1
|
Crow MK, Olferiev M, Kirou KA. Standing on Shoulders: Interferon Research From Viral Interference to Lupus Pathogenesis and Treatment. Arthritis Rheumatol 2024; 76:1002-1012. [PMID: 38500017 DOI: 10.1002/art.42849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The discovery of interferon in the 1950s represents much more than the identification of the first cytokine and the key mediator of antiviral host defense. Defining the molecular nature and complexity of the type I interferon family, as well as its inducers and molecular mechanisms of action, was the work of investigators working at the highest level and producing insights of great consequence. Current knowledge of receptor-ligand interactions, cell signaling, and transcriptional regulation derives from studies of type I interferon. It is on the shoulders of the giants who produced that knowledge that others stand and have revealed critical mechanisms of the pathogenesis of systemic lupus erythematosus and other autoimmune diseases. The design of novel therapeutics is informed by the advances in investigation of type I interferon, with the potential for important impact on patient management.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| |
Collapse
|
2
|
Visser A, van Nimwegen JF, Wilbrink R, Liefers SC, van der Tuuk K, Mourits MJE, Diercks GFH, Bart J, van der Vegt B, van Kempen LC, Bootsma H, Kroese FGM, Verstappen GM. Increased Interferon Signaling in Vaginal Tissue of Patients With Primary Sjögren Syndrome. J Rheumatol 2024; 51:687-695. [PMID: 38561184 DOI: 10.3899/jrheum.2023-1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Vaginal dryness is an important factor influencing sexual function in women with primary Sjögren syndrome (pSS). Previous studies showed a higher degree of inflammation in vaginal biopsies from patients with pSS compared to non-pSS controls. However, the molecular pathways that drive this inflammation remain unclear. Therefore, the aim of this study was to investigate inflammatory pathway activity in the vaginal tissue of patients with pSS. METHODS Vaginal biopsies of 8 premenopausal patients with pSS experiencing vaginal dryness and 7 age-matched non-pSS controls were included. Expression of genes involved in inflammation and tissue homeostasis was measured using NanoString technology and validated using TaqMan Real-Time PCR. Vaginal tissue sections were stained by immunohistochemistry for myxovirus resistance protein 1 (MxA) and CD123 (plasmacytoid dendritic cells [pDCs]). RESULTS The most enriched pathway in vaginal biopsies from patients with pSS compared to non-pSS controls was the interferon (IFN) signaling pathway (P < 0.01). Pathway scores for Janus kinase and signal transducer and activator of transcription (JAK-STAT) and Notch signaling were also higher (P < 0.01 for both pathways). Conversely, transforming growth factor-β signaling and angiogenesis pathway scores were lower in pSS (P = 0.02 and P = 0.04, respectively). Differences in IFN signaling between patients with pSS and non-pSS controls were confirmed by PCR and MxA tissue staining. No CD123+ pDCs were detected in vaginal biopsies. IFN-stimulated gene expression levels correlated positively with CD45+ cell numbers in vaginal biopsies and serum anti-SSA/Ro positivity. CONCLUSION Upregulation of IFN signaling in vaginal tissue of women with pSS, along with its association with tissue pathology, suggests that IFNs contribute to inflammation of the vaginal wall and potentially also to clinical symptomatology (ie, vaginal dryness).
Collapse
Affiliation(s)
- Annie Visser
- A. Visser, BSc, J.F. van Nimwegen, MD, PhD, R. Wilbrink, MD, S.C. Liefers, PhD, H. Bootsma, MD, PhD, F.G.M. Kroese, PhD, G.M. Verstappen, PharmD, PhD, University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Jolien F van Nimwegen
- A. Visser, BSc, J.F. van Nimwegen, MD, PhD, R. Wilbrink, MD, S.C. Liefers, PhD, H. Bootsma, MD, PhD, F.G.M. Kroese, PhD, G.M. Verstappen, PharmD, PhD, University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Rick Wilbrink
- A. Visser, BSc, J.F. van Nimwegen, MD, PhD, R. Wilbrink, MD, S.C. Liefers, PhD, H. Bootsma, MD, PhD, F.G.M. Kroese, PhD, G.M. Verstappen, PharmD, PhD, University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Silvia C Liefers
- A. Visser, BSc, J.F. van Nimwegen, MD, PhD, R. Wilbrink, MD, S.C. Liefers, PhD, H. Bootsma, MD, PhD, F.G.M. Kroese, PhD, G.M. Verstappen, PharmD, PhD, University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Karin van der Tuuk
- K. van der Tuuk, MD, PhD, M.J.E. Mourits, MD, PhD, University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynaecology, Groningen, the Netherlands
| | - Marian J E Mourits
- K. van der Tuuk, MD, PhD, M.J.E. Mourits, MD, PhD, University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynaecology, Groningen, the Netherlands
| | - Gilles F H Diercks
- G.F.H. Diercks, MD, PhD, J. Bart, MD, PhD, B. van der Vegt, MD, PhD, University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Joost Bart
- G.F.H. Diercks, MD, PhD, J. Bart, MD, PhD, B. van der Vegt, MD, PhD, University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Bert van der Vegt
- G.F.H. Diercks, MD, PhD, J. Bart, MD, PhD, B. van der Vegt, MD, PhD, University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Léon C van Kempen
- L.C. van Kempen, MD, PhD, University of Antwerp, Antwerp University Hospital, Department of Pathology, Antwerp, Belgium
| | - Hendrika Bootsma
- A. Visser, BSc, J.F. van Nimwegen, MD, PhD, R. Wilbrink, MD, S.C. Liefers, PhD, H. Bootsma, MD, PhD, F.G.M. Kroese, PhD, G.M. Verstappen, PharmD, PhD, University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Frans G M Kroese
- A. Visser, BSc, J.F. van Nimwegen, MD, PhD, R. Wilbrink, MD, S.C. Liefers, PhD, H. Bootsma, MD, PhD, F.G.M. Kroese, PhD, G.M. Verstappen, PharmD, PhD, University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Gwenny M Verstappen
- A. Visser, BSc, J.F. van Nimwegen, MD, PhD, R. Wilbrink, MD, S.C. Liefers, PhD, H. Bootsma, MD, PhD, F.G.M. Kroese, PhD, G.M. Verstappen, PharmD, PhD, University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands;
| |
Collapse
|
3
|
Li L, Huang RW, Liu XN, Xiang XY, Zhou YT, Feng XX, Tao LY, Yu J, Qin Yi, Wang YC, Liu XM. Modulation of plasmacytoid dendritic cell and CD4 + T cell differentiation accompanied by upregulation of the cholinergic anti-inflammatory pathway induced by enterovirus 71. Arch Virol 2024; 169:73. [PMID: 38472498 DOI: 10.1007/s00705-024-05974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 03/14/2024]
Abstract
Enterovirus 71 (EV71) is a neurotropic enterovirus associated with hand, foot, and mouth disease (HFMD) fatalities. In this study, we investigated the impact of EV71 on plasmacytoid dendritic cells (pDCs) and CD4+ T cells. The results showed that pDCs were promptly activated, secreting interferon (IFN)-α and inducing CD4+ T cell proliferation and differentiation during early EV71 infection. This initiated adaptive immune responses and promoted proinflammatory cytokine production by CD4+ T cells. Over time, viral nucleic acids and proteins were synthesized in pDCs and CD4+ T cells. Concurrently, the cholinergic anti-inflammatory pathway (CAP) was activated, exhibiting an anti-inflammatory role. With constant viral stimulation, pDCs and CD4+ T cells showed reduced differentiation and cytokine secretion. Defects in pDCs were identified as a key factor in CD4+ T cell tolerance. CAP had a more significant regulatory effect on CD4+ T cells than on pDCs and was capable of inhibiting inflammation in these cells.
Collapse
Affiliation(s)
- Li Li
- Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, 650228, Yunnan, China
| | - Rong-Wei Huang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, 650228, Yunnan, China
| | - Xiao-Ning Liu
- Department of Pharmacy, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
| | - Xiao-Yi Xiang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, 650228, Yunnan, China
| | - Yuan-Tao Zhou
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, 650228, Yunnan, China
| | - Xing-Xing Feng
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
| | - Lv-Yuan Tao
- Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, 650228, Yunnan, China
| | - Jia Yu
- Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
| | - Qin Yi
- Department of Clinical Laboratory, Zouping People's Hospital, Binzhou, 256200, Shandong, China
| | - Yan-Chun Wang
- Department of 2nd Infection, Kunming Children's Hospital, Zouping People's Hospital, Kunming, 650228, Yunnan, China
| | - Xiao-Mei Liu
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, 650228, Yunnan, China.
| |
Collapse
|
4
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Aisenberg LK, Rousseau KE, Cascino K, Massaccesi G, Aisenberg WH, Luo W, Muthumani K, Weiner DB, Whitehead SS, Chattergoon MA, Durbin AP, Cox AL. Cross-reactive antibodies facilitate innate sensing of dengue and Zika viruses. JCI Insight 2022; 7:151782. [PMID: 35588060 DOI: 10.1172/jci.insight.151782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Aedes aegypti mosquito transmits both dengue (DENV) and Zika (ZIKV) viruses. Individuals in endemic areas are at risk for infection with both viruses as well as repeated DENV infection. In the presence of anti-DENV antibodies, outcomes of secondary DENV infection range from mild to life-threatening. Further, the role of cross-reactive antibodies on the course of ZIKV infection remains unclear.We assessed the ability of cross-reactive DENV monoclonal antibodies or polyclonal immunoglobulin isolated after DENV vaccination to upregulate type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) in response to both heterotypic DENV- and ZIKV- infected cells. We found a range in the ability of antibodies to increase pDC IFN production and a positive correlation between IFN production and the ability of an antibody to bind to the infected cell surface. Engagement of Fc receptors on the pDC and Fab binding of an epitope on infected cells was required to mediate increased IFN production by providing specificity to and promoting pDC sensing of DENV or ZIKV. This represents a mechanism independent of neutralization by which pre-existing cross-reactive DENV antibodies could protect a subset of individuals from severe outcomes during secondary heterotypic DENV or ZIKV infection.
Collapse
Affiliation(s)
- Laura K Aisenberg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Kimberly E Rousseau
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Katherine Cascino
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Guido Massaccesi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - William H Aisenberg
- Department of Medicine, Division of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Wensheng Luo
- International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States of America
| | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute Cancer Center, Philadelphia, United States of America
| | - David B Weiner
- Vaccine & Immunotherapy Center, The Wistar Institute Cancer Center, Philadelphia, United States of America
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, United States of America
| | - Michael A Chattergoon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Anna P Durbin
- International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States of America
| | - Andrea L Cox
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
6
|
Cord-Blood-Derived Professional Antigen-Presenting Cells: Functions and Applications in Current and Prospective Cell Therapies. Int J Mol Sci 2021; 22:ijms22115923. [PMID: 34072923 PMCID: PMC8199409 DOI: 10.3390/ijms22115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Human umbilical cord blood (UCB) represents a valuable source of hematopoietic stem cells, particularly for patients lacking a matching donor. UCB provides practical advantages, including a lower risk of graft-versus-host-disease and permissive human leukocyte antigen mismatching. These advantageous properties have so far been applied for stem cell, mesenchymal stromal cell, and chimeric antigen receptor T cell therapies. However, UCB-derived professional antigen-presenting cells are increasingly being utilized in the context of immune tolerance and regenerative therapy. Here, we review the cell-specific characteristics as well as recent advancements in UCB-based cell therapies focusing on dendritic cells, monocytes, B lymphocytes, innate lymphoid cells, and macrophages.
Collapse
|
7
|
Asano S, Sato H, Mori K, Yamazaki K, Naito H, Suzuki H. Necrotizing lymphadenitis may be induced by overexpression of Toll-like receptor7 (TLR7) caused by reduced TLR9 transport in plasmacytoid dendritic cells (PDCs). J Clin Exp Hematop 2021; 61:85-92. [PMID: 33994431 PMCID: PMC8265496 DOI: 10.3960/jslrt.20060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Necrotizing lymphadenitis (NEL) is a self-limited systemic disease exhibiting characteristic clinical features. The pathogenesis of the disease remains unclear, but it may be associated with viral infection. In lymph nodes affected by this disease, innumerable plasmacytoid dendritic cells produce interferon-α when triggered by certain viral stimuli. IFN-α presents antigens causing the transformation of CD8+ cells into immunoblasts and apoptosis of CD4+ cells. From the perspective of innate immunity, UNC93B1, an endoplasmic reticulum (ER)-resident protein, associates more strongly with TLR9 than TLR7. Homeostasis is maintained under normal conditions. However, in NEL, TLR 7 was observed more than TLR 9, possibly because mutant type UNC93B1 associates more tightly with TLR7. The inhibitory effects against TLR7 by TLR9 were reported to disappear. It is likely that more TLR7 than TLR9 is transported from the ER to endolysosomes. In conclusion, overexpression of TLR7, an innate immune sensor of microbial single-stranded RNA, is inferred. Consequently, NEL may be induced.
Collapse
Affiliation(s)
| | - Hiroko Sato
- Department of Dentistry and Oral Surgery, Iwaki City Medical Center, Iwaki, Japan
| | - Kikuo Mori
- Pathology Center, Iwaki City Medical Center, Iwaki, Japan
| | | | - Hiroyuki Naito
- Department of Dentistry and Oral Surgery, Iwaki City Medical Center, Iwaki, Japan
| | - Hoshiro Suzuki
- Department of Pediatrics, Iwaki City Medical Center, Iwaki, Japan
| |
Collapse
|
8
|
Mitchell JL, Takata H, Muir R, Colby DJ, Kroon E, Crowell TA, Sacdalan C, Pinyakorn S, Puttamaswin S, Benjapornpong K, Trichavaroj R, Tressler RL, Fox L, Polonis VR, Bolton DL, Maldarelli F, Lewin SR, Haddad EK, Phanuphak P, Robb ML, Michael NL, de Souza M, Phanuphak N, Ananworanich J, Trautmann L. Plasmacytoid dendritic cells sense HIV replication before detectable viremia following treatment interruption. J Clin Invest 2021; 130:2845-2858. [PMID: 32017709 DOI: 10.1172/jci130597] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are robust producers of IFNα and one of the first immune cells to respond to SIV infection. To elucidate responses to early HIV-1 replication, we studied blood pDCs in 29 HIV-infected participants who initiated antiretroviral therapy during acute infection and underwent analytic treatment interruption (ATI). We observed an increased frequency of partially activated pDCs in the blood before detection of HIV RNA. Concurrent with peak pDC frequency, we detected a transient decline in the ability of pDCs to produce IFNα in vitro, which correlated with decreased phosphorylation of IFN regulatory factory 7 (IRF7) and NF-κB. The levels of phosphorylated IRF7 and NF-κB inversely correlated with plasma IFNα2 levels, implying that pDCs were refractory to in vitro stimulation after IFNα production in vivo. After ATI, decreased expression of IFN genes in pDCs inversely correlated with the time to viral detection, suggesting that pDC IFN loss is part of an effective early immune response. These data from a limited cohort provide a critical first step in understanding the earliest immune response to HIV-1 and suggest that changes in blood pDC frequency and function can be used as an indicator of viral replication before detectable plasma viremia.
Collapse
Affiliation(s)
- Julie L Mitchell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Hiroshi Takata
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Roshell Muir
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Donn J Colby
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA.,South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Eugène Kroon
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Trevor A Crowell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Carlo Sacdalan
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Suteeraporn Pinyakorn
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Suwanna Puttamaswin
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Khunthalee Benjapornpong
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Rapee Trichavaroj
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS) United States Component, Bangkok, Thailand
| | - Randall L Tressler
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Lawrence Fox
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Victoria R Polonis
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Diane L Bolton
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Sharon R Lewin
- Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Praphan Phanuphak
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mark de Souza
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Nittaya Phanuphak
- South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA.,South East Asia Research Collaboration with Hawaii (SEARCH), Thai Red Cross AIDS Research Centre (TRC-ARC), Bangkok, Thailand.,Department of Global Health, University of Amsterdam, Amsterdam, Netherlands
| | - Lydie Trautmann
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | | |
Collapse
|
9
|
Jamali A, Harris DL, Blanco T, Lopez MJ, Hamrah P. Resident plasmacytoid dendritic cells patrol vessels in the naïve limbus and conjunctiva. Ocul Surf 2020; 18:277-285. [PMID: 32109562 PMCID: PMC7397780 DOI: 10.1016/j.jtos.2020.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/15/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) constitute a unique population of bone marrow-derived cells that play a pivotal role in linking innate and adaptive immune responses. While peripheral tissues are typically devoid of pDCs during steady state, few tissues do host resident pDCs. In the current study, we aim to assess presence and distribution of pDCs in naïve murine limbus and bulbar conjunctiva. Immunofluorescence staining followed by confocal microscopy revealed that the naïve bulbar conjunctiva of wild-type mice hosts CD45+ CD11clow PDCA-1+ pDCs. Flow cytometry confirmed the presence of resident pDCs in the bulbar conjunctiva through multiple additional markers, and showed that they express maturation markers, the T cell co-inhibitory molecules PD-L1 and B7-H3, and minor to negligible levels of T cell co-stimulatory molecules CD40, CD86, and ICAM-1. Epi-fluorescent microscopy of DPE-GFP×RAG1-/- transgenic mice with GFP-tagged pDCs indicated lower density of pDCs in the bulbar conjunctiva compared to the limbus. Further, intravital multiphoton microscopy revealed that resident pDCs accompany the limbal vessels and patrol the intravascular space. In vitro multiphoton microscopy showed that pDCs are attracted to human umbilical vein endothelial cells and interact with them during tube formation. In conclusion, our study shows that the limbus and bulbar conjunctiva are endowed with resident pDCs during steady state, which express maturation and classic T cell co-inhibitory molecules, engulf limbal vessels, and patrol intravascular spaces.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Maria J Lopez
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Program in Immunology, School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
10
|
Dewald HK, Hurley HJ, Fitzgerald-Bocarsly P. Regulation of Transcription Factor E2-2 in Human Plasmacytoid Dendritic Cells by Monocyte-Derived TNFα. Viruses 2020; 12:v12020162. [PMID: 32023836 PMCID: PMC7077321 DOI: 10.3390/v12020162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 12/15/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are innate immune cells and potent producers of interferon alpha (IFNα). Regulation of pDCs is crucial for prevention of aberrant IFN production. Transcription factor E2-2 (TCF4) regulates pDC development and function, but mechanisms of E2-2 control have not been investigated. We used freshly-isolated human peripheral blood mononuclear cells stimulated with toll-like receptor 7, 9, and 4 agonists to determine which factors regulate E2-2. After activation, pDCs decreased E2-2 expression. E2-2 downregulation occurred during the upregulation of costimulatory markers, after maximal IFN production. In congruence with previous reports in mice, we found that primary human pDCs that maintained high E2-2 levels produced more IFN, and had less expression of costimulatory markers. Stimulation of purified pDCs did not lead to E2-2 downregulation; therefore, we investigated if cytokine signaling regulates E2-2 expression. We found that tumor necrosis factor alpha (TNFα) produced by monocytes caused decreased E2-2 expression. All together, we established that primary human pDCs decrease E2-2 in response to TNFα and E2-2 low pDCs produce less IFN but exhibit more costimulatory molecules. Altered expression of E2-2 may represent a mechanism to attenuate IFN production and increase activation of the adaptive immune compartment.
Collapse
Affiliation(s)
- Hannah K. Dewald
- Rutgers School of Graduate Studies, Newark, NJ 07103, USA; (H.K.D.); (H.J.H.)
| | - Harry J. Hurley
- Rutgers School of Graduate Studies, Newark, NJ 07103, USA; (H.K.D.); (H.J.H.)
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Patricia Fitzgerald-Bocarsly
- Rutgers School of Graduate Studies, Newark, NJ 07103, USA; (H.K.D.); (H.J.H.)
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Correspondence: ; Tel.: +1-973-972-5233
| |
Collapse
|
11
|
Rahman T, Brown AS, Hartland EL, van Driel IR, Fung KY. Plasmacytoid Dendritic Cells Provide Protection Against Bacterial-Induced Colitis. Front Immunol 2019; 10:608. [PMID: 31024525 PMCID: PMC6465541 DOI: 10.3389/fimmu.2019.00608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/07/2019] [Indexed: 12/19/2022] Open
Abstract
We have examined the influence of depleting plasmacytoid dendritic cells (pDC) in mice on the immune response to the gut pathogen Citrobacter rodentium, an organism that is a model for human attaching effacing pathogens such as enterohaemorraghic E. coli. A significantly higher number of C. rodentium were found in mice depleted of pDC from 7 days after infection and pDC depleted mice showed increased gut pathology and higher levels of mRNA encoding inflammatory cytokines in the colon upon infection. pDC-depletion led to a compromising of the gut mucosal barrier that may have contributed to increased numbers of C. rodentium in systemic organs. pDC-depleted mice infected with C. rodentium suffered substantial weight loss necessitating euthanasia. A number of observations suggested that this was not simply the result of dysregulation of immunity in the colon as pDC-depleted mice infected intravenously with C. rodentium also exhibited exacerbated weight loss, arguing that pDC influence systemic immune responses. Overall, these data indicate that pDC contribute at multiple levels to immunity to C. rodentium including control of bacterial numbers in the colon, maintenance of colon barrier function and regulation of immune responses to disseminated bacteria.
Collapse
Affiliation(s)
- Tania Rahman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew S Brown
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ian R van Driel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Ka Yee Fung
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Sandstrom TS, Angel JB. Introduction to the Special Issue: HIV Evasion of the Antiviral Response. Cytokine Growth Factor Rev 2019; 40:1-2. [PMID: 29778136 DOI: 10.1016/j.cytogfr.2018.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Teslin S Sandstrom
- Ottawa Hospital Research Institute; Department of Biochemistry, Microbiology and Immunology, University of Ottawa.
| | - Jonathan B Angel
- Ottawa Hospital Research Institute; Department of Biochemistry, Microbiology and Immunology, University of Ottawa; Division of Infectious Diseases, The Ottawa Hospital.
| |
Collapse
|
13
|
Webb K, Peckham H, Radziszewska A, Menon M, Oliveri P, Simpson F, Deakin CT, Lee S, Ciurtin C, Butler G, Wedderburn LR, Ioannou Y. Sex and Pubertal Differences in the Type 1 Interferon Pathway Associate With Both X Chromosome Number and Serum Sex Hormone Concentration. Front Immunol 2019; 9:3167. [PMID: 30705679 PMCID: PMC6345344 DOI: 10.3389/fimmu.2018.03167] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/24/2018] [Indexed: 11/25/2022] Open
Abstract
Type 1 interferons (IFN) are an antiviral cytokine family, important in juvenile onset systemic lupus erythematosus (jSLE) which is more common in females, around puberty. We report that plasmacytoid dendritic cells (pDC) from healthy females produced more type 1 IFN after toll like receptor (TLR) 7 signaling than males, even before puberty, but that puberty itself associated with increased production of type 1 IFN. A unique human model allows us to show that this was related to X chromosome number, and serum testosterone concentration, in a manner which differed depending on the number of X chromosomes present. In addition, we have showed that pDC were more activated in females overall, and immune cell TLR7 gene expression was higher in females after puberty. Therefore, sex hormones and X chromosome number were associated individually and interactively with the type 1 IFN response, which contributes to our understanding of why females are more likely to develop an IFN mediated disease like jSLE after puberty.
Collapse
Affiliation(s)
- Kate Webb
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom
| | - Hannah Peckham
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom
| | - Anna Radziszewska
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom
| | - Madhvi Menon
- Division of Medicine, Centre for Rheumatology, UCL, London, United Kingdom
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, Nanostring Facility, UCL, London, United Kingdom
| | - Fraser Simpson
- Department of Genetics, Evolution and Environment, Nanostring Facility, UCL, London, United Kingdom
| | - Claire T Deakin
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom.,NIHR Biomedical Research Centre at GOSH, London, United Kingdom.,III Programme UCL GOS Institute for Child Health, London, United Kingdom
| | - Sophie Lee
- Centre for Applied Statistics Courses, Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Coziana Ciurtin
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom
| | - Gary Butler
- Department of Paediatric and Adolescent Endocrinology, UCLH and Great Ormond Street Institute of Child Health, UCL, London, United Kingdom.,Gender Identity Development Service (GIDS), Tavistock and Portman NHS Foundation Trust, London, United Kingdom
| | - Lucy R Wedderburn
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom.,NIHR Biomedical Research Centre at GOSH, London, United Kingdom.,III Programme UCL GOS Institute for Child Health, London, United Kingdom
| | - Yiannis Ioannou
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL, ULCH and GOSH, London, United Kingdom
| |
Collapse
|
14
|
Aiello A, Giannessi F, Percario ZA, Affabris E. The involvement of plasmacytoid cells in HIV infection and pathogenesis. Cytokine Growth Factor Rev 2018; 40:77-89. [PMID: 29588163 DOI: 10.1016/j.cytogfr.2018.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/15/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that are specialized in type I interferon (IFN) production. pDCs are key players in the antiviral immune response and serve as bridge between innate and adaptive immunity. Although pDCs do not represent the main reservoir of the Human Immunodeficiency Virus (HIV), they are a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation. pDCs act as inflammatory and immunosuppressive cells, thus contributing to HIV disease progression. This review provides a state of art analysis of the interactions between HIV and pDCs and their potential roles in HIV transmission, chronic immune activation and immunosuppression. A thorough understanding of the roles of pDCs in HIV infection will help to improve therapeutic strategies to fight HIV infection, and will further increase our knowledge on this important immune cell subset.
Collapse
|
15
|
Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, Sato K. Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front Immunol 2018; 8:1823. [PMID: 29379496 PMCID: PMC5775519 DOI: 10.3389/fimmu.2017.01823] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome and its infection leads to the onset of several disorders such as the depletion of peripheral CD4+ T cells and immune activation. HIV-1 is recognized by innate immune sensors that then trigger the production of type I interferons (IFN-Is). IFN-Is are well-known cytokines eliciting broad anti-viral effects by inducing the expression of anti-viral genes called interferon-stimulated genes (ISGs). Extensive in vitro studies using cell culture systems have elucidated that certain ISGs such as APOBEC3G, tetherin, SAM domain and HD domain-containing protein 1, MX dynamin-like GTPase 2, guanylate-binding protein 5, and schlafen 11 exert robust anti-HIV-1 activity, suggesting that IFN-I responses triggered by HIV-1 infection are detrimental for viral replication and spread. However, recent studies using animal models have demonstrated that at both the acute and chronic phase of infection, the role of IFN-Is produced by HIV or SIV infection in viral replication, spread, and pathogenesis, may not be that straightforward. In this review, we describe the pluses and minuses of HIV-1 infection stimulated IFN-I responses on viral replication and pathogenesis, and further discuss the possibility for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew Soper
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Izumi Kimura
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shumpei Nagaoka
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoriyuki Konno
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keisuke Yamamoto
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
16
|
Sandstrom TS, Ranganath N, Angel JB. Impairment of the type I interferon response by HIV-1: Potential targets for HIV eradication. Cytokine Growth Factor Rev 2017; 37:1-16. [PMID: 28455216 DOI: 10.1016/j.cytogfr.2017.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
By interfering with the type I interferon (IFN1) response, human immunodeficiency virus 1 (HIV-1) can circumvent host antiviral signalling and establish persistent viral reservoirs. HIV-1-mediated defects in the IFN pathway are numerous, and include the impairment of protein receptors involved in pathogen detection, downstream signalling cascades required for IFN1 upregulation, and expression or function of key IFN1-inducible, antiviral proteins. Despite this, the activation of IFN1-inducible, antiviral proteins has been shown to facilitate the killing of latently HIV-infected cells in vitro. Understanding how IFN1 signalling is blocked in physiologically-relevant models of HIV-1 infection, and whether these defects can be reversed, is therefore of great importance for the development of novel therapeutic strategies aimed at eradicating the HIV-1 reservoir.
Collapse
Affiliation(s)
- Teslin S Sandstrom
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Nischal Ranganath
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Division of Infectious Diseases, Ottawa Hospital-General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
17
|
van der Ploeg K, Chang C, Ivarsson MA, Moffett A, Wills MR, Trowsdale J. Modulation of Human Leukocyte Antigen-C by Human Cytomegalovirus Stimulates KIR2DS1 Recognition by Natural Killer Cells. Front Immunol 2017; 8:298. [PMID: 28424684 PMCID: PMC5372792 DOI: 10.3389/fimmu.2017.00298] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/03/2017] [Indexed: 02/02/2023] Open
Abstract
The interaction of inhibitory killer cell Ig-like receptors (KIRs) with human leukocyte antigen (HLA) class I molecules has been characterized in detail. By contrast, activating members of the KIR family, although closely related to inhibitory KIRs, appear to interact weakly, if at all, with HLA class I. KIR2DS1 is the best studied activating KIR and it interacts with C2 group HLA-C (C2-HLA-C) in some assays, but not as strongly as KIR2DL1. We used a mouse 2B4 cell reporter system, which carries NFAT-green fluorescent protein with KIR2DS1 and a modified DAP12 adaptor protein. KIR2DS1 reporter cells were not activated upon coculture with 721.221 cells transfected with different HLA-C molecules, or with interferon-γ stimulated primary dermal fibroblasts. However, KIR2DS1 reporter cells and KIR2DS1+ primary natural killer (NK) cells were activated by C2-HLA-C homozygous human fetal foreskin fibroblasts (HFFFs) but only after infection with specific clones of a clinical strain of human cytomegalovirus (HCMV). Active viral gene expression was required for activation of both cell types. Primary NKG2A-KIR2DS1+ NK cell subsets degranulated after coculture with HCMV-infected HFFFs. The W6/32 antibody to HLA class I blocked the KIR2DS1 reporter cell interaction with its ligand on HCMV-infected HFFFs but did not block interaction with KIR2DL1. This implies a differential recognition of HLA-C by KIR2DL1 and KIR2DS1. The data suggest that modulation of HLA-C by HCMV is required for a potent KIR2DS1-mediated NK cell activation.
Collapse
Affiliation(s)
| | - Chiwen Chang
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, UK,*Correspondence: Mark R. Wills, ; John Trowsdale,
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK,*Correspondence: Mark R. Wills, ; John Trowsdale,
| |
Collapse
|
18
|
Ortega-Villaizan M, Chico V, Martinez-Lopez A, Garcia-Valtanen P, Coll JM, Estepa A. Development of new therapeutical/adjuvant molecules by pepscan mapping of autophagy and IFN inducing determinants of rhabdoviral G proteins. Mol Immunol 2016; 70:118-24. [PMID: 26759988 DOI: 10.1016/j.molimm.2015.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 01/11/2023]
Abstract
Surface glycoproteins of enveloped virus are potent elicitors of both innate and adaptive host immune responses. Therefore, the identification of viral glycoprotein determinants directly implicated in the induction of these responses might be of special interest for designing new therapeutical/adjuvant molecules. In this work we review the contribution of the "pepscan" approach to the screening of viral functions in the sequence of glycoprotein G (gpG) of the fish rhabdovirus of viral hemorrhagic septicemia (VHSV). Among others, by scanning gpG peptides, it has been possible to identify and validate minimal determinants for gpG directly implicated in initiating the fish type I Interferon-associated immune responses as well as in the antiviral autophagy program. Further fine-tunning of the identified peptides in the gpG of VHSV has allowed designing novel adjuvants that decrease DNA vaccine requirements and identify possible innovative antiviral molecules. In addition, these results have also contributed to improve our knowledge on how to stimulate the fish immune system.
Collapse
Affiliation(s)
| | - V Chico
- IBMC, Miguel Hernandez University, 03202 Elche, Spain
| | | | | | - J M Coll
- INIA-SIGT-Biotechnology, 28040 Madrid, Spain.
| | - A Estepa
- IBMC, Miguel Hernandez University, 03202 Elche, Spain.
| |
Collapse
|
19
|
Primary Human Blood Dendritic Cells for Cancer Immunotherapy-Tailoring the Immune Response by Dendritic Cell Maturation. Biomedicines 2015; 3:282-303. [PMID: 28536413 PMCID: PMC5344227 DOI: 10.3390/biomedicines3040282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022] Open
Abstract
Dendritic cell (DC)-based cancer vaccines hold the great promise of tipping the balance from tolerance of the tumor to rejection. In the last two decades, we have gained tremendous knowledge about DC-based cancer vaccines. The maturation of DCs has proven indispensable to induce immunogenic T cell responses. We review the insights gained from the development of maturation cocktails in monocyte derived DC-based trials. More recently, we have also gained insights into the functional specialization of primary human blood DC subsets. In peripheral human blood, we can distinguish at least three primary DC subsets, namely CD1c+ and CD141+ myeloid DCs and plasmacytoid DCs. We reflect the current knowledge on maturation and T helper polarization by these blood DC subsets in the context of DC-based cancer vaccines. The maturation stimulus in combination with the DC subset will determine the type of T cell response that is induced. First trials with these natural DCs underline their excellent in vivo functioning and mark them as promising tools for future vaccination strategies.
Collapse
|
20
|
Summerfield A, Auray G, Ricklin M. Comparative Dendritic Cell Biology of Veterinary Mammals. Annu Rev Anim Biosci 2015; 3:533-57. [DOI: 10.1146/annurev-animal-022114-111009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Artur Summerfield
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland;
| | - Gael Auray
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland;
| | - Meret Ricklin
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland;
| |
Collapse
|
21
|
Gruber-Wackernagel A, Byrne SN, Wolf P. Polymorphous light eruption: clinic aspects and pathogenesis. Dermatol Clin 2015; 32:315-34, viii. [PMID: 24891054 DOI: 10.1016/j.det.2014.03.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polymorphous light eruption is an immunologically mediated photodermatosis with high prevalence, particularly among young women in temperate climates, characterized by pruritic skin lesions of variable morphology, occurring in spring or early summer on sun-exposed body sites. A resistance to ultraviolet radiation (UVR)-induced immunosuppression and a subsequent delayed-type hypersensitivity response to a photoantigen have been suggested as key factors in the disease. Molecular and immunologic disturbances associated with disease pathogenesis include a failure of skin infiltration by neutrophils and other regulatory immune cells on UVR exposure linked to a disturbed cytokine microenvironment. Standard management is based on prevention.
Collapse
Affiliation(s)
- Alexandra Gruber-Wackernagel
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria
| | - Scott N Byrne
- Cellular Photoimmunology Group, Infectious Diseases and Immunology, Department of Dermatology, Sydney Medical School, Royal Prince Alfred Hospital, The University of Sydney, 676, Blackburn Building D06, Darlington, New South Wales 2006, Australia
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
22
|
Galani IE, Koltsida O, Andreakos E. Type III interferons (IFNs): Emerging Master Regulators of Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:1-15. [PMID: 26324342 DOI: 10.1007/978-3-319-15774-0_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lambda interferons (IFN-λs), type III interferons or interleukins 28 and 29 are the latest addition to the class II cytokine family. They share low homology with the interferon (IFN) and IL-10 cytokine families, yet they exhibit common and unique activities, the full spectrum of which still remains incompletely understood. Although initially described for their antiviral functions, it is now appreciated that IFN-λs also mediate diverse antitumor and immune-modulatory effects, and are key determinants of innate immunity at mucosal sites such as the gastrointestinal and respiratory tracks. Here, we are reviewing the biological functions of IFN-λs, the mechanisms controlling their expression, their downstream effects and their role in the maintenance of homeostasis and disease. We are also exploring the potential application of IFN-λs as novel therapeutics.
Collapse
Affiliation(s)
- Ioanna E Galani
- Department of Immunology, Center for Translational and Clinical Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | | | | |
Collapse
|
23
|
Paolini R, Bernardini G, Molfetta R, Santoni A. NK cells and interferons. Cytokine Growth Factor Rev 2014; 26:113-20. [PMID: 25443799 DOI: 10.1016/j.cytogfr.2014.11.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 12/20/2022]
Abstract
The role of Natural Killer cells in host defense against infections as well as in tumour surveillance has been widely appreciated for a number of years. Upon recognition of "altered" cells, NK cells release the content of cytolytic granules, leading to the death of target cells. Moreover, NK cells are powerful producers of chemokines and cytokines, particularly Interferon-γ (IFN-γ), of which they are the earliest source upon a variety of infections. Despite being armed to fight against pathogens, NK cells become fully functional upon an initial phase of activation that requires the action of several cytokines, including type I IFNs. Type I IFNs are now recognized as key players in antiviral defense and immune regulation, and evidences from both mouse models of disease and in vitro studies support the existence of an alliance between type I IFNs and NK cells to ensure effective protection against viral infections. This review will focus on the role of type I IFNs in regulating NK cell functions to elicit antiviral response and on NK cell-produced IFN-γ beneficial and pathological effects.
Collapse
Affiliation(s)
- Rossella Paolini
- Department of Molecular Medicine, Istituto Pasteur Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Istituto Pasteur Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Istituto Pasteur Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; IRCCS, Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
24
|
Sei JJ, Ochoa AS, Bishop E, Barlow JW, Golde WT. Phenotypic, ultra-structural, and functional characterization of bovine peripheral blood dendritic cell subsets. PLoS One 2014; 9:e109273. [PMID: 25295753 PMCID: PMC4190170 DOI: 10.1371/journal.pone.0109273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/01/2014] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DC) are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR) agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c−. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC), and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle.
Collapse
Affiliation(s)
- Janet J. Sei
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, United States of America
- Department of Animal Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Amanda S. Ochoa
- Department of Animal Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Elizabeth Bishop
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, United States of America
| | - John W. Barlow
- Department of Animal Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - William T. Golde
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Santana-de Anda K, Gómez-Martín D, Soto-Solís R, Alcocer-Varela J. Plasmacytoid dendritic cells: Key players in viral infections and autoimmune diseases. Semin Arthritis Rheum 2013; 43:131-6. [DOI: 10.1016/j.semarthrit.2012.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/27/2012] [Accepted: 12/31/2012] [Indexed: 12/27/2022]
|
26
|
Guéry L, Hugues S. Tolerogenic and activatory plasmacytoid dendritic cells in autoimmunity. Front Immunol 2013; 4:59. [PMID: 23508732 PMCID: PMC3589693 DOI: 10.3389/fimmu.2013.00059] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/19/2013] [Indexed: 11/30/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a particular subset of DCs that link innate and adaptive immunity. They are responsible for the substantial production of type 1 interferon (IFN-I) in response to viral RNA or DNA through activation of TLR7 and 9. Furthermore, pDCs present antigens (Ag) and induce naïve T cell differentiation. It has been demonstrated that pDCs can induce immunogenic T cell responses through differentiation of cytotoxic CD8+ T cells and effector CD4+ T cells. Conversely, pDCs exhibit strong tolerogenic functions by inducing CD8+ T cell deletion, CD4+ T cell anergy, and Treg differentiation. However, since IFN-I produced by pDCs efficiently activates and recruits conventional DCs, B cells, T cells, and NK cells, pDCs also indirectly affect the nature and the amplitude of adaptive immune responses. As a consequence, the precise role of Ag-presenting functions of pDCs in adaptive immunity has been difficult to dissect in vivo. Additionally, different experimental procedures led to conflicting results regarding the outcome of T cell responses induced by pDCs. During the development of autoimmunity, pDCs have been shown to play both immunogenic and tolerogenic functions depending on disease, disease progression, and the experimental conditions. In this review, we will discuss the relative contribution of innate and adaptive pDC functions in modulating T cell responses, particularly during the development of autoimmunity.
Collapse
Affiliation(s)
- Leslie Guéry
- Department of Pathology and Immunology, University of Geneva Medical School Geneva, Switzerland
| | | |
Collapse
|
27
|
Abstract
Varicella zoster virus (VZV) is a highly successful human pathogen, which is never completely eliminated from the host. VZV causes two clinically distinct diseases, varicella (chickenpox) during primary infection and herpes zoster (shingles) following virus reactivation from latency. Throughout its lifecycle the virus encounters the innate and adaptive immune response, and in order to prevent eradication it has developed many mechanisms to evade and overcome these responses. This review will provide a comprehensive overview of the host immune response to VZV infection, during the multiple stages of the virus lifecycle and at key sites of VZV infection. We will also briefly describe some of the strategies employed by the virus to overcome the host immune response and the ongoing challenges in further elucidating the interplay between VZV and the host immune response in an attempt to lead to better therapies and a ‘second generation’ vaccine for VZV disease.
Collapse
Affiliation(s)
- Megan Steain
- Discipline of Infectious Diseases & Immunology, The University of Sydney, NSW, Australia
- Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases & Immunology, The University of Sydney, NSW, Australia
- Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases & Immunology, The University of Sydney, NSW, Australia
| |
Collapse
|
28
|
Zhang APP, Abelson DM, Bornholdt ZA, Liu T, Woods VL, Saphire EO. The ebolavirus VP24 interferon antagonist: know your enemy. Virulence 2012; 3:440-5. [PMID: 23076242 DOI: 10.4161/viru.21302] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Suppression during the early phases of the immune system often correlates directly with a fatal outcome for the host. The ebolaviruses, some of the most lethal viruses known, appear to cripple initial stages of the host defense network via multiple distinct paths. Two of the eight viral proteins are critical for immunosuppression. One of these proteins is VP35, which binds double-stranded RNA and antagonizes several antiviral signaling pathways. The other protein is VP24, which binds transporter molecules to prevent STAT1 translocation. A more recent discovery is that VP24 also binds STAT1 directly, suggesting that VP24 may operate in at least two separate branches of the interferon pathway. New crystal structures of VP24 derived from pathogenic and nonpathogenic ebolaviruses reveal its novel, pyramidal fold, upon which can be mapped sites required for virulence and for STAT1 binding. These structures of VP24, and new information about its direct binding to STAT1, provide avenues by which we may explore its many roles in the viral life cycle, and reasons for differences in pathogenesis among the ebolaviruses.
Collapse
Affiliation(s)
- Adrianna P P Zhang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Production of type I interferon (IFN-α/β) is a common cellular response to virus infection. IFN-α/β has a dual role in combating infection, triggering innate antiviral mechanisms and stimulating the generation of an adaptive immune response. This review focuses on the effects of IFN-α/β on one particular immune cell type, the T cell, and the impact of IFN-α/β-mediated signalling in T cells on the immune response. The critical role of T-cell responsiveness to IFN-α/β for the generation of productive T-cell responses after infections with certain viruses in vivo is discussed in the context of in vitro experiments investigating the mechanisms by which IFN-α/β modifies T-cell function. These studies reveal complex effects of IFN-α/β on T cells, with the consequences of exposure to IFN-α/β depending on the context of other signals received by the T cell.
Collapse
|
30
|
The ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold. PLoS Pathog 2012; 8:e1002550. [PMID: 22383882 PMCID: PMC3285596 DOI: 10.1371/journal.ppat.1002550] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/10/2012] [Indexed: 01/07/2023] Open
Abstract
Ebolaviruses cause hemorrhagic fever with up to 90% lethality and in fatal cases, are characterized by early suppression of the host innate immune system. One of the proteins likely responsible for this effect is VP24. VP24 is known to antagonize interferon signaling by binding host karyopherin α proteins, thereby preventing them from transporting the tyrosine-phosphorylated transcription factor STAT1 to the nucleus. Here, we report that VP24 binds STAT1 directly, suggesting that VP24 can suppress at least two distinct branches of the interferon pathway. Here, we also report the first crystal structures of VP24, derived from different species of ebolavirus that are pathogenic (Sudan) and nonpathogenic to humans (Reston). These structures reveal that VP24 has a novel, pyramidal fold. A site on a particular face of the pyramid exhibits reduced solvent exchange when in complex with STAT1. This site is above two highly conserved pockets in VP24 that contain key residues previously implicated in virulence. These crystal structures and accompanying biochemical analysis map differences between pathogenic and nonpathogenic viruses, offer templates for drug design, and provide the three-dimensional framework necessary for biological dissection of the many functions of VP24 in the virus life cycle.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Loss of blood plasmacytoid dendritic cell (pDC) in HIV-1 infection is thought to impact on adaptive immune responses whilst the virus also induces aberrant interferon alpha (IFN-α) production that may fuel chronic immune activation and drive disease progression. Recent attention has focussed on the pathway of HIV-induced IFN-α production by pDC and the new data are reviewed here together with the pathway leading to infection. RECENT FINDINGS Attachment to CD4 and chemokine co-receptors is essential for HIV-1 infection. Although CD4, but not co-receptor binding, is a major route for passage to endosomes and triggering of IFN-α secretion this may also occur by CD4-independent mechanisms involving other receptors. In contrast to other Toll-like receptor (TLR)-7 ligands and RNA viruses that stimulate pDC to secrete IFN-α for 2-3 h, HIV-1-stimulated pDC can give sustained IFN-α production for up to 48 h which may contribute to chronic immune activation. This may reflect retention of HIV in early endosomes which also seems to be associated with incomplete maturation induced by HIV. SUMMARY HIV-1-pDC interactions contribute to pathogenesis through depletion and aberrant IFN-α production. New data on the pathway of pDC HIV-stimulated IFN-α secretion may facilitate therapy to reduce chronic immune activation and slow disease progression.
Collapse
|
32
|
Chen X, Leach D, Hunter DA, Sanfelippo D, Buell EJ, Zemple SJ, Grayson MH. Characterization of intestinal dendritic cells in murine norovirus infection. ACTA ACUST UNITED AC 2011; 4:22-30. [PMID: 22162983 DOI: 10.2174/1874226201104010022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have shown that respiratory viral infections drive allergic disease through dendritic cells, whether gastrointestinal viruses induce allergies is not known. Norovirus infections are a major cause of gastroenteritis in humans. We used murine norovirus (MNV) to explore the effect of MNV infection on gastrointestinal conventional DCs (cDCs) and plasmacytoid DCs (pDCs). MNV infection induced disparate effects on cDCs and pDCs in lymphoid tissues of the small intestine and draining mesenteric lymph nodes. FcεRI was transiently expressed on lamina propria cDCs, but not on pDCs. In addition, feeding ovalbumin during the viral infection led to a modest, brief induction of anti-ovalbumin IgE. Together, these data suggest that like with a respiratory viral infection, an intestinal viral infection may be sufficient to induce changes in DCs and the generation of food-specific IgE. Whether this represents a novel mechanism of food allergy remains to be determined.
Collapse
Affiliation(s)
- Xiuxu Chen
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin
| | | | | | | | | | | | | |
Collapse
|
33
|
Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V. Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 2011; 29:163-83. [PMID: 21219184 DOI: 10.1146/annurev-immunol-031210-101345] [Citation(s) in RCA: 450] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized in rapid and massive secretion of type I interferon (IFN-α/β) in response to foreign nucleic acids. Combined with their antigen presentation capacity, this powerful functionality enables pDCs to orchestrate innate and adaptive immune responses. pDCs combine features of both lymphocytes and classical dendritic cells and display unique molecular adaptations to nucleic acid sensing and IFN production. In the decade since the identification of the pDC as a distinct immune cell type, our understanding of its molecular underpinnings and role in immunity has progressed rapidly. Here we review select aspects of pDC biology including cell fate establishment and plasticity, specific molecular mechanisms of pDC function, and the role of pDCs in T cell responses, antiviral immunity, and autoimmune diseases. Important unresolved questions remain in these areas, promising exciting times in pDC research for years to come.
Collapse
Affiliation(s)
- Boris Reizis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
34
|
Huang Z, Fu B, Zheng SG, Li X, Sun R, Tian Z, Wei H. Involvement of CD226+ NK cells in immunopathogenesis of systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2011; 186:3421-31. [PMID: 21296979 DOI: 10.4049/jimmunol.1000569] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dysfunction of immune systems, including innate and adaptive immunity, is responsible for the immunopathogenesis of systemic lupus erythematosus (SLE). NK cells are a major part of the innate immune system, and diminished populations of NK cells have been reported in SLE patients. However, the mechanisms behind this decrease and the role of NK cells in SLE pathogenesis remain poorly understood. In this study, we found that a deficiency of NK cells, especially CD226(+) NK cells, is prominent in patients with active SLE. Meanwhile, expression of the CD226 ligands CD112 and CD155 on plasmacytoid dendritic cells is observed in SLE patients; thus, activation of CD226(+) NK cells may be induced by CD226-ligand interactions. Furthermore, IFN-α, which is mainly produced by plasmacytoid dendritic cells, can mediate the activation-induced cell death of NK cells. Therefore, these processes likely contribute to the loss of NK cells in patients with active SLE. Despite the impaired cytotoxicity of peripheral NK cells in human SLE patients and mouse SLE models, we provide evidence that CD226(+) NK cells infiltrate the kidneys of predisease MRL-lpr/lpr mice. Kidney-infiltrating NK cells displayed an activated phenotype and a marked ability to produce cytotoxic granules. These results suggest that, before apoptosis, activated NK cells can infiltrate tissues and, to some extent, mediate tissue injury by producing cytotoxic granules and immunoregulatory cytokines.
Collapse
Affiliation(s)
- Zhan Huang
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Cunningham AL, Abendroth A, Jones C, Nasr N, Turville S. Viruses and Langerhans cells. Immunol Cell Biol 2010; 88:416-23. [PMID: 20445632 DOI: 10.1038/icb.2010.42] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Langerhans cells (LCs) are the resident dendritic cells (DCs) of epidermis in human mucosal stratified squamous epithelium and the skin. A phenotypically similar DC has recently been discovered as a minor population in the murine dermis. In epidermis, LCs function as sentinel antigen-presenting cells that can capture invading viruses such as herpes simplex virus (HSV), varicella-zoster virus (VZV) and human immunodeficiency virus (HIV). This interaction between LCs and viruses results in highly variable responses, depending on the virus as discussed in this review. For example, HSV induces apoptosis in LCs but HIV does not. LCs seem to be the first in a complex chain of antigen presentation to T cells in lymph nodes for HSV and possibly VZV, or they transport virus to T cells, as described for HIV and maybe VZV. Together with epidermal keratinocytes they may also have a role in the initial innate immune response at the site of infection in the epidermis, although this is not fully known. The full spectrum of biological responses of LCs even to these viruses has yet to be understood and will require complementary studies in human LCs in vitro and in murine models in vivo.
Collapse
Affiliation(s)
- Anthony L Cunningham
- Centre for Virus Research, Westmead Millennium Institute, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
36
|
Pepscan mapping of viral hemorrhagic septicemia virus glycoprotein G major lineal determinants implicated in triggering host cell antiviral responses mediated by type I interferon. J Virol 2010; 84:7140-50. [PMID: 20463070 DOI: 10.1128/jvi.00023-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Surface glycoproteins of enveloped virus are potent elicitors of type I interferon (IFN)-mediated antiviral responses in a way that may be independent of the well-studied genome-mediated route. However, the viral glycoprotein determinants responsible for initiating the IFN response remain unidentified. In this study, we have used a collection of 60 synthetic 20-mer overlapping peptides (pepscan) spanning the full length of glycoprotein G (gpG) of viral hemorrhagic septicemia virus (VHSV) to investigate what regions of this protein are implicated in triggering the type I IFN-associated immune responses. Briefly, two regions with ability to increase severalfold the basal expression level of the IFN-stimulated mx gene and to restrict the spread of virus among responder cells were mapped to amino acid residues 280 to 310 and 340 to 370 of the gpG protein of VHSV. In addition, the results obtained suggest that an interaction between VHSV gpG and integrins might trigger the host IFN-mediated antiviral response after VHSV infection. Since it is known that type I IFN plays an important role in determining/modulating the protective-antigen-specific immune responses, the identification of viral glycoprotein determinants directly implicated in the type I IFN induction might be of special interest for designing new adjuvants and/or more-efficient and cost-effective viral vaccines as well as for improving our knowledge on how to stimulate the innate immune system.
Collapse
|
37
|
Huch JH, Cunningham AL, Arvin AM, Nasr N, Santegoets SJAM, Slobedman E, Slobedman B, Abendroth A. Impact of varicella-zoster virus on dendritic cell subsets in human skin during natural infection. J Virol 2010; 84:4060-72. [PMID: 20130046 PMCID: PMC2849518 DOI: 10.1128/jvi.01450-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 01/08/2010] [Indexed: 01/07/2023] Open
Abstract
Varicella-zoster virus (VZV) causes varicella and herpes zoster, diseases characterized by distinct cutaneous rashes. Dendritic cells (DC) are essential for inducing antiviral immune responses; however, the contribution of DC subsets to immune control during natural cutaneous VZV infection has not been investigated. Immunostaining showed that compared to normal skin, the proportion of cells expressing DC-SIGN (a dermal DC marker) or DC-LAMP and CD83 (mature DC markers) were not significantly altered in infected skin. In contrast, the frequency of Langerhans cells was significantly decreased in VZV-infected skin, whereas there was an influx of plasmacytoid DC, a potent secretor of type I interferon (IFN). Langerhans cells and plasmacytoid DC in infected skin were closely associated with VZV antigen-positive cells, and some Langerhans cells and plasmacytoid DC were VZV antigen positive. To extend these in vivo observations, both plasmacytoid DC (PDC) isolated from human blood and Langerhans cells derived from MUTZ-3 cells were shown to be permissive to VZV infection. In VZV-infected PDC cultures, significant induction of alpha IFN (IFN-alpha) did not occur, indicating the VZV inhibits the capacity of PDC to induce expression of this host defense cytokine. This study defines changes in the response of DC which occur during cutaneous VZV infection and implicates infection of DC subtypes in VZV pathogenesis.
Collapse
Affiliation(s)
- Jennifer H. Huch
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Anthony L. Cunningham
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Ann M. Arvin
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Najla Nasr
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Saskia J. A. M. Santegoets
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Eric Slobedman
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| |
Collapse
|
38
|
Swiecki M, Colonna M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol Rev 2010; 234:142-62. [PMID: 20193017 PMCID: PMC3507434 DOI: 10.1111/j.0105-2896.2009.00881.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are bone marrow-derived cells that secrete large amounts of type I interferon (IFN) in response to viruses. Type I IFNs are pleiotropic cytokines with antiviral activity that also enhance innate and adaptive immune responses. Viruses trigger activation of pDCs and type I IFN responses mainly through the Toll-like receptor pathway. However, a variety of activating and inhibitory pDC receptors fine tune the amplitude of type I IFN responses. Chronic activation and secretion of type I IFN in the absence of infection can promote autoimmune diseases. Furthermore, while activated pDCs promote immunity and autoimmunity, resting or alternatively activated pDCs may be tolerogenic. The various roles of pDCs have been extensively studied in vitro and in vivo with depleting antibodies. However, depleting antibodies cross-react with other cell types that are critical for eliciting protective immunity, potentially yielding ambiguous phenotypes. Here we discuss new approaches to assess pDC functions in vivo and provide preliminary data on their potential roles during viral infections. Such approaches would also prove useful in the more specific evaluation of how pDCs mediate tolerance and autoimmunity. Finally, we discuss the emergent role of pDCs and one of their receptors, tetherin, in human immunodeficiency virus pathogenesis.
Collapse
Affiliation(s)
- Melissa Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
39
|
Stoddart CA, Keir ME, McCune JM. IFN-alpha-induced upregulation of CCR5 leads to expanded HIV tropism in vivo. PLoS Pathog 2010; 6:e1000766. [PMID: 20174557 PMCID: PMC2824759 DOI: 10.1371/journal.ppat.1000766] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 01/13/2010] [Indexed: 01/12/2023] Open
Abstract
Chronic immune activation and inflammation (e.g., as manifest by production of type I interferons) are major determinants of disease progression in primate lentivirus infections. To investigate the impact of such activation on intrathymic T-cell production, we studied infection of the human thymus implants of SCID-hu Thy/Liv mice with X4 and R5 HIV. X4 HIV was observed to infect CD3−CD4+CD8−CXCR4+CCR5− intrathymic T-cell progenitors (ITTP) and to abrogate thymopoiesis. R5 HIV, by contrast, first established a nonpathogenic infection of thymic macrophages and then, after many weeks, began to replicate in ITTP. We demonstrate here that the tropism of R5 HIV is expanded and pathogenicity enhanced by upregulation of CCR5 on these key T-cell progenitors. Such CCR5 induction was mediated by interferon-α (IFN-α) in both thymic organ cultures and in SCID-hu mice, and antibody neutralization of IFN-α in R5 HIV-infected SCID-hu mice inhibited both CCR5 upregulation and infection of the T-cell progenitors. These observations suggest a mechanism by which IFN-α production may paradoxically expand the tropism of R5 HIV and, in so doing, accelerate disease progression. Human immunodeficiency virus (HIV), a lentivirus, is the causative agent of AIDS. Chronic immune activation and inflammation are major determinants of disease progression in primate lentivirus infections and are associated with the production of type I interferon. To investigate the impact of type I interferon on HIV infection, we studied the human thymus implants of SCID-hu Thy/Liv mice infected with HIV that uses either CXCR4 (X4 HIV) or CCR5 (R5 HIV) as a coreceptor. X4 HIV was observed to infect T-cell progenitors in the thymus and to disrupt T-cell production by that organ. R5 HIV, by contrast, first established a nondisruptive infection of thymic macrophages and then began to infect intrathymic T-cell progenitors. We report here that the tropism of R5 HIV is expanded and T-cell disruption enhanced by increased expression of CCR5 on these key T-cell progenitors. Such CCR5 induction was mediated by interferon-α (IFN-α) in both thymic organ cultures and in SCID-hu mice. Moreover, antibody neutralization of IFN-α in R5 HIV-infected SCID-hu mice inhibited both CCR5 upregulation and infection of the T-cell progenitors. These observations suggest a mechanism by which IFN-α may paradoxically expand the tropism of R5 HIV and accelerate disease progression.
Collapse
Affiliation(s)
- Cheryl A Stoddart
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, USA.
| | | | | |
Collapse
|
40
|
Rönnblom L, Eloranta ML, Alm GV. Role of Natural Interferon-α Producing Cells (Plasmacytoid Dendritic Cells) in Autoimmunity. Autoimmunity 2009; 36:463-72. [PMID: 14984023 DOI: 10.1080/08916930310001602128] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The type I interferons (IFNs) have antiviral, cytostatic and prominent immunomodulatory effects, which all are of great importance during viral infections. However, prolonged exposure of the immune system to type I IFN can break tolerance and initiate an autoimmune reaction, eventually leading to autoimmune disease. Recent observations in patients with systemic lupus erythematosus (SLE) have revealed that such individuals have endogenous IFN-alpha inducers, causing an ongoing IFN-alpha production and consequently a continuous stimulation of the immune system. These IFN-alpha inducers consist of small immune complexes (IC) containing DNA or RNA and act on the principal IFN-alpha producing cell, the natural IFN-alpha producing cell (NIPC), also termed the plasmacytoid dendritic cell (PDC). The NIPC/PDC is a key cell in both the innate and adaptive immune response but can also, either directly or via produced IFN-alpha, have a pivotal role in autoimmunity. In this review we summarize recent data concerning NIPC/PDC, including their activation, regulation, function and possible role in autoimmune diseases, especially SLE.
Collapse
Affiliation(s)
- Lars Rönnblom
- Section of Rheumatology, Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden.
| | | | | |
Collapse
|
41
|
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can form immune complexes and deposit in tissues, causing inflammation and organ damage. There is evidence that interferons and some interleukins can have an active role in the pathogenesis of SLE and can contribute significantly to the immune imbalance in the disease, whereas the role of some cytokines (such as TNF) is still debated. This review discusses the activity of several cytokines in SLE, their effects on the immune cells in relation to the disease pathogenesis, and the promise and limitations of cytokine-based therapies in clinical trials for lupus patients.
Collapse
Affiliation(s)
- Elaine V. Lourenço
- Division of Rheumatology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1670, USA
| | - Antonio La Cava
- Division of Rheumatology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1670, USA
| |
Collapse
|
42
|
Summerfield A, McCullough KC. The porcine dendritic cell family. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:299-309. [PMID: 18582937 PMCID: PMC7103208 DOI: 10.1016/j.dci.2008.05.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/05/2008] [Accepted: 05/05/2008] [Indexed: 05/07/2023]
Abstract
Considering the pivotal roles played by dendritic cells (DCs) in both innate and adaptive immune responses, advances in the field of porcine immunology DC biology have recently progressed rapidly. As with the more extensively studied murine and human DCs, porcine DC can be generated from bone marrow haematopoietic cells or monocytes, and have been analysed in various immunological and non-immunological tissues. Both conventional DC (cDC) and plasmacytoid DC (pDC) have been characterized. The function of porcine monocyte-derived DC has not only been characterized in terms of antigen presentation and lymphocyte activation, but also their response to various ligands of pattern recognition receptors. These have been characterized in terms of the induction of DC maturation and pro-inflammatory, Th1-like or Th2-like cytokines secretion. Porcine pDC most effectively sense virus infections and are characterized by their capacity to produce large quantities of IFN-alpha and the pro-inflammatory cytokines TNF-alpha, IL-6 and IL-12. As such, the DC family as a whole is a powerful ally in the host battle against pathogen attack. Nevertheless, DC in particular tissue environments or under particular stimuli can down-regulate immune response development. This is not only important for preventing over-activation of the immune system and also for ensuring tolerance against self or "friendly" substances including food components, but may also be used as a mechanism of pathogens to evade immune responses.
Collapse
Affiliation(s)
- Artur Summerfield
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
| | | |
Collapse
|
43
|
|
44
|
Gilliet M, Cao W, Liu YJ. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 2008; 8:594-606. [PMID: 18641647 DOI: 10.1038/nri2358] [Citation(s) in RCA: 919] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are important mediators of antiviral immunity through their ability to produce large amounts of type I interferons (IFNs) on viral infection. This function of pDCs is linked to their expression of Toll-like receptor 7 (TLR7) and TLR9, which sense viral nucleic acids within the early endosomes. Exclusion of self nucleic acids from TLR-containing early endosomes normally prevents pDC responses to them. However, in some autoimmune diseases, self nucleic acids can be modified by host factors and gain entrance to pDC endosomes, where they activate TLR signalling. Several pDC receptors negatively regulate type I IFN responses by pDCs during viral infection and for normal homeostasis.
Collapse
Affiliation(s)
- Michel Gilliet
- Department of Immunology and Center of Cancer Immunology Research, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
45
|
Rempel H, Calosing C, Sun B, Pulliam L. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS One 2008; 3:e1967. [PMID: 18414664 PMCID: PMC2288672 DOI: 10.1371/journal.pone.0001967] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 03/06/2008] [Indexed: 11/30/2022] Open
Abstract
Background HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1), a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases. Methodology/Principal Findings We analyzed sialoadhesin expression on CD14+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-α and interferon-γ but not tumor necrosis factor-α. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection. Conclusions/Significance Increased sialoadhesin expression on CD14+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells.
Collapse
Affiliation(s)
- Hans Rempel
- Department of Laboratory Medicine at the Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Cyrus Calosing
- Department of Laboratory Medicine at the Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Bing Sun
- Department of Laboratory Medicine at the Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Lynn Pulliam
- Department of Laboratory Medicine at the Veterans Affairs Medical Center, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Piña-Oviedo S, Herrera-Medina H, Coronado H, Del Valle L, Ortiz-Hidalgo C. CD4+/CD56+ hematodermic neoplasm: presentation of 2 cases and review of the concept of an uncommon tumor originated in plasmacytoid dendritic cells expressing CD123 (IL-3 receptor alpha). Appl Immunohistochem Mol Morphol 2008; 15:481-6. [PMID: 18091395 DOI: 10.1097/01.pai.0000213139.39654.40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CD4/CD56 hematodermic neoplasm is a rare neoplasm presenting with cutaneous nodules, lymphadenopathy, bone marrow infiltration, and an aggressive clinical course. Recently, the plasmacytoid dendritic cell origin of this neoplasm has been demonstrated. Plasmacytoid dendritic cell is a hematopoietic-derived cell implicated in the regulation of innate and adaptive cell immunity and in the production of certain regulatory cytokines. Recently it has been demonstrated that these cells express cell surface markers such as IL-3 receptor alpha (CD123). In the present report, we describe the clinical, histologic, and immunohistochemical characteristics of 2 cases of CD4/CD56 hematodermic neoplasm. Both patients were male and the age at the time of diagnosis was 36 and 75 years, respectively. Clinical findings were limited to the skin and consisted of multiple cutaneous nodules located in the thorax and extremities, some of them ulcerated. Histologically, the tumors were characterized by a nonepidermotropic, dermal and subdermal infiltration of homogeneous medium-sized cells resembling lymphoblasts or myeloblasts. Immunohistochemical characterization of the tumors showed expression of CD4, CD56, CD43, and CD123, whereas CD8, CD20, and MPO were negative. Immunoreactivity for CD3, which has been described in rare occasions, was found only in one of the cases. This characteristic profile in addition to the expression of CD123, which was detected in both cases, can be used as valuable tools in the diagnosis of this rare neoplasm.
Collapse
Affiliation(s)
- Sergio Piña-Oviedo
- Laboratory of Tissue and Cell Biology, School of Medicine, Universidad Panamericana, Donatello 59, Colonia Insurgentes Mixcoac, C.P. 03920, Mexico. City
| | | | | | | | | |
Collapse
|
47
|
Abstract
Four years after the discovery of mouse plasmacytoid dendritic cells (pDC), pDC are still very much an 'enigmatic' cell type. It is clear that pDC are potent producers of type I IFN in response to viral, bacterial and even mammalian nucleotides. The role that they play in vivo before and after activation is still under scrutiny. This review concentrates on the pathways to activation of pDC, examining the activating ligands, receptors and signalling molecules that are known to be involved, and the relevance of these activation pathways to human disease.
Collapse
Affiliation(s)
- Martina Fuchsberger
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
48
|
Hokeness-Antonelli KL, Crane MJ, Dragoi AM, Chu WM, Salazar-Mather TP. IFN-alphabeta-mediated inflammatory responses and antiviral defense in liver is TLR9-independent but MyD88-dependent during murine cytomegalovirus infection. THE JOURNAL OF IMMUNOLOGY 2007; 179:6176-83. [PMID: 17947693 DOI: 10.4049/jimmunol.179.9.6176] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chemokine responses critical for inflammation and promotion of effective innate control of murine CMV (MCMV) in liver have been shown to be dependent on immunoregulatory functions elicited by IFN-alphabeta. However, it remains to be determined whether upstream factors that promote viral sensing resulting in the rapid secretion of IFN-alphabeta in liver differ from those described in other tissues. Because plasmacytoid dendritic cells (pDCs) are known producers of high levels of systemic IFN-alpha in response to MCMV, this study examines the in vivo contribution of pDCs to IFN-alpha production in the liver, and whether production of the cytokine and ensuing inflammatory events are dependent on TLR9, MyD88, or both. We demonstrate that whereas MyD88 deficiency markedly impaired secretion of IFN-alpha, production of the cytokine was largely independent of TLR9 signaling, in the liver. MyD88 and TLR9 were needed for IFN-alpha production in the spleen. Moreover, hepatic but not splenic pDCs produced significant amounts of intracellular IFN-alpha in the absence of TLR9 function during infection. Furthermore, production of CCL2, CCL3, and IFN-gamma, as well as the accumulation of macrophages and NK cells, was not affected in the absence of functional TLR9 in the liver. In contrast, these responses were dramatically reduced in MyD88(-/-) mice. Additionally, MyD88(-/-) but not TLR9(-/-) mice exhibited increased sensitivity to virus infection in liver. Collectively, our results define contrasting compartmental functions for TLR9 and MyD88, and suggest that the infected tissue site uniquely contributes to the process of virus sensing and regulation of localized antiviral responses.
Collapse
Affiliation(s)
- Kirsten L Hokeness-Antonelli
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
49
|
Chen L, Zhang W, Yue H, Han Q, Chen B, Shi M, Li J, Li B, You S, Shi Y, Zhao RC. Effects of Human Mesenchymal Stem Cells on the Differentiation of Dendritic Cells from CD34+Cells. Stem Cells Dev 2007; 16:719-31. [DOI: 10.1089/scd.2007.0065] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Lei Chen
- Sino-American Collaborative Laboratory, State Key Laboratory of Experimental Haematology, Institute of Haematology and Blood Diseases Hospital, and Tissue Engineering Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Wei Zhang
- Sino-American Collaborative Laboratory, State Key Laboratory of Experimental Haematology, Institute of Haematology and Blood Diseases Hospital, and Tissue Engineering Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Han Yue
- Sino-American Collaborative Laboratory, State Key Laboratory of Experimental Haematology, Institute of Haematology and Blood Diseases Hospital, and Tissue Engineering Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Qin Han
- Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Bin Chen
- Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Mingxia Shi
- Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Jing Li
- Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Binzong Li
- Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Shengguo You
- Sino-American Collaborative Laboratory, State Key Laboratory of Experimental Haematology, Institute of Haematology and Blood Diseases Hospital, and Tissue Engineering Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Yufang Shi
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
50
|
Wenzel J, Tüting T. Identification of type I interferon-associated inflammation in the pathogenesis of cutaneous lupus erythematosus opens up options for novel therapeutic approaches. Exp Dermatol 2007; 16:454-63. [PMID: 17437489 DOI: 10.1111/j.1600-0625.2007.00556.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is one of the most common dermatological autoimmune disorders worldwide. Recently, several studies provided evidence for a pathogenic role of type I interferons (IFNs) in this disease. Plasmacytoid dendritic cells are major type I IFN producers in CLE skin lesions. Type I IFNs are able to induce the expression of several proinflammatory chemokines, including CXCL9 and 10, and enhance the cytotoxic capacity of infiltrating cells. Additionally, adhesion molecules and chemokine receptors, such as intercellular adhesion molecule-1, cutaneous lymphocyte antigen, E-selectin, CCR4 and CXCR3, are involved in the recruitment of potentially autoreactive lymphocytes into the skin. Here, we review the role of type I IFNs, adhesion molecules and chemokine receptors in CLE and discuss options for novel therapeutic approaches.
Collapse
Affiliation(s)
- Joerg Wenzel
- Department of Dermatology, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany.
| | | |
Collapse
|