1
|
Xue J, Brawner AT, Thompson JR, Yelhekar TD, Newmaster KT, Qiu Q, Cooper YA, Yu CR, Ahmed-Braima YH, Kim Y, Lin Y. Spatiotemporal Mapping and Molecular Basis of Whole-brain Circuit Maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.572456. [PMID: 38260331 PMCID: PMC10802351 DOI: 10.1101/2024.01.03.572456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Brain development is highly dynamic and asynchronous, marked by the sequential maturation of functional circuits across the brain. The timing and mechanisms driving circuit maturation remain elusive due to an inability to identify and map maturing neuronal populations. Here we create DevATLAS (Developmental Activation Timing-based Longitudinal Acquisition System) to overcome this obstacle. We develop whole-brain mapping methods to construct the first longitudinal, spatiotemporal map of circuit maturation in early postnatal mouse brains. Moreover, we uncover dramatic impairments within the deep cortical layers in a neurodevelopmental disorders (NDDs) model, demonstrating the utility of this resource to pinpoint when and where circuit maturation is disrupted. Using DevATLAS, we reveal that early experiences accelerate the development of hippocampus-dependent learning by increasing the synaptically mature granule cell population in the dentate gyrus. Finally, DevATLAS enables the discovery of molecular mechanisms driving activity-dependent circuit maturation.
Collapse
Affiliation(s)
- Jian Xue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew T. Brawner
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Neuroscience Graduate Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Equal contribution
| | - Jacqueline R. Thompson
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Neuroscience Graduate Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Equal contribution
| | - Tushar D. Yelhekar
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kyra T. Newmaster
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Qiang Qiu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160, USA
| | - Yonatan A. Cooper
- Current address: Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - C. Ron Yu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160, USA
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Yingxi Lin
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Lead contact
| |
Collapse
|
2
|
Schellino R, Besusso D, Parolisi R, Gómez-González GB, Dallere S, Scaramuzza L, Ribodino M, Campus I, Conforti P, Parmar M, Boido M, Cattaneo E, Buffo A. hESC-derived striatal progenitors grafted into a Huntington's disease rat model support long-term functional motor recovery by differentiating, self-organizing and connecting into the lesioned striatum. Stem Cell Res Ther 2023; 14:189. [PMID: 37507794 PMCID: PMC10386300 DOI: 10.1186/s13287-023-03422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is a motor and cognitive neurodegenerative disorder due to prominent loss of striatal medium spiny neurons (MSNs). Cell replacement using human embryonic stem cells (hESCs) derivatives may offer new therapeutic opportunities to replace degenerated neurons and repair damaged circuits. METHODS With the aim to develop effective cell replacement for HD, we assessed the long-term therapeutic value of hESC-derived striatal progenitors by grafting the cells into the striatum of a preclinical model of HD [i.e., adult immunodeficient rats in which the striatum was lesioned by monolateral injection of quinolinic acid (QA)]. We examined the survival, maturation, self-organization and integration of the graft as well as its impact on lesion-dependent motor alterations up to 6 months post-graft. Moreover, we tested whether exposing a cohort of QA-lesioned animals to environmental enrichment (EE) could improve graft integration and function. RESULTS Human striatal progenitors survived up to 6 months after transplantation and showed morphological and neurochemical features typical of human MSNs. Donor-derived interneurons were also detected. Grafts wired in both local and long-range striatal circuits, formed domains suggestive of distinct ganglionic eminence territories and displayed emerging striosome features. Moreover, over time grafts improved complex motor performances affected by QA. EE selectively increased cell differentiation into MSN phenotype and promoted host-to-graft connectivity. However, when combined to the graft, the EE paradigm used in this study was insufficient to produce an additive effect on task execution. CONCLUSIONS The data support the long-term therapeutic potential of ESC-derived human striatal progenitor grafts for the replacement of degenerated striatal neurons in HD and suggest that EE can effectively accelerate the maturation and promote the integration of human striatal cells.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy.
| | - Dario Besusso
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Roberta Parolisi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Gabriela B Gómez-González
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Sveva Dallere
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Linda Scaramuzza
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Marta Ribodino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Ilaria Campus
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Malin Parmar
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Marina Boido
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy.
| |
Collapse
|
3
|
Cirnaru MD, Song S, Tshilenge KT, Corwin C, Mleczko J, Galicia Aguirre C, Benlhabib H, Bendl J, Apontes P, Fullard J, Creus-Muncunill J, Reyahi A, Nik AM, Carlsson P, Roussos P, Mooney SD, Ellerby LM, Ehrlich ME. Unbiased identification of novel transcription factors in striatal compartmentation and striosome maturation. eLife 2021; 10:e65979. [PMID: 34609283 PMCID: PMC8492065 DOI: 10.7554/elife.65979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Many diseases are linked to dysregulation of the striatum. Striatal function depends on neuronal compartmentation into striosomes and matrix. Striatal projection neurons are GABAergic medium spiny neurons (MSNs), subtyped by selective expression of receptors, neuropeptides, and other gene families. Neurogenesis of the striosome and matrix occurs in separate waves, but the factors regulating compartmentation and neuronal differentiation are largely unidentified. We performed RNA- and ATAC-seq on sorted striosome and matrix cells at postnatal day 3, using the Nr4a1-EGFP striosome reporter mouse. Focusing on the striosome, we validated the localization and/or role of Irx1, Foxf2, Olig2, and Stat1/2 in the developing striosome and the in vivo enhancer function of a striosome-specific open chromatin region 4.4 Kb downstream of Olig2. These data provide novel tools to dissect and manipulate the networks regulating MSN compartmentation and differentiation, including in human iPSC-derived striatal neurons for disease modeling and drug discovery.
Collapse
Affiliation(s)
- Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sicheng Song
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | | | - Chuhyon Corwin
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Justyna Mleczko
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Houda Benlhabib
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | - Jaroslav Bendl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Pasha Apontes
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Fullard
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Azadeh Reyahi
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Ali M Nik
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mental Illness Research, Education, and Clinical Center (VISN 2 South)BronxUnited States
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | | | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
4
|
Lebouc M, Richard Q, Garret M, Baufreton J. Striatal circuit development and its alterations in Huntington's disease. Neurobiol Dis 2020; 145:105076. [PMID: 32898646 DOI: 10.1016/j.nbd.2020.105076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that usually starts during midlife with progressive alterations of motor and cognitive functions. The disease is caused by a CAG repeat expansion within the huntingtin gene leading to severe striatal neurodegeneration. Recent studies conducted on pre-HD children highlight early striatal developmental alterations starting as soon as 6 years old, the earliest age assessed. These findings, in line with data from mouse models of HD, raise the questions of when during development do the first disease-related striatal alterations emerge and whether they contribute to the later appearance of the neurodegenerative features of the disease. In this review we will describe the different stages of striatal network development and then discuss recent evidence for its alterations in rodent models of the disease. We argue that a better understanding of the striatum's development should help in assessing aberrant neurodevelopmental processes linked to the HD mutation.
Collapse
Affiliation(s)
- Margaux Lebouc
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Quentin Richard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Maurice Garret
- Université de Bordeaux, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France; CNRS, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France.
| | - Jérôme Baufreton
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
5
|
Parallel Emergence of a Compartmentalized Striatum with the Phylogenetic Development of the Cerebral Cortex. Brain Sci 2019; 9:brainsci9040090. [PMID: 31010240 PMCID: PMC6523536 DOI: 10.3390/brainsci9040090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
The intricate neuronal architecture of the striatum plays a pivotal role in the functioning of the basal ganglia circuits involved in the control of various aspects of motor, cognitive, and emotional functions. Unlike the cerebral cortex, which has a laminar structure, the striatum is primarily composed of two functional subdivisions (i.e., the striosome and matrix compartments) arranged in a mosaic fashion. This review addresses whether striatal compartmentalization is present in non-mammalian vertebrates, in which simple cognitive and behavioral functions are executed by primitive sensori-motor systems. Studies show that neuronal subpopulations that share neurochemical and connective properties with striosomal and matrix neurons are present in the striata of not only anamniotes (fishes and amphibians), but also amniotes (reptiles and birds). However, these neurons do not form clearly segregated compartments in these vertebrates, suggesting that such compartmentalization is unique to mammals. In the ontogeny of the mammalian forebrain, the later-born matrix neurons disperse the early-born striosome neurons into clusters to form the compartments in tandem with the development of striatal afferents from the cortex. We propose that striatal compartmentalization in mammals emerged in parallel with the evolution of the cortex and possibly enhanced complex processing of sensory information and behavioral flexibility phylogenetically.
Collapse
|
6
|
Ehrlich AT, Semache M, Bailly J, Wojcik S, Arefin TM, Colley C, Le Gouill C, Gross F, Lukasheva V, Hogue M, Darcq E, Harsan LA, Bouvier M, Kieffer BL. Mapping GPR88-Venus illuminates a novel role for GPR88 in sensory processing. Brain Struct Funct 2018; 223:1275-1296. [PMID: 29110094 PMCID: PMC5871604 DOI: 10.1007/s00429-017-1547-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/17/2017] [Indexed: 01/20/2023]
Abstract
GPR88 is an orphan G-protein coupled receptor originally characterized as a striatal-enriched transcript and is a potential target for neuropsychiatric disorders. At present, gene knockout studies in the mouse have essentially focused on striatal-related functions and a comprehensive knowledge of GPR88 protein distribution and function in the brain is still lacking. Here, we first created Gpr88-Venus knock-in mice expressing a functional fluorescent receptor to fine-map GPR88 localization in the brain. The receptor protein was detected in neuronal soma, fibers and primary cilia depending on the brain region, and remarkably, whole-brain mapping revealed a yet unreported layer-4 cortical lamination pattern specifically in sensory processing areas. The unique GPR88 barrel pattern in L4 of the somatosensory cortex appeared 3 days after birth and persisted into adulthood, suggesting a potential function for GPR88 in sensory integration. We next examined Gpr88 knockout mice for cortical structure and behavioral responses in sensory tasks. Magnetic resonance imaging of live mice revealed abnormally high fractional anisotropy, predominant in somatosensory cortex and caudate putamen, indicating significant microstructural alterations in these GPR88-enriched areas. Further, behavioral analysis showed delayed responses in somatosensory-, visual- and olfactory-dependent tasks, demonstrating a role for GPR88 in the integration rather than perception of sensory stimuli. In conclusion, our data show for the first time a prominent role for GPR88 in multisensory processing. Because sensory integration is disrupted in many psychiatric diseases, our study definitely positions GPR88 as a target to treat mental disorders perhaps via activity on cortical sensory networks.
Collapse
Affiliation(s)
- Aliza T Ehrlich
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Meriem Semache
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Julie Bailly
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
| | - Stefan Wojcik
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Tanzil M Arefin
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, USA
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Christine Colley
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Christian Le Gouill
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Florence Gross
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Viktoriya Lukasheva
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Mireille Hogue
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Emmanuel Darcq
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
| | - Laura-Adela Harsan
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, University of Strasbourg, CNRS, Strasbourg, France
- Department of Biophysics and Nuclear Medicine, Faculty of Medicine, University Hospital Strasbourg, Strasbourg, France
| | - Michel Bouvier
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Brigitte L Kieffer
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada.
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France.
| |
Collapse
|
7
|
Hagimoto K, Takami S, Murakami F, Tanabe Y. Distinct migratory behaviors of striosome and matrix cells underlying the mosaic formation in the developing striatum. J Comp Neurol 2016; 525:794-817. [PMID: 27532901 DOI: 10.1002/cne.24096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 01/19/2023]
Abstract
The striatum, the largest nucleus of the basal ganglia controlling motor and cognitive functions, can be characterized by a labyrinthine mosaic organization of striosome/matrix compartments. It is unclear how striosome/matrix mosaic formation is spatially and temporally controlled at the cellular level during striatal development. Here, by combining in vivo electroporation and brain slice cultures, we set up a prospective experimental system in which we differentially labeled striosome and matrix cells from the time of birth and followed their distributions and migratory behaviors. Our results showed that, at an initial stage of striosome/matrix mosaic formation, striosome cells were mostly stationary, whereas matrix cells actively migrated in multiple directions regardless of the presence of striosome cells. The mostly stationary striosome cells were still able to associate to form patchy clusters via attractive interactions. Our results suggest that the restricted migratory capability of striosome cells may allow them to cluster together only when they happen to be located in close proximity to each other and are not separated by actively migrating matrix cells. The way in which the mutidirectionally migrating matrix cells intermingle with the mostly stationary striosome cells may therefore determine the topographic features of striosomes. At later stages, the actively migrating matrix cells began to repulse the patchy clusters of striosomes, presumably enhancing the striosome cluster formation and the segregation and eventual formation of dichotomous homogeneous striosome/matrix compartments. Overall, our study reveals temporally distinct migratory behaviors of striosome/matrix cells, which may underlie the sequential steps of mosaic formation in the developing striatum. J. Comp. Neurol. 525:794-817, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kazuya Hagimoto
- Department of Developmental Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Saki Takami
- Department of Developmental Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Fujio Murakami
- Department of Developmental Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasuto Tanabe
- Department of Developmental Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Novak G, Fan T, O'Dowd BF, George SR. Postnatal maternal deprivation and pubertal stress have additive effects on dopamine D2 receptor and CaMKII beta expression in the striatum. Int J Dev Neurosci 2013; 31:189-95. [DOI: 10.1016/j.ijdevneu.2013.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/31/2012] [Accepted: 01/01/2013] [Indexed: 01/05/2023] Open
Affiliation(s)
- Gabriela Novak
- Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PharmacologyUniversity of TorontoTorontoOntarioCanada
| | - Theresa Fan
- Centre for Addiction and Mental HealthTorontoOntarioCanada
| | - Brian F. O'Dowd
- Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PharmacologyUniversity of TorontoTorontoOntarioCanada
| | - Susan R. George
- Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PharmacologyUniversity of TorontoTorontoOntarioCanada
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
9
|
Novak G, Fan T, O'Dowd BF, George SR. Striatal development involves a switch in gene expression networks, followed by a myelination event: implications for neuropsychiatric disease. Synapse 2012. [PMID: 23184870 DOI: 10.1002/syn.21628] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Because abnormal development of striatal neurons is thought to be the part of pathology underlying major psychiatric illnesses, we studied the expression pattern of genes involved in striatal development and of genes comprising key striatal-specific pathways, during an active striatal maturation period, the first two postnatal weeks in rat. This period parallels human striatal development during the second trimester, when prenatal stress is though to lead to increased risk for neuropsychiatric disorders. To identify genes involved in this developmental process, we used subtractive hybridization, followed by quantitative real-time PCR, which allowed us to characterize the developmental expression of over 60 genes, many not previously known to play a role in neuromaturation. Of these 12 were novel transcripts, which did not match known genes, but which showed strict developmental expression and may play a role in striatal neurodevelopment. An additional 89 genes were identified as strong candidates for involvement in this neurodevelopmental process. We show that during the first two postnatal weeks in rat, an early gene expression network, still lacking key striatal-specific signaling pathways, is downregulated and replaced by a mature gene expression network, containing key striatal-specific genes including the dopamine D1 and D2 receptors, conferring to these neurons their functional identity. Therefore, before this developmental switch, striatal neurons lack many of their key phenotypic characteristics. This maturation process is followed by a striking rise in expression of myelination genes, indicating a striatal-specific myelination event. Such strictly controlled developmental program has the potential to be a point of susceptibility to disruption by external factors. Indeed, this period is known to be a susceptibility period in both humans and rats.
Collapse
Affiliation(s)
- Gabriela Novak
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
10
|
Ferrari DC, Mdzomba BJ, Dehorter N, Lopez C, Michel FJ, Libersat F, Hammond C. Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups. Front Cell Neurosci 2012; 6:7. [PMID: 22408606 PMCID: PMC3297358 DOI: 10.3389/fncel.2012.00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/11/2012] [Indexed: 12/17/2022] Open
Abstract
Midbrain dopaminergic neurons (mDA neurons) are essential for the control of diverse motor and cognitive behaviors. However, our understanding of the activity of immature mDA neurons is rudimentary. Rodent mDA neurons migrate and differentiate early in embryonic life and dopaminergic axons enter the striatum and contact striatal neurons a few days before birth, but when these are functional is not known. Here, we recorded Ca2+ transients and Na+ spikes from embryonic (E16–E18) and early postnatal (P0–P7) mDA neurons with dynamic two-photon imaging and patch clamp techniques in slices from tyrosine hydroxylase-GFP mice, and measured evoked dopamine release in the striatum with amperometry. We show that half of identified E16–P0 mDA neurons spontaneously generate non-synaptic, intrinsically driven Ca2+ spikes and Ca2+ plateaus mediated by N- and L-type voltage-gated Ca2+ channels. Starting from E18–P0, half of the mDA neurons also reliably generate overshooting Na+ spikes with an abrupt maturation at birth (P0 = E19). At that stage (E18–P0), dopaminergic terminals release dopamine in a calcium-dependent manner in the striatum in response to local stimulation. This suggests that mouse striatal dopaminergic synapses are functional at birth.
Collapse
Affiliation(s)
- Diana C Ferrari
- Institut National de la Recherche Médicale et de la Santé Inserm, INMED UMR 901 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Molecular profiling of striatonigral and striatopallidal medium spiny neurons past, present, and future. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 89:1-35. [PMID: 19900613 DOI: 10.1016/s0074-7742(09)89001-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining distinct molecular properties of the two striatal medium spiny neurons (MSNs) has been a challenging task for basal ganglia (BG) neuroscientists. Identifying differential molecular components in each MSN subtype is crucial for BG researchers to understand functional properties of these two neurons. The two MSN populations are morphologically identical except in their projections through the direct verses indirect BG pathways and they are heterogeneously dispersed throughout the dorsal striatum (dStr) and nucleus accumbens (NAc). These characteristics have made it difficult for researchers to distinguish and isolate these two neuronal populations thereby hindering progress toward a more comprehensive understanding of their differential molecular properties. Researchers began to investigate molecular differences in the striatonigral and striatopallidal neurons using in situ hybridization (ISH) techniques and single cell reverse transcription-polymerase chain reaction (scRT-PCR). Currently the field is utilizing more advanced techniques for large-scale gene expression studies including fluorescence activated cell sorting (FACS) of MSNs, from which RNA is purified, from fluorescent reporter transgenic mice or use of transgenic mice in which ribosomes from each MSN are tagged and can be immunoprecipitated followed by RNA isolation, a technique termed translating ribosomal affinity purification (TRAP). Additionally, the availability of fluorescent reporter mice for each MSN subtype is allowing, scientists to perform more accurate histology studies evaluating differential protein expression and signaling changes in each cell subtype. Finally, researchers are able to evaluate the role of specific genes in vivo by utilizing cell type-specific mouse models including Cre driver lines that can be crossed with conditional overexpression or knockout systems. This is a very exciting time in the BG field because researchers are well equipped with the most progressive tools to comprehensively evaluate molecular components in the two MSNs and their consequence on BG functional output in the normal, diseased, and developing brain.
Collapse
|
12
|
Lobo MK, Yeh C, Yang XW. Pivotal role of early B-cell factor 1 in development of striatonigral medium spiny neurons in the matrix compartment. J Neurosci Res 2008; 86:2134-46. [PMID: 18338816 DOI: 10.1002/jnr.21666] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mammalian striatum plays a critical function in motor control, motor and reward learning, and cognition. Dysfunction and degeneration of the striatal neurons are implicated in major neurological and psychiatric disorders. The vast majority of striatal neurons are medium spiny neurons (MSNs). MSNs can be further subdivided into distinct subtypes based on their physical localization in the striatal patch vs. matrix compartments and based on their axonal projections and marker gene expression (i.e., striatonigral MSNs vs. striatopallidal MSNs). Despite our extensive knowledge on the striatal cytoarchitecture and circuitry, little is known about the molecular mechanisms controlling the development of the MSN subtypes in the striatum. Early B-cell factor 1 (Ebf1) is a critical transcription factor implicated in striatal MSN development. One study shows that Ebf1 is critical for the differentiation of MSNs in the matrix, and our separate study demonstrates that Ebf1 is selectively expressed in the striatonigral MSNs and is essential for their postnatal differentiation. In the present study, we further validate the striatonigral MSN deficits in Ebf1(-/-) mice using multiple striatonigral MSN reporter mice. Moreover, we demonstrate that the striatonigral MSN deficits in these mice are restricted to those in the matrix, with relative sparing of those in the patch. Finally, we demonstrate that Ebf1 deficiency also results in reduced expression of another striatonigral-specific transcription factor, zinc finger binding protein 521 (Zfp521), which is a known Ebf1 functional partner. Overall, our study reveals that Ebf1 may play an essential role in controlling the differentiation of the striatonigral MSNs in the matrix compartment.
Collapse
Affiliation(s)
- Mary Kay Lobo
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience, Brain Research Institute, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
13
|
Developmental and target-dependent regulation of vesicular glutamate transporter expression by dopamine neurons. J Neurosci 2008; 28:6309-18. [PMID: 18562601 DOI: 10.1523/jneurosci.1331-08.2008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mesencephalic dopamine (DA) neurons have been suggested to use glutamate as a cotransmitter. Here, we suggest a mechanism for this form of cotransmission by showing that a subset of DA neurons both in vitro and in vivo expresses vesicular glutamate transporter 2 (VGluT2). Expression of VGluT2 decreases with age. Moreover, when DA neurons are grown in isolation using a microculture system, there is a marked upregulation of VGluT2 expression. We provide evidence that expression of this transporter is normally repressed through a contact-dependent interaction with GABA and other DA neurons, thus providing a partial explanation for the highly restricted expression of VGluT2 in DA neurons in vivo. Our results demonstrate that the neurotransmitter phenotype of DA neurons is both developmentally and dynamically regulated. These findings may have implications for a better understanding of the fast synaptic action of DA neurons as well as basal ganglia circuitry.
Collapse
|
14
|
Zhu Y, Carvey PM, Ling Z. Altered glutathione homeostasis in animals prenatally exposed to lipopolysaccharide. Neurochem Int 2007; 50:671-80. [PMID: 17291629 PMCID: PMC1868495 DOI: 10.1016/j.neuint.2006.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 12/07/2006] [Accepted: 12/20/2006] [Indexed: 11/23/2022]
Abstract
We previously reported that injection of bacterial lipopolysaccharide (LPS) into gravid female rats at embryonic day 10.5 resulted in a birth of offspring with fewer than normal dopamine (DA) neurons along with innate immunity dysfunction and many characteristics seen in Parkinson's disease (PD) patients. The LPS-exposed animals were also more susceptible to secondary toxin exposure as indicated by an accelerated DA neuron loss. Glutathione (GSH) is an important antioxidant in the brain. A disturbance in glutathione homeostasis has been proposed for the pathogenesis of PD. In this study, animals prenatally exposed to LPS were studied along with an acute intranigral LPS injection model for the status of glutathione homeostasis, lipid peroxidation, and related enzyme activities. Both prenatal LPS exposure and acute LPS injection produced a significant GSH reduction and increase in oxidized GSH (GSSG) and lipid peroxide (LPO) production. Activity of gamma-glutamylcysteine synthetase (GCS), the rate-limiting enzyme in de novo GSH synthesis, was up-regulated in acute supranigral LPS model but was reduced in the prenatal LPS model. The GCS light subunit protein expression was also down-regulated in prenatal LPS model. GSH redox recycling enzyme activities (glutathione peroxidase, GPx and glutathione reducdase, GR) and glutathione-S-transferase (GST), gamma-glutamyl transpeptidase (gamma-GT) activities were all increased in prenatal LPS model. Prenatal LPS exposure and aging synergized in GSH level and GSH-related enzyme activities except for those (GR, GST, and gamma-GT) with significant regional variations. Additionally, prenatal LPS exposure produced a reduction of DA neuron count in the substantia nigra (SN). These results suggest that prenatal LPS exposure may cause glutathione homeostasis disturbance in offspring brain and render DA neurons susceptible to the secondary neurotoxin insult.
Collapse
Affiliation(s)
- Yuangui Zhu
- Department of Pharmacology, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA
- Fujian Institute of Geriatrics, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Paul M. Carvey
- Department of Pharmacology, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA
| | - Zaodung Ling
- Department of Pharmacology, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Taiwan
- *Corresponding author: Zaodung Ling, M.D. Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Taiwan, 35 Keyan Road, Zhunan, Miaoli County, Taiwan 350, Tel: 011-886-37-246-166 ext 36717, Fax: 011-886-37-586-453, E-mail:
| |
Collapse
|
15
|
Ling Z, Chang QA, Tong CW, Leurgans SE, Lipton JW, Carvey PM. Rotenone potentiates dopamine neuron loss in animals exposed to lipopolysaccharide prenatally. Exp Neurol 2004; 190:373-83. [PMID: 15530876 DOI: 10.1016/j.expneurol.2004.08.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 07/26/2004] [Accepted: 08/12/2004] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that treating gravid female rats with the bacteriotoxin lipopolysaccharide (LPS) led to the birth of offspring with fewer than normal dopamine (DA) neurons. This DA neuron loss was long-lived and associated with permanent increases in the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha). Because of this pro-inflammatory state, we hypothesized that these animals would be more susceptible to subsequent exposure of DA neurotoxins. We tested this hypothesis by treating female Sprague-Dawley rats exposed to LPS or saline prenatally with a subtoxic dose of the DA neurotoxin rotenone (1.25 mg/kg per day) or vehicle for 14 days when they were 16 months old. After another 14 days, the animals were sacrificed. Tyrosine hydroxylase-immunoreactive (THir) cell counts were used as an index of DA neuron survival. Animals exposed to LPS prenatally or rotenone postnatally exhibited a 22% and 3%, respectively, decrease in THir cell counts relative to controls. The combined effects of prenatal LPS and postnatal rotenone exposure produced a synergistic 39% THir cell loss relative to controls. This loss was associated with decreased striatal DA and increased striatal DA activity ([HVA]/[DA]) and TNFalpha. Animals exposed to LPS prenatally exhibited a marked increase in the number of reactive microglia that was further increased by rotenone exposure. Prenatal LPS exposure also led to increased levels of oxidized proteins and the formation of alpha-Synuclein and eosin positive inclusions resembling Lewy bodies. These results suggest that exposure to low doses of an environmental neurotoxin like rotenone can produce synergistic DA neuron losses in animals with a preexisting pro-inflammatory state. This supports the notion that Parkinson's disease (PD) may be caused by multiple factors and the result of "multiple hits" from environmental toxins.
Collapse
Affiliation(s)
- Zaodung Ling
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Nishikawa S, Goto S, Hamasaki T, Ogawa M, Ushio Y. Transient and compartmental expression of the reeler gene product reelin in the developing rat striatum. Brain Res 1999; 850:244-8. [PMID: 10629770 DOI: 10.1016/s0006-8993(99)02136-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian neostriatum is composed of two neurochemically and neuroanatomically defined compartments, called the patches and matrix. The present study concerns a search for neurochemical molecules involved in formation of the striatal compartments. Using the monoclonal antibody CR-50, we here disclose a transient expression of the reeler gene product Reelin, which is known to play a crucial role in neuronal positioning and axon guidance during corticogenesis, in the developing striatum of rats. Furthermore, Reelin protein is differentially concentrated in the two distinct compartments showing a mosaic-like fashion in the early postnatal period: the compartments of heightened CR-50-immunolabeling correspond to so-called "dopamine islands" (i.e., developing striosomes) visualized by tyrosine hydroxylase (TH)-immunostaining. On the basis of these findings, we hypothesize that Reelin protein may play a role in developmental organization of the striatal compartments.
Collapse
Affiliation(s)
- S Nishikawa
- Department of Neurosurgery, Kumamoto University Medical School, Japan
| | | | | | | | | |
Collapse
|
17
|
Garel S, Marín F, Grosschedl R, Charnay P. Ebf1 controls early cell differentiation in the embryonic striatum. Development 1999; 126:5285-94. [PMID: 10556054 DOI: 10.1242/dev.126.23.5285] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ebf1/Olf-1 belongs to a small multigene family encoding closely related helix-loop-helix transcription factors, which have been proposed to play a role in neuronal differentiation. Here we show that Ebf1 controls cell differentiation in the murine embryonic striatum, where it is the only gene of the family to be expressed. Ebf1 targeted disruption affects postmitotic cells that leave the subventricular zone (SVZ) en route to the mantle: they appear to be unable to downregulate genes normally restricted to the SVZ or to activate some mantle-specific genes. These downstream genes encode a variety of regulatory proteins including transcription factors and proteins involved in retinoid signalling as well as adhesion/guidance molecules. These early defects in the SVZ/mantle transition are followed by an increase in cell death, a dramatic reduction in size of the postnatal striatum and defects in navigation and fasciculation of thalamocortical fibres travelling through the striatum. Our data therefore show that Ebf1 plays an essential role in the acquisition of mantle cell molecular identity in the developing striatum and provide information on the genetic hierarchies that govern neuronal differentiation in the ventral telencephalon.
Collapse
Affiliation(s)
- S Garel
- Unité 368 de l'Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 75230 Paris Cedex 05, France
| | | | | | | |
Collapse
|
18
|
Uryu K, Butler AK, Chesselet MF. Synaptogenesis and ultrastructural localization of the polysialylated neural cell adhesion molecule in the developing striatum. J Comp Neurol 1999; 405:216-32. [PMID: 10023811 DOI: 10.1002/(sici)1096-9861(19990308)405:2<216::aid-cne6>3.0.co;2-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The polysialylated neural cell adhesion molecule (PSA-NCAM) plays a role in axonal development and synaptic plasticity. Its pattern of expression is regulated temporally and topographically in the brain during development. However, it is unclear whether or not its subcellular location also changes. We have examined PSA-NCAM expression in relation to synapse formation in the developing rat striatum with immunohistochemistry and electron microscopy. Early in development, PSA-NCAM was present along the cytoplasmic membranes of neurons and in growth cones. PSA-NCAM expression became progressively confined to pre- and postsynaptic elements as neurons matured morphologically. Confirming previous results, a marked increase in the density of asymmetric synapses determined by using the physical dissector method was observed in the dorsolateral striatum between postnatal day 14 (P14) and P18. It was followed by a reduction between P18 and P25, when asymmetric synapse density reached adult levels. In contrast, the density of symmetric synapses had surpassed adult levels by P14. In the dorsomedial striatum, the density of asymmetric and symmetric synapses was similar at P18, at P25, and in adults. PSA-NCAM was associated with most asymmetric and symmetric synapses at P14 and P18 and was expressed in both pre- and postsynaptic elements of a majority (P14) or approximately half (P18) of the synapses. Most synapses lost PSA-NCAM expression between P18 and P25 in the dorsolateral striatum and between P25 and adult in the dorsomedial striatum. The data indicate that PSA-NCAM expression becomes restricted topographically during neuronal maturation but remains strategically associated with developing synapses during late postnatal development in the striatum.
Collapse
Affiliation(s)
- K Uryu
- Department of Pharmacology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
19
|
Kistler-Heer V, Schlumpf M, Lichtensteiger W. Melanocortin and MCH precursor-derived NEI effects on striatum-midbrain co-cultures. Peptides 1998; 19:1317-27. [PMID: 9809645 DOI: 10.1016/s0196-9781(98)00076-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The possibility of developmental effects of POMC-derived melanocortins and analogs on neurons of fetal rat brain regions exhibiting marked developmental melanocortin receptor expression, was studied in serum-free co-cultures of gestational day 18 striatal and mesencephalic cells, and compared with NEI and NGE. These two peptide fragments of the melanin concentrating hormone precursor, occurring in brain areas devoid of POMC terminals, cross-react with alpha-MSH antibodies; NEI elicits grooming similar to alpha-MSH. Neurofilament protein (NF), growth-associated protein (GAP-43) and synaptophysin of the synaptosomal fraction were determined by ELISA as markers for neuritogenesis, growth cones, and nerve terminal differentiation. Cell survival was analyzed by MTT assay, proportions of major cell types by immunocytochemistry. alpha-Melanocyte-stimulating hormone (alpha-MSH, effective concentration 250-2500 nM), the analog Nle4-, D-Phe7-alpha-MSH (NDP, 3.1-750 nM), and NEI (250 nM) increased NF in 3 day cultures by 11%, 17%, and 22%, respectively, whereas ACTH(1-24) and ACTH(1-39) (25 2500 nM) were ineffective. In 11 day cultures, alpha-MSH (250-750 nM), but not NDP, ACTH(1-24) or ACTH(1-39), increased synaptosomal synaptophysin by 11%. GAP-43 and cell survival remained unaffected. These data indicate that selected melanocortins as well as NEI can influence differentiation of neural processes in brain neurons.
Collapse
Affiliation(s)
- V Kistler-Heer
- Institute of Pharmacology, University of Zürich, Switzerland
| | | | | |
Collapse
|
20
|
Aubert I, Brana C, Pellevoisin C, Giros B, Caille I, Carles D, Vital C, Bloch B. Molecular anatomy of the development of the human substantia nigra. J Comp Neurol 1997; 379:72-87. [PMID: 9057113 DOI: 10.1002/(sici)1096-9861(19970303)379:1<72::aid-cne5>3.0.co;2-f] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of 15 fetal and perinatal human brains (from week 12 of fetal life to day 2 after birth) was studied in order to describe the anatomical and molecular correlates of the substantia nigra ontogeny. In situ hybridization, immunohistochemistry and binding studies were used to detect D2 dopamine receptor (D2R) mRNA, D2R binding sites, dopamine membrane transporter (DAT) mRNA, tyrosine hydroxylase (TH) protein D1 dopamine receptor (D1R) protein and D1R binding sites. Dopaminergic (DA) neurons of the substantia nigra were detected through TH immunoreactivity from week 12. At week 16, the substantia nigra was clearly delineated as a compact group of intermingled neurons and fibers. From week 19, groups of DA neurons were segregated from the pars reticulata. These groups have been divided into the substantia nigra pars compacta, the ventral tegmental area and the retrorubral area. The DA neurons exhibited a gradual increase in size and branching development until birth. From week 12 onward they expressed several other markers of dopamine transmission, i.e., D2R mRNA, D2R binding sites and DAT mRNA. The ventral tegmental area expressed lower levels of mRNA for DAT and D2R than the pars compacta. From week 12, D1R immunoreactivity and D1R binding sites were also present in the substantia nigra pars reticulata. This suggests that projecting striatonigral neurons, known to express the D1R gene, have developed pathways connecting with the substantia nigra by week 12. Our results demonstrate that the developing substantia nigra in human displays early transcriptional and translational activity for the main constituents of dopaminergic transmission from week 12 and receives at this time dopaminoceptive inputs bearing D1 receptors from the striatum.
Collapse
Affiliation(s)
- I Aubert
- UMR CNRS 5541, Laboratoire d'Histologie-Embryologie, Université de Bordeaux II, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tokuno H, Takada M, Kaneko T, Shigemoto R, Mizuno N. Patchy distribution of substance P receptor immunoreactivity in the' developing rat striatum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 95:107-17. [PMID: 8873981 DOI: 10.1016/0165-3806(96)00080-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Developmental changes of the distribution pattern of substance P receptor (SPR) were investigated immunohistochemically in the rat striatum. The SPR immunoreactivity in the striatum first emerged at postnatal day 1 and transiently showed a patchy pattern of distribution until it displayed the adult pattern of homogeneous distribution by the third postnatal week. The SPR-immunoreactivity patches were most marked in the medial and dorsolateral parts of the striatum, as well as in the subcallosal streak. They matched tyrosine hydroxylase-enriched areas and, conversely, avoided calbindin-enriched zones. No neurons within the SPR-immunoreactive patches contained either choline acetyltransferase or somatostatin, which is known to be contained in intrinsic neurons in the striatum. The vast majority of SPR-immunoreactive patch neurons also contained DARPP-32, a phosphoprotein that is expressed in striatal projection neurons with D1 dopamine receptor. The results indicate that SPR-immunoreactive patches which appear transiently in the developing striatum are in register with the striatal patch compartment, and that SPR immunoreactivity within these patches may be expressed on projection neurons rather than intrinsic neurons. Such SPR immunoreactivity in projection neurons in striatal patches may fade out in adulthood.
Collapse
Affiliation(s)
- H Tokuno
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
22
|
van der Kooy D. Early postnatal lesions of the substantia nigra produce massive shrinkage of the rat striatum, disruption of patch neuron distribution, but no loss of patch neurons. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0165-3806(96)80017-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Aronica E, Costantini LC, Snyder-Keller A. Reciprocal influences of nigral cells and striatal patch neurons in dissociated co-cultures. J Neurosci Res 1996; 44:540-50. [PMID: 8794945 DOI: 10.1002/(sici)1097-4547(19960615)44:6<540::aid-jnr4>3.0.co;2-b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Our previous work has shown that the functional efficacy of nigral tissue transplants into dopamine (DA)-depleted rats is increased when embryonic striatal tissue is included (Costantini et al.: Exp Neurol 127:219-231, 1994). To examine further the influence of striatal patch neurons in this regard, we employed co-cultures of dissociated nigral and striatal cells taken from embryos at different ages. Striatal patch neurons were labeled by in vivo bromodeoxyuridine (BrdU) on embryonic day (E)13 and E14. The percentage of striatal cells that were BrdU labeled was greater in E14 striatal cultures (51.0%) compared with E16 (33.9%) and E20 (3.5%) striatal cultures at 1 day in vitro (DIV). The proportion of surviving BrdU-labeled cells in striatal cultures decreased over time. The inclusion of E14 nigral cells attenuated this decline. Similarly, the number of dopaminergic [tyrosine hydroxylase (TH)-immunoreactive] neurons in pure nigral cultures decreased with time in vitro (8.2% at 1 DIV to 3.5% at 12-15 DIV). The inclusion of E14 striatal tissue increased the number of TH-immunoreactive neurons at all time points, whereas E16 and E20 striatal tissue was somewhat less effective. Thus, the survival of nigral DA neurons and striatal patch neurons in culture appears to be enhanced in the presence of the other. These reciprocal influences on neuronal survival may be relevant to the in vivo development of the nigrostriatal system as well as the enhanced function of cells in co-transplants.
Collapse
Affiliation(s)
- E Aronica
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509, USA
| | | | | |
Collapse
|
24
|
|
25
|
Snyder-Keller AM. The development of striatal patch/matrix organization after prenatal methylazoxymethanol: a combined immunocytochemical and bromo-deoxy-uridine birthdating study. Neuroscience 1995; 68:751-63. [PMID: 8577371 DOI: 10.1016/0306-4522(95)00124-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The antimitotic drug methylazoxymethanol was used to destroy striatal patch neurons during their three-day-period of neurogenesis in the rat. Single or multiple injections of methylazoxymethanol were given during embryonic days 13-15, the period when patch neurons are known to undergo their final cell division. Methylazoxymethanol treatments produced a dramatic reduction in striatal volume. Immunocytochemical analysis revealed the continued presence of patches of neurons that were substance P-immunoreactive and devoid of calbindin and enkephalin immunoreactivity. Both the number of patches and relative volume occupied by patches was reduced in methylazoxymethanol-treated striata. Patch neurons could also be labelled by an intrastriatal injection of FluoroGold during the first postnatal week. The early ingrowth of nigrostriatal dopamine afferents was less noticeably patchy in the methylazoxymethanol-treated animals, in part owing to an overall increase in density. Large reductions in the number of neurons immunoreactive for choline acetyltransferase were observed, whereas NADPH diaphorase-stained neurons were not reduced unless methylazoxymethanol was given on embryonic day 15. Injections of bromo-deoxy-uridine, either during or after the 24 h that each methylazoxymethanol injection was considered to be effective, revealed that (i) some patch neurons continued to be generated in the 24-h period following methylazoxymethanol administration, and (ii) many patch neurons were generated after the effects of methylazoxymethanol had worn off. These findings demonstrate that it was impossible to completely eliminate the patches using methylazoxymethanol injections during the period of patch neurogenesis. However, methylazoxymethanol treatment during this time did produce a dramatic loss of cells and a relatively greater reduction in patch volume. Despite this disruption, the appropriate compartmentalization of neuroactive substances appeared to be maintained.
Collapse
Affiliation(s)
- A M Snyder-Keller
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509, USA
| |
Collapse
|
26
|
Clayton GH, Mahalik TJ, Finger TE. Expression of GAP43 mRNA in normally developing and transplanted neurons from the rat ventral mesencephalon. J Comp Neurol 1994; 347:470-80. [PMID: 7822495 DOI: 10.1002/cne.903470312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
These experiments were designed to determine whether the neuronal growth-related protein GAP43 is expressed at high levels by neurons that collateralize extensively or have long periods of synaptogenesis. We also evaluated the effects of target availability on GAP43 expression. Dopaminergic neurons of the rat ventral mesencephalon (VM) were chosen for investigation because they undergo extensive collateralization and synaptogenesis during postnatal development. Double label in situ hybridization histochemistry (ISHH) and immunocytochemistry (ICC) were used to measure changes in GAP43 mRNA levels within tyrosine hydroxylase (TH)-immunoreactive and -nonimmunoreactive neurons of the VM during postnatal development (p5-adult). TH neurons show higher levels of GAP43 mRNA than do non-TH neurons throughout normal postnatal development and in the adult. This result may be due to more extensive axonal arborization and synaptic remodeling on the part of TH neurons as they innervate the striatum. To test the effects of target availability on GAP43 utilization, grafts of embryonic (e15) VM were placed within previously 6-hydroxydopamine (6-OHDA)-lesioned striata and allowed to develop for 10-28 days. Levels of GAP43 mRNA in grafted TH neurons were reduced at all time points. The short distance to target in the graft paradigm may shorten the overall axonal process length, resulting in lower requirements for growth-related proteins such as GAP43. However, grafted non-TH neurons had elevated levels of GAP43 mRNA, perhaps attributable to prolonged target seeking by neurons that have been isolated from their normal targets.
Collapse
Affiliation(s)
- G H Clayton
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver 80262
| | | | | |
Collapse
|
27
|
Desban M, Kemel ML, Glowinski J, Gauchy C. Spatial organization of patch and matrix compartments in the rat striatum. Neuroscience 1993; 57:661-71. [PMID: 8309529 DOI: 10.1016/0306-4522(93)90013-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The visualization of mu opiate receptors by [3H]naloxone binding was used to determine precisely the spatial organization of the patch compartment in the rat striatum and its reproducibility in different animals. Three-dimensional reconstruction of the patch network was made using maps of autoradiographic data obtained from successive coronal, sagittal or horizontal sections. The extreme rostral pole of the striatum (A 11) was characterized by a large patch territory exhibiting complex and tortuous fields with several extensions. In the intermediate part of the structure (A 9.0-10.0), about 20 serial parallel continuous patch channels running in a mediolateral axis, obliquely oriented and displaying in some cases connecting branches, could be observed. However, no channels could be distinguished in the rostrocaudal direction. More caudally, patches were rare and of small size. In addition, the laterocaudal region of the striatum was almost exclusively represented by a large matrix field. Finally, a fine discontinuous band of [3H]naloxone binding was seen in all sections, bordering and limiting the dorsolateral part of the striatum. The topographical and spatial distribution of the patch compartment was similar in all animals investigated. However, due to the tortuous shape and the labyrinthine organization of the patches, the precise degree of reproducibility from one animal to another could not be established. Nevertheless, the prominent patch compartment observed in the rostral pole of the striatum, the patch channels, oriented in the mediolateral axis as well as the large laterocaudal matrix field were observed in all cases. These results were compared with previous data obtained in the cat in which patch (striosome) channels oriented along a rostrocaudal axis are also observed.
Collapse
Affiliation(s)
- M Desban
- Laboratoire de Neuropharmacologie, INSERM U.114, Collège de France, Paris
| | | | | | | |
Collapse
|
28
|
Schoen SW, Graybiel AM. Species-specific patterns of glycoprotein expression in the developing rodent caudoputamen: association of 5'-nucleotidase activity with dopamine islands and striosomes in rat, but with extrastriosomal matrix in mouse. J Comp Neurol 1993; 333:578-96. [PMID: 8103780 DOI: 10.1002/cne.903330410] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The glycoprotein 5'-nucleotidase is a cell surface phosphatase and represents a new marker for striosomes in the adult rat caudoputamen. We report here on its developmental expression in the rat and mouse striatum, and show an unexpected converse 5'-nucleotidase chemoarchitecture of the caudoputamen in these closely related species. In the rat, 5'-nucleotidase activity was first visible as neuropil staining in tyrosine hydroxylase-positive dopamine islands of the midstriatum on postnatal day 1, and by the end of the first postnatal week, 5'-nucleotidase-positive dopamine islands also appeared rostrally. This compartmental pattern persisted thereafter, so that in adult animals, in all but the caudal caudoputamen, zones of enhanced 5'-nucleotidase staining were restricted to calbindin-D28k-poor striosomes. Weak 5'-nucleotidase activity also emerged in the matrix. In striking contrast, in the mouse striatum, enhanced 5'-nucleotidase activity was preferentially associated with extrastriosomal tissue. Enzymatic reaction first appeared on embryonic day 18, and developed over the first postnatal week into a mosaic pattern in which the matrix was stained but the dopamine islands were unstained. The matrix staining itself was heterogeneous. After the second postnatal week, most of the caudoputamen was stained, and in adult mice only rostral striosomes expressed low 5'-nucleotidase activity. We conclude that in rats, 5'-nucleotidase represents one of the few substances that maintains a preferential dopamine island/striosome distribution during striatal development. In mice, 5'-nucleotidase activity is expressed preferentially in the matrix during development, and its compartmental pattern is gradually lost with maturation, except very rostrally. These findings do not suggest an instructive role of the enzyme in striatal compartment formation in either species, but do suggest the possibility that 5'-nucleotidase contributes to the differentiation of striatal compartments during development.
Collapse
Affiliation(s)
- S W Schoen
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
29
|
Acklin SE, van der Kooy D. Clonal heterogeneity in the germinal zone of the developing rat telencephalon. Development 1993; 118:175-92. [PMID: 8375334 DOI: 10.1242/dev.118.1.175] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A double-labeling technique, combining retroviral tagging of individual cell lines (one clone per brain hemisphere) with the simultaneous [3H]thymidine-labeling of dividing cells in S phase, was used to study proliferation characteristics of individual precursor cell lines in the germinal zone of the developing rat forebrain. The cortical germinal zone was found to be segregated into three spatially distinct horizontal populations of precursor cell lineages, which differed in cell cycle kinetics, amount of cell death, and synchronous versus asynchronous mode of proliferation. The striatal germinal zone demonstrated a similar heterogeneity in the cell cycle characteristics of proliferating clones, but did not show nearly as distinct a spatial segregation of these different populations. The results demonstrate the clonal heterogeneity among precursor populations in the telencephalon and the differential spatial organization of the cortical and the striatal germinal zones. This germinal zone heterogeneity may predict some of the differences found among cellular phenotypes in the adult forebrain.
Collapse
Affiliation(s)
- S E Acklin
- Department of Anatomy and Cell Biology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
30
|
Krushel LA, Johnston JG, Fishell G, Tibshirani R, van der Kooy D. Spatially localized neuronal cell lineages in the developing mammalian forebrain. Neuroscience 1993; 53:1035-47. [PMID: 7685067 DOI: 10.1016/0306-4522(93)90487-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The role of cell lineage in the organization of the cerebral cortex and striatum of the developing rat forebrain was analysed using retroviral-mediated gene transfer to mark the progeny of individual progenitors. Injections around the onset of neurogenesis (embryonic day 14) produced neuronal- and glial-specific clones in the striatum and cortex. The majority of the neuronal clones were restricted to either the deep or superficial layers of the cortex and to either the striatal patch or matrix compartments of the striatum. Moreover, modeling the distributions of the neuronal clones in various ways revealed that grouping the clones into deep vs superficial cortical compartments and patch vs matrix striatal compartments best accounted for the clone distributions. These results suggest that at the onset of neurogenesis there is a heterogeneity of neuronal progenitors within the proliferative ventricular zone.
Collapse
Affiliation(s)
- L A Krushel
- Department of Anatomy, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
31
|
Silverman WF. Temporal and compartmental restriction of neuron-specific enolase expression in the rat mesostriatal system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 69:31-9. [PMID: 1330370 DOI: 10.1016/0165-3806(92)90119-h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The striatum and the mesencephalic dopamine neurons which innervate it, are each organized into developmentally and biochemically distinct compartments. Striatal patches, characterized in the neonate by high concentrations of opiate receptors and substance P, are innervated prenatally by fibers originating in one group of midbrain dopamine neurons, the ventral tier. By the third postnatal day, a dense dopamine projection from neurons in the dorsal tier of the mesostriatal group innervates non-patch areas of the striatum, i.e. the matrix, and is followed by the appearance there of neurotensin, somatostatin and calcium binding protein. We have recently observed that the period of establishment of connections between dorsal tier dopamine neurons and their target cells in the striatal matrix is accompanied by a surge in expression of the gene coding for tyrosine hydroxylase (TH). In order to determine the overall metabolic state of mesencephalic and striatal neurons during the period of up-regulation of TH gene expression, we have applied immunocytochemistry for neuron specific enolase (NSE), and cytochrome oxidase histochemistry, known markers for neuronal activity, as well as TH immunohistochemistry to the mesencephalon and striatum of postnatally developing rats. At birth, both NSE and cytochrome oxidase were expressed almost exclusively in the patches, appearing in the matrix only after the 2nd postnatal day. Patches of NSE remained visible thru the 14th day. In the mesencephalon, cytochrome oxidase and immunoreactive NSE cells in adjacent sections, were present only in the pars reticulata (i.e. ventral tier). By day 8, both techniques identified nigral cells in the dorsal as well as ventral tiers.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W F Silverman
- Unit of Morphology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
32
|
Liu FC, Graybiel AM. Heterogeneous development of calbindin-D28K expression in the striatal matrix. J Comp Neurol 1992; 320:304-22. [PMID: 1351896 DOI: 10.1002/cne.903200304] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, we attempted to trace the development of the striatal matrix by analyzing the ontogenetic expression of calbindin-D28K (calbindin), a calcium binding protein selectivity expressed in medium-sized neurons of the matrix compartment of the mature rat's caudoputamen. The localization of calbindin was documented in a series of developing rat brains, as was the compartmental location of these cells relative to tyrosine hydroxylase (TH)-immunostained dopamine islands, sites of future striosomes. Medium-sized striatal neurons appeared in the striatum at embryonic day (E) 20, and from their first appearance, the calbindin-positive neurons had highly heterogeneous distributions. They first formed a latticework of patches and bands in a ventral region of the caudoputamen. By postnatal day (P) 7, this early calbindin-positive lattice had evolved into a mosaic in which circumscript pockets of low calbindin-like immunoreactivity appeared in more extensive calbindin-rich surrounds. With further development, the mosaic gradually encroached on all but the dorsolateral caudoputamen, a district that is calbindin-poor at adulthood. A special lateral branch of the striatal calbindin system was also identified, distinct from the rest of the calbindin-positive mosaic in several developmental characteristics. In the parts of the caudoputamen where the developing calbindin system and dopamine island system were both present, the dopamine islands invariably lay in calbindin-poor zones. Most dopamine islands, however, only filled parts of the corresponding calbindin-poor zones. Moreover, there were some calbindin-poor zones for which TH-positive dopamine islands could not be detected. Thus during development, calbindin was expressed in the extrastriosomal matrix of the striatum, but the matrix could be divided into calbindin-rich and calbindin-poor zones. In the calbindin-rich regions, there were patches of especially intense calbindin expression and zones of weaker expression. These results suggest that there is neurochemical heterogeneity in the striatal matrix during the prolonged developmental period in which the early calbindin-positive lattice expands to form the calbindin-positive matrix of the mature striatum. Surprisingly, calbindin expression in the matrix, although eventually distributed in strictly complementary fashion to striosomes, does not originate as a system complementary to dopamine islands. The prolonged disparity between the borders of dopamine islands and calbindin-poor zones, and the different spatiotemporal schedules of development of the islands and the calbindin gaps suggest instead that the final match between the borders of striosomes and surrounding matrix results from dynamic processes occurring early in postnatal development. Candidate mechanisms for the gradual adjustment of these borders are proposed.
Collapse
Affiliation(s)
- F C Liu
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
33
|
Shults CW, Kimber TA. Mesencephalic dopaminergic cells exhibit increased density of neural cell adhesion molecule and polysialic acid during development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 65:161-72. [PMID: 1349268 DOI: 10.1016/0165-3806(92)90175-v] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the developing mesencephalon of the rat, the dopaminergic neurons are generated in the ventricular zone of the basal plate between E11 and E15 and then migrate along radial glia to the ventral surface of the developing mesencephalon. To study the factors that control migration and maturation of the dopaminergic neurons, we immunolabeled embryo and pups, ages E12-P21, for neural cell adhesion molecule (NCAM), polysialic acid (PSA) - a polysaccharide found in high amounts on NCAM during development, tyrosine hydroxylase (TH) - a marker of mesencephalic dopaminergic cells, and vimentin - the major cytoskeletal protein in radial glia in the rat. At E13, we noted that cells throughout the mesencephalon contained NCAM-immunoreactive (NCAM-IR) material but that cells along the ventral surface of the mesencephalon contained an increased amount of NCAM-IR material and PSA-immunoreactive (PSA-IR) material. At this age, we first noted a small number of TH-immunoreactive (TH-IR) cells adjacent to the marginal zone of the ventral surface of the mesencephalon. Many of the TH-IR cells contained an increased density of NCAM-IR material. At age E14, the pattern of increased density of NCAM-IR material on cells along the ventral surface of the mesencephalon persisted and a conspicuous amount of PSA-IR material was also noted on cells in this region. TH-IR cells were more numerous, and a striking number of the TH-IR cells also contained an increased amount of NCAM-IR material and PSA-IR material. With increasing age the distribution of NCAM-IR material and PSA-IR material in the mesencephalon became more uniform. Our work suggests that NCAM may be involved in control of migration and synthesis of TH in the dopaminergic cells of the developing mesencephalon.
Collapse
Affiliation(s)
- C W Shults
- Neurology Service, VA Medical Center, San Diego, CA 92161
| | | |
Collapse
|
34
|
Fishell G, van der Kooy D. Pattern formation in the striatum: neurons with early projections to the substantia nigra survive the cell death period. J Comp Neurol 1991; 312:33-42. [PMID: 1660493 DOI: 10.1002/cne.903120104] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the early postnatal period the striatum undergoes significant cell death. The specificity and regulation of this regressive event may be particularly interesting in the light of recent findings demonstrating that a developmentally organized compartmental architecture exists in the striatum. The striatum can be divided into two complementary and phenotypically distinct compartments, the patches and the matrix. In the adult, these two striatal compartments can be distinguished on the basis of their anatomy and a series of compartment-specific biochemical and hodological markers. We have previously demonstrated that the neurons within the patch and matrix compartments become postmitotic and make connections with the substantia nigra at distinct and sequential developmental times. The majority of patch neurons become postmitotic between embryonic days 12 and 15 and make a striatonigral connection prenatally. In contrast, a majority of matrix neurons become postmitotic between embryonic days 17 and 20 and do not form an efferent connection to the substantia nigra until the first postnatal week. Here we investigated whether either neuronal birthdate or time of making an efferent projection correlates with a neuron's probability of surviving the cell death period. We found that both the patch and matrix compartments undergo their entire cell death period by the end of the first postnatal week. During this period approximately 30% of striatal neurons are subject to cell death, regardless of striatal compartment. Neuronal counts within the striatal patch compartment suggest that both early born neurons (embryonic day 13) and early projecting neurons (to the substantia nigra) are preferentially spared. However, their considerable overlap (i.e., most early born neurons also have a nigral projection) prevents assessment of which feature is critical for survival. In contrast, there are small, but mostly separate, populations of early born and early projecting neurons within the matrix compartment. Quantitative analysis of these two distinct populations suggests that while early projection neurons within the matrix are spared, the early born matrix neurons lacking an early nigral projection undergo significant cell death. This proposal is further supported by the observation that the percentage of early born neurons in both the patch and matrix compartments that also have an early nigral projection increases from postnatal day 2 to 17. This finding suggests that among the early born striatal neurons in both compartments, those that do not project to the nigra selectively die during the cell death period. Together these results support the hypothesis that completion of an early projection to the substantia nigra gives neurons an advantage for surviving the cell death period.
Collapse
Affiliation(s)
- G Fishell
- Department of Anatomy, University of Toronto, Ontario, Canada
| | | |
Collapse
|
35
|
Abstract
The histories of the terms "reward" and "reinforcement" are reviewed to show the difference in their origins. Reward refers to the fact that certain environmental stimuli have the property of eliciting approach responses. Evidence suggests that the ventral striatum (nucleus accumbens area) is central to the mediation of this behavior. Reinforcement refers to the tendency of certain stimuli to strengthen learned stimulus-response tendencies. The dorsolateral striatum appears to be central to the mediation of this behavior. Neuroanatomical and neurochemical data are adduced suggesting that reward may be mediated by a neural circuit including the neostriatal patch system, together with the hippocampus, limbic system (amygdala, prefrontal cortex) and ventral pallidum. The evidence also suggests that reinforcement, in the form of dopamine release in the striatal matrix, acts to promote the consolidation of sensori-motor associations. Thus, the matrix may mediate stimulus-response memory as part of a circuit including the cerebral cortex, substantia nigra pars reticulata and its projections to thalamic and brainstem motor areas.
Collapse
Affiliation(s)
- N M White
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|