1
|
Cameron CM, Nieto S, Bosler L, Wong M, Bishop I, Mooney L, Cahill CM. Mechanisms Underlying the Anti-Suicidal Treatment Potential of Buprenorphine. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1. [PMID: 35265942 PMCID: PMC8903193 DOI: 10.3389/adar.2021.10009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Death by suicide is a global epidemic with over 800 K suicidal deaths worlwide in 2012. Suicide is the 10th leading cause of death among Americans and more than 44 K people died by suicide in 2019 in the United States. Patients with chronic pain, including, but not limited to, those with substance use disorders, are particularly vulnerable. Chronic pain patients have twice the risk of death by suicide compared to those without pain, and 50% of chronic pain patients report that they have considered suicide at some point due to their pain. The kappa opioid system is implicated in negative mood states including dysphoria, depression, and anxiety, and recent evidence shows that chronic pain increases the function of this system in limbic brain regions important for affect and motivation. Additionally, dynorphin, the endogenous ligand that activates the kappa opioid receptor is increased in the caudate putamen of human suicide victims. A potential treatment for reducing suicidal ideation and suicidal attempts is buprenorphine. Buprenorphine, a partial mu opioid agonist with kappa opioid antagonist properties, reduced suicidal ideation in chronic pain patients with and without an opioid use disorder. This review will highlight the clinical and preclinical evidence to support the use of buprenorphine in mitigating pain-induced negative affective states and suicidal thoughts, where these effects are at least partially mediated via its kappa antagonist properties.
Collapse
Affiliation(s)
- Courtney M. Cameron
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Nieto
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lucienne Bosler
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Megan Wong
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isabel Bishop
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Larissa Mooney
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Catherine M. Cahill
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Correspondence: Catherine M. Cahill,
| |
Collapse
|
2
|
Rosa I, Di Censo D, Ranieri B, Di Giovanni G, Scarnati E, Alecci M, Galante A, Florio TM. Comparison between Tail Suspension Swing Test and Standard Rotation Test in Revealing Early Motor Behavioral Changes and Neurodegeneration in 6-OHDA Hemiparkinsonian Rats. Int J Mol Sci 2020; 21:ijms21082874. [PMID: 32326015 PMCID: PMC7216013 DOI: 10.3390/ijms21082874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
The unilateral 6-hydroxydopamine (6-OHDA) model of Parkinson’s disease (PD) is one of the most commonly used in rodents. The anatomical, metabolic, and behavioral changes that occur after severe and stable 6-OHDA lesions have been extensively studied. Here, we investigated whether early motor behavioral deficits can be observed in the first week after the injection of 6-OHDA into the right substantia nigra pars compacta (SNc), and if they were indicative of the severity of the dopaminergic (DAergic) lesion in the SNc and the striatum at different time-points (day 1, 3, 5, 7, 14, 21). With this aim, we used our newly modified tail suspension swing test (TSST), the standard rotation test (RT), and immunohistochemical staining for tyrosine hydroxylase (TH). The TSST, but not the standard RT, revealed a spontaneous motor bias for the 6-OHDA-lesioned rats from the day 1 post-surgery. Both tests detected the motor asymmetry induced by (single and repeated) apomorphine (APO) challenges that correlated, in the first week, with the DAergic neuronal degeneration. The described TSST is fast and easy to perform, and in the drug-free condition is useful for the functional assessment of early motor asymmetry appearing after the 6-OHDA-lesion in the SNc, without the confounding effect of APO challenges.
Collapse
Affiliation(s)
- Ilaria Rosa
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
- Correspondence: (I.R.); (G.D.G.)
| | - Davide Di Censo
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
| | - Brigida Ranieri
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
| | - Giuseppe Di Giovanni
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
- Correspondence: (I.R.); (G.D.G.)
| | - Eugenio Scarnati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy;
| | - Marcello Alecci
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
- National Institute of Nuclear Physics, Gran Sasso National Laboratories, Assergi, 67100 L’Aquila, Italy
- SPIN-CNR Institute, Department of Physical and Chemical Sciences, 67100 L’Aquila, Italy
| | - Angelo Galante
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
- National Institute of Nuclear Physics, Gran Sasso National Laboratories, Assergi, 67100 L’Aquila, Italy
- SPIN-CNR Institute, Department of Physical and Chemical Sciences, 67100 L’Aquila, Italy
| | - Tiziana Marilena Florio
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, 67100 L’Aquila, Italy; (D.D.C.); (B.R.); (M.A.); (A.G.); (T.M.F.)
| |
Collapse
|
3
|
|
4
|
Orzeł-Gryglewska J, Matulewicz P, Jurkowlaniec E. Brainstem system of hippocampal theta induction: The role of the ventral tegmental area. Synapse 2015; 69:553-75. [PMID: 26234671 DOI: 10.1002/syn.21843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 07/03/2015] [Accepted: 07/22/2015] [Indexed: 12/13/2022]
Abstract
This article summarizes the results of studies concerning the influence of the ventral tegmental area (VTA) on the hippocampal theta rhythm. Temporary VTA inactivation resulted in transient loss of the hippocampal theta. Permanent destruction of the VTA caused a long-lasting depression of the power of the theta and it also had some influence on the frequency of the rhythm. Activation of glutamate (GLU) receptors or decrease of GABAergic tonus in the VTA led to enhancement of dopamine release and increased hippocampal theta power. High time and frequency cross-correlation was detected for the theta band between the VTA and hippocampus during paradoxical sleep and active waking. Thus, the VTA may belong to the broad network involved in theta rhythm regulation. This article also presents a model of brainstem-VTA-hippocampal interactions in the induction of the hippocampal theta rhythm. The projections from the VTA which enhance theta rhythm are incorporated into the main theta generation pathway, in which the septum acts as the central node. The neuronal activity that may be responsible for the ability of the VTA to regulate theta probably derives from the structures associated with rapid eye movement (sleep) (REM) sleep or with sensorimotor activity (i.e., mainly from the pedunculopontine and laterodorsal tegmental nuclei and also from the raphe).
Collapse
Affiliation(s)
| | - Paweł Matulewicz
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, 80-308, Poland
| | - Edyta Jurkowlaniec
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, 80-308, Poland
| |
Collapse
|
5
|
Cahill CM, Taylor AMW, Cook C, Ong E, Morón JA, Evans CJ. Does the kappa opioid receptor system contribute to pain aversion? Front Pharmacol 2014; 5:253. [PMID: 25452729 PMCID: PMC4233910 DOI: 10.3389/fphar.2014.00253] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/30/2014] [Indexed: 01/18/2023] Open
Abstract
The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Pharmacology, University of California Irvine Irvine, CA, USA ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Anna M W Taylor
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| | - Christopher Cook
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Pharmacology, University of California Irvine Irvine, CA, USA
| | - Edmund Ong
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Jose A Morón
- Department of Anesthesiology, Columbia University Medical Center, New York, NY USA
| | - Christopher J Evans
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| |
Collapse
|
6
|
NMDA-glutamatergic activation of the ventral tegmental area induces hippocampal theta rhythm in anesthetized rats. Brain Res Bull 2014; 107:43-53. [PMID: 24915630 DOI: 10.1016/j.brainresbull.2014.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 05/20/2014] [Accepted: 06/02/2014] [Indexed: 01/07/2023]
Abstract
Glutamate afferents reaching the ventral tegmental area (VTA) affect dopamine (DA) cells in this structure probably mainly via NMDA receptors. VTA appears to be one of the structures involved in regulation of hippocampal theta rhythm, and this work aimed at assessing the role of glutamatergic activation of the VTA in the theta regulation. Male Wistar rats (n=17) were divided into groups, each receiving intra-VTA microinjection (0.5 μl) of either solvent (water), glutamatergic NMDA agonist (0.2 μg) or antagonist (MK-801, 3.0 μg). Changes in local field potential were assessed on the basis of peak power (Pmax) and corresponding peak frequency (Fmax) for the delta (0.5-3 Hz) and theta (3-6 Hz) bands. NMDA microinjection evoked long-lasting hippocampal theta. The rhythm appeared with a latency of ca. 12 min post-injection and lasted for over 30 min; Pmax in this band was significantly increased for 50 min, while simultaneously Pmax in the delta band remained lower than in control conditions. Theta Fmax and delta Fmax were increased in almost entire post-injection period (by 0.3-0.5 Hz and 0.3-0.7 Hz, respectively). MK-801 depressed the sensory-evoked theta: tail pinch could not induce theta for 30 min after the injection; Pmax significantly decreased in the theta band and at the same time it increased in the delta band. Theta Fmax decreased 10 and 20 min post injection (by 0.4-0.5 Hz) and delta Fmax decreased in almost entire post injection period (by 0.3-0.7 Hz). NMDA injection generates theta rhythm probably through stimulation of dopaminergic activity within the VTA.
Collapse
|
7
|
Elman I, Borsook D, Volkow ND. Pain and suicidality: insights from reward and addiction neuroscience. Prog Neurobiol 2013; 109:1-27. [PMID: 23827972 PMCID: PMC4827340 DOI: 10.1016/j.pneurobio.2013.06.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 01/09/2023]
Abstract
Suicidality is exceedingly prevalent in pain patients. Although the pathophysiology of this link remains unclear, it may be potentially related to the partial congruence of physical and emotional pain systems. The latter system's role in suicide is also conspicuous during setbacks and losses sustained in the context of social attachments. Here we propose a model based on the neural pathways mediating reward and anti-reward (i.e., allostatic adjustment to recurrent activation of the reward circuitry); both are relevant etiologic factors in pain, suicide and social attachments. A comprehensive literature search on neurobiology of pain and suicidality was performed. The collected articles were critically reviewed and relevant data were extracted and summarized within four key areas: (1) physical and emotional pain, (2) emotional pain and social attachments, (3) pain- and suicide-related alterations of the reward and anti-reward circuits as compared to addiction, which is the premier probe for dysfunction of these circuits and (4) mechanistically informed treatments of co-occurring pain and suicidality. Pain-, stress- and analgesic drugs-induced opponent and proponent states of the mesolimbic dopaminergic pathways may render reward and anti-reward systems vulnerable to sensitization, cross-sensitization and aberrant learning of contents and contexts associated with suicidal acts and behaviors. These findings suggest that pain patients exhibit alterations in the brain circuits mediating reward (depressed function) and anti-reward (sensitized function) that may affect their proclivity for suicide and support pain and suicidality classification among other "reward deficiency syndromes" and a new proposal for "enhanced anti-reward syndromes". We suggest that interventions aimed at restoring the balance between the reward and anti-reward networks in patients with chronic pain may help decreasing their suicide risk.
Collapse
Affiliation(s)
- Igor Elman
- Providence VA Medical Center and Cambridge Health Alliance, Harvard Medical School, 26 Central Street, Somerville, MA 02143, USA.
| | | | | |
Collapse
|
8
|
Orzeł-Gryglewska J, Kuśmierczak M, Matulewicz P, Jurkowlaniec E. Dopaminergic transmission in the midbrain ventral tegmental area in the induction of hippocampal theta rhythm. Brain Res 2013; 1510:63-77. [DOI: 10.1016/j.brainres.2013.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 12/11/2022]
|
9
|
Kealy J, Bennett R, Lowry JP. Simultaneous recording of hippocampal oxygen and glucose in real time using constant potential amperometry in the freely-moving rat. J Neurosci Methods 2013; 215:110-20. [PMID: 23499196 DOI: 10.1016/j.jneumeth.2013.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/31/2013] [Accepted: 02/22/2013] [Indexed: 01/02/2023]
Abstract
Amperometric sensors for oxygen and glucose allow for real time recording from the brain in freely-moving animals. These sensors have been used to detect activity- and drug-induced changes in metabolism in a number of brain regions but little attention has been given over to the hippocampus despite its importance in cognition and disease. Sensors for oxygen and glucose were co-implanted into the hippocampus and allowed to record for several days. Baseline recordings show that basal concentrations of hippocampal oxygen and glucose are 100.26±5.76 μM and 0.60±0.06 mM respectively. Furthermore, stress-induced changes in neural activity have been shown to significantly alter concentrations of both analytes in the hippocampus. Administration of O2 gas to the animals' snouts results in significant increases in hippocampal oxygen and glucose and administration of N2 gas results in a significant decrease in hippocampal oxygen. Chloral hydrate-induced anaesthesia causes a significant increase in hippocampal oxygen whereas treatment with the carbonic anhydrase inhibitor acetazolamide significantly increases hippocampal oxygen and glucose. These findings provide real time electrochemical data for the hippocampus which has been previously impossible with traditional methods such as microdialysis or ex vivo analysis. As such, these sensors provide a window into hippocampal function which can be used in conjunction with behavioural and pharmacological interventions to further elucidate the functions and mechanisms of action of the hippocampus in normal and disease states.
Collapse
Affiliation(s)
- John Kealy
- Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| | | | | |
Collapse
|
10
|
Nakamura Y, Izumi H, Shimizu T, Hisaoka-Nakashima K, Morioka N, Nakata Y. Volume Transmission of Substance P in Striatum Induced by Intraplantar Formalin Injection Attenuates Nociceptive Responses via Activation of the Neurokinin 1 Receptor. J Pharmacol Sci 2013; 121:257-71. [DOI: 10.1254/jphs.12218fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
11
|
Ilango A, Shumake J, Wetzel W, Scheich H, Ohl FW. The role of dopamine in the context of aversive stimuli with particular reference to acoustically signaled avoidance learning. Front Neurosci 2012; 6:132. [PMID: 23049495 PMCID: PMC3442182 DOI: 10.3389/fnins.2012.00132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 08/25/2012] [Indexed: 11/13/2022] Open
Abstract
Learning from punishment is a powerful means for behavioral adaptation with high relevance for various mechanisms of self-protection. Several studies have explored the contribution of released dopamine (DA) or responses of DA neurons on reward seeking using rewards such as food, water, and sex. Phasic DA signals evoked by rewards or conditioned reward predictors are well documented, as are modulations of these signals by such parameters as reward magnitude, probability, and deviation of actually occurring from expected rewards. Less attention has been paid to DA neuron firing and DA release in response to aversive stimuli, and the prediction and avoidance of punishment. In this review, we first focus on DA changes in response to aversive stimuli as measured by microdialysis and voltammetry followed by the change in electrophysiological signatures by aversive stimuli and fearful events. We subsequently focus on the role of DA and effect of DA manipulations on signaled avoidance learning, which consists of learning the significance of a warning cue through Pavlovian associations and the execution of an instrumental avoidance response. We present a coherent framework utilizing the data on microdialysis, voltammetry, electrophysiological recording, electrical brain stimulation, and behavioral analysis. We end by outlining current gaps in the literature and proposing future directions aimed at incorporating technical and conceptual progress to understand the involvement of reward circuit on punishment based decisions.
Collapse
Affiliation(s)
- Anton Ilango
- Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | | | | | | |
Collapse
|
12
|
Hurley LM, Sullivan MR. From behavioral context to receptors: serotonergic modulatory pathways in the IC. Front Neural Circuits 2012; 6:58. [PMID: 22973195 PMCID: PMC3434355 DOI: 10.3389/fncir.2012.00058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/10/2012] [Indexed: 12/18/2022] Open
Abstract
In addition to ascending, descending, and lateral auditory projections, inputs extrinsic to the auditory system also influence neural processing in the inferior colliculus (IC). These types of inputs often have an important role in signaling salient factors such as behavioral context or internal state. One route for such extrinsic information is through centralized neuromodulatory networks like the serotonergic system. Serotonergic inputs to the IC originate from centralized raphe nuclei, release serotonin in the IC, and activate serotonin receptors expressed by auditory neurons. Different types of serotonin receptors act as parallel pathways regulating specific features of circuitry within the IC. This results from variation in subcellular localizations and effector pathways of different receptors, which consequently influence auditory responses in distinct ways. Serotonin receptors may regulate GABAergic inhibition, influence response gain, alter spike timing, or have effects that are dependent on the level of activity. Serotonin receptor types additionally interact in nonadditive ways to produce distinct combinatorial effects. This array of effects of serotonin is likely to depend on behavioral context, since the levels of serotonin in the IC transiently increase during behavioral events including stressful situations and social interaction. These studies support a broad model of serotonin receptors as a link between behavioral context and reconfiguration of circuitry in the IC, and the resulting possibility that plasticity at the level of specific receptor types could alter the relationship between context and circuit function.
Collapse
Affiliation(s)
- Laura M Hurley
- Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
13
|
Hurley LM, Hall IC. Context-dependent modulation of auditory processing by serotonin. Hear Res 2011; 279:74-84. [PMID: 21187135 PMCID: PMC3134116 DOI: 10.1016/j.heares.2010.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Context-dependent plasticity in auditory processing is achieved in part by physiological mechanisms that link behavioral state to neural responses to sound. The neuromodulator serotonin has many characteristics suitable for such a role. Serotonergic neurons are extrinsic to the auditory system but send projections to most auditory regions. These projections release serotonin during particular behavioral contexts. Heightened levels of behavioral arousal and specific extrinsic events, including stressful or social events, increase serotonin availability in the auditory system. Although the release of serotonin is likely to be relatively diffuse, highly specific effects of serotonin on auditory neural circuitry are achieved through the localization of serotonergic projections, and through a large array of receptor types that are expressed by specific subsets of auditory neurons. Through this array, serotonin enacts plasticity in auditory processing in multiple ways. Serotonin changes the responses of auditory neurons to input through the alteration of intrinsic and synaptic properties, and alters both short- and long-term forms of plasticity. The infrastructure of the serotonergic system itself is also plastic, responding to age and cochlear trauma. These diverse findings support a view of serotonin as a widespread mechanism for behaviorally relevant plasticity in the regulation of auditory processing. This view also accommodates models of how the same regulatory mechanism can have pathological consequences for auditory processing.
Collapse
Affiliation(s)
- L M Hurley
- Indiana University, Jordan Hall/Biology, 1001 E. Third St, Bloomington, IN 47405, USA.
| | | |
Collapse
|
14
|
Umberg EN, Pothos EN. Neurobiology of aversive states. Physiol Behav 2011; 104:69-75. [PMID: 21549137 PMCID: PMC3116693 DOI: 10.1016/j.physbeh.2011.04.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 04/23/2011] [Accepted: 04/26/2011] [Indexed: 12/01/2022]
Abstract
Hoebel and colleagues are often known as students of reward and how it is coded in the CNS. This article, however, attempts to focus on the significant advances by Hoebel and others in dissecting out behavioral components of distinct aversive states and in understanding the neurobiology of aversion and the link between aversive states and addictive behaviors. Reward and aversion are not necessarily dichotomous and may reflect an affective continuum contingent upon environmental conditions. Descriptive and mechanistic studies pioneered by Bart Hoebel have demonstrated that the shift in the reward-aversion spectrum may be, in part, a result of changes in central dopamine/acetylcholine ratio, particularly in the nucleus accumbens. The path to aversion appears to include a specific neurochemical signature: reduced dopamine release and increased acetylcholine release in "reward centers" of the brain. Opioid receptors may have a neuromodulatory role on both of these neurotransmitters.
Collapse
Affiliation(s)
- Erin N. Umberg
- Department of Molecular Physiology and Pharmacology, Program in Pharmacology & Experimental Therapeutics, Tufts University School of Medicine, Boston, MA
| | - Emmanuel N. Pothos
- Department of Molecular Physiology and Pharmacology, Program in Pharmacology & Experimental Therapeutics, Tufts University School of Medicine, Boston, MA
- Department of Molecular Physiology and Pharmacology, Program in Neuroscience, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
15
|
Elman I, Zubieta JK, Borsook D. The missing p in psychiatric training: why it is important to teach pain to psychiatrists. ARCHIVES OF GENERAL PSYCHIATRY 2011; 68:12-20. [PMID: 21199962 PMCID: PMC3085192 DOI: 10.1001/archgenpsychiatry.2010.174] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CONTEXT Pain problems are exceedingly prevalent among psychiatric patients. Moreover, clinical impressions and neurobiological research suggest that physical and psychological aspects of pain are closely related entities. Nonetheless, remarkably few pain-related themes are currently included in psychiatric residency training. OBJECTIVES To provide clinical and scientific rationale for psychiatric-training enrichment with basic tenets of pain medicine and to raise the awareness and sensitivity of physicians, scientists, and educators to this important yet unmet clinical and public health need. RESULTS We present 3 lines of translational research evidence, extracted from a comprehensive literature review, in support of our objectives. First, the neuroanatomical and functional overlap between pain and emotion/reward/motivation brain circuitry suggests integration and mutual modulation of these systems. Second, psychiatric disorders are commonly associated with alterations in pain processing, whereas chronic pain may impair emotional and neurocognitive functioning. Third, given its stressful nature, pain may serve as a functional probe for unraveling pathophysiological mechanisms inherent in psychiatric morbidity. CONCLUSIONS Pain training in psychiatry will contribute to deeper and more sophisticated insight into both pain syndromes and general psychiatric morbidity regardless of patients' pain status. Furthermore, it will ease the artificial boundaries separating psychiatric and medical formulations of brain disorders, thus fostering cross-fertilizing interactions among specialists in various disciplines entrusted with the care of patients experiencing pain.
Collapse
Affiliation(s)
- Igor Elman
- Clinical Psychopathology Laboratory, Mclean Hospital, Harvard Medical School, Boston MA
| | - Jon-Kar Zubieta
- Departments of Psychiatry and Radiology and Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI
| | - David Borsook
- P.A.I.N. Group, Department of Psychiatry, McLean Hospital and Massachusetts General Hospital, Harvard Medical School, Boston MA
| |
Collapse
|
16
|
Ramsey LCB, Sinha SR, Hurley LM. 5-HT1A and 5-HT1B receptors differentially modulate rate and timing of auditory responses in the mouse inferior colliculus. Eur J Neurosci 2010; 32:368-79. [PMID: 20646059 PMCID: PMC2921951 DOI: 10.1111/j.1460-9568.2010.07299.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is a physiological signal that translates both internal and external information about behavioral context into changes in sensory processing through a diverse array of receptors. The details of this process, particularly how receptors interact to shape sensory encoding, are poorly understood. In the inferior colliculus, a midbrain auditory nucleus, 5-HT1A receptors have suppressive and 5-HT1B receptors have facilitatory effects on evoked responses of neurons. We explored how these two receptor classes interact by testing three hypotheses: that they (i) affect separate neuron populations; (ii) affect different response properties; or (iii) have different endogenous patterns of activation. The first two hypotheses were tested by iontophoretic application of 5-HT1A and 5-HT1B receptor agonists individually and together to neurons in vivo. 5-HT1A and 5-HT1B agonists affected overlapping populations of neurons. During co-application, 5-HT1A and 5-HT1B agonists influenced spike rate and frequency bandwidth additively, with each moderating the effect of the other. In contrast, although both agonists individually influenced latencies and interspike intervals, the 5-HT1A agonist dominated these measurements during co-application. The third hypothesis was tested by applying antagonists of the 5-HT1A and 5-HT1B receptors. Blocking 5-HT1B receptors was complementary to activation of the receptor, but blocking 5-HT1A receptors was not, suggesting the endogenous activation of additional receptor types. These results suggest that cooperative interactions between 5-HT1A and 5-HT1B receptors shape auditory encoding in the inferior colliculus, and that the effects of neuromodulators within sensory systems may depend nonlinearly on the specific profile of receptors that are activated.
Collapse
Affiliation(s)
| | - Shiva R. Sinha
- 159 Swain West, Department of Physics, Indiana University, Bloomington, IN 47405
| | - Laura M. Hurley
- Jordan Hall, Department of Biology, 1001 E. Third St, Indiana University, Bloomington, IN 47405
| |
Collapse
|
17
|
Hall IC, Rebec GV, Hurley LM. Serotonin in the inferior colliculus fluctuates with behavioral state and environmental stimuli. ACTA ACUST UNITED AC 2010; 213:1009-17. [PMID: 20228336 DOI: 10.1242/jeb.035956] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuromodulation by serotonin (5-HT) could link behavioral state and environmental events with sensory processing. Within the auditory system, the presence of 5-HT alters the activity of neurons in the inferior colliculus (IC), but the conditions that influence 5-HT neurotransmission in this region of the brain are unknown. We used in vivo voltammetry to measure extracellular 5-HT in the IC of behaving mice to address this issue. Extracellular 5-HT increased with the recovery from anesthesia, suggesting that the neuromodulation of auditory processing is correlated with the level of behavioral arousal. Awake mice were further exposed to auditory (broadband noise), visual (light) or olfactory (2,5-dihydro-2,4,5-trimethylthiazoline, TMT) stimuli, presented with food or confined in a small arena. Only the auditory stimulus or restricted movement increased the concentration of extracellular 5-HT in the IC. Changes occurred within minutes of stimulus onset, with the auditory stimulus increasing extracellular 5-HT by an average of 5% and restricted movement increasing it by an average of 14%. These findings suggest that the neuromodulation of auditory processing by 5-HT is a dynamic process that is dependent on internal state and behavioral conditions.
Collapse
Affiliation(s)
- Ian C Hall
- Department of Biology, 1001 E. Third Street, 342 Jordan Hall, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
18
|
Bohorquez A, Hurley LM. Activation of serotonin 3 receptors changes in vivo auditory responses in the mouse inferior colliculus. Hear Res 2009; 251:29-38. [PMID: 19236912 PMCID: PMC2670957 DOI: 10.1016/j.heares.2009.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/20/2009] [Accepted: 02/12/2009] [Indexed: 12/01/2022]
Abstract
Metabotropic serotonin receptors such as 5-HT1A and 5-HT1B receptors shape the level, selectivity, and timing of auditory responses in the inferior colliculus (IC). Less is known about the effects of ionotropic 5-HT3 receptors, which are cation channels that depolarize neurons. In the present study, the influence of the 5-HT3 receptor on auditory responses in vivo was explored by locally iontophoresing a 5-HT3 receptor agonist and antagonists onto single neurons recorded extracellularly in mice. Three main findings emerge from these experiments. First, activation of the 5-HT3 receptor can either facilitate or suppress auditory responses, but response suppressions are not consistent with 5-HT3 effects on presynaptic GABAergic neurons. Both response facilitations and suppressions are less pronounced in neurons with high precision in response latency, suggesting functional differences in the role of receptor activation for different classes of neuron. Finally, the effects of 5-HT3 activation vary across repetition rate within a subset of single neurons, suggesting that the influence of receptor activation sometimes varies with the level of activity. These findings contribute to the view of the 5-HT3 receptor as an important component of the serotonergic infrastructure in the IC, with effects that are complex and neuron-selective.
Collapse
Affiliation(s)
- Alexander Bohorquez
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, USA
| | - Laura M. Hurley
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, USA
| |
Collapse
|
19
|
Yao T, Okano G. Simultaneous determination of L-glutamate, acetylcholine and dopamine in rat brain by a flow-injection biosensor system with microdialysis sampling. ANAL SCI 2008; 24:1469-73. [PMID: 18997377 DOI: 10.2116/analsci.24.1469] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A flow-injection biosensor system with an on-line microdialysis sampling system is proposed for the simultaneous detection of neurotransmitters (L-glutamate, acetylcholine and dopamine) released from rat brain cells. The dialysate collected in the sample loop from the microdialysis probe was automatically injected into the flow-injection line with a triple electrode arranged perpendicular to the flow direction. The triple electrode was constructed by hybridizing a poly(1,2-diaminobenzene) film to two enzyme sensing-parts which respond to L-glutamate and acetylcholine, and by coating a Nafion film on a remaining sensing part which responds to dopamine, respectively, without any cross-reactivity. The three sensing parts of the triple electrode responded linearly to the concentrations of L-glutamate and acetylcholine in the range of 0.002-5 mM and to that of dopamine in the range of 0.002-20 mM, respectively, without any interference from oxidizable species present in the dialysate. The proposed flow-injection analytical method could be applied to an in vivo assay of these neurotransmitters released from rat-brain cells by the continuous KCl stimulation.
Collapse
Affiliation(s)
- Toshio Yao
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Naka, Sakai, Osaka 599-8531, Japan
| | | |
Collapse
|
20
|
Hurley LM, Tracy JA, Bohorquez A. Serotonin 1B receptor modulates frequency response curves and spectral integration in the inferior colliculus by reducing GABAergic inhibition. J Neurophysiol 2008; 100:1656-67. [PMID: 18632894 DOI: 10.1152/jn.90536.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The selectivity of sensory neurons for stimuli is often shaped by a balance between excitatory and inhibitory inputs, making this balance an effective target for regulation. In the inferior colliculus (IC), an auditory midbrain nucleus, the amplitude and selectivity of frequency response curves are altered by the neuromodulator serotonin, but the changes in excitatory-inhibitory balance that mediate this plasticity are not well understood. Previous findings suggest that the presynaptic 5-HT1B receptor may act to decrease the release of GABA onto IC neurons. Here, in vivo extracellular recording and iontophoresis of the selective 5-HT1B agonist CP93129 were used to characterize inhibition within and surrounding frequency response curves using two-tone protocols to indirectly measure inhibition as a decrease in spikes relative to an excitatory tone alone. The 5-HT1B agonist attenuated such two-tone spike reduction in a varied pattern among neurons, suggesting that the function of 5-HT1B modulation also varies. The hypothesis that the 5-HT1B receptor reduces inhibition was tested by comparing the effects of CP93129 and the GABAA antagonists bicuculline and gabazine in the same neurons. The effects of GABAA antagonists on spike count, tuning bandwidth, two-tone ratio, and temporal response characteristics mimicked those of CP93129 across the neuron population. GABAA antagonists also blocked or reduced the facilitation of evoked responses by CP93129. These results are all consistent with the reduction of GABAA-mediated inhibition by 5-HT1B receptors in the IC, resulting in an increase in the level of evoked responses in some neurons, and a decrease in spectral selectivity in others.
Collapse
Affiliation(s)
- Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
21
|
Sindhu KM, Saravanan KS, Mohanakumar KP. Behavioral differences in a rotenone-induced hemiparkinsonian rat model developed following intranigral or median forebrain bundle infusion. Brain Res 2005; 1051:25-34. [PMID: 15992782 DOI: 10.1016/j.brainres.2005.05.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 05/20/2005] [Accepted: 05/22/2005] [Indexed: 12/21/2022]
Abstract
A mitochondrial complex-I inhibitor, rotenone was unilaterally infused into the substantia nigra pars compacta (SNpc) or median forebrain bundle (MFB) to create hemiparkinsonian animal models and investigated spontaneous and drug-induced stereotypic rotations, as well as certain postural behaviors in Sprague-Dawley rats. Animals infused intranigrally, but not intra-MFB, with rotenone exhibited spontaneous contralateral rotations immediately after recovery from anesthesia. Head position bias and elevated body swing test showed insignificant contralateral bias in animals with nigral damage but a significant ipsilateral bias in MFB-lesioned rats. General motor activity of the animals was reduced in both the groups as indicated by reduced performance on a Plus-Maze. Intranigrally, rotenone-infused animals exhibited progressive ipsilateral rotations when challenged with d-amphetamine on the 7th, 14th, 21st, and 28th days or with apomorphine on 9th, 16th, 23rd, and 30th days. However, animals that received rotenone in MFB exhibited ipsilateral or contralateral rotations when challenged respectively with d-amphetamine or apomorphine only in the 5th week (28th and 30th days). Stereotaxic administration of rotenone into SNpc or MFB caused a significant loss of dopamine in the ipsilateral striatum (>80% in SNpc; >95% in MFB), when assayed employing an HPLC equipped with electrochemical detector on the 32nd day. Neuronal loss in SNpc was confirmed in coronal sections stained with cresyl violet and revealed extension of lesion towards SN pars reticulata, in SNpc-infused animals. Our results demonstrate that rotenone-induced neurodegeneration is a slow, yet progressive process similar to that in idiopathic Parkinson's disease and unlike that observed in other classical neurotoxin-mediated lesions which are abrupt and developed in few hours to days. Thus, intranigral or intra-MFB infusion of rotenone could be used for producing hemiparkinsonian animal models in rats. These findings further suggest that, while both d-amphetamine and apomorphine-induced stereotypic rotations could be used as a valuable behavioral assay procedure to test novel drugs against Parkinson's disease, yet apomorpine-induced contralateral bias in turning is a reliable indicator of specific destruction in nigrostriatal pathway and development of postsynaptic dopamine receptor supersensitivity.
Collapse
Affiliation(s)
- Kizhakke M Sindhu
- Division of Clinical and Experimental Neuroscience, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | | | | |
Collapse
|
22
|
On-line microdialysis assay of l-lactate and pyruvate in vitro and in vivo by a flow-injection system with a dual enzyme electrode. Talanta 2004; 63:771-5. [DOI: 10.1016/j.talanta.2003.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 11/06/2003] [Accepted: 11/20/2003] [Indexed: 11/23/2022]
|
23
|
Yao T, Yano T, Nishino H. Simultaneous in vivo monitoring of glucose, l-lactate, and pyruvate concentrations in rat brain by a flow-injection biosensor system with an on-line microdialysis sampling. Anal Chim Acta 2004. [DOI: 10.1016/j.aca.2003.12.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Murphy EK, Sved AF, Finlay JM. Corticotropin-releasing hormone receptor blockade fails to alter stress-evoked catecholamine release in prefrontal cortex of control or chronically stressed rats. Neuroscience 2003; 116:1081-7. [PMID: 12617949 DOI: 10.1016/s0306-4522(02)00565-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although it is well documented that stress can increase the activity of central dopamine and norepinephrine neurons, little is known about the role of other neurotransmitters in modulating this response. Previous studies have implicated corticotropin-releasing hormone in modulating stress-evoked changes in the activity of locus coeruleus neurons. The present study examines whether corticotropin-releasing hormone contributes to stress-evoked increases in extracellular norepinephrine and dopamine in rat medial prefrontal cortex, as monitored by in vivo microdialysis. As noted previously, 30 min of tail-shock increased extracellular levels of norepinephrine and dopamine in the medial prefrontal cortex of naïve rats, and this was enhanced in rats previously exposed to chronic cold ( approximately 5 degrees C for 2-3 weeks). Previous intraventricular administration of a corticotropin-releasing hormone antagonist (D-Phe-corticotropin-releasing hormone; 3 and 9 microg) did not alter the tail-shock evoked in increase in extracellular levels of norepinephrine and dopamine in either naïve or chronically cold-exposed rats. Intraventricular administration of 3 microg of D-Phe-corticotropin-releasing hormone attenuated the increase in extracellular norepinephrine induced by co-administration of 3 microg of corticotropin-releasing hormone, confirming the efficacy of this compound. Results of the present study suggest that endogenous corticotropin-releasing hormone does not play a role in modulating the release of norepinephrine and dopamine occurring in response to acute tail-shock or the expression of a potentiated response to tail-shock in rats exposed chronically to cold.
Collapse
Affiliation(s)
- E K Murphy
- Department of Neuroscience, University of Pittsburgh, 446 Crawford Hall, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
25
|
Yao T, Yano T, Nanjyo Y, Nishino H. Simultaneous determination of glucose and L-lactate in rat brain by an electrochemical in vivo flow-injection system with an on-line microdialysis sampling. ANAL SCI 2003; 19:61-5. [PMID: 12558025 DOI: 10.2116/analsci.19.61] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An electrochemical in vivo flow-injection system with an on-line microdialysis sampling is proposed for the simultaneous monitoring of L-lactate and glucose in rat brain. In the first stage of the operation, the dialysate from the microdialysis probe is delivered to a sample loop of the six-way autoinjector by perfusing Ringer's solution for 80 s at 5 microl min(-1). In the second stage, the dialysate collected in the sample loop is automatically injected for 10 s into the flow-injection line. Injected dialysate is split into two streams and two portions pass through two channels with two different immobilized enzyme reactors (glucose oxidase and lactate oxidase immobilized reactors) to produce hydrogen peroxide from glucose and L-lactate in the dialysate. After a subsequent confluence of the streams, produced hydrogen peroxide can be detected amperometrically at a downstream poly(1,2-diaminobenzene) film-coated platinum electrode, without any interference from oxidizable species and proteins present in the dialysate. Because each channel has a different residence time, two peaks are obtained. The first peak corresponds to L-lactate and the second peak to glucose. The peak current is linearly related to the concentrations of L-lactate between 0.2 and 10 mM and glucose between 0.1 and 20 mM. The present method can be successfully applied to the simultaneous in vivo monitoring of L-lactate and glucose in rat brain. The analytical speed is 45 dialysates h(-1).
Collapse
Affiliation(s)
- Toshio Yao
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Sakai, Osaka 599-8531, Japan
| | | | | | | |
Collapse
|
26
|
Roghani M, Behzadi G, Baluchnejadmojarad T. Efficacy of elevated body swing test in the early model of Parkinson's disease in rat. Physiol Behav 2002; 76:507-10. [PMID: 12126986 DOI: 10.1016/s0031-9384(02)00753-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Animal models of Parkinson's disease (PD) with partial damage of the dopaminergic nigrostriatal system are very suitable for the development of neuroprotective and neurotrophic treatment strategies. Although drug-induced rotational behavior has conventionally been used for the analysis of lesioned animals, a pure behavioral test that can evaluate such animals in a drug-free state may better reflect a more natural response following lesion. In this study, an early model of PD was developed by intrastriatal injection of 12.5 microg of 6-hydroxydopamine (6-OHDA) into the left striatum. Apomorphine-induced rotational and drug-free elevated body swing behaviors were evaluated. The results of the rotational test revealed a very significant contralateral turning in the rats of the lesion group (L+V) compared with the sham-operated group (SH) (P<.0001). In addition, the results of elevated body swing test (EBST) showed a significant difference between the L+V and SH groups in the second (P<.01) and fourth weeks (P<.05) after surgery. Further analysis of correlation for the net number of rotations versus the net number of swings revealed a significant and positive correlation (r=.52) in the second week in the L+V group, but no such correlation was observed in the fourth week (r=.24). Taken together, it is concluded that despite a poor correlation at fourth week postlesion, EBST itself may be appropriate and sensitive for the evaluation of motor asymmetry in the unilateral model of early PD in rats.
Collapse
Affiliation(s)
- Mehrdad Roghani
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran.
| | | | | |
Collapse
|
27
|
Matuszewich L, Filon ME, Finn DA, Yamamoto BK. Altered forebrain neurotransmitter responses to immobilization stress following 3,4-methylenedioxymethamphetamine. Neuroscience 2002; 110:41-8. [PMID: 11882371 DOI: 10.1016/s0306-4522(01)00539-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
(+/-)3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is an increasingly popular drug of abuse that acts as a neurotoxin to forebrain serotonin neurons. The neurochemical effects of the serotonin depletion following high doses of MDMA were investigated in response to acute immobilization stress. Male rats were treated with a neurotoxic dosing regimen of MDMA (10 mg/kg, i.p. every 2 h for four injections) or equivalent doses of saline. Seven days after treatment, in vivo microdialysis was used to assess extracellular dopamine and serotonin in the dorsal hippocampus and prefrontal cortex during 1 h of immobilization stress. In saline treated control rats, serotonin in the hippocampus and serotonin and dopamine in the prefrontal cortex were increased during immobilization stress. Rats pretreated with MDMA, however, showed blunted neurotransmitter responses in the hippocampus and the prefrontal cortex. In the drug pretreated rats, basal serotonin levels in the hippocampus, but not the prefrontal cortex, were lower compared to saline pretreated controls. Stress-induced increases in plasma corticosterone and body temperature were not affected by the pretreatment condition. From these studies we suggest that depletion of serotonin stores in terminal regions with the neurotoxin MDMA compromises the ability of the serotonergic neurons to activate central systems that respond to stressful stimuli. This altered responsiveness may have implications for long-term functional consequences of MDMA abuse as well as the interactions between the serotonergic system and stress.
Collapse
Affiliation(s)
- L Matuszewich
- Department of Pharmacology, Boston University Medical School, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
28
|
Daugherty WP, Corley KC, Phan TH, Boadle-Biber MC. Further studies on the activation of rat median raphe serotonergic neurons by inescapable sound stress. Brain Res 2001; 923:103-11. [PMID: 11743977 DOI: 10.1016/s0006-8993(01)03198-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Previous studies, using a biochemical measure of serotonergic neuronal function, show that inescapable, randomly presented sound pulses activate serotonergic neurons in the rat median raphe but not dorsal raphe nucleus. The present study reveals that this activation also occurs in serotonin projection areas, in hippocampus, nucleus accumbens and cortex but not in caudate nucleus. The selectivity of this response is examined by comparing the response to sound stress with that produced by morphine, a treatment known to selectively activate dorsal raphe but not median raphe serotonergic neurons. Two approaches are used in Sprague-Dawley rat to measure the activation of serotonergic neurons: (1) determination ex vivo of accumulation of 5-hydroxytryptophan (5-HTP) in tissue from the dorsal and median raphe nuclei, hippocampus, cortex, caudate nucleus, and nucleus accumbens following in vivo inhibition of aromatic amino acid decarboxylase; and (2) measurement of extracellular serotonin levels in hippocampus, caudate nucleus, and nucleus accumbens. Sound stress increases 5-HTP accumulation in median raphe nucleus, hippocampus, cortex, and nucleus accumbens, but not dorsal raphe nucleus or caudate nucleus. Sound stress also enhances extracellular serotonin levels in hippocampus and nucleus accumbens, but not caudate nucleus. In contrast, the morphine treatment enhances 5-HTP accumulation in dorsal raphe nucleus, cortex and caudate nucleus, but not in median raphe nucleus, hippocampus or nucleus accumbens. Furthermore, it increases extracellular serotonin levels in only the caudate nucleus. The combined effects of sound stress and morphine on 5-HTP accumulation are identical to those obtained by each treatment individually. These findings provide further support for the presence of serotonergic neurons within the median raphe nucleus that have a unique response profile. These neurons may have an important role in responses or adaptations to stress.
Collapse
Affiliation(s)
- W P Daugherty
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, P.O. Box 980551, Richmond, VA 23298-0551, USA
| | | | | | | |
Collapse
|
29
|
Yao T, Nanjyo Y, Tanaka T, Nishino H. An Electrochemical In Vivo Flow-Injection System for Highly Selective and Sensitive Detection ofL-Glutamate Using Enzyme Reactor Involving Amplification. ELECTROANAL 2001. [DOI: 10.1002/1521-4109(200111)13:16<1361::aid-elan1361>3.0.co;2-d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Mendlin A, Martín FJ, Jacobs BL. Dopaminergic input is required for increases in serotonin output produced by behavioral activation: an in vivo microdialysis study in rat forebrain. Neuroscience 1999; 93:897-905. [PMID: 10473255 DOI: 10.1016/s0306-4522(99)00213-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous research has demonstrated that pharmacological stimulation of postsynaptic dopamine D2 receptors produces increases in serotonin output. The present study explored whether this relationship also holds under physiological conditions. Accordingly, we examined the effects of D2 receptor blockade or unilateral dopamine depletion on behaviorally induced increases in extracellular serotonin levels in the corpus striatum and prefrontal cortex of freely moving rats using in vivo microdialysis. Extracellular levels of dopamine and serotonin, as well as behavioral activity, were increased by both mild tail pinch and the light-dark transition. Tail pinch-induced increases in serotonin levels (39+/-3% and 53+/-5% in the corpus striatum and prefrontal cortex, respectively), but not the accompanying behavioral changes, were blocked by local application of the D2 receptor antagonist raclopride (10 microM). D2 receptor blockade also disrupted the positive relationship between striatal serotonin levels and behavioral activity of animals across the light-dark transition (r=0.93 without raclopride, r=0.24 in presence of raclopride). Unilateral 6-hydroxydopamine lesion of the nigrostriatal dopaminergic system also abolished increases in striatal serotonin output induced by both tail pinch and light-dark transition. A negative correlation was observed between the degree of striatal dopamine depletion and tail pinch-induced increases in serotonin efflux (r= - 0.88). Thus, both a local blockade of postsynaptic D2 receptors and striatal dopamine depletion prevented increases in serotonin output that normally accompany behavioral activation. These data indicate that the increases in the forebrain serotonin output produced by two distinct physiological/environmental manipulations appear to be largely dependent upon intact local dopaminergic neurotransmission.
Collapse
Affiliation(s)
- A Mendlin
- Program in Neuroscience, Princeton University, NJ 08544-1010, USA
| | | | | |
Collapse
|
31
|
Weiss JM, Bonsall RW, Demetrikopoulos MK, Emery MS, West CH. Galanin: a significant role in depression? Ann N Y Acad Sci 1998; 863:364-82. [PMID: 9928183 DOI: 10.1111/j.1749-6632.1998.tb10707.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper describes a hypothesis that attempts to account for how changes in noradrenergic systems in the brain can affect depression-related behaviors and symptoms. It is hypothesized that increased activity of the locus coeruleus (LC) neurons, the principal norepinephrine (NE)-containing cells in the brain, causes release of galanin (GAL) in the ventral tegmentum (VTA) from LC axon terminals in which GAL is colocalized with NE. It is proposed that GAL release in VTA inhibits the activity of dopaminergic cell bodies in this region whose axons project to forebrain, thereby resulting in two of the principal symptoms seen in depression, decreased motor activation and decreased appreciation of pleasurable stimuli (anhedonia). The genesis of this hypothesis, which derives from studies using an animal model of depression, is described as well as recent data consistent with the hypothesis. The formulation proposed suggests that GAL antagonists may be of therapeutic benefit in the treatment of depression.
Collapse
Affiliation(s)
- J M Weiss
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia 30306, USA.
| | | | | | | | | |
Collapse
|
32
|
Kirby LG, Chou-Green JM, Davis K, Lucki I. The effects of different stressors on extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res 1997; 760:218-30. [PMID: 9237538 DOI: 10.1016/s0006-8993(97)00287-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of application of five different stressors on extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the striatum and hippocampus were compared using in vivo microdialysis. Forced swimming for 30 min elevated extracellular 5-hydroxytryptamine to 90% above basal levels and reduced 5-hydroxyindoleacetic acid to 45% of basal levels in the striatum during the swim session. In contrast, hippocampal 5-hydroxytryptamine was not altered significantly by forced swimming but 5-hydroxyindoleacetic acid levels were reduced to 60% of basal levels. Tail pinch for 5 min elevated 5-hydroxytryptamine to 55% above basal levels in striatum and to 35% above basal levels in hippocampus. Tail pinch had no effect on 5-hydroxyindoleacetic acid in either brain region. In contrast to forced swimming and the tail pinch, the other three stressors, immobilization stress for 100 min, exposure to a cold environment (4 degrees C) for 2 h, and forced motor activity on a rotarod for 30 min, failed to alter extracellular 5-hydroxytryptamine in either the striatum or the hippocampus. All five stressors increased plasma corticosterone levels: tail pinch, 246%; cold stress, 432%; immobilization, 870%; forced motor activity, 1030%; and forced swimming, 1530%. These results suggest that individual stressors produce different effects on extracellular 5-hydroxytryptamine in different brain regions. In addition, there does not appear to be a relationship between the effects of stressors on the 5-hydroxytryptamine system and the magnitude of their ability to activate the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- L G Kirby
- Department of Psychiatry, Institute of Neurological Sciences, University of Pennsylvania, Philadelphia 19104-2649, USA
| | | | | | | |
Collapse
|
33
|
Lowry JP, Fillenz M. Evidence for uncoupling of oxygen and glucose utilization during neuronal activation in rat striatum. J Physiol 1997; 498 ( Pt 2):497-501. [PMID: 9032696 PMCID: PMC1159218 DOI: 10.1113/jphysiol.1997.sp021875] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Changes in regional cerebral blood flow (rCBF), tissue oxygen and extracellular glucose were measured during neuronal activation, using implanted electrodes in the striatum of freely moving rats. 2. There was a parallel increase in rCBF and oxygen in response to neuronal activation. 3. During the neuronal activation there was a decrease in extracellular glucose; following neuronal activation there was a slow rise in extracellular glucose which took 30 min to return to basal levels. 4. The implications of the different time courses of these changes are discussed.
Collapse
Affiliation(s)
- J P Lowry
- University Laboratory of Physiology, Oxford, UK
| | | |
Collapse
|
34
|
Thompson AC, Kristal MB. Opioid stimulation in the ventral tegmental area facilitates the onset of maternal behavior in rats. Brain Res 1996; 743:184-201. [PMID: 9017246 DOI: 10.1016/s0006-8993(96)01041-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This research investigated the effect of an increase or decrease in opioid activity in the ventral tegmental area (VTA) on the onset of maternal behavior in rats. In Experiment 1, the latency to show maternal behavior toward foster rat pups (sensitization latency) was determined in maternally naive female rats given either nothing or a unilateral intra-VTA injection of morphine sulfate (MS) (0.0, 0.01, 0.03, 0.1 or 0.3 microgram), on the first three days of a 10-day period of constant exposure to pups. Rats treated with 0.03 microgram MS had significantly shorter sensitization latencies than did rats treated with 0.0 microgram MS, 0.01 microgram MS, or receiving no treatment (higher doses of morphine produced intermediate results). The facilitating effect of intra-VTA MS on the onset of maternal behavior was blocked by pretreatment with naltrexone hydrochloride and was found to have a specific site of action in the VTA (MS injections dorsal to the VTA were ineffective). In Experiment 2, sensitization latencies were determined in periparturitional rats given a bilateral intra-VTA injection of either the opioid antagonist naltrexone methobromide (quaternary naltrexone), its vehicle, a sham injection, or left untreated 40 min after delivery of the last pup. The mothers' own pups were removed at delivery; mothers were nonmaternal at the time of testing. Quaternary naltrexone treatment produced significantly slower sensitization to foster pups than did control conditions. Total activity and pup-directed activity did not differ significantly with treatment. The results demonstrate that increased opioid activity in the VTA facilitates the onset of maternal behavior in inexperienced nonpregnant female rats, and decreased opioid activity in the VTA disrupts the rapid onset of maternal behavior at parturition.
Collapse
Affiliation(s)
- A C Thompson
- Department of Psychology, State University of New York at Buffalo 14260, USA.
| | | |
Collapse
|
35
|
Miele M, Boutelle MG, Fillenz M. The source of physiologically stimulated glutamate efflux from the striatum of conscious rats. J Physiol 1996; 497 ( Pt 3):745-51. [PMID: 9003559 PMCID: PMC1160970 DOI: 10.1113/jphysiol.1996.sp021805] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Glutamate in the extracellular compartment of the striatum of freely moving rats was monitored at 5 min intervals using microdialysis and an enzyme-based assay. 2. Basal levels of dialysate glutamate were 3.6 +/- 0.5 microM. Local infusion through the dialysis probe of tetrodotoxin (TTX), cadmium chloride or magnesium chloride produced no reduction in basal levels of glutamate; with the latter two there was, instead, an increase. 3. Neuronal activation stimulated by induced grooming was accompanied by an increase in total glutamate efflux of 47.5 +/- 25.0% above basal level; this increase was not reduced by local infusion of TTX. 4. We propose that the TTX-insensitive release of glutamate in response to physiological stimulation is derived from glial cells and is a Ca(2+)-dependent mechanism triggered by a receptor-mediated release of Ca2+ from internal stores that spreads through the network of astrocytes.
Collapse
Affiliation(s)
- M Miele
- University Laboratory of Physiology, Oxford, UK
| | | | | |
Collapse
|
36
|
Wilkinson LS, Humby T, Killcross S, Robbins TW, Everitt BJ. Dissociations in hippocampal 5-hydroxytryptamine release in the rat following Pavlovian aversive conditioning to discrete and contextual stimuli. Eur J Neurosci 1996; 8:1479-87. [PMID: 8758955 DOI: 10.1111/j.1460-9568.1996.tb01610.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The experiments examined the release of 5-hydroxytryptamine using in vivo microdialysis methods in the hippocampus of freely moving rats following Pavlovian aversive conditioning to discrete and contextual stimuli. Differential conditioning was achieved by manipulating the interval between the offset of a discrete auditory 'clicker' stimulus and the onset of a mild foot-shock reinforcer (0.5 mA, 0.5 s). Foot-shock occurred either simultaneously with the last second of the discrete auditory stimulus (in short-trace subjects) or 60 s later (long-trace subjects). In this way, subjects were preferentially conditioned to the discrete stimulus and background 'contextual' stimuli respectively. During conditioning subjects also received two identical unpaired visual stimuli. At test, dialysates were collected and behavioural measures taken as all animals experienced (i) the aversive and two other 'neutral' environments, and (ii) the discrete unconditioned and conditioned stimuli presented in both aversive and neutral environments. Exposure to the aversive environment, but not to either of the two neutral environments, was associated with significantly increased hippocampal 5-hydroxytryptamine release in long-trace subjects. There was also a small but non-significant increase in 5-hydroxytryptamine release in short-trace animals. In contrast, hippocampal 5-hydroxytryptamine release was unaffected by presentation of either of the discrete stimuli under all conditions. The last result was obtained despite robust behavioural responses (freezing) to the discrete conditioned stimulus. These data do not agree with the hypothesis that aversive cues generally activate 5-hydroxytryptamine function in the hippocampus. Rather, they suggest a degree of specificity whereby 5-hydroxytryptamine release in the hippocampus was determined primarily by other qualitative properties of the conditioned aversive stimulus, namely whether the aversive cue was discrete or contextual, as well as by the magnitude of conditioning.
Collapse
Affiliation(s)
- L S Wilkinson
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | | | | | | | | |
Collapse
|
37
|
Saul'skaya NB, Marsden CA. Participation of the glutamatergic input of the nucleus accumbens in the regulation of the synaptic release of dopamine during associative learning. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1996; 26:174-81. [PMID: 8782221 DOI: 10.1007/bf02359421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The changes in the synaptic release of dopamine in the medial division of the nucleus accumbens in the course of a conditioned emotional response and the influence on this process of the blockade of N-methyl-D-aspartate (NMDA) receptors of this structure were investigated in awake Lister-hooded rats, using the method of intravital intracerebral dialysis in combination with high-pressure liquid chromatography and electrochemical detection. It was established that situational stimuli, previously combined with painful reinforcement, but not acoustic conditional signals, lead to a slow increase in the level of dopamine in the extracellular space of the nucleus accumbens. This process reaches a maximum 40 min after the beginning of testing and lasts 80 min. Dialysis perfusion of the nucleus accumbens with a solution of MK-801 (50 mumole/liter) does not alter the magnitude of the slow rise in the synaptic release of dopamine in this structure in the course of the conditioned emotional response, but completely blocks the late components of the release. It is concluded that the glutamatergic input of the nucleus accumbens participates in the regulation of the late components of the synaptic release of dopamine, governed by the conditioned emotional response, in this structure through NMDA receptors.
Collapse
Affiliation(s)
- N B Saul'skaya
- Laboratory of Physiology of Higher Nervous Activity, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg
| | | |
Collapse
|
38
|
Yao T, Suzuki S, Nishino H, Nakahara T. On-line amperometric assay of glucose,L-glutamate, and acetylcholine using microdialysis probes and immobilized enzyme reactors. ELECTROANAL 1995. [DOI: 10.1002/elan.1140071203] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Abstract
The effect of tail pinch on acetylcholine release in the striatum of freely moving rats was studied by microdialysis immediately after inhalation exposure to toluene (2000 ppm, 2 h) or exposure to air only. It has recently been found that toluene increases extracellular dopamine levels while decreasing acetylcholine release, and that dopamine uptake inhibition increases both extracellular dopamine levels and acetylcholine release, suggesting that toluene decreases acetylcholine release by a dopamine-independent mechanism. The present experiment was an attempt to study if a behaviourally induced increase of extracellular dopamine differs from that induced by toluene in affecting striatal acetylcholine release. Acetylcholine released increased during tailpinch in the unexposed as well as the toluene exposed group. No difference between the two groups in the acetylcholine release response to tailpinch was demonstrated. The result supports the conclusion that acute toluene exposure decreases acetylcholine release via a dopamine independent mechanism, and suggests that toluene exposure does not affect the striatal acetylcholine response to an acute stressful stimulus.
Collapse
Affiliation(s)
- K Stengård
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
40
|
Abstract
The study have investigated the effect of a conditioned emotional response using a contextual cue on dopamine release in the rat nucleus accumbens, measured with in vivo microdialysis, and its inhibition by N-methyl-D-aspartate antagonist dizocilpine maleate. The extracellular level of dopamine in the medial nucleus accumbens markedly increased for up to 40 min when rats were given mild footshock in the testing box. When the rats were returned to the testing box, but not given footshock (conditioned emotional response), there was an immediate and long-lasting (80 min) increase in extracellular dopamine. Dizocilpine maleate (50 mumol/l) administered into the nucleus accumbens through the dialysis probe had no significant effect on the immediate increase in dopamine induced by conditioned emotional response but completely prevented the later phase. Dizocilpine maleate had no effect on basal dopamine release in control rats but decreased basal dopamine in rats exposed to footshock 2 h previously. The alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate/kainate antagonist 6-cyano-7-nitroquinnoxaline-2,3-dione (100 mumol/l) had no effect on the increase in dopamine release in response to conditioned emotional response. The results indicate that the acquisition of conditioned emotional response causes long-lasting changes in the mechanisms involved in the glutamatergic control of dopamine release in the nucleus accumbens. Furthermore glutamate inputs into the nucleus accumbens may also regulate the delayed phase of conditioned dopamine release during expression of conditioned emotional response to a contextural cue through activation of N-methyl-D-aspartate receptors.
Collapse
Affiliation(s)
- N Saulskaya
- Department of Physiology and Pharmacology, University of Nottingham Medical School, Queen's Medical Centre, U.K
| | | |
Collapse
|
41
|
Lada MW, Schaller G, Carriger MH, Vickroy TW, Kennedy RT. On-line interface between microdialysis and capillary zone electrophoresis. Anal Chim Acta 1995. [DOI: 10.1016/0003-2670(94)00505-g] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Finlay JM, Zigmond MJ, Abercrombie ED. Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience 1995; 64:619-28. [PMID: 7715775 DOI: 10.1016/0306-4522(94)00331-x] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have examined the effects of diazepam on the stress-induced increase in extracellular dopamine and norepinephrine in the medial prefrontal cortex using in vivo microdialysis. In naive rats, acute tail pressure (30 min) elicited an increase in the concentrations of dopamine and norepinephrine in extracellular fluid of medial prefrontal cortex (+54 and +50%, respectively). Diazepam (2.5 mg/kg, i.p.) decreased the basal concentration of extracellular dopamine and norepinephrine. Diazepam also attenuated the stress-evoked increase in the absolute concentrations of extracellular dopamine (+17%), but did not alter the stress-induced increase in norepinephrine (+41%). However, when the drug-induced decrease in basal dopamine and norepinephrine concentration was taken into account, the stress-induced net increase in dopamine above the new baseline was equivalent to that obtained in vehicle pretreated rats, whereas the net increase in norepinephrine was almost twice that obtained in control subjects. In rats previously exposed to chronic cold (three to four weeks at 5 degrees C), tail pressure again produced an increase in the concentrations of dopamine and norepinephrine in the medial prefrontal cortex (+42% and +92%, respectively). However, in these chronically stressed rats, diazepam no longer decreased basal dopamine or norepinephrine in extracellular fluid, nor did it affect the stress-induced increase in the concentrations of these catecholamines. These data indicate that diazepam has complex effects on the extracellular concentrations of dopamine and norepinephrine which vary depending upon whether the rat is undisturbed or stressed during the period of drug exposure as well as the rat's prior history of exposure to stress. Moreover, these data raise questions regarding the role of catecholamines in the mechanism by which diazepam exerts its anxiolytic properties.
Collapse
Affiliation(s)
- J M Finlay
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
43
|
Miele M, Boutelle MG, Fillenz M. The physiologically induced release of ascorbate in rat brain is dependent on impulse traffic, calcium influx and glutamate uptake. Neuroscience 1994; 62:87-91. [PMID: 7816214 DOI: 10.1016/0306-4522(94)90316-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Extracellular brain ascorbate fluctuates with neuronal activity. There is previous evidence that the release of ascorbate is triggered by the re-uptake of neuronally released glutamate. This hypothesis predicts that drugs which block the release and re-uptake of glutamate will also block the release of ascorbate. In the present experiments we have used a novel dialysis electrode which allows continuous monitoring of physiologically induced ascorbate release from the striatum in freely moving rats. An infusion of the enzyme ascorbic acid oxidase abolished the increase in oxidation current in response to tail-pinch, which identified it as an ascorbate current. Perfusion with tetrodotoxin reduced the response to 25% and with CdCl2 to 4% of control. Perfusion with the uptake blocker L-trans-pyrrolidine-2,4-di-carboxylate reduced the response to 24% of control. A neuroprotective function for this coupling of ascorbate and glutamate release is discussed.
Collapse
Affiliation(s)
- M Miele
- University Laboratory of Physiology, Oxford, U.K
| | | | | |
Collapse
|
44
|
Fellows LK, Boutelle MG, Fillenz M. ATP-sensitive potassium channels and local energy demands in the rat hippocampus: an in vivo study. J Neurochem 1993; 61:949-54. [PMID: 8360693 DOI: 10.1111/j.1471-4159.1993.tb03607.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Microdialysis coupled with an enzyme-based flow injection analysis was used to monitor brain extracellular lactate and glucose in the freely moving rat. Glucose levels reflect the balance between supply from the blood and local utilisation, and lactate efflux indicates the degree of local nonoxidative glucose metabolism. Local application of tolbutamide, a blocker of the ATP-sensitive potassium channel, decreased extracellular glucose and lactate levels in the hippocampus but not in the striatum. The increase in glucose and lactate levels following mild behavioural stimulation was also reduced by tolbutamide in the hippocampus. Similar effects on both basal and stimulated lactate levels were obtained with local application of 10 mM glucose. These results indicate that ATP-sensitive potassium channels are active under physiological conditions in the hippocampus and that the effects of tolbutamide can be mimicked by physiological glucose levels.
Collapse
Affiliation(s)
- L K Fellows
- University Laboratory of Physiology, Oxford, England, UK
| | | | | |
Collapse
|
45
|
Fellows LK, Boutelle MG, Fillenz M. Physiological stimulation increases nonoxidative glucose metabolism in the brain of the freely moving rat. J Neurochem 1993; 60:1258-63. [PMID: 8455025 DOI: 10.1111/j.1471-4159.1993.tb03285.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of mild stress on nonoxidative glucose metabolism were studied in the brain of the freely moving rat. Extracellular lactate levels in the hippocampus and striatum were monitored at 2.5-min intervals with microdialysis coupled with an enzyme-based flow injection analysis system. Ten minutes of restraint stress led to a 235% increase in extracellular lactate levels in the striatum. A 5-min tail pinch caused an increase of 193% in the striatum and 170% in the hippocampus. Local application of tetrodotoxin in the striatum blocked the rise in lactate following tail pinch and inhibited the subsequent clearance of lactate from the extracellular fluid. Local application of the noncompetitive N-methyl-D-aspartate receptor antagonist MK-801 had no effect on the tail pinch-stimulated increase in lactate in the striatum. These results show that mild physiological stimulation can lead to a rapid increase in nonoxidative glucose metabolism in the brain.
Collapse
Affiliation(s)
- L K Fellows
- University Laboratory of Physiology, Oxford, England
| | | | | |
Collapse
|
46
|
Fellows LK, Boutelle MG. Rapid changes in extracellular glucose levels and blood flow in the striatum of the freely moving rat. Brain Res 1993; 604:225-31. [PMID: 8457850 DOI: 10.1016/0006-8993(93)90373-u] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The dynamics of regional cerebral blood flow and brain extracellular glucose were studied in the freely moving rat. These two variables were measured in the striatum during and following both mild tail pinch and restraint stress. Blood flow was monitored using a refinement of the hydrogen clearance technique that allowed repeated measurements at 5-min intervals. A slow stream of hydrogen was directed at the rat's snout for 10-20 s through lightweight tubing attached to the animal's head and detected at a chronically implanted platinum electrode. Extracellular glucose was monitored with microdialysis in a separate group of animals using an on-line, enzyme-based assay that provided 2.5-min time resolution. Mean striatal blood flow 24 h following implantation was 89.9 +/- 2.5 ml.(100 g)-1.min-1. A 5-min tail pinch caused flow to increase immediately to 169.5 +/- 20 ml.(100 g)-1.min-1. In contrast, there was no change in blood flow during restraint stress, although there was a small increase following the end of the stress. Significant increases in blood flow were also observed in the striatum during periods of eating and grooming. Extracellular glucose levels increased following both forms of stress, to a maximum of 170 +/- 22% of baseline with restraint compared to 110 +/- 2% with tail pinch. In both cases, the increase occurred after the stress had ended and persisted while blood flow returned to basal levels.
Collapse
Affiliation(s)
- L K Fellows
- Laboratory of Physiology, University of Oxford, UK
| | | |
Collapse
|
47
|
Coscina DV, de Rooy EC. Effects of intracisternal vs. intrahypothalamic 5,7-DHT on feeding elicited by hypothalamic infusion of NE. Brain Res 1992; 597:310-20. [PMID: 1473002 DOI: 10.1016/0006-8993(92)91488-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A variety of evidence has led to suggestions that brain serotonin (5-HT) and norepinephrine (NE) interact within the medial hypothalamus to control food intake. To test the possibility that chronic decrements in 5-HT might enhance NE-induced feeding, adult male rats were prepared with permanently indwelling cannulae aimed at the paraventricular nucleus (PVN), then received either intracisternal (IC) or PVN injections of the 5-HT neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT) vs. its vehicle, 1% ascorbic acid. Over a 4-week period, IC-5,7-DHT rats showed no signs of enhanced daily feeding or drinking. However, in 40-min intake tests, feeding but not drinking was enhanced by injecting 20 nmol NE into the PVN commencing 2 weeks after neurotoxin treatment. Terminal monoamine assays confirmed that IC-5,7-DHT produced large (80-90%) depletions of brain regional 5-HT. A functional index of 5-HT terminal damage was also implied by the impaired short-term feeding responses IC-5,7-DHT rats showed to the systemic administration of the 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) when tested between 3 and 4 weeks after IC treatment. Over a comparable 4-week period, PVN-5,7-DHT rats also showed no tendencies to overeat or overdrink on a daily basis. However, in contrast to IC-5,7-DHT rats, they also showed no differences in their feeding or drinking responses to NE injections into the PVN. This was so despite reliable depletions of 5-HT in the hypothalamus (-28%) and hippocampus (-71%). These results support earlier work showing that neither widespread nor localized hypothalamic damage to brain 5-HT neurons produce chronic overeating. However, the data suggest that phasic enhancements of PVN NE activity may trigger enhanced feeding when there is widespread damage to brain 5-HT neurons, although the PVN does not appear to be the brain site mediating this effect.
Collapse
Affiliation(s)
- D V Coscina
- Section of Biopsychology, Clarke Institute of Psychiatry, Toronto, Ont., Canada
| | | |
Collapse
|
48
|
Cammack J, Ghasemzadeh B, Adams RN. Electrochemical monitoring of brain ascorbic acid changes associated with hypoxia, spreading depression, and seizure activity. Neurochem Res 1992; 17:23-7. [PMID: 1347161 DOI: 10.1007/bf00966861] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In vivo electrochemistry has been a valuable tool in detecting real time neurochemical changes in extracellular fluid. Absolute selectivity has been difficult to achieve previously, but we report here a carbon fiber electrode and measurement technique which is specific for one oxidizable species: ascorbic acid. Ascorbic acid is highly concentrated in extra- as well as intracellular brain spaces, and appears to undergo dynamic changes in response to a variety of physiological and pathophysiological circumstances. Recent studies have implicated glutamatergic mechanisms which give rise to extracellular changes in brain ascorbate, and we confirm and extend these observations. Preliminary studies, directed towards examining ascorbic acid as an index and/or result of hypoxia, spreading depression, and seizure activity, have been undertaken and the results are reported herein.
Collapse
Affiliation(s)
- J Cammack
- Dept. of Pharmacology, University of Kansas, Lawrence 66045
| | | | | |
Collapse
|
49
|
Albery WJ, Boutelle MG, Galley PT. The dialysis electrode—a new method for in vivo monitoring. ACTA ACUST UNITED AC 1992. [DOI: 10.1039/c39920000900] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|