1 receptor -/-(GLP-1R-/-) mice were not obese and did not exhibit disturbances of feeding behavior. As both diabetes and obesity frequently become more phenotypically evident in older rodents, we studied the consequences of aging and a high fat diet on glucose control and body weight in GLP-1R-/- mice. No evidence of obesity or deterioration in glucose control was detected in 11- and 16-month-old GLP-1R-/- mice (mean weight, 34.7 +/- 2.0, 30.5 +/- 1.5, and 34.6 +/- 2.8 g in male and 25.3 +/-1.6, 28.4 +/-1.2, and 31.9 +/- 2.9 g in female GLP-1R+/+, GLP-1R+/-, and GLP-1R-/- mice, respectively; P = NS). After 18 weeks of high fat feeding, GLP-1R-/- mice gained similar (males) or less (females) weight than age- and sex-matched CD1 controls. No significant deterioration in glucose tolerance was observed after high fat feeding in GLP-1R-/- mice. These observations demonstrate that long term disruption of GLP-1 signaling in the central nervous system and peripheral tissues of older mice is not associated with the development of obesity or deterioration in glucose homeostasis.
Collapse
Affiliation(s)
- L A Scrocchi
- Department of Medicine, Banting and Best Diabetes Center, Toronto Hospital, University of Toronto, Ontario, Canada
| | | |
Collapse
|
45
|
Benito E, Blazquez E, Bosch MA. Glucagon-like peptide-1-(7-36)amide increases pulmonary surfactant secretion through a cyclic adenosine 3',5'-monophosphate-dependent protein kinase mechanism in rat type II pneumocytes. Endocrinology 1998; 139:2363-8. [PMID: 9564846 DOI: 10.1210/endo.139.5.5998] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor messenger RNA has been identified in cells considered type II pneumocytes that are involved in the synthesis and secretion of the pulmonary surfactant. In an attempt to open new insights into the control of surfactant secretion, we studied the effects of glucagon-related peptides in this process. Accordingly, type II pneumocytes were isolated from Wistar rat lungs and cultured overnight with [methyl-14C]choline, and then the basal and stimulated secretions of [14C]phosphatidylcholine were measured. GLP-1(7-36)amide stimulated phosphatidylcholine secretion in a concentration-dependent manner in the 1-100 nM range; the concentration of the peptide that produced a half-maximal response was 10 nM. Exendin-4 induced similar effects. No changes were observed when GLP-1-(1-37), GLP-2, or exendin-(9-39) was added to the medium. However, the latter reversed the stimulatory effects of GLP-1-(7-36)amide and exendin-4. A study of the mechanism through which GLP-1-(7-36)amide exerts its stimulatory effect was carried out using different agents that are well known stimulants of phosphatidylcholine secretion. GLP-1-(7-36)amide did not produce any change in the stimulatory effect observed with terbutaline or 8-bromo-cAMP, suggesting the involvement of a cAMP-dependent protein kinase in the stimulatory effect of this peptide on phosphatidylcholine secretion. It was further supported by the use of inhibitors of protein kinases and by the stimulation of cAMP production in type II pneumocytes incubated with either GLP-1-(7-36)amide or exendin-4.
Collapse
Affiliation(s)
- E Benito
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
46
|
Imeryüz N, Yeğen BC, Bozkurt A, Coşkun T, Villanueva-Peñacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:G920-7. [PMID: 9357836 DOI: 10.1152/ajpgi.1997.273.4.g920] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exogenous administration of glucagon-like peptide-1-(7-36) amide (GLP-1), an insulinotropic hormone, inhibits gastric emptying and acid secretion in humans. The role of GLP-1 as a regulator of gastric function is elusive. In gastric fistula rats, vagal afferent denervation and peripheral administration of the GLP-1 receptor antagonist exendin-(9-39) amide enhanced emptying of a glucose meal, whereas intracerebroventricular exendin was ineffective. The rate of saline emptying was attenuated by peripheral as well as by central administration of GLP-1, and pretreatment with exendin by the respective routes reversed the inhibition by GLP-1. Vagal afferent denervation abolished the central and peripheral action of GLP-1 on gastric emptying. Neither peripheral cholinergic nor adrenergic blockade altered the delay of methyl cellulose meal emptying by intracisternal GLP-1 injection. Acid secretion in conscious pylorus-ligated rats was inhibited by intracisternal GLP-1 administration, whereas systemic GLP-1 was ineffective. These results support the notion that GLP-1 receptors participate in the central and peripheral regulation of gastric function. Furthermore, vagal afferent nerves mediate the inhibitory action of GLP-1 on gastric motor function. GLP-1 may be a candidate brain-gut peptide that acts as a physiological modulator of gastric function.
Collapse
Affiliation(s)
- N Imeryüz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
47
|
Rowland NE, Crews EC, Gentry RM. Comparison of Fos induced in rat brain by GLP-1 and amylin. REGULATORY PEPTIDES 1997; 71:171-4. [PMID: 9350975 DOI: 10.1016/s0167-0115(97)01034-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The patterns of Fos-like immunoreactivity (Fos-ir) in rat brain were compared following treatment of rats with two anorectic 'gut' peptides. Central administration of GLP-1 produced dose-related increases in Fos-ir in the area postrema (AP) and caudal nucleus of the solitary tract (cNTS) as well as strong activation in the lateral parabrachial nucleus (LPBE), hypothalamic paraventricular nucleus (PVN), bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). At centrally-active doses, peripheral administration of GLP-1 did not induce Fos-ir in brain. In contrast, peripheral administration of amylin produced strong Fos-ir in the AP and cNTS, as well as the BNST and CeA, but not in the PVN. The common activation of the LPB-BNST-CeA by these and other previously-studied anorectics suggest this is an important circuit involved in satiety.
Collapse
Affiliation(s)
- N E Rowland
- Department of Psychology, University of Florida, Gainsville 32611-2250, USA.
| | | | | |
Collapse
|
48
|
Abstract
The gene encoding proglucagon, the biosynthetic precursor of glucagon, is expressed not only in the pancreatic islets but also in endocrine cells of the gastrointestinal mucosa. The proglucagon (PG)-derived peptides from the gut include glicentin (corresponding to PG 1-69); smaller amounts of oxyntomodulin (PG 33-69) and glicentin-related pancreatic polypeptide (GRPP, PG 1-30); glucagon-like peptide-1 (GLP-1, PG 78-107 amide); intervening peptide-2 (IP-2, PG 111-122 amide); and glucagon-like peptide-2 (GLP-2, PG 126-158). All are secreted into the blood in response to ingestion of carbohydrates and lipids. Only oxyntomodulin and GLP-1 have proven biological activity; oxyntomodulin possibly because it interacts (but with lower potency) with GLP-1 and glucagon receptors. GLP-1 is the most potent insulinotropic hormone known and functions as an incretin hormone. It also inhibits glucagon secretion and, therefore, lowers blood glucose. This effect is preserved in patients with non-insulin-dependent diabetes mellitus, in whom infusions of GLP-1 may completely normalize blood glucose. However, GLP-1 also potently inhibits gastrointestinal secretion and motility, and its physiological functions include mediation of the "ileal-brake" effect, i.e. the inhibition of upper gastrointestinal functions elicited by the presence of unabsorbed nutrients in the ileum. As such it may serve to regulate food intake.
Collapse
Affiliation(s)
- J J Holst
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
49
|
Nishizawa M, Nakabayashi H, Uchida K, Nakagawa A, Niijima A. The hepatic vagal nerve is receptive to incretin hormone glucagon-like peptide-1, but not to glucose-dependent insulinotropic polypeptide, in the portal vein. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1996; 61:149-54. [PMID: 8946334 DOI: 10.1016/s0165-1838(96)00071-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To examine whether incretin hormones, truncated glucagon-like peptide-1 (tGLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are recognized by the hepatic vagal nerve, changes of the impulse discharge rate in the afferent vagus upon their intraportal administrations were measured in situ in rats anesthetized with urethan and chloralose. One-min injection of tGLP-1 at a periphysiological dose of 0.2 pmol or a pharmacological dose of 4.0 pmol, but not of the vehicle, significantly facilitated the hepatic vagal afferents. However, the injection of GIP at either a physiological dose of 0.2 pmol, a periphysiological dose of 4.0 pmol, or an even much larger dose of 40.0 pmol did not change the afferents at all. The present results indicate that the hepatic vagus specifically recognizes an intraportal appearance of tGLP-1 in the hepatoportal area, suggesting that the vagal monitoring system for intraportal levels of the incretin hormone operates on ingestion of a mixed meal.
Collapse
Affiliation(s)
- M Nishizawa
- Department of Internal Medicine, Kanazawa Medical University, Uchinada, Japan
| | | | | | | | | |
Collapse
|
50
|
Göke R, Larsen PJ, Mikkelsen JD, Sheikh SP. Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci 1995; 7:2294-300. [PMID: 8563978 DOI: 10.1111/j.1460-9568.1995.tb00650.x] [Citation(s) in RCA: 351] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The distribution and biochemical properties of glucagon-like peptide (GLP)-1(7-36) amide (GLP-1) binding sites in the rat brain were investigated. By receptor autoradiography of tissue sections, the highest densities of [125I]GLP-1 binding sites were identified in the lateral septum, the subfornical organ (SFO), the thalamus, the hypothalamus, the interpenduncular nucleus, the posterodorsal tegmental nucleus, the area postrema (AP), the inferior olive and the nucleus of the solitary tract (NTS). Binding studies with [125I][Tyr39] exendin-4, a GLP-1 receptor agonist, showed an identical distribution pattern of binding sites. Binding specificity and affinity was investigated using sections of the brainstem containing the NTS. Binding of [125I]GLP-1 to the NTS was inhibited concentration-dependently by unlabelled GLP-1 and [Tyr39]exendin-4 with KI values of 3.5 and 9.4 nM respectively. Cross-linking of hypothalamic membranes with [125I]GLP-1 or [125I][Tyr39]exendin-4 identified a single ligand-binding protein complex with a molecular mass of 63,000 Da. The fact that no GLP-1 binding sites were detected in the cortex but that they were detected in the phylogenetically oldest parts of the brain emphasizes that GLP-1 may be involved in the regulation of vital functions. In conclusion, the biochemical data support the idea that the central GLP-1 receptor resembles the peripheral GLP-1 receptor. Furthermore, the presence of GLP-1 binding sites in the circumventricular organs suggests that these may be receptors which act as the target for both peripheral blood-borne GLP-1 and GLP-1 in the nervous system.
Collapse
Affiliation(s)
- R Göke
- Department of Clinical Biochemistry, Rigshospitalet 7642, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|