1
|
Elson AE, Simerly RB. Developmental specification of metabolic circuitry. Front Neuroendocrinol 2015; 39:38-51. [PMID: 26407637 PMCID: PMC4681622 DOI: 10.1016/j.yfrne.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 01/16/2023]
Abstract
The hypothalamus contains a core circuitry that communicates with the brainstem and spinal cord to regulate energy balance. Because metabolic phenotype is influenced by environmental variables during perinatal development, it is important to understand how these neural pathways form in order to identify key signaling pathways that are responsible for metabolic programming. Recent progress in defining gene expression events that direct early patterning and cellular specification of the hypothalamus, as well as advances in our understanding of hormonal control of central neuroendocrine pathways, suggest several key regulatory nodes that may represent targets for metabolic programming of brain structure and function. This review focuses on components of central circuitry known to regulate various aspects of energy balance and summarizes what is known about their developmental neurobiology within the context of metabolic programming.
Collapse
Affiliation(s)
- Amanda E Elson
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, CA 90027, USA
| | - Richard B Simerly
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, CA 90027, USA.
| |
Collapse
|
2
|
Man SHW, Géranton SM, Hunt SP. Lamina I NK1 expressing projection neurones are functional in early postnatal rats and contribute to the setting up of adult mechanical sensory thresholds. Mol Pain 2012; 8:35. [PMID: 22540287 PMCID: PMC3528436 DOI: 10.1186/1744-8069-8-35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A small proportion of lamina I neurons of the spinal cord project upon the hindbrain and are thought to engage descending pathways that modulate the behavioural response to peripheral injury. Early postnatal development of nociception in rats is associated with exaggerated and diffuse cutaneous reflexes with a gradual refinement of responses over the first postnatal weeks related to increased participation of inhibitory networks. This study examined the postnatal development of lamina I projection neurons from postnatal day 3 (P3) until P48. RESULTS At P3, a subset of lamina I neurons were found to express the neurokinin 1 (NK1) receptor. Using fluorogold retrograde tracing, we found that the NK1 positive neurons projected upon the parabrachial nucleus (PB) within the hindbrain. Using c-fos immunohistochemistry, we showed that lamina I and PB neurons in P3 rats responded to noxious stimulation of the periphery. Finally, ablation of lamina I neurons with substance-P saporin conjugates at P3 resulted in increased mechanical sensitivity from P45 onwards compared to control animals of the same age. CONCLUSIONS These results suggest that the lamina I pathway is present and functional at least from P3 and required for establishing and fine-tuning mechanical sensitivity in adult rats.
Collapse
Affiliation(s)
- Sharon H W Man
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | | | | |
Collapse
|
3
|
Haino T, Hironaka S, Ooka T, Tokita K, Kubota Y, Boughter JD, Inoue T, Mukai Y. Orosensory deprivation alters taste-elicited c-Fos expression in the parabrachial nucleus of neonatal rats. Neurosci Res 2010; 67:228-35. [PMID: 20302893 DOI: 10.1016/j.neures.2010.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
In the present study we examined the effects of neonatal orosensory deprivation on taste-elicited gustatory activity in the rat parabrachial nucleus (PBN) using the functional anatomical marker c-Fos. Animals in three groups (GG, GO and GM) received gastric cannula implantation surgery on postnatal day 9 (P9). Animals in the fourth group (MR) did not receive any surgery. GG rats were fed by infusion of artificial milk directly into the stomach. GO rats were fed by intraoral infusion of artificial milk. GM and MR rats were reared by their mother with free access to mother's milk, water and rat chow. Rats from all groups were similar in body weight and length by P21. On P21 rats in all groups were intraorally presented with 0.5M sucrose solution and the brains were extracted and processed for c-Fos immunohistochemistry. Taste-elicited c-Fos expression in both the gustatory waist area, and the external lateral subnucleus of the PBN in rats in the GG group was significantly more robust than in the other three groups. These findings suggest a substantial alteration in orosensory-evoked neuronal response in this nucleus, due to sensory or motor deprivation during a critical developmental stage.
Collapse
Affiliation(s)
- Toshiyuki Haino
- Department of Hygiene and Oral Health, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Gil-Loyzaga P, Carricondo F, Bartolomé MV, Iglesias MC, Rodríguez F, Poch-Broto J. Cellular and molecular bases of neuroplasticity: brainstem effects after cochlear damage. Acta Otolaryngol 2010. [DOI: 10.3109/00016480903127468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Abstract
Ingestive behavior is a complex product of distributed central control systems that respond to a diverse array of internal and external sensory stimuli. Relatively little is known regarding the pathways and mechanisms by which relevant signals are conveyed to the neural circuits that ultimately control ingestive motor output. This report summarizes findings regarding the postnatal development of descending hypothalamic inputs to the hindbrain dorsal vagal complex (DVC). Evidence accumulated primarily in rats indicates that descending neural projections from the hypothalamus to the DVC are both structurally and functionally immature at birth. The progressive postnatal maturation of these projections occurs in parallel with newly emerging physiological and behavioral responsiveness to treatments and stimuli that affect food intake in adults. Thus, the postnatal emergence of new feeding controls may reflect the emerging access of these controls to DVC neural circuits.
Collapse
Affiliation(s)
- Linda Rinaman
- Department of Neuroscience, 446 Crawford Hall, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
6
|
Abstract
The hypothalamus is critically involved in energy homeostasis and is an appropriate focus for research investigating the central neural underpinnings of obesity, anorexia and normal food intake. However, little is known regarding pathways and mechanisms that convey relevant hypothalamic signals to the brainstem circuits that ultimately control ingestive behavior. This brief review highlights work investigating the postnatal development of hypothalamic inputs to the hindbrain dorsal vagal complex (DVC). Research findings indicate that these inputs are both structurally and functionally immature in newborn rats. The progressive postnatal maturation of descending projections to the DVC occurs in concert with newly emerging physiological and behavioral responses to osmotic dehydration, which inhibits gastric emptying and food intake in adult animals but not in neonates. The postnatal emergence of other intake controls might also reflect progressive engagement of DVC neural circuits, whose intrinsic components and output pathways are envisioned as being critical for initiating and terminating ingestive behavior.
Collapse
Affiliation(s)
- Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, 446 Crawford Hall, Pittsburgh, PA 15260, USA.
| |
Collapse
|
7
|
Heck WL, Basaraba AM, Slusarczyk A, Schweitzer L. Early GABA(A) receptor clustering during the development of the rostral nucleus of the solitary tract. J Anat 2003; 202:387-96. [PMID: 12739616 PMCID: PMC1571086 DOI: 10.1046/j.1469-7580.2003.00169.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While there is an abundance of gamma-aminobutyric acid (GABA) in the gustatory zone of the nucleus of the solitary tract of the perinatal rat, we know that GABAergic synapse formation is not complete until well after birth. Our recent results have shown that GABA(B) receptors are present at birth in the cells of the nucleus; however, they do not redistribute and cluster at synaptic sites until after PND10. The present study examined the time course of appearance and redistribution of GABA(A) receptors in the nucleus. GABA(A) receptors were also present at birth. However, in comparison to GABA(B) receptors, GABA(A) receptors underwent an earlier translocation to synaptic sites. Extrasynaptic label, for example, of GABA(A) receptors was non-existent compared to GABA(B) receptors at PND10 and well-defined clusters of GABA(A) receptors could be seen as early as PND1. We propose that while GABA(A), receptors may play an early neurotransmitter role at the synapse, GABA(B) receptors may play a non-transmitter neurotrophic role.
Collapse
Affiliation(s)
- W L Heck
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
8
|
Grabauskas G, Bradley RM. Postnatal development of inhibitory synaptic transmission in the rostral nucleus of the solitary tract. J Neurophysiol 2001; 85:2203-12. [PMID: 11353035 DOI: 10.1152/jn.2001.85.5.2203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To explore the postnatal development of inhibitory synaptic activity in the rostral (gustatory) nucleus of the solitary tract (rNST), whole cell and gramicidin perforated patch-clamp recordings were made in five age groups of rats [postnatal day 0-7 (P0-7), P8-14, P15-21, P22-30, and P >55]. The passive membrane properties of the developing rNST neurons as well as the electrophysiological and pharmacological characteristics of single and tetanic stimulus-evoked inhibitory postsynaptic potentials (IPSPs) were studied in brain slices under glutamate receptor blockade. During the first postnatal weeks, significant changes in resting membrane potential, spontaneous activity, input resistance, and neuron membrane time constant of the rNST neurons occurred. Although all the IPSPs recorded were hyperpolarizing, the rise and decay time constants of the single stimulus shock-evoked IPSPs decreased, and the inhibition response-concentration function to the gamma-aminobutyric acid (GABA) receptor antagonist bicuculline methiodide (BMI) shifted to the left during development. In P0-7 and P8-14, but not in older animals, the IPSPs had a BMI-insensitive component that was sensitive to block by picrotoxin, suggesting a transient expression of GABA(C) receptors. Tetanic stimulation resulted in both short- and long-term changes of inhibitory synaptic transmission in the rNST. For P0-7 and P8-14 animals tetanic stimulation resulted in a sustained hyperpolarization that was maintained for some time after termination of the tetanic stimulation. In contrast, tetanic stimulation of neurons in P15-21 and older animals resulted in hyperpolarization that was not sustained but decayed back to a more positive level with an exponential time course. Tetanic stimulation resulted in potentiation of single stimulus shock-evoked IPSPs in ~50% of neurons in all age groups. These developmental changes in inhibitory synaptic transmission in the rNST may play an important role in shaping synaptic activity in early development of the rat gustatory system during a time of maturation of taste preferences and aversions.
Collapse
Affiliation(s)
- G Grabauskas
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
9
|
Heck WL, Renehan WE, Schweitzer L. Redistribution and increased specificity of GABA(B) receptors during development of the rostral nucleus of the solitary tract. Int J Dev Neurosci 2001; 19:503-15. [PMID: 11470380 DOI: 10.1016/s0736-5748(01)00031-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent results show that there is an abundance of gamma-aminobutyric acid (GABA) before GABAergic synapses have formed in the gustatory zone of the nucleus of the solitary tract. These results suggest that a non-synaptic, developmental function may exist for GABA prior to synaptogenesis. However, GABA exerts its physiological effect via its receptors, the development of which is a largely unknown process. The developmental expression of one of the GABA receptors in the young nucleus of the solitary tract is the focus of this study. The development of GABA(B) receptors was investigated by light and electron microscopy. The results suggest that before the development of GABAergic synapses, GABA(B) receptors are diffusely distributed. When GABAergic synapses form, the receptors become clustered. Quantitative postembedding immunohistochemical studies at the electron microscopic level show that extrasynaptic labeling for GABA(B) receptors decreases during development, but synaptic labeling increases. Increased specificity of neurotransmitter receptors at synapses has been shown in other systems during development, including other central nervous system structures, but this may be the first demonstration of the phenomenon using quantitative electron microscopy.
Collapse
Affiliation(s)
- W L Heck
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
10
|
Brown M, Renehan WE, Schweitzer L. Changes in GABA-immunoreactivity during development of the rostral subdivision of the nucleus of the solitary tract. Neuroscience 2001; 100:849-59. [PMID: 11036219 DOI: 10.1016/s0306-4522(00)00355-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GABA plays an important role in the processing of gustatory information in the rostral nucleus of the solitary tract. The following study used post-embedment immunohistochemistry in the rat brainstem to localize GABA at both the light and electron microscopic levels to characterize the developmental distribution of GABA and synaptogenesis of GABA-immunoreactive terminals in the rostral nucleus of the solitary tract. During the first postnatal week, GABA is present in the rostral nucleus of the solitary tract, but less of it is synaptic than any time later in development. Of the few synaptic terminals present at postnatal day 1, less than 20% are GABA-immunoreactive. This proportion more than doubles to reach adult levels by postnatal day 10. By weaning (postnatal day 20), GABA-immunoreactive cells are found in nearly the same density as in the adult. Development continues after weaning and is characterized by a disproportionate loss of non-GABA-containing cells. Finally, one previously identified subtype of GABA-immunoreactive terminal matures very late during the postweaning phase of development. The study provides the first analysis of the development of GABA-related circuitry in the rostral nucleus of the solitary tract using anatomical methods. These data provide the background with which to view the emerging physiology of developing taste neurons.
Collapse
Affiliation(s)
- M Brown
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | |
Collapse
|
11
|
|
12
|
Abstract
In the study of the neural code for taste, two theories have dominated the literature: the across neuron pattern (ANP), and the labeled line theories. Both of these theories are based on the observations that taste cells are multisensitive across a variety of different taste stimuli. Given a fixed array of taste stimuli, a cell's particular set of sensitivities defines its response profile. The characteristics of response profiles are the basis of both major theories of coding. In reviewing the literature, it is apparent that response profiles are an expression of a complex interplay of excitatory and inhibitory inputs that derive from cells with a wide variety of sensitivity patterns. These observations suggest that, in the absence of inhibition, taste cells might be potentially responsive to all taste stimuli. Several studies also suggest that response profiles can be influenced by the taste context, defined as the taste stimulus presented just before or simultaneously with another, under which they are recorded. A theory, called dynamic coding, was proposed to account for context dependency of taste response profiles. In this theory, those cells that are unaffected by taste context would provide the signal, i.e., the information-containing portion of the ANP, and those cells whose responses are context dependent would provide noise, i.e., less stimulus specific information. When singular taste stimuli are presented, noise cells would provide amplification of the signal, and when complex mixtures are presented, the responses of the noise cells would be suppressed (depending on the particular combination of tastants), and the ratio of signal to noise would be enhanced.
Collapse
Affiliation(s)
- P M Di Lorenzo
- Department of Psychology, State University of New York at Binghamton, 13902-6000, USA.
| |
Collapse
|
13
|
Vincent A, Tell F. Postnatal development of rat nucleus tractus solitarius neurons: morphological and electrophysiological evidence. Neuroscience 1999; 93:293-305. [PMID: 10430493 DOI: 10.1016/s0306-4522(99)00109-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Postnatal development of neurons in the caudal nucleus tractus solitarii of rats was studied using the Golgi-Cox technique and whole-cell recordings. Two cell classes were defined on the basis of somatic and dendritic morphology. Elongated neurons have two thick primary dendrites originating from the long axis of the soma. The primary dendrites, tapering distally, give rise to one to four secondary dendrites. Multipolar neurons have pyramidal somas. Extending from each apex of the cell body was a long primary dendrite, which gave rise to a variable number of secondary dendrites. The relative proportion of the two classes was rather constant from birth to adulthood. During the first two postnatal weeks, dendritic length and area of influence increase, but neuronal geometry is not altered in either class. Dendritic appendages appear by postnatal day 5, reach a peak at postnatal day P12 and then almost disappear in adult neurons. Combined intracellular injection of neurobiotin and whole-cell recordings indicate that morphological alteration of caudal nucleus tractus solitarius neurons occurs in parallel with changes in passive properties and spike characteristics. However, the firing pattern of discharge is not correlated with morphology. The physiological significance of these results is discussed.
Collapse
Affiliation(s)
- A Vincent
- Département de Physiologie et Neurophysiologie, Centre National de la Recherche Scientifique ESA 6034, Faculté des Sciences de Saint-Jérôme, Marseille, France
| | | |
Collapse
|
14
|
Rao H, Pio J, Kessler JP. Postnatal development of synaptophysin immunoreactivity in the rat nucleus tractus solitarii and caudal ventrolateral medulla. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 112:281-5. [PMID: 9878786 DOI: 10.1016/s0165-3806(98)00178-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Synaptophysin (SY) is a major integral membrane protein of small synaptic vesicles. In the present study, SY immunohistochemistry was used to investigate the postnatal development of the rat nucleus tractus solitarii (NTS) and nucleus ambiguus/ventrolateral medulla (NA/VLM). Whatever the age of the animal, SY immunoreactivity showed a typical pattern of punctate staining reminiscent of presynaptic terminal labeling. In the NTS and the NA/VLM, SY immunoreactive puncta were few at birth and increased in number during the first postnatal days. These changes were quantified by measuring the volumetric fraction occupied by SY immunoreactive puncta at various postnatal ages. Using volumetric fraction data, an index of the total volume occupied SY immunoreactivity in each region was then calculated. Between birth and adulthood, this index increased by 6-fold in the NTS and by 7-fold in the NA/VLM, suggesting that most of the synaptic development of these regions occurs postnatally.
Collapse
Affiliation(s)
- H Rao
- Neurobiologie et Neurophysiologie Fonctionnelles, URA CNRS 1832, Case 351, Faculté Saint-Jérôme, F13397, Marseille, Cédex 20, France
| | | | | |
Collapse
|
15
|
Abstract
Many studies demonstrate that differentiation of certain sensory receptors during development is induced by their nerve supply. Thus the navigational accuracy of pioneering fibres to their targets is crucial to this process. The special gustatory elements of the facial and glossopharyngeal nerves are used extensively as model systems in this field. We examined the chorda tympani, the gustatory component of the facial nerve, to determine the precise time course of its development in mice. The transganglionic fluorescent tracer DiI was injected into the anterior aspect of the mandibular arch of fixed embryos aged between 30 and 50 somites (E10-E12). It was allowed to diffuse retrogradely via the geniculate ganglion to the brainstem for 4 wk, before the distribution of DiI was determined using confocal laser scanning microscopy. Geniculate ganglion cells were first labelled at the 34 somite stage (E10). Pioneering chorda tympani fibres that arise from these cells passed peripherally and followed an oblique course as they grew towards the mandibular arch. At the 36 somite stage (E10.5), the peripheral component followed an intricate postspiracular course and passed anteriorly to arch over the primitive tympanic cavity, en route to the lingual epithelium. From the 36 to 50 somite stages (E10.5-E12), it consistently traced in the fashion of a 'U' bend. The central fascicle also traced at the 36 somite stage (E10.5) and just made contact with the brainstem. At the 40 somite stage (E11), the central fibres clearly chose a route of descent into the spinal trigeminal tract and branched into the solitary tract. Pioneering chorda tympani fibres contact the lingual epithelium when the target is primordial. The lingual epithelium may be a source of a neurotropic factor that attracts peripheral chorda tympani fibres to the sites of putative papillae. However, the chorda tympani is probably not a vital influence on the subsequent differentiation of gustatory papillae, since the papillae are elaborated 5 d later at E15 in murine embryos. The early morphology of the nerve is true to the amniote vertebrate phenotype.
Collapse
Affiliation(s)
- L Scott
- Department of Biomedical Science, University of Sheffield, UK
| | | |
Collapse
|
16
|
Vincent A, Tell F. Postnatal changes in electrophysiological properties of rat nucleus tractus solitarii neurons. Eur J Neurosci 1997; 9:1612-24. [PMID: 9283816 DOI: 10.1111/j.1460-9568.1997.tb01519.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Whole-cell recordings in brainstem slices revealed postnatal changes in passive and firing properties in the rat caudal nucleus tractus solitarii (cNTS) neurons. Membrane potential, threshold for Na+ spike and degree of sag were unchanged during development. In the adult, the rheobase was twice that found at birth. The input resistance decreased over the period studied, while time constants declined markedly after the third postnatal week. At all postnatal ages, Na(+)-dependent action potentials (APs) were elicited in response to depolarization. Nevertheless, AP duration gradually decreased by 40% over the developmental period studied. Spike amplitude was smaller at birth than at any other ages and reached a peak two weeks after birth. At all ages, Na(+)-dependent APs were blocked by application of tetrodotoxin. Full APs were replaced by an initial slow oscillation in young cells and by oscillations in older cells. The TTX-resistant oscillations were altered by cobalt (2 mM) and cadmium (100 microM). The spike afterhyperpolarization (AHP) was not altered during development, but was observed in less neurons in adult cells when measured at a holding potential of -60 mV. Neurons were subdivided into one of three classes based on their responses to a hyperpolarizing prepulse: 1) post-inhibitory rebound (PIR) cells, 2) delayed excitation (DE) cells and 3) NON cells expressing neither PIR nor DE. The relative proportions of different cell types varied with age. The mean maximum duration of DE increased three times. Voltage-clamp experiments revealed that the DE was due to the activation of an A-current. In addition, a three-fold increase in its inactivation rate was observed postnatally. The physiological significance of these results is discussed.
Collapse
Affiliation(s)
- A Vincent
- Département de Physiologie et Neurophysiologie, Centre National de la Recherche Scientifique URA 1832, Faculté des Sciences de Saint-Jérôme, Marseille, France
| | | |
Collapse
|
17
|
Crockett DP, Maslany S, Egger MD. Synaptophysin immunoreactivity and distributions of calcium-binding proteins highlight the functional organization of the rat's dorsal column nuclei. Brain Res 1996; 707:31-46. [PMID: 8866711 DOI: 10.1016/0006-8993(95)01213-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mammalian dorsal column nuclei (DCN) are principally composed of the cuneate (CN) and gracile (GN) nuclei. Data presented here support previously published anatomical and functional evidence that the longitudinal organization of the CN and GN reflect the complex role of the DCN in somatosensory processing. The CN is organized longitudinally into three parts. Within the middle portion of this nucleus, primary afferent projections and cuneothalamic cells are concentrated. Although traditional cytoarchitectonic analyses had failed to detect this tripartite organization in rats, we found evidence for it, with a functional middle region, extending approximately 0.2-0.9 mm caudal to the obex, characterized by precise somatotopy of primary afferent terminations and corresponding somatotopy of cytochrome oxidase (CO) blotches. Additional evidence is presented here consistent with a functionally distinct middle region within the rat's CN: (1) patches of dense synaptophysin (a synaptic-vesical-associated protein)-immunoreactivity (SYN-IR) are limited to the middle CN region, coincident with the dense CO blotches; (2) neurons immunoreactive for the calcium-binding proteins calbindin-D28 (CB), calretinin (CR) and parvalbumin (PV) are concentrated in the middle CN region. Furthermore, in adult rats subjected to perinatal forepaw removal, (1) the patterns of SYN-IR in the middle region of the CN are disrupted, as had previously been shown for the patterns of CO blotches; (2) in contrast, however, distributions of CN cells with PV-, CB- and CR-IR are unaffected. Evidence for a tripartite division in the GN is also presented, based on the distributions of cells with PV-, CB- and CR-IR.
Collapse
Affiliation(s)
- D P Crockett
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854-5635, USA
| | | | | |
Collapse
|
18
|
Lasiter PS, Bulcourf BB. Alterations in geniculate ganglion proteins following fungiform receptor damage. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 89:289-306. [PMID: 8612332 DOI: 10.1016/0165-3806(95)00135-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous anatomical studies in rat have shown that damage produced to fungiform receptors of the anterior tongue at postnatal age 2 (P2) alters the growth and ramification of primary gustatory axons in the rostral nucleus of the solitary tract (NST). Studies employing artificial rearing (AR) procedures, which functionally deprive rat pups of orochemical stimulation during critical periods of postnatal life, produce similar alterations in the development of primary gustatory axons in the NST. Therefore, orochemical stimulation during rat's early postnatal life is necessary for normal development of primary gustatory axons in the rostral NST. One hypothesis concerning receptor-damage effects and AR effects is that receptor damage during critical periods of development may alter the regulation (i.e. transcription/translation) and/or distribution (i.e. transport) of proteins in geniculate ganglion neurons, thereby affecting growth of primary gustatory axons in the rostral NST. Specific aims of the present experiments were to comprehensively examine electrophoretic profiles of geniculate ganglion proteins following P2 receptor damage and late (> P40) receptor damage. Results show that concentrations of particular geniculate ganglion proteins are differentially altered following P2 receptor damage and late receptor damage, and that early receptor damage and late receptor damage produces distinct effects on the electrophoretic profiles of particular classes of proteins. Between the ages of P7-P38, P2 receptor damage lowers ganglion concentration of an acidic membrane glycoprotein designated as A1, with an apparent M(r) of 64-67 kDa and a pI of 4.8-5.2 P2 receptor damage also lowers ganglion concentrations of GAP-43. P2 receptor damage produces transient decreases in ganglion concentrations of NF-160, NF-200, and 8 additional acidic proteins. Three of these proteins may correspond to peripheral nerve sheath proteins analyzed in previous studies of the sciatic nerve, and one of these proteins may correspond to a 24 kDa growth-associated protein characterized in regenerating optic nerve. The time-course for changes observed in ganglion proteins following P2 damage was consistent with that observed for normal anatomical development of primary gustatory axons in both the lingual epithelium and NST. Receptor damage produced at P40 and later yielded different patterns of changes in geniculate ganglion proteins. Late receptor damage produced a transient increase in ganglion concentrations of NF-160, NF-200, GAP-43 and four additional acidic proteins within the 29-57 kDa M(r) range. Late receptor damage also produced a transient decrease in the concentrations of protein A1 and a 30 kDa protein that was not affected by P2 damage. Therefore, proteins that were preferentially affected by P2 damage may be involved in the regulation of initial axonal growth within the lingual epithelium and NST, as opposed to the structural repair or maintenance of extant axons. Relationships between normal anatomical development in peripheral and central components of primary gustatory axons are discussed in relation to availability of particular cytoskeletal and growth-associated proteins.
Collapse
Affiliation(s)
- P S Lasiter
- Department of Psychology, Florida Atlantic University, Boca Raton 33431-0991, USA
| | | |
Collapse
|
19
|
Knipper M, Zimmermann U, Rohbock K, Köpschall I, Zenner HP. Synaptophysin and GAP-43 proteins in efferent fibers of the inner ear during postnatal development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 89:73-86. [PMID: 8575095 DOI: 10.1016/0165-3806(95)00113-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A rearrangement of afferent and efferent fibers occurs in the postnatal development of the inner ear. Growth and synaptogenesis was explored during this critical period by immunohistochemically monitoring the expression of GAP-43 and synaptophysin. Both proteins were colocalized in efferent fibers beyond postnatal day 3 (pn3). Two distinct synaptophysin- and GAP-43-positive fibers innervated different parts of inner hair cells in the first and second postnatal weeks, respectively. GAP-43-positive efferents projecting to outer hair cells upregulated synaptophysin with base to apex gradient between postnatal day 5 and postnatal day 14. In efferents projecting to outer hair cells GAP-43 was downregulated about 6 days beyond synaptogenesis. In efferents projecting to inner hair cells, however, GAP-43 remained upregulated even beyond pn18, indicating continuous synapse replacement of this fiber type. Both proteins thus improved as excellent markers for growth and synaptogenesis of distinct postnatal efferent fibers.
Collapse
Affiliation(s)
- M Knipper
- ENT-Department, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
20
|
Goto S, Korematsu K, Nagahiro S, Ushio Y. Distinct neuronal subset reveals perikaryal immunostaining for synaptophysin (protein p38) in the striatum of rats. Acta Neuropathol 1993; 86:302-5. [PMID: 8213090 DOI: 10.1007/bf00304146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An immunoperoxidase technique was used to locate synaptophysin (protein p38), a major integral membrane glycoprotein of synaptic vesicles, in the rat brain. In addition to a diffuse distribution of nerve terminal stainings for synaptophysin appearing as numerous small puncta, the large-sized cells with spindled or polygonal shapes revealed perikaryal staining for synaptophysin in the striatum. The double labeling with immunofluorescence technique disclosed that the cell bodies, immunoreactive for synaptophysin, appeared to be those of the striatal giant cholinergic neurons. In addition, in rats that underwent the transient middle cerebral artery occlusion, the striatal ischemic lesions with cell type-specific injury revealed a survival of synaptophysin-positive large cells, presumably identical with the cholinergic neurons. The present study suggests that the metabolism and/or axonal transportation of synaptophysin of the giant cholinergic cells may be different from those of other neuronal populations in the striatum. Also, synaptophysin can act as a neurochemical marker for identification of the giant cholinergic neurons in the striatum of rats.
Collapse
Affiliation(s)
- S Goto
- Department of Neurosurgery, Kumamoto University Medical School, Japan
| | | | | | | |
Collapse
|
21
|
King CT, Hill DL. Neuroanatomical alterations in the rat nucleus of the solitary tract following early maternal NaCl deprivation and subsequent NaCl repletion. J Comp Neurol 1993; 333:531-42. [PMID: 8370815 DOI: 10.1002/cne.903330406] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Restricting the NaCl content in the rat maternal and preweaning diet results in a significant and specific reduction (60%) of chorda tympani nerve responsiveness to sodium stimuli in the offspring. Repletion of dietary sodium at any time during postnatal development results in a complete and persistent recovery of chorda tympani nerve function. To learn whether the maturation of postsynaptic cells are also affected by the early dietary manipulation, dendritic morphology, neuronal and glial densities and numbers were studied within the area of the nucleus of the solitary tract (NTS). Examination of dendritic morphologies in Golgi-Cox stained neurons revealed that cells with multipolar and fusiform somata in the rostral NTS exhibited longer dendrites following dietary NaCl deprivation during development (deprived rats) than in controls. These changes were generally maintained in rats initially deprived of NaCl and then fed a NaCl-replete diet postweaning ("recovered" rats). In contrast, ovoid neurons were not affected by NaCl deprivation but had increases in the lengths of their dendrites following "recovery." Along with dendritic alterations, the packing density of neurons in the rostral NTS was greater in NaCl-deprived rats than in controls, but was similar to controls following "recovery." Glial packing density also increased following deprivation and remained high in "recovered" rats. These results indicate that activity-dependent events as well as events not related to afferent activity (e.g., hormonal changes) may influence the morphological development of NTS neurons. In addition, significant interactions among primary afferent fibers, central neurons, and glia may direct development within the central gustatory system.
Collapse
Affiliation(s)
- C T King
- Department of Psychology, University of Virginia, Charlottesville 22903
| | | |
Collapse
|
22
|
Korematsu K, Goto S, Nagahiro S, Ushio Y. Changes of immunoreactivity for synaptophysin ('protein p38') following a transient cerebral ischemia in the rat striatum. Brain Res 1993; 616:320-4. [PMID: 8102940 DOI: 10.1016/0006-8993(93)90225-c] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We assessed the chronological change of the expression of synaptophysin, an integral glycoprotein on the presynaptic vesicles, after a transient cerebral ischemic insult in the rat. The ischemic lesion was consistently localized in the dorsolateral part of the striatum, which was clearly visualized by a depletion of calcineurin immunostaining or increases of immunoreactivities for glial fibrillary acidic protein and tyrosine hydroxylase. Immunoreactivity for synaptophysin was transiently increased in the ischemic lesions from 3 to 7 days after cerebral ischemia. Thereafter, synaptophysin immunostaining in the damaged areas gradually decreased and finally almost disappeared one month after surgery. Because synaptophysin is located in the presynaptic vesicle, and thought to be involved in presynaptic functions such as vesicle-membrane fusion and release of neurotransmitters, present findings suggest that loss of the postsynaptic site after ischemic insult induces a transient increase of the presynaptic functions, followed by a decrease of functional presynaptic activity or trans-synaptic retrograde degeneration of axon terminals.
Collapse
Affiliation(s)
- K Korematsu
- Department of Neurosurgery, Kumamoto University Medical School, Japan
| | | | | | | |
Collapse
|
23
|
Voigt T, De Lima AD, Beckmann M. Synaptophysin immunohistochemistry reveals inside-out pattern of early synaptogenesis in ferret cerebral cortex. J Comp Neurol 1993; 330:48-64. [PMID: 8468403 DOI: 10.1002/cne.903300105] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Synaptogenesis in the ferret cerebral cortex was examined from the day of birth to adulthood with an antibody against synaptophysin at the light and electron microscopic levels. Due to the premature birth of ferrets, the generation of cells destined to the upper cortical layers and their subsequent migration to their final positions in the cortical plate are largely postnatal events. Throughout the newborn ferret cerebral cortex, a high amount of synaptophysin immunoreactivity was present within the marginal zone and subplate region. Staining was also conspicuous within the forming cortical plate. The typical layering pattern of synaptophysin immunoreactivity in the developing cortical plate correlated with the migration pattern of cortical neurons. The synaptic density was lowest directly below the marginal zone, where the youngest neurons just stopped their migration. Below this zone, the density of the synaptic staining increased gradually toward lower (and older) cortical plate layers. As the cortex expanded, the synaptophysin immunoreactivity pattern closely followed the expansion, suggesting that synapses were formed in a given layer shortly after the cells migrating to this layer reached their final position. As soon as cell migration had finished, the entire cortical plate contained dense synaptophysin immunoreactivity, in a pattern similar to that observed in the adult animal. During cortical development, a rostrocaudal and a laterodorsal gradient of synaptogenesis was observed. At any given time, rostral and lateral regions of the cerebral cortex were more advanced in their development than caudal and dorsal regions. Electron microscopic examination of synaptophysin immunoreactivity in the developing cerebral cortex of ferrets confirmed that labeling was solely associated with synaptic vesicles. These vesicles were typically, but not exclusively, confined to synaptic boutons. Especially around the end of the first postnatal week, long fiber profiles loaded with synaptic vesicles were occasionally detected. As some of these fibers also showed en passant synapses along their course, we concluded that synaptic vesicle labeling may be reliably used to study synaptogenesis at the light microscopic level. A systematic analysis of samples from postnatal days 0 and 7 corroborated this conclusion, showing that synaptic profile distribution completely matched the distribution of synaptophysin immunoreactivity seen in the light microscope. In conclusion, synaptogenesis begins as soon as migratory cells reach their final position in the cortical plate. As long as cell migration continues, synaptogenesis is under the constraints of neurogenesis, following its gradients.
Collapse
Affiliation(s)
- T Voigt
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | | |
Collapse
|
24
|
Abstract
Synaptic pathology in Alzheimer's disease (AD) may occur diffusely or may have regional predilections. A new antibody called EP10 which detects synaptophysin-like immunoreactivity was used to study synapses in postmortem brain tissue. Four brain regions from cases of AD and controls were studied. Controls with a wide range of ages were used to investigate the possibility of age-related changes in synaptophysin-like immunoreactivity. A significant reduction in the EP10 antigen was observed to occur with age in the control caudate but not in the hippocampus or temporal or occipital cortices. Antigen levels were significantly reduced in the hippocampus (77%) and the temporal cortex (54%) in AD. The expected abnormal pallor of the outer two-thirds of the dentate gyrus molecular layer was observed with immunocytochemistry. In the temporal cortex, the reduction in synaptophysin-like immunoreactivity was inversely correlated with the neurofibrillary tangle count. No such relationship existed in the hippocampus. These results suggest that at least certain components of the synaptic loss in AD occur regionally and are disproportionately large in the hippocampus.
Collapse
Affiliation(s)
- W G Honer
- Department of Genetics, New York State Psychiatric Institute, NY
| | | | | | | |
Collapse
|
25
|
Lasiter PS. Postnatal development of gustatory recipient zones within the nucleus of the solitary tract. Brain Res Bull 1992; 28:667-77. [PMID: 1617454 DOI: 10.1016/0361-9230(92)90245-s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous studies have examined pre- and postsynaptic development of the first-order central gustatory relay, located in the rostral nucleus of the solitary tract (NST). This region of the NST is innervated by primary gustatory axons arising from the facial-intermediate nerve. However, a large portion of the gustatory NST is innervated by axons arising from the glossopharyngeal nerve, and although the time course for development of N.VII recipient zones has been defined development of glossopharyngeal afferent terminal fields has not been examined. Moreover, the time course for development of projection neurons located postsynaptic to gustatory afferent axons has not been examined in any portion of the NST. The objectives of the present study were to 1) define the time course for development of N.VII and N.IX terminal fields and 2) examine temporal relationships between development of afferent terminal fields and development of projection neurons located postsynaptic to gustatory afferent axons. To this end, triple fluorescent labeling procedures were used to simultaneously visualize developing axons and projection neurons. Results show that afferent terminal fields develop along the rostrocaudal axis of the NST. Axons of the N.VII terminal field are present in the rostral NST at P1 and develop to approximately P25. Axons and terminal endings of N.IX do not enter the NST until approximately P9-P10, and these terminal fields develop within the intermediate NST until approximately P45. Many NST neurons destined to project axons to the second-order central gustatory relay, located in the caudal parabrachial nucleus (PBN), do not possess axonal connections with the PBN during the first 2-3 weeks of postnatal life. As afferent terminal fields develop, these neurons establish connections with the PBN between the ages of approximately P7 and P45-P60. The delay between afferent terminal field development and development of PBN projection neurons in the N.VII terminal field is approximately 3 weeks. The delay between pre- and postsynaptic development in the N.IX terminal field is approximately 1 week. Potential relationships between pre- and postsynaptic development are discussed, in addition to relationships between anatomical development in the NST and the emergence of taste-guided behaviors.
Collapse
Affiliation(s)
- P S Lasiter
- Department of Psychology, Florida Atlantic University, Boca Raton 33431
| |
Collapse
|
26
|
Diaz G, Diana A. Immunohistochemical study of synaptophysin distribution in the superior cervical ganglion of newborn and adult rats. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1992; 37:121-4. [PMID: 1607597 DOI: 10.1016/0165-1838(92)90240-h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intense synaptophysin immunoreactivity was observed around neuronal cell bodies and in the neuropil of the superior cervical ganglion of adult rats. In newborn rats synaptophysin was comparatively less concentrated and restricted to small interstitial spaces. In contrast, in newborns, consistent traces of positivity were found in the Golgi-like area of larger neurons, in agreement with the higher neonatal rate of synaptophysin synthesis. A few clusters of small neurons, numerically more expanded in adult rats, exhibited a dense reaction product filling the whole cytoplasm. No positivity was found in intraganglionic fibres.
Collapse
Affiliation(s)
- G Diaz
- Department of Cytomorphology, University of Cagliari, Italy
| | | |
Collapse
|
27
|
Ganchrow D, Ganchrow JR, Goldstein RS. Ultrastructure of palatal taste buds in the perihatching chick. THE AMERICAN JOURNAL OF ANATOMY 1991; 192:69-78. [PMID: 1750382 DOI: 10.1002/aja.1001920108] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Palatal taste buds of perihatching chicks were examined by electron microscopy. Four intragemmal cell types were characterized. 1) Light: with voluminous, electron-lucent cytoplasm containing scattered free ribosomes, rough and smooth endoplasmic reticulum, plump mitochondria, sparse perinuclear filaments, occasional Golgi bodies, and numerous clear and dense-cored vesicles. Clear vesicles sometimes aggregate in a presynaptic-like configuration apposed to an axonal profile. These cells contained large, spherical, uniformly granular nuclei with one nucleolus. 2) Dark: with dense cytoplasm containing filamentous bundles surrounding the nucleus, occasional clear vesicles, centrioles, rough endoplasmic reticulum, and compact mitochrondria. The apical cytoplasm noticeably lacks dense secretory granules. Irregular to lobulated nuclei are densely granular, and contain scattered clumps of chromatin, adhering especially to the inner leaflet of the nuclear membrane, and at least one nucleolus. Cytoplasmic extensions of dark cells envelop other intragemmal cell types and nerve fibers. Light and dark cells project microvilli into the taste pore. 3) Intermediate: contain gradations of features of light and dark cells. 4) Basal: darker than the other intragemmal cell types and confined to the ventral bud region. Putative afferent synapses in relation to light cells, and axo-axonal contacts are described. While the appearance of axo-axonal contacts may be a transient developmental event, other bud features are consonant with observations in adult chickens and suggest that the peripheral gustatory apparatus is mature at hatching in this precocial avian species.
Collapse
Affiliation(s)
- D Ganchrow
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
28
|
Lasiter PS. Effects of early postnatal receptor damage on dendritic development in gustatory recipient zones of the rostral nucleus of the solitary tract. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 61:197-206. [PMID: 1721561 DOI: 10.1016/0165-3806(91)90132-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The rostral gustatory zone of the nucleus of the solitary tract (NST) exhibits extensive anatomical development during the first 3 weeks of postnatal life, and this development requires the presence of intact gustatory receptors during a critical period. We have previously shown that unilateral damage induced to fungiform papillae of the anterior tongue at postnatal day 2 (P2) alters normal migration and ramification of chorda tympani (CT) axons in the rostral NST. In addition to alterations of axonal development, P2 receptor damage decreases the intraneuronal distance between neurons that project axons to the second-order central gustatory relay, located in the caudal parabrachial nucleus (PBN). This observation suggested that P2 receptor damage may alter both axonal development and dendritic development in the rostral gustatory NST. The present study evaluated potential changes in dendritic development of PBN projection neurons following either P2 or P10 receptor damage. Morphological studies were first conducted to quantitatively define somatic characteristics of neurons that project axons to the PBN. Independent experiments used fluorescent labeling combined with subsequent Golgi-impregnation to study dendritic architecture of identified PBN projection neurons. Results confirmed that P2 receptor damage alters dendritic development of PBN projection neurons located in CT terminal fields. Anterior tongue receptor damage at P2 (1) reduces planar length of first- and second-order dendritic branches, (2) reduces the mean number of second-order branches per neuron, and (3) reduces the density of spine processes on second-order dendritic branches. A critical period exists for these effects, similar to that reported for axonal development, insofar as P2 receptor damage alters dendritic development of PBN projection neurons, whereas P10 receptor damage does not. Dendrites of identified PBN projection neurons located in regions of the NST that receive primary afferent axons from the glossopharyngeal nerve are not affected by anterior tongue damage at P2. These results show that early postnatal receptor damage influences both pre- and postsynaptic development in the rostral gustatory NST. These anatomical changes are undoubtedly related to alterations in taste-guided behaviors that are observed following P2 receptor damage.
Collapse
Affiliation(s)
- P S Lasiter
- Department of Psychology, Florida Atlantic University, Boca Raton 33431
| |
Collapse
|
29
|
Lasiter PS, Kachele DL. Effects of early postnatal receptor damage on development of gustatory recipient zones within the nucleus of the solitary tract. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1990; 55:57-71. [PMID: 2208641 DOI: 10.1016/0165-3806(90)90106-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The temporal correspondence between neuroanatomical and neurophysiological development of peripheral and central gustatory neurons has suggested that morphological development of the first-order central gustatory relay, located in the rostral nucleus of the solitary tract (NST), may be dependent on afferent input from peripheral gustatory pathways. The objective of the present study was to determine the effects of perinatal receptor damage on development of gustatory recipient zones within the rostral and intermediate NST. Results show that damage induced to fungiform receptors of the anterior tongue at postnatal day 2 (P2) alters normal development of NST terminal fields associated with the chorda tympani nerve (CT) and greater superficial nerve (GSP), and that alterations in the CT/GSP terminal field persist in adulthood after peripheral gustatory receptors have regenerated. Damage induced to fungiform receptors at P2 does not alter the normal development of glossopharyngeal terminal fields in the intermediate NST. Receptor damage produced at P10 and P20 is without effect on normal development of the CT/GSP terminal field. Thus, fungiform receptor damage at P2 produces specific alterations in the development of NST terminal fields that receive projections from the facial-intermediate nerve, and receptor damage effects are only obtained during a critical period of postnatal development. P2 receptor damage has the overall effect of eliminating caudally directed migration of CT/GSP axons to additional projection neurons that establish connections with the second-order central gustatory relay located in the parabrachial nucleus (PBN). Behavioral studies were conducted to determine the functional consequences of early receptor damage. Results from behavioral studies show that bilateral damage to fungiform papillae at P2 alters normal adult preferences to low and intermediate concentrations of NaCl and sucrose tastes, yet aversions to citric acid and quinine HCl are not obviously affected. Therefore, anatomical alterations in the CT/GSP terminal field produced by P2 receptor damage are accompanied by specific changes in adult taste preference responses.
Collapse
Affiliation(s)
- P S Lasiter
- Department of Psychology, Florida Atlantic University, Boca Raton 33431
| | | |
Collapse
|
30
|
Lasiter PS, Wong DM, Kachele DL. Postnatal development of the rostral solitary nucleus in rat: dendritic morphology and mitochondrial enzyme activity. Brain Res Bull 1989; 22:313-21. [PMID: 2468401 DOI: 10.1016/0361-9230(89)90059-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Morphological and metabolic development of the gustatory zone of the rostral nucleus of the solitary tract (NST) was examined in rat. Transganglionic transport of horseradish peroxidase (HRP) was used to visualize the organization of gustatory projections to the rostral gustatory NST in rats aged postnatal day 1 (P1) to P34. Golgi impregnation studies were performed to analyze morphological development of dendrites in regions of the rostral NST that were identified as anterior tongue terminal fields. Results demonstrate that afferent fibers of the anterior tongue project to the rostral NST in rats as young as P1. The volume of NST terminal fields increased from P1 to approximately P16-P20, and was adult-like after approximately P20. Developmental increases in terminal field volume resulted from a preferential expansion in the rostrocaudal plane. Planar length of first-order dendrites associated with fusiform, multipolar, and ovoid neurons, and second-order dendrites of fusiform and ovoid neurons, increased approximately three-fold between P4 and P16-20. First-order dendritic length for all morphological types was adult-like after approximately 20-25 days of age, whereas second-order dendritic length of multipolar neurons increased significantly between P30 and P60-70. Histochemical studies confirmed that activity of the mitochondrial respiratory enzymes cytochrome c oxidase (EC 1.9.3.1), succinate dehydrogenase (EC 1.3.99.1), and NADH-dehydrogenase (EC 1.6.99.3) increased monotonically during the developmental period in which planar growth of first-order dendrites was observed. The present results, in combination with results from previous studies, indicate that morphological and metabolic development fo the NST occurs concomitantly with morphological development of taste receptors and peripheral gustatory nerves.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P S Lasiter
- Department of Psychology, Florida Atlantic University, Boca Raton 33431-0991
| | | | | |
Collapse
|