1
|
A Neural Circuit from Thalamic Paraventricular Nucleus to Central Amygdala for the Facilitation of Neuropathic Pain. J Neurosci 2020; 40:7837-7854. [PMID: 32958568 DOI: 10.1523/jneurosci.2487-19.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
As one of the thalamic midline nuclei, the thalamic paraventricular nucleus (PVT) is considered to be an important signal integration site for many descending and ascending pathways that modulate a variety of behaviors, including feeding, emotions, and drug-seeking. A recent study has demonstrated that the PVT is implicated in the acute visceral pain response, but it is unclear whether the PVT plays a critical role in the central processing of chronic pain. Here, we report that the neurons in the posterior portion of the PVT (pPVT) and their downstream pathway are involved in descending nociceptive facilitation regarding the development of neuropathic pain conditions in male rats. Lesions or inhibition of pPVT neurons alleviated mechanical allodynia induced by spared nerve injury (SNI). The excitability of pPVT-central amygdala (CeA) projection neurons was significantly increased in SNI rats. Importantly, selective optogenetic activation of the pPVT-CeA pathway induced obvious mechanical hypersensitivity in naive rats. In addition, we used rabies virus (RV)-based and cell-type-specific retrograde transsynaptic tracing techniques to define a novel neuronal circuit in which glutamatergic neurons in the vlPAG were the target of the pPVT-CeA descending facilitation pathway. Our data suggest that this pPVTGlu+-CeA-vlPAGGlu+ circuit mediates central mechanisms of descending pain facilitation underlying persistent pain conditions.SIGNIFICANCE STATEMENT Studies have shown that the interactions between the posterior portion of the thalamic paraventricular nucleus (pPVT) and central amygdala (CeA) play a critical role in pain-related emotional regulation. However, most reports have associated this circuit with fear and anxiety behaviors. Here, an integrative approach of behavioral tests, electrophysiology, and immunohistochemistry was used to advance the novel concept that the pPVT-CeA pathway activation facilitates neuropathic pain processing. Using rabies virus (RV)-based and cell-type-specific retrograde transsynaptic tracing techniques, we found that glutamatergic neurons in the vlPAG were the target of the pPVT-CeA pathway. Thus, this study indicates the involvement of a pPVTGlu+-CeA-vlPAGGlu+ pathway in a descending facilitatory mechanism underlying neuropathic pain.
Collapse
|
2
|
Selective Removal of Sodium Salt Taste Disrupts the Maintenance of Dendritic Architecture of Gustatory Relay Neurons in the Mouse Nucleus of the Solitary Tract. eNeuro 2020; 7:ENEURO.0140-20.2020. [PMID: 32817119 PMCID: PMC7598914 DOI: 10.1523/eneuro.0140-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Neuronal activity plays critical roles in the development of sensory circuits in the mammalian brain. Experimental procedures are now available to alter the function of specific taste transduction pathways and have been especially useful in studying how stimulus-specific taste activity influences the development of central gustatory circuits. We previously used a mouse knock-out (KO) model in which the transduction channel necessary for sodium taste is removed from taste bud cells throughout life. In these KO mice, the terminal fields that carry taste information from taste buds into the nucleus of the solitary tract (NST) fail to mature, suggesting that sodium-elicited taste activity is important for the proper development of central gustatory circuits. Here, we tested the hypothesis that the development and maintenance of the dendritic architecture of NST relay cells, the primary postsynaptic partner of gustatory nerve terminal fields, are similarly dependent on sodium-elicited taste activity. The dendritic fields of NST relay cells, from adult male and female mice in which the α-subunit of the epithelial sodium channel (αENaC) was conditionally deleted in taste bud cells throughout life, were up to 2.4× larger and more complex than that of age-matched control mice. Interestingly, these differences in dendritic architecture did not appear until after the age when terminal fields begin “pruning,” after postnatal day (P)20. Overall, our results suggest that ENaC-mediated sodium taste activity is necessary for the maintenance of dendritic fields of relay cells in the gustatory NST.
Collapse
|
3
|
Ito T. Different coding strategy of sound information between GABAergic and glutamatergic neurons in the auditory midbrain. J Physiol 2020; 598:1039-1072. [DOI: 10.1113/jp279296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tetsufumi Ito
- Department of AnatomyKanazawa Medical University Uchinada Ishikawa 920‐0293 Japan
- Research and Education Program for Life ScienceUniversity of Fukui Fukui Fukui 910‐8507 Japan
| |
Collapse
|
4
|
Pushchin I. Retinal ganglion cell topography and spatial resolution estimation in the Japanese tree frog Hyla japonica (Günther, 1859). J Anat 2019; 235:1114-1124. [PMID: 31418464 DOI: 10.1111/joa.13075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2019] [Indexed: 11/29/2022] Open
Abstract
Tree frogs are an interesting and diverse group of frogs. They display a number of unique adaptations to life in the arboreal environment. Vision plays a crucial role in their ecology. The topography of retinal ganglion cells (GCs) is closely related to a species' visual behavior. Despite a large amount of research addressing GC topography in vertebrates, there is scarce data on this subject in tree frogs. I studied the topography of GCs in the retina of the Japanese tree frog Hyla japonica. The GC density distribution was locally fairly homogeneous, with spatial density increasing gradually from the dorsal and ventral periphery towards the equator. A moderately pronounced visual streak was found close to the equator in the dorsal hemiretina, with a distinct area retinae temporalis in the dorsotemporal quadrant potentially subserving binocular vision. The minimum GC density (mean ± SEM, n = 5) was 3060 ± 60 and the maximum 12 800 ± 170 cells/mm2 . The total number of GCs was 292 ± 7 × 103 . The theoretical anatomical spatial resolution estimated from GC densities and eye optics was lowest in the ventral periphery (ca. 0.9 and 1.3 cycles/degree in air and water, respectively) and highest in the area retinae temporalis (ca. 2.1 and 2.8 cycles/degree). The relatively high GC density and presence of specialized retinal regions in Hyla japonica are consistent with its highly visual behavior. The present findings contribute to our understanding of the relative role of common ancestry and environmental pressure in GC topography variation within Anura.
Collapse
Affiliation(s)
- Igor Pushchin
- Laboratory of Physiology, National Scientific Center of Marine Biology , Far Eastern Branch Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
5
|
Cho HK, Kim S, Lee EJ, Kee C. Neuroprotective Effect of Ginkgo Biloba Extract Against Hypoxic Retinal Ganglion Cell Degeneration In Vitro and In Vivo. J Med Food 2019; 22:771-778. [PMID: 31268403 DOI: 10.1089/jmf.2018.4350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hypoxia-induced oxidative stress and disturbed microvascular circulation are both associated with pathogenesis of glaucoma. Ginkgo biloba extract (GBE) has been reported to have positive pharmacological effects on oxidative stress and impaired vascular circulation. This study aimed to investigate the neuroprotective effect of GBE against hypoxic injury to retinal ganglion cells (RGCs) both in vitro and in vivo. The rat RGC line was used, and oxidative stress was induced by hydrogen peroxide (H2O2) in vitro. EGb 761, a standardized GBE, or vehicle was applied to RGCs. Hypoxic optic nerve injury in vivo was induced by clamping the optic nerve of rats with a "microserrefine clip" with an applicator, which was applied without crushing the optic nerve. This method is different from "optic nerve crush model" and does not involve elevation of intraocular pressure, and may serve as a possible normal tension glaucoma animal model. EGb 761 at various concentrations or vehicle was administered intraperitoneally. RGC density was measured to estimate the survival both in vitro and in vivo. The survival of RGCs was significantly (P < .001) higher upon treatment with 1 or 5 μg/mL of EGb 761 compared with vehicle after oxidative stress in vitro. RGC density upon treatment with EGb 761 of 100 mg/kg (1465.6 ± 175 cells/mm2) or 250 mg/kg (1307.6 ± 213 cells/mm2) was significantly higher (P < .01, P < .05, respectively) than that obtained with vehicle (876.3 ± 136 cells/mm2) in vivo. Our results suggest that GBE has neuroprotective effect on RGCs against hypoxic injury both in vitro and in vivo.
Collapse
Affiliation(s)
- Hyun-Kyung Cho
- 1Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Gyeongsang National University, School of Medicine, Changwon, Korea
| | - Sibum Kim
- 2Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jung Lee
- 2Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changwon Kee
- 2Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Bernal L, Cisneros E, García-Magro N, Roza C. Immunostaining in whole-mount lipid-cleared peripheral nerves and dorsal root ganglia after neuropathy in mice. Sci Rep 2019; 9:8374. [PMID: 31182787 PMCID: PMC6558043 DOI: 10.1038/s41598-019-44897-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/23/2019] [Indexed: 12/31/2022] Open
Abstract
Immunohistochemical characterization of primary afferent fibers (intact or after nerve damage) is traditionally performed in thin sections from dorsal root ganglia (DRGs) or in teased fibers, as light scattering in whole-mounts compromises visualization. These procedures are time-consuming, require specific equipment and advanced experimental skills. Lipid-clearing techniques are increasing in popularity, but they have never been used for the peripheral nervous system. We established a modified, inexpensive clearing method based on lipid-removal protocols to make transparent peripheral nerve tissue (inCLARITY). We compared retrograde-labeling and free-floating immunostaining with cryo-sections. Confocal microscopy on whole-mount transparent DRGs showed neurons marked with retrograde tracers applied to experimental neuromas (Retrobeads, Fluoro-ruby, Fluoro-emerald, DiI, and Fluoro-gold). After immunostaining with calcitonin gene-related peptide (peptidergic) or isolectin IB4 (non-peptidergic), nociceptors were visualized. Immunostaining in transparent whole-mount nerves allows simultaneous evaluation of the axotomized branches containing the neuroma and neighboring intact branches as they can be mounted preserving their anatomical disposition and fiber integrity. The goal of our study was to optimize CLARITY for its application in peripheral nerve tissues. The protocol is compatible with the use of retrograde tracers and improves immunostaining outcomes when compared to classical cryo-sectioning, as lack of lipids maximizes antibody penetration within the tissue.
Collapse
Affiliation(s)
- L Bernal
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, 28871, Madrid, Spain
| | - E Cisneros
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, 28871, Madrid, Spain.,Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain
| | - N García-Magro
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029, Madrid, Spain
| | - C Roza
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, 28871, Madrid, Spain.
| |
Collapse
|
7
|
Solari P, Sollai G, Masala C, Maccioni R, Crnjar R, Liscia A. Octopamine modulates the activity of motoneurons related to calling behavior in the gypsy moth Lymantria dispar. INSECT SCIENCE 2018; 25:797-808. [PMID: 29473996 DOI: 10.1111/1744-7917.12580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/31/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
A morphofunctional investigation of the different neuronal subpopulations projecting through each of the nerves IV-VI emerging bilaterally from the terminal abdominal ganglion (TAG) was correlated with the octopaminergic activity in the ganglion that controls the ovipositor movements associated with calling behavior in the female gypsy moth Lymantria dispar. Tetramethylrodamine-dextran backfills from nerve stumps resulted in a relatively low number of TAG projections, ranging from 12 to 13 for nerve pair IV, 12 to 14 for nerve pair V, and 8 to 9 for nerve pair VI. Furthermore, as assessed by electrophysiological recordings, a number of fibers within each of these nerves displays spontaneous tonic activity, also when the ganglion is fully disconnected from the ventral nerve cord (VNC). Octopamine (OA) applications to the TAG strongly enhanced the activity of these nerves, either by increasing the firing rate of a number of spontaneously firing units or by recruiting new ones. This octopaminergic activity affected calling behavior, and specifically the muscle activity leading to cycling extensions of the intersegmental membrane (IM) between segments VIII and IX (ovipositor). Our results indicate that in the female gypsy moth the octopaminergic neural activity of the TAG is coupled with extensions and retractions of IM for the purpose of releasing pheromone, where motor units innervated by nerve pair IV appear antagonistic with respect to those innervated by nerve pair V.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Carla Masala
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Riccardo Maccioni
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Roberto Crnjar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Anna Liscia
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| |
Collapse
|
8
|
Xu D, Cui J, Wang J, Zhang Z, She C, Bai W. Improving the Application of High Molecular Weight Biotinylated Dextran Amine for Thalamocortical Projection Tracing in the Rat. J Vis Exp 2018. [PMID: 29708526 DOI: 10.3791/55938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
High molecular weight biotinylated dextran amine (BDA) has been used as a highly sensitive neuroanatomical tracer for many decades. Since the quality of its labeling was affected by various factors, here, we provide a refined protocol for the application of high molecular weight BDA for studying optimal neural labeling in the central nervous system. After stereotactic injection of BDA into the ventral posteromedial nucleus (VPM) of the thalamus in the rat through a delicate glass pipette, BDA was stained with fluorescent streptavidin-Alexa (AF) 594 and counterstained with fluorescent Nissl stain AF500/525. On the background of green Nissl staining, the red BDA labeling, including neuronal cell bodies and axonal terminals, was more distinctly demonstrated in the somatosensory cortex. Furthermore, double fluorescent staining for BDA and the calcium-binding protein parvalbumin (PV) was carried out to observe the correlation of BDA labeling and PV-positive interneurons in the cortical target, providing the opportunity to study the local neural circuits and their chemical characteristics. Thus, this refined method is not only suitable for visualizing high quality neural labeling with the high molecular weight BDA through reciprocal neural pathways between the thalamus and cerebral cortex, but also will permit the simultaneous demonstration of other neural markers with fluorescent histochemistry or immunochemistry.
Collapse
Affiliation(s)
- Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
| | - Zhiyun Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
| | - Chen She
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences;
| |
Collapse
|
9
|
Shaping somatosensory responses in awake rats: cortical modulation of thalamic neurons. Brain Struct Funct 2017; 223:851-872. [DOI: 10.1007/s00429-017-1522-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/26/2017] [Indexed: 02/02/2023]
|
10
|
Wu ZY, Lu YC, Feng B, Chen YB, Bai Y, Zhang T, Zhang H, Chen T, Dong YL, Li H, Li YQ. Endomorphin-2 Decreases Excitatory Synaptic Transmission in the Spinal Ventral Horn of the Rat. Front Neural Circuits 2017; 11:55. [PMID: 28848403 PMCID: PMC5550698 DOI: 10.3389/fncir.2017.00055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/26/2017] [Indexed: 01/20/2023] Open
Abstract
Motor impairment is one of the serious side-effects of morphine, which is an exogenous agonist of the μ-opioid receptor (MOR) as well as a widely used analgesic drug in clinical practice for chronic pain treatment. Endomorphins (EMs, including EM-1 and EM-2), the most effective and specific endogenous agonists of the MOR, exert more potent analgesia in acute and neuropathic pain than other opiates, such as morphine. Although EMs had fewer side-effects comparing to other opiates, motor impairment was still one unwanted reaction which limited its clinical application. In order to prevent and treat the motor impairment, it is critical to reveal the neural mechanisms underlying such locomotion disorder. The purpose of the present study was to reveal the neural mechanisms underlying the effects of EM-2 on the activity of motoneurons in the spinal ventral horn. First, we examine the distribution of EM-2-immunoreactive (IR) primary afferent fibers and their synaptic connections with the motoneurons innervating the skeletal muscles of the lower limb revealed by sciatic nerve retrograde tracing. The results showed that EM-2-IR fibers and terminals were sparsely observed in lamina IX and they formed symmetric synaptic connections with the motoneurons within lamina IX of the spinal ventral horn. Then, whole-cell patch-clamp technique was used to observe the effects of EM-2 on the spontaneous excitatory postsynaptic current (sEPSC) of motoneurons in lamina IX. The results showed that EM-2 could decrease both the frequency and amplitude of the sEPSC of the motoneurons in lamina IX, which was reversed by the MOR antagonist CTOP. These results indicate that EM-2-IR fibers originated from primary afferent fibers form symmetric synaptic connections with motoneurons innervating skeletal muscles of the lower limbs in lamina IX of the spinal ventral horn and EM-2 might exert inhibitory effects on the activities of these motoneurons through both presynaptic and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Zhen-Yu Wu
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Ya-Cheng Lu
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Ban Feng
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Ying-Biao Chen
- Department of Anatomy, Fujian Health CollegeMinhou, China
| | - Yang Bai
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Ting Zhang
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Hua Zhang
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical UniversityXi'an, China
| | - Tao Chen
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Yu-Ling Dong
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Hui Li
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Yun-Qing Li
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China.,Collaborative Innovation Center for Brain Science, Fudan UniversityShanghai, China
| |
Collapse
|
11
|
Mathiasen ML, Dillingham CM, Kinnavane L, Powell AL, Aggleton JP. Asymmetric cross-hemispheric connections link the rat anterior thalamic nuclei with the cortex and hippocampal formation. Neuroscience 2017; 349:128-143. [PMID: 28237814 PMCID: PMC5387186 DOI: 10.1016/j.neuroscience.2017.02.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
Abstract
Dense reciprocal connections link the rat anterior thalamic nuclei with the prelimbic, anterior cingulate and retrosplenial cortices, as well as with the subiculum and postsubiculum. The present study compared the ipsilateral thalamic-cortical connections with the corresponding crossed, contralateral connections between these same sets of regions. All efferents from the anteromedial thalamic nucleus to the cortex, as well as those to the subiculum, remained ipsilateral. In contrast, all of these target sites provided reciprocal, bilateral projections to the anteromedial nucleus. While the anteroventral thalamic nucleus often shared this same asymmetric pattern of cortical connections, it received relatively fewer crossed inputs than the anteromedial nucleus. This difference was most marked for the anterior cingulate projections, as those to the anteroventral nucleus remained almost entirely ipsilateral. Unlike the anteromedial nucleus, the anteroventral nucleus also appeared to provide a restricted, crossed projection to the contralateral retrosplenial cortex. Meanwhile, the closely related laterodorsal thalamic nucleus had almost exclusively ipsilateral efferent and afferent cortical connections. Likewise, within the hippocampus, the postsubiculum seemingly had only ipsilateral efferent and afferent connections with the anterior thalamic and laterodorsal nuclei. While the bilateral cortical projections to the anterior thalamic nuclei originated predominantly from layer VI, the accompanying sparse projections from layer V largely gave rise to ipsilateral thalamic inputs. In testing a potentially unifying principle of anterior thalamic - cortical interactions, a slightly more individual pattern emerged that reinforces other evidence of functional differences within the anterior thalamic and also helps to explain the consequences of unilateral interventions involving these nuclei.
Collapse
Affiliation(s)
- Mathias L Mathiasen
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK.
| | - Christopher M Dillingham
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Lisa Kinnavane
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK
| | - Anna L Powell
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK
| | - John P Aggleton
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
12
|
Zhang W, Xu D, Cui J, Jing X, Xu N, Liu J, Bai W. Anterograde and retrograde tracing with high molecular weight biotinylated dextran amine through thalamocortical and corticothalamic pathways. Microsc Res Tech 2016; 80:260-266. [PMID: 27862607 DOI: 10.1002/jemt.22797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/07/2016] [Indexed: 11/09/2022]
Abstract
Biotinylated dextran amine (BDA) has been used for neural pathway tracing in the central nervous system for many decades, in which high molecular weight BDA appeared to be transported predominantly in the anterograde direction and less in the retrograde direction. In the current study, we reexamined the properties of neural labeling with high molecular weight BDA through a reciprocal neural pathway between thalamus and somatosensory cortex. After injection of BDA into the ventral posteromedial nucleus of thalamus (VPM) in the rat, the BDA labeling was sequentially examined on somatosensory cortex at 3, 5, 7, 10, and 14 survival days. Both of anterogradely labeled axonal terminals and retrogradely labeled neuronal cell bodies were observed simultaneously on the somatosensory cortex. With the increasing of survival times after injection, morphological changes occurred on the labeled axonal arbors and neuronal dendrites, in which the high quality of BDA labeling appeared on the tenth survival day. These results indicate that high molecular weight BDA is not only a sensitive anterograde tracer but also an excellent retrograde marker to be used for tracing through thalamocortical and corticothalamic pathways. And the detailed structure of neural labeling with BDA similar to Golgi-like resolution can be obtained at optimal survival times of animals after the injection of high molecular weight BDA.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Acupuncture of Guangdong Procince, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Nenggui Xu
- Key Laboratory of Acupuncture of Guangdong Procince, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jianhua Liu
- Key Laboratory of Acupuncture of Guangdong Procince, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
13
|
Alcaraz F, Marchand AR, Courtand G, Coutureau E, Wolff M. Parallel inputs from the mediodorsal thalamus to the prefrontal cortex in the rat. Eur J Neurosci 2016; 44:1972-86. [PMID: 27319754 DOI: 10.1111/ejn.13316] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 12/22/2022]
Abstract
There is a growing interest in determining the functional contribution of thalamic inputs to cortical functions. In the context of adaptive behaviours, identifying the precise role of the mediodorsal thalamus (MD) in particular remains difficult despite the large amount of experimental data available. A better understanding of the thalamocortical connectivity of this region may help to capture its functional role. To address this issue, this study focused exclusively on the specific connections from the MD to the prefrontal cortex (PFC) by means of direct comparisons of labelling produced by single and dual injections of retrograde tracers in the different subdivisions of the PFC in the rat. We show that at least three parallel and essentially separate thalamocortical pathways originate from the MD, as follows: projections to the dorsal (1) and the ventral (2) subdivisions of the mPFC follow a mediolateral topography at the thalamic level (i.e. medial thalamic neurons target the mPFC ventrally whereas lateral thalamic neurons project dorsally), whereas a considerable innervation to the OFC (3) includes thalamic cells projecting to both the lateral and the ventral OFC subdivisions. These observations provide new insight on the functions of the MD and suggest a specific focus on each of these pathways for future functional studies.
Collapse
Affiliation(s)
- Fabien Alcaraz
- CNRS, INCIA, UMR 5287, 33076, Bordeaux, France.,Université de Bordeaux, INCIA, UMR 5287, 33076, Bordeaux, France
| | - Alain R Marchand
- CNRS, INCIA, UMR 5287, 33076, Bordeaux, France.,Université de Bordeaux, INCIA, UMR 5287, 33076, Bordeaux, France
| | - Gilles Courtand
- CNRS, INCIA, UMR 5287, 33076, Bordeaux, France.,Université de Bordeaux, INCIA, UMR 5287, 33076, Bordeaux, France
| | - Etienne Coutureau
- CNRS, INCIA, UMR 5287, 33076, Bordeaux, France.,Université de Bordeaux, INCIA, UMR 5287, 33076, Bordeaux, France
| | - Mathieu Wolff
- CNRS, INCIA, UMR 5287, 33076, Bordeaux, France.,Université de Bordeaux, INCIA, UMR 5287, 33076, Bordeaux, France
| |
Collapse
|
14
|
Flexible Use of Predictive Cues beyond the Orbitofrontal Cortex: Role of the Submedius Thalamic Nucleus. J Neurosci 2015; 35:13183-93. [PMID: 26400947 DOI: 10.1523/jneurosci.1237-15.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The orbitofrontal cortex (OFC) is known to play a crucial role in learning the consequences of specific events. However, the contribution of OFC thalamic inputs to these processes is largely unknown. Using a tract-tracing approach, we first demonstrated that the submedius nucleus (Sub) shares extensive reciprocal connections with the OFC. We then compared the effects of excitotoxic lesions of the Sub or the OFC on the ability of rats to use outcome identity to direct responding. We found that neither OFC nor Sub lesions interfered with the basic differential outcomes effect. However, more specific tests revealed that OFC rats, but not Sub rats, were disproportionally relying on the outcome, rather than on the discriminative stimulus, to guide behavior, which is consistent with the view that the OFC integrates information about predictive cues. In subsequent experiments using a Pavlovian contingency degradation procedure, we found that both OFC and Sub lesions produced a severe deficit in the ability to update Pavlovian associations. Altogether, the submedius therefore appears as a functionally relevant thalamic component in a circuit dedicated to the integration of predictive cues to guide behavior, previously conceived as essentially dependent on orbitofrontal functions. Significance statement: In the present study, we identify a largely unknown thalamic region, the submedius nucleus, as a new functionally relevant component in a circuit supporting the flexible use of predictive cues. Such abilities were previously conceived as largely dependent on the orbitofrontal cortex. Interestingly, this echoes recent findings in the field showing, in research involving an instrumental setup, an additional involvement of another thalamic nuclei, the parafascicular nucleus, when correct responding requires an element of flexibility (Bradfield et al., 2013a). Therefore, the present contribution supports the emerging view that limbic thalamic nuclei may contribute critically to adaptive responding when an element of flexibility is required after the establishment of initial learning.
Collapse
|
15
|
Chen YB, Huang FS, Fen B, Yin JB, Wang W, Li YQ. Inhibitory effects of endomorphin-2 on excitatory synaptic transmission and the neuronal excitability of sacral parasympathetic preganglionic neurons in young rats. Front Cell Neurosci 2015; 9:206. [PMID: 26074773 PMCID: PMC4446531 DOI: 10.3389/fncel.2015.00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 01/23/2023] Open
Abstract
The function of the urinary bladder is partly controlled by parasympathetic preganglionic neurons (PPNs) of the sacral parasympathetic nucleus (SPN). Our recent work demonstrated that endomorphin-2 (EM-2)-immunoreactive (IR) terminals form synapses with μ-opioid receptor (MOR)-expressing PPNs in the rat SPN. Here, we examined the effects of EM-2 on excitatory synaptic transmission and the neuronal excitability of the PPNs in young rats (24–30 days old) using a whole-cell patch-clamp approach. PPNs were identified by retrograde labeling with the fluorescent tracer tetramethylrhodamine-dextran (TMR). EM-2 (3 μM) markedly decreased both the amplitude and the frequency of the spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) of PPNs. EM-2 not only decreased the resting membrane potentials (RMPs) in 61.1% of the examined PPNs with half-maximal response at the concentration of 0.282 μM, but also increased the rheobase current and reduced the repetitive action potential firing of PPNs. Analysis of the current–voltage relationship revealed that the EM-2-induced current was reversed at −95 ± 2.5 mV and was suppressed by perfusion of the potassium channel blockers 4-aminopyridine (4-AP) or BaCl2 or by the addition of guanosine 5′-[β-thio]diphosphate trilithium salt (GDP-β-S) to the pipette solution, suggesting the involvement of the G-protein-coupled inwardly rectifying potassium (GIRK) channel. The above EM-2-invoked inhibitory effects were abolished by the MOR selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), indicating that the effects of EM-2 on PPNs were mediated by MOR via pre- and/or post-synaptic mechanisms. EM-2 activated pre- and post-synaptic MORs, inhibiting excitatory neurotransmitter release from the presynaptic terminals and decreasing the excitability of PPNs due to hyperpolarization of their membrane potentials, respectively. These inhibitory effects of EM-2 on PPNs at the spinal cord level may explain the mechanism of action of morphine treatment and morphine-induced bladder dysfunction in the clinic.
Collapse
Affiliation(s)
- Ying-Biao Chen
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China
| | - Fen-Sheng Huang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China ; Division of Medical Biophysics, Institute of Neuroscience and Physiology, Göteborg University Göteborg, Sweden
| | - Ban Fen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jun-Bin Yin
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Wei Wang
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China ; Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China ; Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
16
|
Herrity AN, Rau KK, Petruska JC, Stirling DP, Hubscher CH. Identification of bladder and colon afferents in the nodose ganglia of male rats. J Comp Neurol 2014; 522:3667-82. [PMID: 24845615 DOI: 10.1002/cne.23629] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 12/14/2022]
Abstract
The sensory neurons innervating the urinary bladder and distal colon project to similar regions of the central nervous system and often are affected simultaneously by various diseases and disorders, including spinal cord injury. Anatomical and physiological commonalities between the two organs involve the participation of shared spinally derived pathways, allowing mechanisms of communication between the bladder and colon. Prior electrophysiological data from our laboratory suggest that the bladder also may receive sensory innervation from a nonspinal source through the vagus nerve, which innervates the distal colon as well. The present study therefore aimed to determine whether anatomical evidence exists for vagal innervation of the male rat urinary bladder and to assess whether those vagal afferents also innervate the colon. Additionally, the relative contribution to bladder and colon sensory innervation of spinal and vagal sources was determined. By using lipophilic tracers, neurons that innervated the bladder and colon in both the nodose ganglia (NG) and L6/S1 and L1/L2 dorsal root ganglia (DRG) were quantified. Some single vagal and spinal neurons provided dual innervation to both organs. The proportions of NG afferents labeled from the bladder did not differ from spinal afferents labeled from the bladder when considering the collective population of total neurons from either group. Our results demonstrate evidence for vagal innervation of the bladder and colon and suggest that dichotomizing vagal afferents may provide a neural mechanism for cross-talk between the organs.
Collapse
Affiliation(s)
- April N Herrity
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202; Kentucky Spinal Cord Injury Research Center University of Louisville, Louisville, Kentucky, 40202
| | | | | | | | | |
Collapse
|
17
|
Kaneko T. Local connections of excitatory neurons in motor-associated cortical areas of the rat. Front Neural Circuits 2013; 7:75. [PMID: 23754982 PMCID: PMC3664775 DOI: 10.3389/fncir.2013.00075] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/03/2013] [Indexed: 11/30/2022] Open
Abstract
In spite of recent progress in brain sciences, the local circuit of the cerebral neocortex, including motor areas, still remains elusive. Morphological works on excitatory cortical circuitry from thalamocortical (TC) afferents to corticospinal neurons (CSNs) in motor-associated areas are reviewed here. First, TC axons of motor thalamic nuclei have been re-examined by the single-neuron labeling method. There are middle layer (ML)-targeting and layer (L) 1-preferring TC axon types in motor-associated areas, being analogous to core and matrix types, respectively, of Jones (1998) in sensory areas. However, the arborization of core-like motor TC axons spreads widely and disregards the columnar structure that is the basis of information processing in sensory areas, suggesting that motor areas adopt a different information-processing framework such as area-wide laminar organization. Second, L5 CSNs receive local excitatory inputs not only from L2/3 pyramidal neurons but also from ML spiny neurons, the latter directly processing cerebellar information of core-like TC neurons (TCNs). In contrast, basal ganglia information is targeted to apical dendrites of L2/3 and L5 pyramidal neurons through matrix TCNs. Third, L6 corticothalamic neurons (CTNs) are most densely innervated by ML spiny neurons located just above CTNs. Since CTNs receive only weak connections from L2/3 and L5 pyramidal neurons, the TC recurrent circuit composed of TCNs, ML spiny neurons and CTNs appears relatively independent of the results of processing in L2/3 and L5. It is proposed that two circuits sharing the same TC projection and ML neurons are embedded in the neocortex: one includes L2/3 and L5 neurons, processes afferent information in a feedforward way and sends the processed information to other cortical areas and subcortical regions; and the other circuit participates in a dynamical system of the TC recurrent circuit and may serve as the basis of autonomous activity of the neocortex.
Collapse
Affiliation(s)
- Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan
| |
Collapse
|
18
|
Funakoshi K, Yoshikawa A, Atobe Y. Retrograde tracing technique for neonatal animals. Methods Mol Biol 2013; 1018:335-341. [PMID: 23681642 DOI: 10.1007/978-1-62703-444-9_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tract tracing is a fundamental technique in neuroanatomy for examining fiber connections in the nervous system. After the introduction of horseradish peroxidase 40 years ago, many tracing substances have been used for neuroanatomical studies on various nervous systems. Here, we described retrograde tracing techniques using multiple fluorescent tracers, which make it possible to detect axonal collaterals. This technique is useful to study the development of axonal trajectories, as well as regenerative and compensatory mechanisms of animals that undergo neural damage at early stages.
Collapse
Affiliation(s)
- Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | |
Collapse
|
19
|
Tanaka YH, Tanaka YR, Fujiyama F, Furuta T, Yanagawa Y, Kaneko T. Local connections of layer 5 GABAergic interneurons to corticospinal neurons. Front Neural Circuits 2011; 5:12. [PMID: 21994491 PMCID: PMC3182329 DOI: 10.3389/fncir.2011.00012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/07/2011] [Indexed: 01/11/2023] Open
Abstract
In the local circuit of the cerebral cortex, GABAergic inhibitory interneurons are considered to work in collaboration with excitatory neurons. Although many interneuron subgroups have been described in the cortex, local inhibitory connections of each interneuron subgroup are only partially understood with respect to the functional neuron groups that receive these inhibitory connections. In the present study, we morphologically examined local inhibitory inputs to corticospinal neurons (CSNs) in motor areas using transgenic rats in which GABAergic neurons expressed fluorescent protein Venus. By analysis of biocytin-filled axons obtained with whole-cell recording/staining in cortical slices, we classified fast-spiking (FS) neurons in layer (L) 5 into two types, FS1 and FS2, by their high and low densities of axonal arborization, respectively. We then investigated the connections of FS1, FS2, somatostatin (SOM)-immunopositive, and other (non-FS/non-SOM) interneurons to CSNs that were retrogradely labeled in motor areas. When close appositions between the axon boutons of the intracellularly labeled interneurons and the somata/dendrites of the retrogradely labeled CSNs were examined electron-microscopically, 74% of these appositions made symmetric synaptic contacts. The axon boutons of single FS1 neurons were two- to fourfold more frequent in appositions to the somata/dendrites of CSNs than those of FS2, SOM, and non-FS/non-SOM neurons. Axosomatic appositions were most frequently formed with axon boutons of FS1 and FS2 neurons (approximately 30%) and least frequently formed with those of SOM neurons (7%). In contrast, SOM neurons most extensively sent axon boutons to the apical dendrites of CSNs. These results might suggest that motor outputs are controlled differentially by the subgroups of L5 GABAergic interneurons in cortical motor areas.
Collapse
Affiliation(s)
- Yasuyo H Tanaka
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Dong Y, Li J, Zhang F, Li Y. Nociceptive afferents to the premotor neurons that send axons simultaneously to the facial and hypoglossal motoneurons by means of axon collaterals. PLoS One 2011; 6:e25615. [PMID: 21980505 PMCID: PMC3183065 DOI: 10.1371/journal.pone.0025615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022] Open
Abstract
It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals.
Collapse
Affiliation(s)
- Yulin Dong
- Department of Anatomy and Histology and Embryology, and K. K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an, China
| | - Jinlian Li
- Department of Anatomy and Histology and Embryology, and K. K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an, China
- * E-mail: (JL); (YL)
| | - Fuxing Zhang
- Department of Anatomy and Histology and Embryology, and K. K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an, China
| | - Yunqing Li
- Department of Anatomy and Histology and Embryology, and K. K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an, China
- * E-mail: (JL); (YL)
| |
Collapse
|
21
|
Wu SX, Wang W, Li H, Wang YY, Feng YP, Li YQ. The synaptic connectivity that underlies the noxious transmission and modulation within the superficial dorsal horn of the spinal cord. Prog Neurobiol 2010; 91:38-54. [DOI: 10.1016/j.pneurobio.2010.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 12/10/2009] [Accepted: 01/14/2010] [Indexed: 01/27/2023]
|
22
|
Yoshida A, Taki I, Chang Z, Iida C, Haque T, Tomita A, Seki S, Yamamoto S, Masuda Y, Moritani M, Shigenaga Y. Corticofugal projections to trigeminal motoneurons innervating antagonistic jaw muscles in rats as demonstrated by anterograde and retrograde tract tracing. J Comp Neurol 2009; 514:368-86. [DOI: 10.1002/cne.22013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Walter GC, Phillips RJ, Baronowsky EA, Powley TL. Versatile, high-resolution anterograde labeling of vagal efferent projections with dextran amines. J Neurosci Methods 2008; 178:1-9. [PMID: 19056424 DOI: 10.1016/j.jneumeth.2008.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
None of the anterograde tracers used to label and investigate vagal preganglionic neurons projecting to the viscera has proved optimal for routine and extensive labeling of autonomic terminal fields. To identify an alternative tracer protocol, the present experiment evaluated whether dextran conjugates, which have produced superior results in the CNS, might yield widespread and effective labeling of long, fine-caliber vagal efferents in the peripheral nervous system. The dextran conjugates that were evaluated proved reliable and versatile for labeling the motor neuron pool in its entirety, for single- and multiple-labeling protocols, for both conventional and confocal fluorescence microscopy, and for permanent labeling protocols for brightfield microscopy of the projections to the gastrointestinal (GI) tract. Using a standard ABC kit followed by visualization with DAB as the chromagen, Golgi-like labeling of the vagal efferent terminal fields in the GI wall was achieved with the biotinylated dextrans. The definition of individual terminal varicosities was so sharp and detailed that it was routinely practical to examine the relationship of putative vagal efferent contacts (by the criteria of high magnification light microscopy) with the dendritic and somatic architecture of counterstained neurons in the myenteric plexus. Overall, dextran conjugates provide high-definition labeling of an extensive vagal motor pool in the GI tract, and offer considerable versatility when multiple-staining protocols are needed to elucidate the complexities of the innervation of the gut.
Collapse
Affiliation(s)
- Gary C Walter
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, United States
| | | | | | | |
Collapse
|
24
|
Kumar P, Ohana O. Inter- and Intralaminar Subcircuits of Excitatory and Inhibitory Neurons in Layer 6a of the Rat Barrel Cortex. J Neurophysiol 2008; 100:1909-22. [DOI: 10.1152/jn.90684.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Approximately half the excitatory neurons in layer 6 (L6) of the rat barrel cortex project to the thalamus with axon collaterals ramifying in the granular L4; the remaining project within cortex with collaterals restricted to infragranular laminae. In analogy, L6 inhibitory neurons also include locally arborizing and inter-laminar projecting neurons. We examined whether L6 neurons participating in different laminar interactions were also morphologically and electrically distinct. Corticothalamic (CT) neurons were labeled by in vivo injections of a retrogradely transported fluorescent tracer into the primary thalamic nucleus. Whole cell current-clamp recordings were performed from labeled and unlabeled L6 neurons in brain slices of juvenile rats; the morphology of cells was subsequently recovered and reconstructed. Corticocortical (CC) neurons were distinguished from CT cells based on the absence of a subcortical projection and the predominantly infragranular arborization of their axon collaterals. Two morphological CC subtypes could be further distinguished based on the structure of their apical dendrite. Electrically, CT neurons had shorter membrane time-constants and action potential (AP) durations and higher rheobase currents. CC neurons fired high-frequency spike doublets or triplets on sustained depolarization; the burst frequency also distinguished the two morphological CC subtypes. Among inhibitory L6 cells, the L4-projecting (L6iL4) and local (L6iL6) inhibitory neurons also had contrasting firing properties; L6iL4 neurons had broader APs and lower maximal firing rates. We propose that L6 excitatory and inhibitory neurons projecting to L4 constitute specialized subcircuits distinct from the infragranular network in their connectivity and firing patterns.
Collapse
|
25
|
Kim SJ, Kim YJ, Park KH. Neuroprotective effect of transpupillary thermotherapy in the optic nerve crush model of the rat. Eye (Lond) 2008; 23:727-33. [DOI: 10.1038/eye.2008.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
26
|
Kowski AB, Geisler S, Krauss M, Veh RW. Differential projections from subfields in the lateral preoptic area to the lateral habenular complex of the rat. J Comp Neurol 2008; 507:1465-78. [PMID: 18203181 DOI: 10.1002/cne.21610] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The lateral habenular complex (LHb) constitutes an important link in the dorsal diencephalic conduction system conveying information from limbic forebrain structures to regulatory midbrain nuclei. In line with the considerable number of biological functions in which the habenula is thought to be involved, a complex subnuclear organization of the LHb has been suggested. However, the precise connectivity of habenular subnuclei remains to be identified. We hypothesize that axons from the lateral preoptic area (LPOA) project to distinct subnuclei of the LHb. As a result of an unexpected heterogeneity within the LPOA, we first examined its subregional morphology. Based on the analysis of several coronal series of sections, seven subfields were identified within the LPOA. Retrograde tracing experiments revealed that neurons projecting to the LHb were concentrated in the dorsal, ventral, and ventromedial subfields of the rostral LPOA and in the caudal LPOA. Anterograde tracing experiments confirmed that all LPOA subfields containing retrogradely labelled cells project to the LHb. Neurons in rostral subfields of the LPOA target predominantly the lateral area of the LHb, whereas caudal LPOA fibers innervate the medial LHb. Afferent labelling is most prominent within the magnocellular subnucleus in the LHbM, and only few fibers can be observed in the parvocellular subnucleus of the LHbM. The superior subnucleus of the LHbM and the oval subnucleus of the LHbL do not receive any fibers from the LPOA at all. This is the first comprehensive study so far to show that projections from LPOA subfields individually target subnuclei in the lateral habenular complex.
Collapse
Affiliation(s)
- Alexander B Kowski
- Institut für Integrative Neuroanatomie, Centrum 2, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Jin Y, Kannan S, Wu M, Zhao JX. Toxicity of luminescent silica nanoparticles to living cells. Chem Res Toxicol 2007; 20:1126-33. [PMID: 17630705 DOI: 10.1021/tx7001959] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Luminescent nanomaterials can provide high-intensity and photostable luminescent signals when used as labeling materials for the determination of trace amounts of analytes. However, a major concern that has arisen is whether the nanomaterials cause toxic effects in living systems. Here, we address this problem through a systematic investigation of the cytotoxicity and genotoxicity of luminescent silica nanoparticles. These nanoparticles are intensely luminescent labeling materials for ultrasensitive determination of biological samples. The investigation of genotoxicity of the nanomaterials was carried out from two perspectives. First, the integrity of the DNA was examined by detecting DNA base modification, strand breaks, and increased DNA repair activity to recover the damage. Second, different sets of cellular DNAs, including nuclear DNA extracts and the whole genomic DNAs, were examined. Furthermore, to fully assess DNA damage by the nanoparticles, isolated genomic DNAs were directly exposed to the nanoparticles. The cytotoxicity of the nanoparticle was detected by measuring the cell proliferation rate, cell death, and death patterns (necrosis and apoptosis) after the nanoparticle treatments. Results show no significant toxic effects due to the luminescent nanoparticles at the molecular and cellular levels below a concentration of 0.1 mg/mL. Our study indicates that the luminescent silica nanoparticle is a promising labeling reagent for various biomedical applications.
Collapse
Affiliation(s)
- Yuhui Jin
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | | | | | | |
Collapse
|
28
|
Huang LC, Thorne PR, Housley GD, Montgomery JM. Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development 2007; 134:2925-33. [PMID: 17626062 DOI: 10.1242/dev.001925] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The adult mammalian cochlea receives dual afferent innervation: the inner sensory hair cells are innervated exclusively by type I spiral ganglion neurons (SGN), whereas the sensory outer hair cells are innervated by type II SGN. We have characterized the spatiotemporal reorganization of the dual afferent innervation pattern as it is established in the developing mouse cochlea. This reorganization occurs during the first postnatal week just before the onset of hearing. Our data reveal three distinct phases in the development of the afferent innervation of the organ of Corti: (1) neurite growth and extension of both classes of afferents to all hair cells (E18-P0); (2) neurite refinement, with formation of the outer spiral bundles innervating outer hair cells (P0-P3); (3) neurite retraction and synaptic pruning to eliminate type I SGN innervation of outer hair cells, while retaining their innervation of inner hair cells (P3-P6). The characterization of this developmental innervation pattern was made possible by the finding that tetramethylrhodamine-conjugated dextran (TMRD) specifically labeled type I SGN. Peripherin and choline-acetyltransferase immunofluorescence confirmed the type II and efferent innervation patterns, respectively, and verified the specificity of the type I SGN neurites labeled by TMRD. These findings define the precise spatiotemporal neurite reorganization of the two afferent nerve fiber populations in the cochlea, which is crucial for auditory neurotransmission. This reorganization also establishes the cochlea as a model system for studying CNS synapse development, plasticity and elimination.
Collapse
Affiliation(s)
- Lin-Chien Huang
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
29
|
Mohedano-Moriano A, Pro-Sistiaga P, Ubeda-Bañón I, Crespo C, Insausti R, Martinez-Marcos A. Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb. Eur J Neurosci 2007; 25:2065-80. [PMID: 17419754 DOI: 10.1111/j.1460-9568.2007.05472.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Apically and basally located receptor neurons in the vomeronasal sensory epithelium express G(i2 alpha)- and G(o alpha)-proteins, V1R and V2R vomeronasal receptors, project to the anterior and posterior accessory olfactory bulb and respond to different stimuli, respectively. The extent to which secondary projections from the two portions of the accessory olfactory bulb are convergent in the vomeronasal amygdala is controversial. This issue is addressed by using anterograde and retrograde tract-tracing methods in rats including electron microscopy. Injections of dextran-amines, Fluoro Gold, cholera toxin-B subunit and Fast Blue were delivered to the anterior and posterior accessory olfactory bulb, bed nucleus of the stria terminalis, dorsal anterior amygdala and bed nucleus of the accessory olfactory tract/anteroventral medial amygdaloid nucleus. We have demonstrated that, apart from common vomeronasal-recipient areas, only the anterior accessory olfactory bulb projects to the bed nucleus of the stria terminalis, medial division, posteromedial part, and only the posterior accessory olfactory bulb projects to the dorsal anterior amygdala and deep cell layers of the bed nucleus of the accessory olfactory tract and the anteroventral medial amygdaloid nucleus. These results provide evidence that, excluding areas of convergence, the V1R and V2R vomeronasal pathways project to specific areas of the amygdala. These two vomeronasal subsystems are therefore anatomically and functionally separated in the telencephalon.
Collapse
Affiliation(s)
- Alicia Mohedano-Moriano
- Laboratorio de Neuroanatomía Humana, Departamento de Ciencias Médicas, Facultad de Medicina, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Solari P, Crnjar R, Spiga S, Sollai G, Loy F, Masala C, Liscia A. Release mechanism of sex pheromone in the female gypsy moth Lymantria dispar: a morpho-functional approach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:775-85. [PMID: 17503052 DOI: 10.1007/s00359-007-0232-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/12/2007] [Accepted: 04/21/2007] [Indexed: 11/24/2022]
Abstract
A morpho-functional investigation of the sex pheromone-producing area was correlated with the pheromone release mechanism in the female gypsy moth Lymantria dispar. As assessed by male electroantennograms (EAG) and morphological observations, the pheromone gland consists of a single-layered epithelium both in the dorsal and ventral halves of the intersegmental membrane between the 8th and 9th abdominal segments. By using the male EAG as a biosensor of real-time release of sex pheromone from whole calling females, we found this process time coupled with extension movements of the ovipositor. Nevertheless, in females in which normal calling behavior was prevented, pheromone release was detected neither in absence nor in presence of electrical stimulation of the ventral nerve cord/terminal abdominal ganglion (TAG) complex. Tetramethylrhodamine-conjugated dextran amine stainings also confirm the lack of any innervation of the gland from nerves IV to VI emerging from the TAG. These findings indicate that the release of sex pheromone from the glands in female gypsy moths is independent of any neural control exerted by the TAG on the glands, at least by way of its three most caudally located pairs of nerves, and appears as a consequence of a squeezing mechanism in the pheromone-producing area.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Experimental Biology, Section of General Physiology, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Schofield BR, Schofield RM, Sorensen KA, Motts SD. On the use of retrograde tracers for identification of axon collaterals with multiple fluorescent retrograde tracers. Neuroscience 2007; 146:773-83. [PMID: 17379419 PMCID: PMC2680684 DOI: 10.1016/j.neuroscience.2007.02.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/04/2007] [Accepted: 02/06/2007] [Indexed: 11/25/2022]
Abstract
A common method for identifying collateral projections is to inject different retrograde tracers into two targets and examine labeled cells for the presence of both tracers. Double-labeled cells are considered to have collateral projections to the two injection sites. This method is widely considered to underestimate the extent of collaterals. To test the efficiency of double-labeling, we mixed equal volumes of two tracers, injected them into one site in a guinea-pig brain, and counted the resulting labeled cells. Ideally, the tracers would have precisely overlapping injection sites and all labeled cells would contain both tracers. We tested several combinations of tracers: 1) Fast Blue and fluorescein dextran; 2) fluorescein dextran and FluoroGold; 3) fluorescein dextran and FluoroRuby; 4) FluoroGold and green beads; 5) FluoroGold and red beads; 6) FluoroRuby and green beads; and, 7) green beads and red beads. For each combination, a mixture was injected into the left inferior colliculus. After 1 week to allow for transport, labeled cells were counted in the right inferior colliculus and the left temporal cortex. For each mixture, the results were similar for the two areas. The percentage of cells that were double-labeled varied from 0% to 100%, depending on tracer combination. The highest efficiencies (>96%) were observed with red beads and green beads or with FluoroRuby and fluorescein dextran. The limited efficiency of other mixtures could be accounted for only in part by incomplete overlap of the two tracers at the injection site. The results indicate that the specific combination of tracers used to search for collateral projections can greatly affect the findings.
Collapse
Affiliation(s)
- B R Schofield
- Department of Neurobiology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, OH 44272, USA.
| | | | | | | |
Collapse
|
32
|
Andujar JE, Drew T. Organization of the projections from the posterior parietal cortex to the rostral and caudal regions of the motor cortex of the cat. J Comp Neurol 2007; 504:17-41. [PMID: 17614102 DOI: 10.1002/cne.21434] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The posterior parietal cortex (PPC) is an important source of input to the motor cortex in both the primate and the cat. However, the available evidence from the cat suggests that the projection from the PPC to those rostral areas of the motor cortex that project to the intermediate and ventral parts of the spinal gray matter is relatively small. This leaves in question the importance of the contribution of the PPC to the initiation and modulation of voluntary movements in the cat. As this anatomical evidence is not entirely compatible with the physiological data, we reinvestigated the PPC projection to the motor cortex by injecting dextran amine tracers either into the proximal or distal representations of the forelimb in the rostral motor cortex, into the representation of the forelimb in the caudal motor cortex, or into the hindlimb representation. The results show strong projections from the PPC to each of these regions. However, projections to the rostral motor cortex were observed primarily from the caudal bank of the ansate sulcus and the adjacent gyrus, whereas those to the caudal motor cortex were generally located more rostrally. There was also evidence of some topographic organization with the distal limb being located progressively more laterally and rostrally in the PPC than the areas projecting to more proximal regions. In contrast to previous anatomical investigations, these results suggest that the PPC can potentially modulate motor activity via its strong projection to the more rostral regions of the motor cortex.
Collapse
|
33
|
Li J, Xiong K, Pang Y, Dong Y, Kaneko T, Mizuno N. Medullary dorsal horn neurons providing axons to both the parabrachial nucleus and thalamus. J Comp Neurol 2006; 498:539-51. [PMID: 16874804 DOI: 10.1002/cne.21068] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has often been suggested that the trigemino- and spino-thalamic pathways are highly implicated in sensory-discriminative aspects of pain, whereas the trigemino- and spino-parabrachial pathways are strongly implicated in affective/emotional aspects of pain. On the other hand, the superficial laminae of the spinal dorsal horn, where many nociceptive neurons are distributed, have been reported to contain projection neurons innervating both the parabrachial nucleus (PBN) and thalamus by way of axon collaterals (Hylden et al., 1989). For the medullary dorsal horn (caudal subnucleus of spinal trigeminal nucleus: Vc), however, the existence of such neurons has not been reported. Thus, in the present study, we examined whether the Vc might contain projection neurons sending their axons to both the thalamus and PBN. Dual retrograde labeling with fluorescence dyes was attempted. In each rat, tetramethylrhodamine-dextran amine and Fluoro-gold were stereotaxically injected into the PBN and thalamic regions, respectively. The proportion of the dually labeled Vc cells in the total population of all labeled Vc cells was about 20%. More than 90% of the dually labeled neurons were distributed in lamina I (marginal zone), less than 10% of them were located in lamina II (substantia gelatinosa), and only a few (about 1%) were found in lamina III (magnocellular zone). The results indicate that some Vc neurons in the superficial laminae mediate nociceptive information directly to the PBN and thalamus by way of axon collaterals and that the vast majority of them project to the ipsilateral PBN and contralateral thalamus.
Collapse
Affiliation(s)
- Jinlian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | |
Collapse
|
34
|
Nakamura Y, Otake K, Tokuno H. The parafascicular nucleus relays spinal inputs to the striatum: an electron microscope study in the rat. Neurosci Res 2006; 56:73-9. [PMID: 16814420 DOI: 10.1016/j.neures.2006.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 11/26/2022]
Abstract
A disynaptic projection from the spinal cord to the striatum was observed in the rat light and electron microscopically. An anterograde tracer, wheat germ agglutinin conjugated to horseradish peroxidase was injected into the ventral gray matter of the upper cervical spinal cord, and a retrograde tracer, biotinylated dextran amine was injected into the striatum of a rat. Then the parafascicular nucleus was examined. Some anterogradely labeled axon terminals originating in the spinal cord were observed to synapse with retrogradely labeled dendrites of parafascicular nucleus neurons which sent axons to the striatum. We concluded that information from the spinal cord was transmitted to the striatum, being relayed by parafascicular nucleus neurons.
Collapse
Affiliation(s)
- Yasuhisa Nakamura
- Department of Brain Structure, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.
| | | | | |
Collapse
|
35
|
Tomioka R, Rockland KS. Improved Golgi-like Visualization in Retrogradely Projecting Neurons after EGFP-Adenovirus Infection in Adult Rat and Monkey. J Histochem Cytochem 2006; 54:539-48. [PMID: 16344324 DOI: 10.1369/jhc.5a6838.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An adenovirus vector was generated using a neuron-specific promoter synapsin I and enhanced green fluorescent protein (EGFP) reporter (AdSynEGFP). In addition, two modifications were identified that resulted in robust and reliable retrograde transport and EGFP expression after injection of the virus into three different brain regions in adult rats (medial prefrontal cortex, posterior thalamic nuclear group, and CA1). These are post-injection survival times of 14 days and addition of high concentrations of NaCl (≥600 mM) to the injection buffer. These modifications resulted in obvious improvement in the intensity of the EGFP signal and in the number of labeled cells. Use of anti-EGFP in immunofluorescence or immunoperoxidase processing further enhanced the signal so that Golgi-like filling of dendritic spines and axon collaterals was routinely achieved. Effectiveness of the AdSynEGFP for Golgi-like filling was confirmed in one rhesus monkey with injections in visual area V4. Because of the long-term viability of the infected neurons (at least up to 28 days in rats and 22 days in monkey), this AdSynEGFP is suitable for use in microcircuitry studies in combination with other fluorescently tagged elements, including anterogradely labeled extrinsic projections. The native EGFP signal (without antibody enhancement) may be sufficient for studies involving cultured cells or slices. (J Histochem Cytochem 54:539-548, 2006)
Collapse
Affiliation(s)
- Ryohei Tomioka
- Laboratory for Cortical Organization and Systematics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | |
Collapse
|
36
|
Eberhorn AC, Büttner-Ennever JA, Horn AKE. Identification of motoneurons supplying multiply- or singly-innervated extraocular muscle fibers in the rat. Neuroscience 2006; 137:891-903. [PMID: 16330150 DOI: 10.1016/j.neuroscience.2005.10.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 09/30/2005] [Accepted: 10/07/2005] [Indexed: 11/18/2022]
Abstract
In mammals, the extraocular muscle fibers can be categorized in singly-innervated and multiply-innervated muscle fibers. In the monkey oculomotor, trochlear and abducens nucleus the motoneurons of multiply-innervated muscle fibers lie separated from those innervating singly-innervated muscle fibers and show different histochemical properties. In order to discover, if this organization is a general feature of the oculomotor system, we investigated the location of singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons in the rat using combined tract-tracing and immunohistochemical techniques. The singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons of the medial and lateral rectus muscle were identified by retrograde tracer injections into the muscle belly or the distal myotendinous junction. The belly injections labeled the medial rectus muscle subgroup of the oculomotor nucleus or the greatest part of abducens nucleus, including some cells outside the medial border of abducens nucleus. In contrast, the distal injections labeled only a subset of the medial rectus muscle motoneurons and exclusively cells outside the medial border of abducens nucleus. The tracer detection was combined with immunolabeling using antibodies for perineuronal nets (chondroitin sulfate proteoglycan) and non-phosphorylated neurofilaments. In monkeys both antibodies permit a distinction between singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons. The experiments revealed that neurons labeled from a distal injection lack both markers and are assumed to represent multiply-innervated muscle fiber motoneurons, whereas those labeled from a belly injection are chondroitin sulfate proteoglycan- and non-phosphorylated neurofilament-immunopositive and assumed to represent singly-innervated muscle fiber motoneurons. The overall identification of multiply-innervated muscle fiber and singly-innervated muscle fiber motoneurons within the rat oculomotor nucleus, trochlear nucleus, and abducens nucleus revealed that the smaller multiply-innervated muscle fiber motoneurons tend to lie separate from the larger diameter singly-innervated muscle fiber motoneurons. Our data provide evidence that rat extraocular muscles are innervated by two sets of motoneurons that differ in their molecular, morphological, and anatomical properties.
Collapse
Affiliation(s)
- A C Eberhorn
- Institute of Anatomy III, Ludwig-Maximilians University of Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | | | | |
Collapse
|
37
|
Yakushin SB, Raphan T, Büttner-Ennever JA, Suzuki JI, Cohen B. Spatial properties of central vestibular neurons of monkeys after bilateral lateral canal nerve section. J Neurophysiol 2005; 94:3860-71. [PMID: 15987758 DOI: 10.1152/jn.01102.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thirty-seven neurons were recorded in the superior vestibular nucleus (SVN) of two cynomolgus monkeys 1-2 yr after bilateral lateral canal nerve section to test whether the central neurons had spatially adapted for the loss of lateral canal input. The absence of lateral canal function was verified with eye movement recordings. The relation of unit activity to the vertical canals was determined by oscillating the animals about a horizontal axis with the head in various orientations relative to the axis of rotation. Animals were also oscillated about a vertical axis while upright or tilted in pitch. In the second test, the vertical canals are maximally activated when the animals are tilted back about -50 degrees from the spatial upright and the lateral canals when the animals are tilted forward about 30 degrees . We reasoned that if central compensation occurred, the head orientation at which the response of the vertical canal-related neurons was maximal should be shifted toward the plane of the lateral canals. No lateral canal-related units were found after nerve section, and vertical canal-related units were found only in SVN not in the rostral medial vestibular nucleus. SVN canal-related units were maximally activated when the head was tilted back at -47 +/- 17 and -50 +/- 12 degrees (means +/- SD) in the two animals, close to the predicted orientation of the vertical canals. This indicated that spatial adaptation of vertical canal-related vestibular neurons had not occurred. There were substantial neck and/or otolith-related inputs activating the vertical canal-related neurons in the nerve-sectioned animals, which could have contributed to oculomotor compensation after nerve section.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
38
|
Cho RH, Segawa S, Mizuno A, Kaneko T. Intracellularly labeled pyramidal neurons in the cortical areas projecting to the spinal cord. I. Electrophysiological properties of pyramidal neurons. Neurosci Res 2005; 50:381-94. [PMID: 15567476 DOI: 10.1016/j.neures.2004.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 08/06/2004] [Indexed: 11/28/2022]
Abstract
To study cortical motor control, we examined electrical characteristics of pyramidal neurons in the present report, and intra- or juxta-columnar connections of the pyramidal neurons to corticospinal neurons in the accompanying report. Pyramidal neurons were intracellularly recorded and stained in slices of rat motorsensory cortices (areas FL, HL and M1) where many corticospinal neurons were labeled retrogradely. They were morphologically classified into classical, star and other modified pyramidal neurons, and electrophysiologically into regular-spiking (RS), intrinsic bursting (IB) and irregular-spiking (IS) neurons on the basis of spiking pattern in response to 500 ms depolarizing current pulses. RS responses were further divided into RS with slow adaptation (RS-SA) and RS with fast adaptation (RS-FA). The electrical properties were associated with the laminar location of the neurons; RS-SA responses were observed frequently in layer II/III and less frequently in layers IV-VI, and IB and IS responses were exclusively found in layers V and VI, respectively. Interestingly, all layer IV neurons in area FL/HL were RS-FA star-pyramidal neurons, whereas layer IV neurons in area M1 were RS-SA classical pyramidal neurons. Although weak stimulation of areas FL/HL and M1 is known to elicit movement, these results suggest different information processings between the two areas.
Collapse
Affiliation(s)
- Ryong-Ho Cho
- Department of Developmental and Reconstructive Medicine, Division of Oral and Maxillofacial Surgery, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan
| | | | | | | |
Collapse
|
39
|
Cho RH, Segawa S, Okamoto K, Mizuno A, Kaneko T. Intracellularly labeled pyramidal neurons in the cortical areas projecting to the spinal cord. II. Intra- and juxta-columnar projection of pyramidal neurons to corticospinal neurons. Neurosci Res 2005; 50:395-410. [PMID: 15567477 DOI: 10.1016/j.neures.2004.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 08/06/2004] [Indexed: 11/21/2022]
Abstract
Intra- or juxta-columnar connections of pyramidal neurons to corticospinal neurons in rat motorsensory cortices were examined with brain slices by combining intracellular staining with Golgi-like retrograde labeling of corticospinal neurons. Of 108 intracellularly labeled pyramidal neurons, 27 neurons were selected for morphological analysis by successful staining of their axonal arborizations and sufficient retrograde labeling of corticospinal neurons. Many varicosities of local axon collaterals of each pyramidal neuron were closely apposed to the dendrites of corticospinal neurons, suggesting the convergent projections of layer II-VI pyramidal neurons to corticospinal neurons. Particularly, the varicosities of a layer IV star-pyramidal neuron made two- to three-fold more appositions to the dendrites of corticospinal neurons than those of a pyramidal neuron in the other layers. Fifteen appositions were examined electron-microscopically and 60% of them made asymmetric axospinous synapses. The present results together with those of the preceding report suggest that thalamic inputs are conveyed to corticospinal neurons preferentially via layer IV star-pyramidal neurons with phasic response properties, and thereby might contribute to the initiation or switching of movement. In contrast, inputs with tonic response properties from the other layers seem to be integrated in corticospinal neurons, and might be useful in maintaining the activity of corticospinal neurons.
Collapse
Affiliation(s)
- Ryong-Ho Cho
- Department of Developmental and Reconstructive Medicine, Division of Oral and Maxillofacial Surgery, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan
| | | | | | | | | |
Collapse
|
40
|
Gross JB, Hanken J. Use of fluorescent dextran conjugates as a long-term marker of osteogenic neural crest in frogs. Dev Dyn 2004; 230:100-6. [PMID: 15108313 DOI: 10.1002/dvdy.20036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The neural crest is a population of multipotent stem cells unique to vertebrates. In the head, cranial neural crest (CNC) cells make an assortment of differentiated cell types and tissues, including neurons, melanocytes, cartilage, and bone. The earliest understanding of the developmental potentiality of CNC cells came from classic studies using amphibian embryos. Fate maps generated from these studies have been largely validated in recent years. However, a fate map for the most late-developing structures in amphibians, and especially anurans (frogs), has never been produced. One such tissue type, skull bone, has been among the most difficult tissues to study due to the long time required for its development during anuran metamorphosis, which in some species may not occur until several months, or even years, after hatching. We report a relatively simple technique for studying this elusive population of neural crest-derived osteogenic (bone-forming) cells in Xenopus laevis by using fluorescently labeled dextran conjugates.
Collapse
Affiliation(s)
- Joshua B Gross
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
41
|
Reiner A, Laverghetta AV, Meade CA, Cuthbertson SL, Bottjer SW. An immunohistochemical and pathway tracing study of the striatopallidal organization of area X in the male zebra finch. J Comp Neurol 2004; 469:239-61. [PMID: 14694537 DOI: 10.1002/cne.11012] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Area X is a nucleus within songbird basal ganglia that is part of the anterior forebrain song learning circuit. It receives cortical song-related input and projects to the dorsolateral medial nucleus of thalamus (DLM). We carried out single- and double-labeled immunohistochemical and pathway tracing studies in male zebra finch to characterize the cellular organization and circuitry of area X. We found that 5.4% of area X neuronal perikarya are relatively large, possess aspiny dendrites, and are rich in the pallidal neuron/striatal interneuron marker Lys8-Asn9-neurotensin8-13 (LANT6). Many of these perikarya were found to project to the DLM, and their traits suggest that they are pallidal. Area X also contained several neuron types characteristic of the striatum, including interneurons co-containing LANT6 and the striatal interneuron marker parvalbumin (2% of area X neurons), interneurons containing parvalbumin but not LANT6 (4.8%), cholinergic interneurons (1.4%), and neurons containing the striatal spiny projection neuron marker dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein (DARPP-32) (30%). Area X was rich in substance P (SP)-containing terminals, and many ended on area X neurons projecting to the DLM with the woolly fiber morphology characteristic of striatopallidal terminals. Although SP+ perikarya were not detected in area X, prior studies suggest it is likely that SP-synthesizing neurons are present and the source of the SP+ input to area X neurons projecting to the DLM. Area X was poor in enkephalinergic fibers and perikarya. The present data support the premise that area X contains both striatal and pallidal neurons, with the striatal neurons likely to include SP+ neurons that project to the pallidal neurons.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
42
|
Horn AKE, Helmchen C, Wahle P. GABAergic neurons in the rostral mesencephalon of the macaque monkey that control vertical eye movements. Ann N Y Acad Sci 2004; 1004:19-28. [PMID: 14662444 DOI: 10.1196/annals.1303.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mesencephalic reticular formation is important for the generation of vertical eye movements, but up until now the location of inhibitory premotor neurons is not known in primates. With tract-tracer methods combined with immunocytochemistry or in situ hybridization, we investigated the location of GABAergic premotor neurons in the rostral interstitial nucleus of the medial longitudinal fascicle (riMLF) and interstitial nucleus of Cajal (iC) in macaque monkeys. In the present work, only the premotor pathways of the downward pulling eye muscles, superior oblique (SO) and inferior rectus (IR), were studied. We found that very few, small GABAergic neurons are present in the riMLF, and none of them was found to project to the oculomotor nuclei, suggesting the presence of exclusively excitatory projections from the riMLF to the oculomotor neurons. However, in the iC, medium-sized and large GABAergic neurons were identified projecting contralaterally to the SO and IR motoneurons, and presumably the iC of the other side. These commissural GABAergic projections are well suited to inhibit the SO and IR motoneurons and possibly premotor down-burst-tonic neurons during upward eye movements.
Collapse
Affiliation(s)
- Anja K E Horn
- Institute of Anatomy, Ludwig-Maximilians-University of Munich, D-80336 Munich, Germany.
| | | | | |
Collapse
|
43
|
Reiner A, Jiao Y, Del Mar N, Laverghetta AV, Lei WL. Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J Comp Neurol 2003; 457:420-40. [PMID: 12561080 DOI: 10.1002/cne.10541] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two types of corticostriatal projection neurons have been identified: 1) one whose intrastriatal arborization arises as a collateral of a projection to the ipsilateral brainstem via the pyramidal tract (PT-type); and 2) one that projects intratelencephalically to the cortex and striatum, in many cases bilaterally, but not extratelencephalically (IT-type). To assess possible functional differences between these two neuron types, we characterized their laminar location in the cortex, their perikaryal size, and the morphology of their intrastriatal terminals. IT-type neurons were retrogradely labeled by tetramethylrhodamine-dextran amine (RDA)3k injection into the contralateral striatum, whereas their intrastriatal terminals were labeled anterogradely by biotinylated dextran amine (BDA)10k injection into the contralateral motor or primary somatosensory cortex. To label PT-type neurons and their ipsilateral intrastriatal terminals retrogradely, BDA3k was injected into the pontine pyramidal tract. We found that IT-type neuronal perikarya are medium-sized (12-13 microm) and located in layer III and upper layer V, whereas PT-type perikarya are larger (18-19 microm) and most commonly located in lower layer V. At the electron microscopic level, the intrastriatal terminals of both corticostriatal neuron types made asymmetric synaptic contact with spine heads and less frequently with dendrites. IT-type axospinous terminals were characteristically small (0.4-0.5 microm) and regular in shape, whereas PT-type terminals were typically large (0.8-0.9 microm) and often irregular in shape. Perforated postsynaptic densities were common for PT-type terminals, but not IT-type. The clear differences between these two corticostriatal neuron types in perikaryal size and laminar location in the cortex, and in the size and shape of their intrastriatal terminals, suggest that they may differ in the nature of their influence on the striatum.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
44
|
Voisin DL, Doméjean-Orliaguet S, Chalus M, Dallel R, Woda A. Ascending connections from the caudal part to the oral part of the spinal trigeminal nucleus in the rat. Neuroscience 2002; 109:183-93. [PMID: 11784709 DOI: 10.1016/s0306-4522(01)00456-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The brainstem trigeminal somatosensory complex, while sharing many common aspects with the spinal somatosensory system, displays features specific to orofacial information processing. One of those is the redundant representation of peripheral structures within the various subnuclei of the complex. A functional redundancy also exists since a single sensory modality, e.g. nociception, may be processed within different subnuclei. In the present study, we addressed the question whether anatomical connections from the caudal part to the oral part of the spinal trigeminal nucleus may support topographical and functional redundancy within the rat trigeminal somatosensory complex. The retrograde tracer tetramethylrhodamine-dextran was injected iontophoretically into the oral subnucleus of anaesthetised rats. Cell bodies labelled retrogradely from the oral subnucleus were observed in laminae III-IV and V of the ipsilateral caudal subnucleus consistently, and to a lesser degree in lamina I. Such a distribution of retrogradely labelled cells suggested that specific subsets of neurones may relay nociceptive information, and others non-nociceptive information. Furthermore, intratrigeminal connections conserved the somatotopic distribution of primary afferents in the two subnuclei. First, injections of tracer in the dorsomedial and ventrolateral parts of the oral subnucleus resulted in retrograde labelling of the dorsal and ventral parts of the caudal subnucleus respectively. Second, animals that received tracer into the ventrolateral oral subnucleus displayed more caudal labelling than animals that were injected into the dorsomedial oral subnucleus. These findings show the existence of anatomical connections from the caudal part to the oral part of the spinal trigeminal nucleus in the rat. The connections conserve the somatotopic distribution of primary afferents in the two subnuclei. They provide an anatomical substrate for the indirect activation of trigeminal oral subnucleus neurones by somatosensory stimuli through the caudal subnucleus.
Collapse
Affiliation(s)
- D L Voisin
- Laboratoire de Physiologie Oro-faciale, Faculté de Chirurgie Dentaire, 11 boulevard Charles de Gaulle, 63000 Clermont-Ferrand, France.
| | | | | | | | | |
Collapse
|
45
|
Reiner A, Veenman CL, Medina L, Jiao Y, Del Mar N, Honig MG. Pathway tracing using biotinylated dextran amines. J Neurosci Methods 2000; 103:23-37. [PMID: 11074093 DOI: 10.1016/s0165-0270(00)00293-4] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biotinylated dextran amines (BDA) are highly sensitive tools for anterograde and retrograde pathway tracing studies of the nervous system. BDA can be reliably delivered into the nervous system by iontophoretic or pressure injection and visualized with an avidin-biotinylated HRP (ABC) procedure, followed by a standard or metal-enhanced diaminobenzidine (DAB) reaction. High molecular weight BDA (10 k) yields sensitive and exquisitely detailed labeling of axons and terminals, while low molecular weight BDA (3 k) yields sensitive and detailed retrograde labeling of neuronal cell bodies. The detail of neuronal cell body labeling can be Golgi-like. BDA tolerates EM fixation and processing well and can, therefore, be readily used in ultrastructural studies. Additionally, BDA can be combined with other anterograde or retrograde tracers (e.g. PHA-L or cholera toxin B fragment) and visualized either by multi-color DAB multiple-labeling - if permanent labels are desired, or by using multiple simultaneous immunofluorescence - if fluorescence viewing is desired. In the same manner, BDA pathway tracing and neurotransmitter immunolabeling can be combined. Note that BDA pathway tracing can also be combined with anterograde or retrograde labeling with fluorescent dextran amines, if one wishes to exclusively use tracers with the favorable transport properties and sensitivities of dextran amines. In this case, the BDA can be visualized together with the fluorescent dextran amines using fluorescence labeling for the BDA, or the fluorescent dextran amines can be visualized together with the BDA by multicolor DAB labeling via immunolabeling of the fluorescent dextran amines using anti-fluorophore antisera. BDA is, thus, a flexible and valuable pathway tracing tool that has gained widespread popularity in recent years.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee - Memphis, The Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Tamamaki N, Nakamura K, Furuta T, Asamoto K, Kaneko T. Neurons in Golgi-stain-like images revealed by GFP-adenovirus infection in vivo. Neurosci Res 2000; 38:231-6. [PMID: 11070189 DOI: 10.1016/s0168-0102(00)00176-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neurons in the adult brain have a very complex morphology with many processes, including tremendously long axons. Since dendrites and axons play key roles in the input and output of neural information, respectively, the visualization of complete images of these processes is necessary to reveal the mechanism of neural information processing. Here we made a recombinant adenovirus vector which encodes green fluorescent protein (GFP) tagged with a palmitoylation site, a membrane-targeting signal, produced specific antibodies to GFP, and used them as probes for staining the nervous system. In the neocortex, after injection of the recombinant virus and immunoperoxidase staining with the antibodies, many different types of cells were labeled in a Golgi stain-like fashion. Although the number of labeled cells varied depending on the amount of virus injected, the recombinant virus was considered to be infectious to cortical neurons of all cell types without selectivity. In contrast, the viral infection in the cerebellar cortex and superior cervical ganglion showed some selectivity toward the cell type. It is expected that this recombinant virus will be a useful tool for the morphological analysis of neuronal connections, especially the analysis of microcircuitry in the cerebral cortex.
Collapse
Affiliation(s)
- N Tamamaki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
47
|
Identification of the anterior nucleus of the ansa lenticularis in birds as the homolog of the mammalian subthalamic nucleus. J Neurosci 2000. [PMID: 10995845 DOI: 10.1523/jneurosci.20-18-06998.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In mammals, the subthalamic nucleus (STN) is a glutamatergic diencephalic cell group that develops in the caudal hypothalamus and migrates to a position above the cerebral peduncle. By its input from the external pallidal segment and projection to the internal pallidal segment, STN plays a critical role in basal ganglia functions. Although the basal ganglia in birds is well developed, possesses the same major neuron types as in mammals, and plays a role in movement control similar to that in mammals, it has been uncertain whether birds possess an STN. We report here evidence indicating that the so-called anterior nucleus of the ansa lenticularis (ALa) is the avian homolog of mammalian STN. First, the avian ALa too develops within the mammillary hypothalamic area and migrates to a position adjacent to the cerebral peduncle. Second, ALa specifically receives input from dorsal pallidal neurons that receive input from enkephalinergic striatal neurons, as is true of STN. Third, ALa projects back to avian dorsal pallidum, as also the case for STN in mammals. Fourth, the neurons of ALa contain glutamate, and the target neurons of ALa in dorsal pallidum possess AMPA-type glutamate receptor profiles resembling those of mammalian pallidal neurons. Fifth, unilateral lesions of ALa yield behavioral disturbances and movement asymmetries resembling those observed in mammals after STN lesions. These various findings indicate that ALa is the avian STN, and they suggest that the output circuitry of the basal ganglia for motor control is similar in birds and mammals.
Collapse
|
48
|
Furuta T, Mori T, Lee T, Kaneko T. Third group of neostriatofugal neurons: neurokinin B-producing neurons that send axons predominantly to the substantia innominata. J Comp Neurol 2000; 426:279-96. [PMID: 10982469 DOI: 10.1002/1096-9861(20001016)426:2<279::aid-cne9>3.0.co;2-f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neostriatal neurons that produce neurokinin B were investigated immunocytochemically in the rat brain with an antibody against the C-terminal portion of the precursor prepropeptide of neurokinin B, preprotachykinin B (PPTB). PPTB-immunoreactive neurons were scattered throughout the neostriatum and constituted 5.1% of neostriatal neurons. They were immunopositive for projection neuron markers, such as precursor peptides of substance P, enkephalins, and dynorphins, but negative for intrinsic neuron markers, suggesting that PPTB was expressed in neostriatal projection neurons. However, PPTB-immunoreactive neurons were immunonegative for dopamine- and cyclic AMP-regulated phosphoprotein, which is known to be produced by striatopallidal and striatonigral neurons. Furthermore, almost no PPTB-immunoreactive axon terminals were observed in the substantia nigra or globus pallidus. The authors then made large kainic acid lesions in the neostriatum to reveal the target areas of PPTB-producing neurons and observed a decrease in PPTB-immunoreactive fibers in the sublenticular portion of the substantia innominata and, to much lesser extent, in the bed nucleus of the stria terminalis and central nucleus of the amygdala. After injection of wheat germ agglutinin into the substantia innominata, PPTB immunoreactivity was detected in many retrogradely labeled neostriatal neurons. In contrast, no PPTB immunoreactivity was observed in striatonigral or striatopallidal neurons after injection of retrograde tracers into the substantia nigra or globus pallidus. Thus, neurokinin B-producing neostriatal neurons were considered to send projection fibers predominantly to the substantia innominata. Furthermore, PPTB-immunoreactive axonal swellings were closely apposed to neurokinin B receptor-immunoreactive dendrites in the substantia innominata. Overall, the present results indicate that the rat brain possesses a chemically and hodologically unique neostriatofugal pathway in addition to the direct and indirect pathways.
Collapse
Affiliation(s)
- T Furuta
- Department of Morphological Brain Science, Graduate school of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
49
|
Kaneko T, Cho R, Li Y, Nomura S, Mizuno N. Predominant information transfer from layer III pyramidal neurons to corticospinal neurons. J Comp Neurol 2000; 423:52-65. [PMID: 10861536 DOI: 10.1002/1096-9861(20000717)423:1<52::aid-cne5>3.0.co;2-f] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Connections of layer III pyramidal neurons to corticospinal neurons of layer V and corticothalamic neurons of layer VI in the rat primary motor cortex were examined in brain slices by combining intracellular staining with Golgi-like retrograde labeling of corticofugal neurons. Forty layer III pyramidal neurons stained intracellularly were of the regular-spiking type, showed immunoreactivity for glutaminase, and emitted axon collaterals arborizing locally in layers II/III and/or V. Nine of them were reconstructed for morphologic analysis; 15.2% or 3.8% of varicosities of axon collaterals of the reconstructed neurons were apposed to dendrites of corticospinal or corticothalamic neurons, respectively. By confocal laser scanning and electron microscopy, some of these appositions were revealed to make synapses. These findings suggest that corticospinal neurons receive information from the superficial cortical layers four times more frequently than corticothalamic neurons. The connections were further examined by intracellular recording of excitatory postsynaptic potential (EPSP) that were evoked in layer V and layer VI pyramidal neurons by stimulation of layer II/III. EPSPs evoked in layer V pyramidal neurons showed short and constant onset latencies, suggesting their monosynaptic nature. In contrast, most EPSPs evoked in layer VI pyramidal neurons had long onset latencies, showed double-shock facilitation of onset latency, and were largely suppressed by an N-methyl-D-aspartic acid receptor blocker, suggesting that they were polysynaptic. The results suggest that information from the superficial cortical layers is transferred directly and efficiently to corticospinal neurons in layer V and thereby exerts an important influence on cortical motor output. Corticothalamic neurons are, in contrast, considered relatively independent of, or indirectly related to, information processing of the superficial cortical layers.
Collapse
Affiliation(s)
- T Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
50
|
Leong S, Liu H, Yeo J. Nitric oxide synthase and glutamate receptor immunoreactivity in the rat spinal trigeminal neurons expressing Fos protein after formalin injection. Brain Res 2000; 855:107-15. [PMID: 10650136 DOI: 10.1016/s0006-8993(99)02316-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although recent studies implicated glutamate receptors and nitric oxide in nociception, much still needs to be known about their localisation in neurons involved in nociceptive transmission from the orofacial region. In this study, c-fos expression indicated by Fos immunohistochemistry in the caudal spinal trigeminal nucleus induced by subcutaneous injection of formalin into the lateral face of the rat was used as a marker for nociceptive neurons. The study sought to determine whether Fos-positive neurons express nitric oxide synthase, glutamate N-methyl-D-aspartate type receptor subunit 1, and glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid type receptor subunit 2/3; and whether they project to the thalamus. After formalin injection, many Fos-positive nuclei appeared in the superficial laminae of the ipsilateral trigeminal nucleus. Confocal laser scanning microscope revealed that almost all neurons with Fos immunofluorescent nuclei were colocalised with N-methyl-D-aspartate receptor 1, 94% with glutamate receptor 2/3 and 14% with nitric oxide synthase. Some of them were closely related to neurons labelled by nitric oxide synthase. Lastly, some of the Fos-positive neurons were labelled by tetramethylrhodamine-dextran injected into the trigeminothalamic tract or the thalamic region. The results suggested that activation of N-methyl-D-aspartate receptor 1 and glutamate receptor 2/3 upon glutamate release in response to noxious stimulation to the orofacial region might mediate c-fos expression in neurons involved in nociception. The expression of Fos in the neurons could also be mediated by nitric oxide produced from the same, as well as neighbouring neurons, when nociceptive stimulation persisted. Fos-positive neurons in the spinal trigeminal nucleus may project to the thalamus, relaying orofacial nociception to the higher sensory centre.
Collapse
Affiliation(s)
- S Leong
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Lower Kent Ridge Road, Singapore, Singapore.
| | | | | |
Collapse
|