1
|
Ortega-Tinoco S, Padilla-Orozco M, Hernández-Vázquez F, Garduño J, Mondragón-García A, Ramírez-Sánchez E, Bargas J, Hernández-López S. PACAP induces increased excitability in D1- and D2-expressing nucleus accumbens medium spiny neurons. Brain Res Bull 2025; 224:111323. [PMID: 40147707 DOI: 10.1016/j.brainresbull.2025.111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
One of the main eating disorders associated with overweight and obesity is binge eating disorder. Binge eating is characterized by excessive consumption of high-calorie foods over a short period of time, approximately 2 hours. The nucleus accumbens (NAc) plays a key role in modulating the hedonic value of high-calorie foods, commonly referred to as palatable foods. Specific subregions of the shell portion of the NAc (NAcSh), known as hedonic hot spots, may play an important role in the motivational aspect of food consumption. Previous work has shown that the pituitary adenylate cyclase-activating polypeptide (PACAP) injected into the NAc reduces palatable food intake, suggesting that this peptide could be a potential tool for treating binge eating. However, the mechanisms of action of PACAP on the NAc are poorly understood. Here, we used whole-cell recording and calcium imaging techniques in NAcSh brain slices from D1-Cre and A2A-Cre mice to investigate PACAP modulation of medium spiny neuron (MSN) activity. We found that PACAP administration increased the firing rate of D1- and D2-expressing MSNs. In addition, in a binge-eating mouse model, nasal PACAP reduced binge-eating behavior.
Collapse
Affiliation(s)
- S Ortega-Tinoco
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - M Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - F Hernández-Vázquez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - J Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - A Mondragón-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - E Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - J Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - S Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.
| |
Collapse
|
2
|
Almasaad JM, Bataineh ZM, Zaqout S. Neuronal diversity in the caudate nucleus: A comparative study between camel and human brains. Anat Rec (Hoboken) 2025; 308:1410-1424. [PMID: 39118384 PMCID: PMC11967514 DOI: 10.1002/ar.25555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Caudate nucleus (CN) neurons in camels and humans were examined using modified Golgi impregnation methods. Neurons were classified based on soma morphology, dendritic characteristics, and spine distribution. Three primary neuron types were identified in both species: rich-spiny (Type I), sparsely-spiny (Type II), and aspiny (Type III), each comprising subtypes with specific features. Comparative analysis revealed significant differences in soma size, dendritic morphology, and spine distribution between camels and humans. The study contributes to our understanding of structural diversity in CN neurons and provides insights into evolutionary neural adaptations.
Collapse
Affiliation(s)
- Juman M. Almasaad
- Department of Basic Medical Sciences, College of MedicineKing Saud Bin Abdul Aziz University for Health Sciences (KSAU‐HS)JeddahSaudi Arabia
- King Abdullah International Medical Research Centre (KIAMRC)King Abdulaziz Medical CityJeddahSaudi Arabia
| | - Ziad M. Bataineh
- Department of Anatomy, Faculty of MedicineJordan University of Science & TechnologyIrbidJordan
| | - Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar UniversityDohaQatar
| |
Collapse
|
3
|
Zucca S, Brunori G, Dunn HA, Lankford CK, Sutton LP, Algibez Flores B, Maza NA, Sial O, Crynen G, Luján R, Martemyanov KA. Trans-synaptic modulation of cholinergic circuits tunes opioid reinforcement. Proc Natl Acad Sci U S A 2025; 122:e2409325122. [PMID: 40112116 PMCID: PMC11962452 DOI: 10.1073/pnas.2409325122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 02/16/2025] [Indexed: 03/22/2025] Open
Abstract
Opioids trigger structural and functional neural adaptations of the reward circuit that lead to dependence. Synaptic cell adhesion molecules (CAMs) play a pivotal role in circuit organization and present prime candidates for orchestrating remodeling of neural connections in response to drug exposure. However, the contribution of CAMs to opioid-induced rewiring of the reward circuit has not been explored. Here, we used unbiased molecular profiling to identify CAMs in the nucleus accumbens (NAc) modulated by morphine administration. We found that opioid exposure induces the expression of ELFN1, a CAM selectively expressed in cholinergic interneurons in the NAc. We determined that ELFN1 acts trans-synaptically to modulate the strength and plasticity of the glutamatergic inputs onto cholinergic neurons via the recruitment of presynaptic metabotropic glutamate receptor 4 (mGlu4). Disruption of Elfn1 diminished morphine reward and intake in self-administering mice. Together, our findings identify a key molecular factor responsible for adjusting the strength of opioid effects by modulating the configuration of striatal circuitry in an experience-dependent fashion and unveil potential therapeutic target for combating opioid abuse.
Collapse
Affiliation(s)
- Stefano Zucca
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Gloria Brunori
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Henry A. Dunn
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Colten K. Lankford
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Laurie P. Sutton
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Beatriz Algibez Flores
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Nycole A. Maza
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Omar Sial
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Gogce Crynen
- Bioinformatics and Statistics Core, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Biomedicina, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete02001, Spain
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| |
Collapse
|
4
|
Hunker AC, Wirthlin ME, Gill G, Johansen NJ, Hooper M, Omstead V, Vargas S, Lerma MN, Taskin N, Weed N, Laird WD, Bishaw YM, Bendrick JL, Gore BB, Ben-Simon Y, Opitz-Araya X, Martinez RA, Way SW, Thyagarajan B, Otto S, Sanchez REA, Alexander JR, Amaya A, Amster A, Arbuckle J, Ayala A, Baker PM, Barcelli T, Barta S, Bertagnolli D, Bielstein C, Bishwakarma P, Bowlus J, Boyer G, Brouner K, Casian B, Casper T, Chakka AB, Chakrabarty R, Clark M, Colbert K, Daniel S, Dawe T, Departee M, DiValentin P, Donadio NP, Dotson NI, Dwivedi D, Egdorf T, Fliss T, Gary A, Goldy J, Grasso C, Groce EL, Gudsnuk K, Han W, Haradon Z, Hastings S, Helback O, Ho WV, Huang C, Johnson T, Jones DL, Juneau Z, Kenney J, Leibly M, Li S, Liang E, Loeffler H, Lusk NA, Madigan Z, Malloy J, Malone J, McCue R, Melchor J, Mich JK, Moosman S, Morin E, Naidoo R, Newman D, Ngo K, Nguyen K, Oster AL, Ouellette B, Oyama AA, Pena N, Pham T, Phillips E, Pom C, Potekhina L, Ransford S, Reding M, Rette DF, Reynoldson C, Rimorin C, Sigler AR, Rocha DB, Ronellenfitch K, Ruiz A, Sawyer L, et alHunker AC, Wirthlin ME, Gill G, Johansen NJ, Hooper M, Omstead V, Vargas S, Lerma MN, Taskin N, Weed N, Laird WD, Bishaw YM, Bendrick JL, Gore BB, Ben-Simon Y, Opitz-Araya X, Martinez RA, Way SW, Thyagarajan B, Otto S, Sanchez REA, Alexander JR, Amaya A, Amster A, Arbuckle J, Ayala A, Baker PM, Barcelli T, Barta S, Bertagnolli D, Bielstein C, Bishwakarma P, Bowlus J, Boyer G, Brouner K, Casian B, Casper T, Chakka AB, Chakrabarty R, Clark M, Colbert K, Daniel S, Dawe T, Departee M, DiValentin P, Donadio NP, Dotson NI, Dwivedi D, Egdorf T, Fliss T, Gary A, Goldy J, Grasso C, Groce EL, Gudsnuk K, Han W, Haradon Z, Hastings S, Helback O, Ho WV, Huang C, Johnson T, Jones DL, Juneau Z, Kenney J, Leibly M, Li S, Liang E, Loeffler H, Lusk NA, Madigan Z, Malloy J, Malone J, McCue R, Melchor J, Mich JK, Moosman S, Morin E, Naidoo R, Newman D, Ngo K, Nguyen K, Oster AL, Ouellette B, Oyama AA, Pena N, Pham T, Phillips E, Pom C, Potekhina L, Ransford S, Reding M, Rette DF, Reynoldson C, Rimorin C, Sigler AR, Rocha DB, Ronellenfitch K, Ruiz A, Sawyer L, Sevigny J, Shapovalova NV, Shepard N, Shulga L, Soliman S, Staats B, Taormina MJ, Tieu M, Wang Y, Wilkes J, Wood T, Zhou T, Williford A, Dee N, Mollenkopf T, Ng L, Esposito L, Kalmbach B, Yao S, Ariza J, Collman F, Mufti S, Smith K, Waters J, Ersing I, Patrick M, Zeng H, Lein ES, Kojima Y, Horwitz G, Owen SF, Levi BP, Daigle TL, Tasic B, Bakken TE, Ting JT. Enhancer AAV toolbox for accessing and perturbing striatal cell types and circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.27.615553. [PMID: 39386678 PMCID: PMC11463465 DOI: 10.1101/2024.09.27.615553] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We present an enhancer AAV toolbox for accessing and perturbing striatal cell types and circuits. Best-in-class vectors were curated for accessing major striatal neuron populations including medium spiny neurons (MSNs), direct and indirect pathway MSNs, as well as Sst-Chodl, Pvalb-Pthlh, and cholinergic interneurons. Specificity was evaluated by multiple modes of molecular validation, three different routes of virus delivery, and with diverse transgene cargos. Importantly, we provide detailed information necessary to achieve reliable cell type specific labeling under different experimental contexts. We demonstrate direct pathway circuit-selective optogenetic perturbation of behavior and multiplex labeling of striatal interneuron types for targeted analysis of cellular features. Lastly, we show conserved in vivo activity for exemplary MSN enhancers in rat and macaque. This collection of striatal enhancer AAVs offers greater versatility compared to available transgenic lines and can readily be applied for cell type and circuit studies in diverse mammalian species beyond the mouse model.
Collapse
Affiliation(s)
| | | | - Gursajan Gill
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | | | | | | | - Sara Vargas
- Allen Institute for Brain Science, Seattle, WA
| | | | - Naz Taskin
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | | | | | | | | | | | | | - Sven Otto
- Allen Institute for Brain Science, Seattle, WA
| | | | | | - Avalon Amaya
- Allen Institute for Neural Dynamics, Seattle, WA
| | - Adam Amster
- Allen Institute for Brain Science, Seattle, WA
| | | | | | - Pam M Baker
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tim Dawe
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | | | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA
| | - Tim Fliss
- Allen Institute for Brain Science, Seattle, WA
| | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA
| | - Conor Grasso
- Allen Institute for Neural Dynamics, Seattle, WA
| | | | | | - Warren Han
- Allen Institute for Neural Dynamics, Seattle, WA
| | - Zeb Haradon
- Allen Institute for Brain Science, Seattle, WA
| | | | | | - Windy V Ho
- Allen Institute for Brain Science, Seattle, WA
| | - Cindy Huang
- Allen Institute for Brain Science, Seattle, WA
| | - Tye Johnson
- Allen Institute for Neural Dynamics, Seattle, WA
| | | | - Zoe Juneau
- Allen Institute for Brain Science, Seattle, WA
| | | | | | - Su Li
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | | | | | | | | | - John K Mich
- Allen Institute for Brain Science, Seattle, WA
| | | | - Elyse Morin
- Allen Institute for Brain Science, Seattle, WA
| | - Robyn Naidoo
- Allen Institute for Neural Dynamics, Seattle, WA
| | | | - Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | - Nick Pena
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lane Sawyer
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | | | | | | | | | - Yimin Wang
- Allen Institute for Brain Science, Seattle, WA
| | - Josh Wilkes
- Allen Institute for Neural Dynamics, Seattle, WA
| | - Toren Wood
- Allen Institute for Brain Science, Seattle, WA
| | - Thomas Zhou
- Allen Institute for Brain Science, Seattle, WA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA
| | | | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA
| | | | - Brian Kalmbach
- Allen Institute for Brain Science, Seattle, WA
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA
| | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA
- Department of Neurological Surgery, University of Washington, Seattle, WA
| | - Yoshiko Kojima
- Department of Otolaryngology, Head and Neck Surgery, University of Washington, Seattle, WA
- Washington National Primate Research Center, Seattle, WA
| | - Greg Horwitz
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA
- Washington National Primate Research Center, Seattle, WA
| | - Scott F Owen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA
| | | | | | - Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA
- Washington National Primate Research Center, Seattle, WA
| |
Collapse
|
5
|
Wang Y, Fasching L, Wu F, Suvakov M, Huttner A, Berretta S, Roberts R, Leckman JF, Fernandez TV, Abyzov A, Vaccarino FM. Interneuron Loss and Microglia Activation by Transcriptome Analyses in the Basal Ganglia of Tourette Disorder. Biol Psychiatry 2025:S0006-3223(25)00064-2. [PMID: 39892689 DOI: 10.1016/j.biopsych.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/28/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND Tourette disorder (TS) is characterized by motor hyperactivity and tics that are believed to originate in the basal ganglia. Postmortem immunocytochemical analyses has revealed decreases in cholinergic (CH), as well as parvalbumin and somatostatin GABA (gamma-aminobutyric acid) interneurons (INs) within the caudate/putamen of individuals with TS. METHODS We obtained transcriptome and open chromatin datasets by single-nucleus RNA sequencing and single-nucleus ATAC sequencing, respectively, from caudate/putamen postmortem specimens of 6 adults with TS and 6 matched normal control subjects. Differential gene expression and differential chromatin accessibility analyses were performed in identified cell types. RESULTS The data reproduced the known cellular composition of the human striatum, including a majority of medium spiny neurons (MSNs) and small populations of GABA-INs and CH-INs. INs were decreased by ∼50% in TS brains, with no difference in other cell types. Differential gene expression analysis suggested that mitochondrial oxidative metabolism in MSNs and synaptic adhesion and function in INs were both decreased in subjects with TS, while there was activation of immune response in microglia. Gene expression changes correlated with changes in activity of cis-regulatory elements, suggesting a relationship of transcriptomic and regulatory abnormalities in MSNs, oligodendrocytes, and astrocytes of TS brains. CONCLUSIONS This initial analysis of the TS basal ganglia transcriptome at the single-cell level confirms the loss and synaptic dysfunction of basal ganglia INs, consistent with in vivo basal ganglia hyperactivity. In parallel, oxidative metabolism was decreased in MSNs and correlated with activation of microglia cells, which is attributable at least in part to dysregulated activity of putative enhancers, implicating altered epigenomic regulation in TS.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, Connecticut
| | - Feinan Wu
- Child Study Center, Yale University, New Haven, Connecticut
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Sabina Berretta
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Rosalinda Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut; Department of Neuroscience, Yale University, New Haven, Connecticut; Yale Kavli Institute for Neuroscience, New Haven, Connecticut.
| |
Collapse
|
6
|
Druart M, Kori M, Chaimowitz C, Fan C, Sippy T. Cell-type-specific auditory responses in the striatum are shaped by feedforward inhibition. Cell Rep 2025; 44:115090. [PMID: 39721025 DOI: 10.1016/j.celrep.2024.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/15/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The posterior "tail" region of the striatum receives dense innervation from sensory brain regions and is important for behaviors that require sensorimotor integration. The output neurons of the striatum, D1 and D2 striatal projection neurons (SPNs), which make up the direct and indirect pathways, are thought to play distinct functional roles, although it remains unclear if these neurons show cell-type-specific differences in their response to sensory stimuli. Here, we examine the strength of synaptic inputs onto D1 and D2 SPNs following the stimulation of upstream auditory pathways. We report that auditory-evoked depolarizations onto D1 SPN responses are stronger and faster. This is due to differences in feedforward inhibition, with fast-spiking interneurons forming stronger synapses onto D2 SPNs. Our results support a model in which differences in feedforward inhibition enable the preferential recruitment of D1 SPNs by auditory stimuli, positioning the direct pathway to initiate sound-driven actions.
Collapse
Affiliation(s)
- Mélanie Druart
- Department of Psychiatry and Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Megha Kori
- Department of Psychiatry and Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Corryn Chaimowitz
- Department of Psychiatry and Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Catherine Fan
- Department of Psychiatry and Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Tanya Sippy
- Department of Psychiatry and Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
7
|
Dvorak NM, Wadsworth PA, Aquino-Miranda G, Wang P, Engelke DS, Zhou J, Nguyen N, Singh AK, Aceto G, Haghighijoo Z, Smith II, Goode N, Zhou M, Avchalumov Y, Troendle EP, Tapia CM, Chen H, Powell RT, Baumgartner TJ, Singh J, Koff L, Di Re J, Wadsworth AE, Marosi M, Azar MR, Elias K, Lehmann P, Mármol Contreras YM, Shah P, Gutierrez H, Green TA, Ulmschneider MB, D'Ascenzo M, Stephan C, Cui G, Do Monte FH, Zhou J, Laezza F. Enhanced motivated behavior mediated by pharmacological targeting of the FGF14/Na v1.6 complex in nucleus accumbens neurons. Nat Commun 2025; 16:110. [PMID: 39747162 PMCID: PMC11696184 DOI: 10.1038/s41467-024-55554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Protein/protein interactions (PPI) play crucial roles in neuronal functions. Yet, their potential as drug targets for brain disorders remains underexplored. The fibroblast growth factor 14 (FGF14)/voltage-gated Na+ channel 1.6 (Nav1.6) complex regulates excitability of medium spiny neurons (MSN) of the nucleus accumbens (NAc), a central hub of reward circuitry that controls motivated behaviors. Here, we identified compound 1028 (IUPAC: ethyl 3-(2-(3-(hydroxymethyl)-1H-indol-1-yl)acetamido)benzoate), a brain-permeable small molecule that targets FGF14R117, a critical residue located within a druggable pocket at the FGF14/Nav1.6 PPI interface. We found that 1028 modulates FGF14/Nav1.6 complex assembly and depolarizes the voltage-dependence of Nav1.6 channel inactivation with nanomolar potency by modulating the intramolecular interaction between the III-IV linker and C-terminal domain of the Nav1.6 channel. Consistent with the compound's effects on Nav1.6 channel inactivation, 1028 enhances MSN excitability ex vivo and accumbal neuron firing rate in vivo in murine models. Systemic administration of 1028 maintains behavioral motivation preferentially during motivationally deficient conditions in murine models. These behavioral effects were abrogated by in vivo gene silencing of Fgf14 in the NAc and were accompanied by a selective reduction in accumbal dopamine levels during reward consumption in murine models. These findings underscore the potential to selectively regulate complex behaviors associated with neuropsychiatric disorders through targeting of PPIs in neurons.
Collapse
Affiliation(s)
- Nolan M Dvorak
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Paul A Wadsworth
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, Stanford Medicine, Stanford, CA, USA
| | - Guillermo Aquino-Miranda
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Douglas S Engelke
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Jingheng Zhou
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Nghi Nguyen
- High-Throughput Research and Screening Center, Texas A&M Health Science Center, Houston, TX, USA
| | - Aditya K Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Zahra Haghighijoo
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Isabella I Smith
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Nana Goode
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mingxiang Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yosef Avchalumov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Evan P Troendle
- Department of Chemistry, King's College London 7 Trinity Street, London, UK
| | - Cynthia M Tapia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Reid T Powell
- High-Throughput Research and Screening Center, Texas A&M Health Science Center, Houston, TX, USA
| | - Timothy J Baumgartner
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jully Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Leandra Koff
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica Di Re
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ann E Wadsworth
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mate Marosi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Marc R Azar
- Behavioral Pharma Inc., 505 Coast Blvd. South, Suite 212, La Jolla, CA, USA
| | - Kristina Elias
- Behavioral Pharma Inc., 505 Coast Blvd. South, Suite 212, La Jolla, CA, USA
| | - Paul Lehmann
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Poonam Shah
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hector Gutierrez
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas A Green
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Marcello D'Ascenzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Clifford Stephan
- High-Throughput Research and Screening Center, Texas A&M Health Science Center, Houston, TX, USA
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Fabricio H Do Monte
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
8
|
Abdallah SB, Fasching L, Brady M, Bloch MH, Lombroso P, Vaccarino FM, Fernandez TV. Tourette syndrome. ROSENBERG'S MOLECULAR AND GENETIC BASIS OF NEUROLOGICAL AND PSYCHIATRIC DISEASE 2025:951-962. [DOI: 10.1016/b978-0-443-19176-3.00044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Carbonell-Roig J, Aaltonen A, Wilson K, Molinari M, Cartocci V, McGuirt A, Mosharov E, Kehr J, Lieberman OJ, Sulzer D, Borgkvist A, Santini E. Dysregulated acetylcholine-mediated dopamine neurotransmission in the eIF4E Tg mouse model of autism spectrum disorders. Cell Rep 2024; 43:114997. [PMID: 39607825 DOI: 10.1016/j.celrep.2024.114997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Autism spectrum disorder (ASD) consists of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine (DA) neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine DA neurotransmission in a mouse model of ASD characterized by elevated expression of eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal DA release. The loss of normal DA neurotransmission is due to a defect in nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions by revealing the intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility.
Collapse
Affiliation(s)
| | - Alina Aaltonen
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Karin Wilson
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Maya Molinari
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Veronica Cartocci
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Avery McGuirt
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Eugene Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jan Kehr
- Pronexus Analytical AB, 16733 Stockholm-Bromma, Sweden
| | - Ori J Lieberman
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Anders Borgkvist
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| | - Emanuela Santini
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
10
|
Berezovskaia A, Thomsen M, Fink-Jensen A, Wörtwein G. A sex-specific effect of M 4 muscarinic cholinergic autoreceptor deletion on locomotor stimulation by cocaine and scopolamine. Front Mol Neurosci 2024; 17:1451010. [PMID: 39737113 PMCID: PMC11683150 DOI: 10.3389/fnmol.2024.1451010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Acetylcholine modulates the activity of the direct and indirect pathways within the striatum through interaction with muscarinic M4 and M1 receptors. M4 receptors are uniquely positioned to regulate plasticity within the direct pathway and play a substantial role in reward and addiction-related behaviors. However, the role of M4 receptors on cholinergic neurons has been less explored. This study aims to fill this gap by addressing the role of M4 receptors on cholinergic neurons in these behaviors. Methods To investigate the significance of M4-dependent inhibitory signaling in cholinergic neurons we created mutant mice that lack M4 receptors on cholinergic neurons. Cholinergic neuron-specific depletion was confirmed using in situ hybridization. We aimed to untangle the possible contribution of M4 autoreceptors to the effects of the global M4 knockout by examining aspects of basal locomotion and dose-dependent reactivity to the psychostimulant and rewarding properties of cocaine, haloperidol-induced catalepsy, and examined both the anti-cataleptic and locomotion-inducing effects of the non-selective anticholinergic drug scopolamine. Results Basal phenotype assessment revealed no developmental deficits in knockout mice. Cocaine stimulated locomotion in both genotypes, with no differences observed at lower doses. However, at the highest cocaine dose tested, male knockout mice displayed significantly less activity compared to wild type littermates (p = 0.0084). Behavioral sensitization to cocaine was similar between knockout and wild type mice. Conditioned place preference tests indicated no differences in the rewarding effects of cocaine between genotypes. In food-reinforced operant tasks knockout and wild type mice successfully acquired the tasks with comparable performance results. M4 receptor depletion did not affect haloperidol-induced catalepsy and scopolamine reversal of catalepsy but attenuated scopolamine-induced locomotion in females (p = 0.04). Our results show that M4 receptor depletion attenuated the locomotor response to high doses of cocaine in males and scopolamine in females, suggesting sex-specific regulation of cholinergic activity. Conclusion Depletion of M4 receptors on cholinergic neurons does not significantly impact basal behavior or cocaine-induced hyperactivity but may modulate the response to high doses of cocaine in male mice and the response to scopolamine in female mice. Overall, our findings suggest that M4-dependent autoregulation plays a minor but delicate role in modulating specific behavioral responses to pharmacological challenges, possibly in a sex-dependent manner.
Collapse
Affiliation(s)
- Anna Berezovskaia
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Morgan Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Ibáñez-Sandoval DN, Hidalgo-Balbuena AE, Velázquez Contreras R, Saderi N, Flores G, Rueda-Orozco PE, Ibáñez-Sandoval O. Striatal Interneuron Imbalance in a Valproic Acid-Induced Model of Autism in Rodents Is Accompanied by Atypical Somatosensory Processing. eNeuro 2024; 11:ENEURO.0326-24.2024. [PMID: 39572246 PMCID: PMC11653103 DOI: 10.1523/eneuro.0326-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 12/16/2024] Open
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in social interaction and communication, cognitive rigidity, and atypical sensory processing. Recent studies suggest that the basal ganglia, specifically the striatum (NSt), plays an important role in ASD. While striatal interneurons, including cholinergic (ChAT+) and parvalbumin-positive (PV+) GABAergic neurons, have been described to be altered in animal models of ASD, their specific contribution remains elusive. Here, we combined behavioral, anatomical, and electrophysiological quantifications to explore if interneuron balance could be implicated in atypical sensory processing in cortical and striatal somatosensory regions of rats subjected to a valproic acid (VPA) model of ASD. We found that VPA animals showed a significant decrease in the number of ChAT+ and PV+ cells in multiple regions (including the sensorimotor region) of the NSt. We also observed significantly different sensory-evoked responses at the single-neuron and population levels in both striatal and cortical regions, as well as corticostriatal interactions. Therefore, selective elimination of striatal PV+ neurons only partially recapitulated the effects of VPA, indicating that the mechanisms behind the VPA phenotype are much more complex than the elimination of a particular neural subpopulation. Our results indicate that VPA exposure induced significant histological changes in ChAT+ and PV+ cells accompanied by atypical sensory-evoked corticostriatal population dynamics that could partially explain the sensory processing differences associated with ASD.
Collapse
Affiliation(s)
- Dayna N Ibáñez-Sandoval
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, México
| | - Ana E Hidalgo-Balbuena
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Querétaro 76230, México
| | | | - Nadia Saderi
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, México
| | - Gonzalo Flores
- Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla CP 72570, México
| | - Pavel E Rueda-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Querétaro 76230, México
| | - Osvaldo Ibáñez-Sandoval
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, México
| |
Collapse
|
12
|
Momiyama T, Nishijo T, Suzuki E, Kitamura K. Synaptic and membrane properties of cholinergic interneurons in the striatum of aristaless-related homeobox gene mutant mice. Eur J Neurosci 2024; 60:6015-6029. [PMID: 39287775 DOI: 10.1111/ejn.16542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
A whole-cell patch-clamp study was carried out to investigate membrane and synaptic properties of cholinergic interneurons in the striatum of aristaless-related homeobox gene (ARX) mutant mice. Brain slices were prepared from mice knocked in two types of ARX, P355L (PL) and 333ins (GCG)7 (GCG). The input resistance of cholinergic interneurons in PL or GCG mice was significantly smaller than that in wild type (WT), whereas resting membrane potential, threshold of action potentials, spontaneous firing rate, sag ratio or afterhyperpolarization of the mutant mice were not significantly different from those of WT mice. In GCG mice, NMDA/AMPA ratio of excitatory postsynaptic currents (EPSCs) evoked in cholinergic interneurons was significantly smaller than that in WT and PL mice, whereas the ratio between PL and WT mice was not significantly different. Although inhibitory effects induced by dopamine D2-like receptor activation on the inhibitory postsynaptic currents (IPSCs) were not significantly different between WT and PL or GCG mice, increase in the paired pulse ratio of IPSCs by dopamine D2-like receptor activation was abolished in PL and GCG mice. The present results have found abnormalities of neuronal activities as well as its modulation in the basal ganglia in ARX mutant mice, clarifying basic mechanisms underlying related disorders.
Collapse
Affiliation(s)
- Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Takuma Nishijo
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Etsuko Suzuki
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kunio Kitamura
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
13
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
14
|
Roth RH, Ding JB. Cortico-basal ganglia plasticity in motor learning. Neuron 2024; 112:2486-2502. [PMID: 39002543 PMCID: PMC11309896 DOI: 10.1016/j.neuron.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
One key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters. Cell-type-specific adaptations of activity patterns and synaptic connectivity support the learning of new motor skills. Functionally, neuronal activity sequences become structured and associated with learned movements. On the synaptic level, specific connections become potentiated during learning through mechanisms such as long-term synaptic plasticity and dendritic spine dynamics, which are thought to mediate functional circuit plasticity. These synaptic and circuit adaptations within the cortico-basal ganglia circuitry are thus critical for motor skill acquisition, and disruptions in this plasticity can contribute to movement disorders.
Collapse
Affiliation(s)
- Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Stapf CA, Keefer SE, McInerney JM, Cheer JF, Calu DJ. Dorsomedial Striatum CB1R signaling is required for Pavlovian outcome devaluation in male Long Evans rats and reduces inhibitory synaptic transmission in both sexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592059. [PMID: 38746352 PMCID: PMC11092566 DOI: 10.1101/2024.05.01.592059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cannabinoid-1 receptor (CB1R) signaling in the dorsal striatum regulates the shift from flexible to habitual behavior in instrumental outcome devaluation. Based on prior work establishing individual, sex, and experience-dependent differences in Pavlovian behaviors, we predicted a role for dorsomedial striatum CB1R signaling in driving rigid responding in Pavlovian autoshaping and outcome devaluation. We trained male and female Long Evans rats in Pavlovian Lever Autoshaping (PLA). We gave intra-dorsomedial striatum (DMS) infusions of the CB1R inverse agonist, rimonabant, before satiety-induced outcome devaluation test sessions, where we sated rats on training pellets or home cage chow and tested them in brief nonreinforced Pavlovian Lever Autoshaping sessions. Overall, inhibition of DMS CB1R signaling prevented Pavlovian outcome devaluation but did not affect behavior in reinforced PLA sessions. Males were sensitive to devaluation while females were not and DMS CB1R inhibition impaired devaluation sensitivity in males. We then investigated how DMS CB1R signaling impacts local inhibitory synaptic transmission in male and female Long Evans rats. We recorded spontaneous inhibitory postsynaptic currents (sIPSC) from DMS neurons at baseline and before and after application of a CB1R agonist, WIN 55,212-2. We found that male rats showed decreased sIPSC frequency compared to females, and that CB1R activation reduced DMS inhibitory transmission independent of sex. Altogether our results demonstrate that DMS CB1Rs regulate Pavlovian devaluation sensitivity and inhibitory synaptic transmission and suggest that basal sex differences in inhibitory synaptic transmission may underly sex differences in DMS function and behavioral flexibility.
Collapse
Affiliation(s)
- Catherine A Stapf
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sara E Keefer
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jessica M McInerney
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Joseph F Cheer
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Donna J Calu
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
16
|
Garma LD, Harder L, Barba-Reyes JM, Marco Salas S, Díez-Salguero M, Nilsson M, Serrano-Pozo A, Hyman BT, Muñoz-Manchado AB. Interneuron diversity in the human dorsal striatum. Nat Commun 2024; 15:6164. [PMID: 39039043 PMCID: PMC11263574 DOI: 10.1038/s41467-024-50414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
Deciphering the striatal interneuron diversity is key to understanding the basal ganglia circuit and to untangling the complex neurological and psychiatric diseases affecting this brain structure. We performed snRNA-seq and spatial transcriptomics of postmortem human caudate nucleus and putamen samples to elucidate the diversity and abundance of interneuron populations and their inherent transcriptional structure in the human dorsal striatum. We propose a comprehensive taxonomy of striatal interneurons with eight main classes and fourteen subclasses, providing their full transcriptomic identity and spatial expression profile as well as additional quantitative FISH validation for specific populations. We have also delineated the correspondence of our taxonomy with previous standardized classifications and shown the main transcriptomic and class abundance differences between caudate nucleus and putamen. Notably, based on key functional genes such as ion channels and synaptic receptors, we found matching known mouse interneuron populations for the most abundant populations, the recently described PTHLH and TAC3 interneurons. Finally, we were able to integrate other published datasets with ours, supporting the generalizability of this harmonized taxonomy.
Collapse
Affiliation(s)
- Leonardo D Garma
- Karolinska Institutet, Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Lisbeth Harder
- Karolinska Institutet, Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Juan M Barba-Reyes
- Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). University of Cádiz, Cádiz, Spain
| | - Sergio Marco Salas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mónica Díez-Salguero
- Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). University of Cádiz, Cádiz, Spain
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital, Neurology Department, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Bradley T Hyman
- Massachusetts General Hospital, Neurology Department, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ana B Muñoz-Manchado
- Karolinska Institutet, Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden.
- Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). University of Cádiz, Cádiz, Spain.
| |
Collapse
|
17
|
Van Zandt M, Flanagan D, Pittenger C. Sex differences in the distribution and density of regulatory interneurons in the striatum. Front Cell Neurosci 2024; 18:1415015. [PMID: 39045533 PMCID: PMC11264243 DOI: 10.3389/fncel.2024.1415015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction Dysfunction of the cortico-basal circuitry - including its primary input nucleus, the striatum - contributes to neuropsychiatric disorders, such as autism and Tourette Syndrome (TS). These conditions show marked sex differences, occurring more often in males than in females. Regulatory interneurons, such as cholinergic interneurons (CINs) and parvalbumin-expressing GABAergic fast spiking interneurons (FSIs), are implicated in human neuropsychiatric disorders such as TS, and ablation of these interneurons produces relevant behavioral pathology in male mice, but not in females. Here we investigate sex differences in the density and distribution of striatal interneurons. Methods We use stereological quantification of CINs, FSIs, and somatostatin-expressing (SOM) GABAergic interneurons in the dorsal striatum (caudate-putamen) and the ventral striatum (nucleus accumbens) in male and female mice. Results Males have a higher density of CINs than females, especially in the dorsal striatum; females have equal distribution between dorsal and ventral striatum. FSIs showed similar distributions, with a greater dorsal-ventral density gradient in males than in females. SOM interneurons were denser in the ventral than in the dorsal striatum, with no sex differences. Discussion These sex differences in the density and distribution of FSIs and CINs may contribute to sex differences in basal ganglia function, particularly in the context of psychopathology.
Collapse
Affiliation(s)
- Meghan Van Zandt
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Deirdre Flanagan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Psychology, Yale School of Arts and Sciences, New Haven, CT, United States
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
- Wu-Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
18
|
Sawada T, Barbosa AR, Araujo B, McCord AE, D’Ignazio L, Benjamin KJM, Sheehan B, Zabolocki M, Feltrin A, Arora R, Brandtjen AC, Kleinman JE, Hyde TM, Bardy C, Weinberger DR, Paquola ACM, Erwin JA. Recapitulation of Perturbed Striatal Gene Expression Dynamics of Donors' Brains With Ventral Forebrain Organoids Derived From the Same Individuals With Schizophrenia. Am J Psychiatry 2024; 181:493-511. [PMID: 37915216 PMCID: PMC11209846 DOI: 10.1176/appi.ajp.20220723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Schizophrenia is a brain disorder that originates during neurodevelopment and has complex genetic and environmental etiologies. Despite decades of clinical evidence of altered striatal function in affected patients, studies examining its cellular and molecular mechanisms in humans are limited. To explore neurodevelopmental alterations in the striatum associated with schizophrenia, the authors established a method for the differentiation of induced pluripotent stem cells (iPSCs) into ventral forebrain organoids (VFOs). METHODS VFOs were generated from postmortem dural fibroblast-derived iPSCs of four individuals with schizophrenia and four neurotypical control individuals for whom postmortem caudate genotypes and transcriptomic data were profiled in the BrainSeq neurogenomics consortium. Individuals were selected such that the two groups had nonoverlapping schizophrenia polygenic risk scores (PRSs). RESULTS Single-cell RNA sequencing analyses of VFOs revealed differences in developmental trajectory between schizophrenia and control individuals in which inhibitory neuronal cells from the patients exhibited accelerated maturation. Furthermore, upregulated genes in inhibitory neurons in schizophrenia VFOs showed a significant overlap with upregulated genes in postmortem caudate tissue of individuals with schizophrenia compared with control individuals, including the donors of the iPSC cohort. CONCLUSIONS The findings suggest that striatal neurons derived from high-PRS individuals with schizophrenia carry abnormalities that originated during early brain development and that the VFO model can recapitulate disease-relevant cell type-specific neurodevelopmental phenotypes in a dish.
Collapse
Affiliation(s)
- Tomoyo Sawada
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Bruno Araujo
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Laura D’Ignazio
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kynon J. M. Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bonna Sheehan
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Michael Zabolocki
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders University, Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Adelaide, SA, Australia
| | - Arthur Feltrin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Ria Arora
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Joel E. Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders University, Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Adelaide, SA, Australia
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Apuā C. M. Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer A. Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Wegman E, Wosiski-Kuhn M, Luo Y. The dual role of striatal interneurons: circuit modulation and trophic support for the basal ganglia. Neural Regen Res 2024; 19:1277-1283. [PMID: 37905876 PMCID: PMC11467944 DOI: 10.4103/1673-5374.382987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Striatal interneurons play a key role in modulating striatal-dependent behaviors, including motor activity and reward and emotional processing. Interneurons not only provide modulation to the basal ganglia circuitry under homeostasis but are also involved in changes to plasticity and adaptation during disease conditions such as Parkinson's or Huntington's disease. This review aims to summarize recent findings regarding the role of striatal cholinergic and GABAergic interneurons in providing circuit modulation to the basal ganglia in both homeostatic and disease conditions. In addition to direct circuit modulation, striatal interneurons have also been shown to provide trophic support to maintain neuron populations in adulthood. We discuss this interesting and novel role of striatal interneurons, with a focus on the maintenance of adult dopaminergic neurons from interneuron-derived sonic-hedgehog.
Collapse
Affiliation(s)
- Elliot Wegman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Marlena Wosiski-Kuhn
- Department of Emergency Medicine at the School of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
20
|
Wang Y, Fasching L, Wu F, Huttner A, Berretta S, Roberts R, Leckman JF, Abyzov A, Vaccarino FM. Interneuron loss and microglia activation by transcriptome analyses in the basal ganglia of Tourette syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582504. [PMID: 38464084 PMCID: PMC10925323 DOI: 10.1101/2024.02.28.582504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Tourette syndrome (TS) is a disorder of high-order integration of sensory, motor, and cognitive functions afflicting as many as 1 in 150 children and characterized by motor hyperactivity and tics. Despite high familial recurrence rates, a few risk genes and no biomarkers have emerged as causative or predisposing factors. The syndrome is believed to originate in basal ganglia, where patterns of motor programs are encoded. Postmortem immunocytochemical analyses of brains with severe TS revealed decreases in cholinergic, fast-spiking parvalbumin, and somatostatin interneurons within the striatum (caudate and putamen nuclei). Here, we performed single cell transcriptomic and chromatin accessibility analyses of the caudate nucleus from 6 adult TS and 6 control post-mortem brains. The data reproduced the known cellular composition of the adult human striatum, including a majority of medium spiny neurons (MSN) and small populations of GABAergic and cholinergic interneurons. Comparative analysis revealed that interneurons were decreased by roughly 50% in TS brains, while no difference was observed for other cell types. Differential gene expression analysis suggested that mitochondrial function, and specifically oxidative metabolism, in MSN and synaptic function in interneurons are both impaired in TS subjects. Furthermore, such an impairment was coupled with activation of immune response pathways in microglia. Also, our data explicitly link gene expression changes to changes in cis-regulatory activity in the corresponding cell types, suggesting de-regulation as a factor for the etiology of TS. These findings expand on previous research and suggest that impaired modulation of striatal function by interneurons may be the origin of TS symptoms.
Collapse
|
21
|
Van Zandt M, Flanagan D, Pittenger C. Sex differences in the distribution and density of regulatory interneurons in the striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582798. [PMID: 38464268 PMCID: PMC10925328 DOI: 10.1101/2024.02.29.582798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Dysfunction of the cortico-basal circuitry - including its primary input nucleus, the striatum - contributes to neuropsychiatric disorders, including autism and Tourette Syndrome (TS). These conditions show marked sex differences, occurring more often in males than in females. Regulatory interneurons, including cholinergic interneurons (CINs) and parvalbumin-expressing GABAergic fast spiking interneurons (FSIs), are implicated in human neuropsychiatric disorders such as TS, and ablation of these interneurons produces relevant behavioral pathology in male mice, but not in females. Here we investigate sex differences in the density and distribution of striatal interneurons, using stereological quantification of CINs, FSIs, and somatostatin-expressing (SOM) GABAergic interneurons in the dorsal striatum (caudate-putamen) and the ventral striatum (nucleus accumbens) in male and female mice. Males have a higher density of CINs than females, especially in the dorsal striatum; females have equal distribution between dorsal and ventral striatum. FSIs showed similar effects, with a greater dorsal-ventral density gradient in males than in females. SOM interneurons were denser in the ventral than in the dorsal striatum, with no sex differences. These sex differences in the density and distribution of FSIs and CINs may contribute to sex differences in basal ganglia function, including in the context of psychopathology.
Collapse
Affiliation(s)
- Meghan Van Zandt
- Pittenger Laboratory, Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Deirdre Flanagan
- Pittenger Laboratory, Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Christopher Pittenger
- Pittenger Laboratory, Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale School of Arts and Sciences, New Haven, USA
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, USA
- Wu-Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
22
|
He G, Li Y, Deng H, Zuo H. Advances in the study of cholinergic circuits in the central nervous system. Ann Clin Transl Neurol 2023; 10:2179-2191. [PMID: 37846148 PMCID: PMC10723250 DOI: 10.1002/acn3.51920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE Further understanding of the function and regulatory mechanism of cholinergic neural circuits and related neurodegenerative diseases. METHODS This review summarized the research progress of the central cholinergic nervous system, especially for the cholinergic circuit of the medial septal nucleus-hippocampus, vertical branch of diagonal band-hippocampus, basal nucleus of Meynert-cerebral cortex cholinergic loop, amygdala, pedunculopontine nucleus, and striatum-related cholinergic loops. RESULTS The extensive and complex fiber projection of cholinergic neurons form the cholinergic neural circuits, which regulate several nuclei in the brain through neurotransmission and participate in learning and memory, attention, emotion, movement, etc. The loss of cholinergic neurotransmitters, the reduction, loss, and degeneration of cholinergic neurons or abnormal theta oscillations and cholinergic neural circuits can induce cognitive disorders such as AD, PD, PDD, and DLB. INTERPRETATION The projection and function of cholinergic fibers in some nuclei and the precise regulatory mechanisms of cholinergic neural circuits in the brain remain unclear. Further investigation of cholinergic fiber projections in various brain regions and the underlying mechanisms of the neural circuits are expected to open up new avenues for the prevention and treatment of senile neurodegenerative diseases.
Collapse
Affiliation(s)
- Ganghua He
- Beijing Institute of Radiation MedicineBeijingChina
- College of Life Science and Engineering, Foshan UniversityFoshanChina
| | - Yang Li
- Beijing Institute of Radiation MedicineBeijingChina
| | - Hua Deng
- College of Life Science and Engineering, Foshan UniversityFoshanChina
| | - Hongyan Zuo
- Beijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
23
|
Wang J, Wang X, Li H, Shi L, Song N, Xie J. Updates on brain regions and neuronal circuits of movement disorders in Parkinson's disease. Ageing Res Rev 2023; 92:102097. [PMID: 38511877 DOI: 10.1016/j.arr.2023.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 03/22/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a global burden that affects more often in the elderly. The basal ganglia (BG) is believed to account for movement disorders in PD. More recently, new findings in the original regions in BG involved in motor control, as well as the new circuits or new nucleuses previously not specifically considered were explored. In the present review, we provide up-to-date information related to movement disorders and modulations in PD, especially from the perspectives of brain regions and neuronal circuits. Meanwhile, there are updates in deep brain stimulation (DBS) and other factors for the motor improvement in PD. Comprehensive understandings of brain regions and neuronal circuits involved in motor control could benefit the development of novel therapeutical strategies in PD.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Xiaoting Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Hui Li
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Limin Shi
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
24
|
Baltz ET, Renteria R, Gremel CM. Chronic alcohol exposure differentially alters calcium activity of striatal cell populations during actions. ADDICTION NEUROSCIENCE 2023; 8:100128. [PMID: 37842013 PMCID: PMC10569208 DOI: 10.1016/j.addicn.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alcohol Use Disorder (AUD) can induce long lasting alterations to executive function. This includes altered action control, which can manifest as dysfunctional goal-directed control. Cortical and striatal circuits mediate goal-directed control over behavior, and prior research has found chronic alcohol disrupts these circuits. In particular, prior in vivo and ex vivo work have identified alterations to function and activity of dorsal medial striatum (DMS), which is necessary for goal-directed control. However, unknown is whether these alterations manifest as altered activity of select DMS populations during behavior. Here we examine effects of prior chronic alcohol exposure on calcium activity modulation during action-related behaviors via fiber photometry of genetically-identified DMS populations including the direct and indirect output pathways, and fast-spiking interneurons. We find that prior chronic alcohol exposure leads to increased calcium modulation of the direct pathway during action related behavior. In contrast, prior chronic alcohol exposure led to decreased calcium activity modulation of the indirect pathway and the fast-spiking interneuron population around action-related events. Together, our findings suggest an imbalance in striatal activity during action control. This disruption may contribute to the altered goal-directed control previously reported.
Collapse
Affiliation(s)
- Emily T. Baltz
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Rafael Renteria
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina M. Gremel
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Dvorak NM, Di Re J, Vasquez TES, Marosi M, Shah P, Contreras YMM, Bernabucci M, Singh AK, Stallone J, Green TA, Laezza F. Fibroblast growth factor 13-mediated regulation of medium spiny neuron excitability and cocaine self-administration. Front Neurosci 2023; 17:1294567. [PMID: 38099204 PMCID: PMC10720079 DOI: 10.3389/fnins.2023.1294567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023] Open
Abstract
Cocaine use disorder (CUD) is a prevalent neuropsychiatric disorder with few existing treatments. Thus, there is an unmet need for the identification of new pharmacological targets for CUD. Previous studies using environmental enrichment versus isolation paradigms have found that the latter induces increased cocaine self-administration with correlative increases in the excitability of medium spiny neurons (MSN) of the nucleus accumbens shell (NAcSh). Expanding upon these findings, we sought in the present investigation to elucidate molecular determinants of these phenomena. To that end, we first employed a secondary transcriptomic analysis and found that cocaine self-administration differentially regulates mRNA for fibroblast growth factor 13 (FGF13), which codes for a prominent auxiliary protein of the voltage-gated Na+ (Nav) channel, in the NAcSh of environmentally enriched rats (i.e., resilient behavioral phenotype) compared to environmentally isolated rats (susceptible phenotype). Based upon this finding, we used in vivo genetic silencing to study the causal functional and behavioral consequences of knocking down FGF13 in the NAcSh. Functional studies revealed that knockdown of FGF13 in the NAcSh augmented excitability of MSNs by increasing the activity of Nav channels. These electrophysiological changes were concomitant with a decrease in cocaine demand elasticity (i.e., susceptible phenotype). Taken together, these data support FGF13 as being protective against cocaine self-administration, which positions it well as a pharmacological target for CUD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Thomas A. Green
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
26
|
Kochoian BA, Bure C, Papa SM. Targeting Striatal Glutamate and Phosphodiesterases to Control L-DOPA-Induced Dyskinesia. Cells 2023; 12:2754. [PMID: 38067182 PMCID: PMC10706484 DOI: 10.3390/cells12232754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
A large body of work during the past several decades has been focused on therapeutic strategies to control L-DOPA-induced dyskinesias (LIDs), common motor complications of long-term L-DOPA therapy in Parkinson's disease (PD). Yet, LIDs remain a clinical challenge for the management of patients with advanced disease. Glutamatergic dysregulation of striatal projection neurons (SPNs) appears to be a key contributor to altered motor responses to L-DOPA. Targeting striatal hyperactivity at the glutamatergic neurotransmission level led to significant preclinical and clinical trials of a variety of antiglutamatergic agents. In fact, the only FDA-approved treatment for LIDs is amantadine, a drug with NMDAR antagonistic actions. Still, novel agents with improved pharmacological profiles are needed for LID therapy. Recently other therapeutic targets to reduce dysregulated SPN activity at the signal transduction level have emerged. In particular, mechanisms regulating the levels of cyclic nucleotides play a major role in the transduction of dopamine signals in SPNs. The phosphodiesterases (PDEs), a large family of enzymes that degrade cyclic nucleotides in a specific manner, are of special interest. We will review the research for antiglutamatergic and PDE inhibition strategies in view of the future development of novel LID therapies.
Collapse
Affiliation(s)
- Brik A. Kochoian
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
| | - Cassandra Bure
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
| | - Stella M. Papa
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30329, USA
| |
Collapse
|
27
|
Gallegos DA, Minto M, Liu F, Hazlett MF, Aryana Yousefzadeh S, Bartelt LC, West AE. Cell-type specific transcriptional adaptations of nucleus accumbens interneurons to amphetamine. Mol Psychiatry 2023; 28:3414-3428. [PMID: 35173267 PMCID: PMC9378812 DOI: 10.1038/s41380-022-01466-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022]
Abstract
Parvalbumin-expressing (PV+) interneurons of the nucleus accumbens (NAc) play an essential role in the addictive-like behaviors induced by psychostimulant exposure. To identify molecular mechanisms of PV+ neuron plasticity, we isolated interneuron nuclei from the NAc of male and female mice following acute or repeated exposure to amphetamine (AMPH) and sequenced for cell type-specific RNA expression and chromatin accessibility. AMPH regulated the transcription of hundreds of genes in PV+ interneurons, and this program was largely distinct from that regulated in other NAc GABAergic neurons. Chromatin accessibility at enhancers predicted cell-type specific gene regulation, identifying transcriptional mechanisms of differential AMPH responses. Finally, we assessed expression of PV-enriched, AMPH-regulated genes in an Mecp2 mutant mouse strain that shows heightened behavioral sensitivity to psychostimulants to explore the functional importance of this transcriptional program. Together these data provide novel insight into the cell-type specific programs of transcriptional plasticity in NAc neurons that underlie addictive-like behaviors.
Collapse
Affiliation(s)
- David A Gallegos
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Melyssa Minto
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Fang Liu
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Mariah F Hazlett
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | | | - Luke C Bartelt
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
28
|
Patton MS, Sheats SH, Siclair AN, Mathur BN. Alcohol potentiates multiple GABAergic inputs to dorsal striatum fast-spiking interneurons. Neuropharmacology 2023; 232:109527. [PMID: 37011784 PMCID: PMC10122715 DOI: 10.1016/j.neuropharm.2023.109527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
Parvalbumin-expressing dorsal striatal fast-spiking interneurons, comprising ∼1% of the total dorsal striatal neuronal population, are necessary for the expression of compulsive-like ethanol consumption mice. Fast-spiking interneurons are driven to fire by glutamatergic inputs derived primarily from the cortex. However, these neurons also receive substantial GABAergic input from two sources: the globus pallidus and the reticular nucleus of the thalamus. How ethanol modulates inhibitory input onto fast-spiking neurons is unclear and, more broadly, alcohol effects on GABAergic synaptic transmission onto GABAergic interneurons are understudied. Examining this, we found that acute bath application of ethanol (50 mM) potentiated GABAergic transmission from both the globus pallidus and the reticular nucleus of the thalamus onto fast-spiking interneurons in mouse of both sexes. This ethanol-induced potentiation required postsynaptic calcium and was not accompanied by a sustained change in presynaptic GABA release probability. Examining whether this ethanol effect persisted following chronic intermittent ethanol exposure, we found attenuated acute-ethanol potentiation of GABAergic transmission from both the globus pallidus and the reticular nucleus of the thalamus onto striatal fast-spiking interneurons. These data underscore the impact of ethanol on GABAergic signaling in the dorsal striatum and support the notion that ethanol may disinhibit the dorsolateral striatum.
Collapse
Affiliation(s)
- Michael S Patton
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Samuel H Sheats
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Allison N Siclair
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
29
|
Williams SR, Zhou X, Fletcher LN. Compartment-specific dendritic information processing in striatal cholinergic interneurons is reconfigured by peptide neuromodulation. Neuron 2023; 111:1933-1951.e3. [PMID: 37086722 DOI: 10.1016/j.neuron.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/24/2023]
Abstract
Cholinergic interneurons are central hubs of the striatal neuronal network, controlling information processing in a behavioral-state-dependent manner. It remains unknown, however, how such state transitions influence the integrative properties of these neurons. To address this, we made simultaneous somato-dendritic recordings from identified rodent cholinergic interneurons, revealing that action potentials are initiated at dendritic sites because of a dendritic axonal origin. Functionally, this anatomical arrangement ensured that the action potential initiation threshold was lowest at axon-bearing dendritic sites, a privilege efficacy powerfully accentuated at the hyperpolarized membrane potentials achieved in cholinergic interneurons following salient behavioral stimuli. Experimental analysis revealed the voltage-dependent attenuation of the efficacy of non-axon-bearing dendritic excitatory input was mediated by the recruitment of dendritic potassium channels, a regulatory mechanism that, in turn, was controlled by the pharmacological activation of neurokinin receptors. Together, these results indicate that the neuropeptide microenvironment dynamically controls state- and compartment-dependent dendritic information processing in striatal cholinergic interneurons.
Collapse
Affiliation(s)
- Stephen R Williams
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Xiangyu Zhou
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lee Norman Fletcher
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
30
|
Wang T, Wang Y, Montero-Pedrazuela A, Prensa L, Guadaño-Ferraz A, Rausell E. Thyroid Hormone Transporters MCT8 and OATP1C1 Are Expressed in Projection Neurons and Interneurons of Basal Ganglia and Motor Thalamus in the Adult Human and Macaque Brains. Int J Mol Sci 2023; 24:9643. [PMID: 37298594 PMCID: PMC10254002 DOI: 10.3390/ijms24119643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Monocarboxylate transporter 8 (MCT8) and organic anion-transporting polypeptide 1C1 (OATP1C1) are thyroid hormone (TH) transmembrane transporters relevant for the availability of TH in neural cells, crucial for their proper development and function. Mutations in MCT8 or OATP1C1 result in severe disorders with dramatic movement disability related to alterations in basal ganglia motor circuits. Mapping the expression of MCT8/OATP1C1 in those circuits is necessary to explain their involvement in motor control. We studied the distribution of both transporters in the neuronal subpopulations that configure the direct and indirect basal ganglia motor circuits using immunohistochemistry and double/multiple labeling immunofluorescence for TH transporters and neuronal biomarkers. We found their expression in the medium-sized spiny neurons of the striatum (the receptor neurons of the corticostriatal pathway) and in various types of its local microcircuitry interneurons, including the cholinergic. We also demonstrate the presence of both transporters in projection neurons of intrinsic and output nuclei of the basal ganglia, motor thalamus and nucleus basalis of Meynert, suggesting an important role of MCT8/OATP1C1 for modulating the motor system. Our findings suggest that a lack of function of these transporters in the basal ganglia circuits would significantly impact motor system modulation, leading to clinically severe movement impairment.
Collapse
Affiliation(s)
- Ting Wang
- School of Medicine, Department Anatomy Histology & Neuroscience, Autónoma de Madrid University (UAM), 28029 Madrid, Spain; (T.W.); (Y.W.); (L.P.)
- PhD Program in Neuroscience, Autónoma de Madrid University (UAM)-Cajal Institute, 28029 Madrid, Spain
| | - Yu Wang
- School of Medicine, Department Anatomy Histology & Neuroscience, Autónoma de Madrid University (UAM), 28029 Madrid, Spain; (T.W.); (Y.W.); (L.P.)
- PhD Program in Neuroscience, Autónoma de Madrid University (UAM)-Cajal Institute, 28029 Madrid, Spain
| | - Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Autónoma de Madrid University (UAM), 28029 Madrid, Spain;
| | - Lucía Prensa
- School of Medicine, Department Anatomy Histology & Neuroscience, Autónoma de Madrid University (UAM), 28029 Madrid, Spain; (T.W.); (Y.W.); (L.P.)
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Autónoma de Madrid University (UAM), 28029 Madrid, Spain;
| | - Estrella Rausell
- School of Medicine, Department Anatomy Histology & Neuroscience, Autónoma de Madrid University (UAM), 28029 Madrid, Spain; (T.W.); (Y.W.); (L.P.)
| |
Collapse
|
31
|
Chuhma N, Oh SJ, Rayport S. The dopamine neuron synaptic map in the striatum. Cell Rep 2023; 42:112204. [PMID: 36867530 PMCID: PMC10657204 DOI: 10.1016/j.celrep.2023.112204] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Dopamine neurons project to the striatum to control movement, cognition, and motivation via slower volume transmission as well as faster dopamine, glutamate, and GABA synaptic actions capable of conveying the temporal information in dopamine neuron firing. To define the scope of these synaptic actions, recordings of dopamine-neuron-evoked synaptic currents were made in four major striatal neuron types, spanning the entire striatum. This revealed that inhibitory postsynaptic currents are widespread, while excitatory postsynaptic currents are localized to the medial nucleus accumbens and the anterolateral-dorsal striatum, and that all synaptic actions are weak in the posterior striatum. Synaptic actions in cholinergic interneurons are the strongest, variably mediating inhibition throughout the striatum and excitation in the medial accumbens, capable of controlling their activity. This mapping shows that dopamine neuron synaptic actions extend throughout the striatum, preferentially target cholinergic interneurons, and define distinct striatal subregions.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Soo Jung Oh
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Stephen Rayport
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
32
|
Jiang Y, Zou M, Wang Y, Wang Y. Nucleus accumbens in the pathogenesis of major depressive disorder: A brief review. Brain Res Bull 2023; 196:68-75. [PMID: 36889362 DOI: 10.1016/j.brainresbull.2023.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Major depressive disorder (MDD) is the most prevalent mental disorder characterized by anhedonia, loss of motivation, avolition, behavioral despair and cognitive abnormalities. Despite substantial advancements in the pathophysiology of MDD in recent years, the pathogenesis of this disorder is not fully understood. Meanwhile,the treatment of MDD with currently available antidepressants is inadequate, highlighting the urgent need for clarifying the pathophysiology of MDD and developing novel therapeutics. Extensive studies have demonstrated the involvement of nuclei such as the prefrontal cortex (PFC), hippocampus (HIP), nucleus accumbens (NAc), hypothalamus, etc., in MDD. NAc,a region critical for reward and motivation,dysregulation of its activity seems to be a hallmark of this mood disorder. In this paper, we present a review of NAc related circuits, cellular and molecular mechanisms underlying MDD and share an analysis of the gaps in current research and possible future research directions.
Collapse
Affiliation(s)
- Yajie Jiang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China
| | - Manshu Zou
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China
| | - Yeqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China.
| |
Collapse
|
33
|
Araújo de Góis Morais PL, de Souza Cavalcante J, Engelberth RC, Guzen FP, Junior ESN, Paiva Cavalcanti JRL. Morphology and morphometry of interneuron subpopulations of the marmoset monkey (Callithrix jacchus) striatum. Neurosci Res 2023:S0168-0102(23)00036-6. [PMID: 36804600 DOI: 10.1016/j.neures.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
The mammalian striatum has long been considered a homogeneous entity. However, neuroanatomical and histochemical studies reveal that the striatum is much more heterogeneous than previously suspected. The caudate (Cd) and putamen (Pu) are composed of two chemical compartments: the matrix and the striosomes. Striatal interneurons have been classified into a variety of morphological and neurochemical subtypes. In this study, we compared the distribution of multiple neurochemical markers in the striatum of marmosets and described the morphology of different types of striatum interneurons. The immunoreactivities of choline-acetyl transferase (ChAT), neuropeptide Y (NPY), nitric oxide synthase (NOS), calretinin (CR), parvalbumin (PV) were analyzed along the entire rostrocaudal extent of the marmoset striatum. Calbindin immunohistochemistry is useful in identifying medium spiny neurons (MSNs), with efficient soma staining. Based on the size of the CB-positive cells, considered medium-sized, as expected, cholinergic cells are larger in area and diameter than the other subpopulations investigated, followed by NOS, NPY, PV and CR. In adjacent CB and PV-stained sections, the matrix and striosomes were clearly distinguished. The matrix is strongly reactive to CB and PV neuropils, while the striosomes exhibit low reactivity, especially in the dorsal Cd. Therefore, we provide a detailed description morphology and distribution of striatal interneuron populations in a model as a valuable tool for studying neurodegenerative pathogenesis, progression and treatment strategies.
Collapse
|
34
|
CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood-Brain Barrier and Towards Specific Cellular Targeting. Pharm Res 2023; 40:77-105. [PMID: 36380168 DOI: 10.1007/s11095-022-03433-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid-based therapeutic molecules including small interfering RNA (siRNA), microRNA(miRNA), antisense oligonucleotides (ASOs), messenger RNA (mRNA), and DNA-based gene therapy have tremendous potential for treating diseases in the central nervous system (CNS). However, achieving clinically meaningful delivery to the brain and particularly to target cells and sub-cellular compartments is typically very challenging. Mediating cell-specific delivery in the CNS would be a crucial advance that mitigates off-target effects and toxicities. In this review, we describe these challenges and provide contemporary evidence of advances in cellular and sub-cellular delivery using a variety of delivery mechanisms and alternative routes of administration, including the nose-to-brain approach. Strategies to achieve subcellular localization, endosomal escape, cytosolic bioavailability, and nuclear transfer are also discussed. Ultimately, there are still many challenges to translating these experimental strategies into effective and clinically viable approaches for treating patients.
Collapse
|
35
|
Simmons DA, Belichenko NP, Longo FM. Pharmacological Co-Activation of TrkB and TrkC Receptor Signaling Ameliorates Striatal Neuropathology and Motor Deficits in Mouse Models of Huntington's Disease. J Huntingtons Dis 2023; 12:215-239. [PMID: 37638447 DOI: 10.3233/jhd-230589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Loss of neurotrophic support in the striatum, particularly reduced brain-derived neurotrophic factor (BDNF) levels, contributes importantly to Huntington's disease (HD) pathogenesis. Another neurotrophin (NT), NT-3, is reduced in the cortex of HD patients; however, its role in HD is unknown. BDNF and NT-3 bind with high affinity to the tropomyosin receptor-kinases (Trk) B and TrkC, respectively. Targeting TrkB/TrkC may be an effective HD therapeutic strategy, as multiple links exist between their signaling pathways and HD degenerative mechanisms. We developed a small molecule ligand, LM22B-10, that activates TrkB and TrkC to promote cell survival. OBJECTIVE This study aimed to determine if upregulating TrkB/TrkC signaling with LM22B-10 would alleviate the HD phenotype in R6/2 and Q140 mice. METHODS LM22B-10 was delivered by concomitant intranasal-intraperitoneal routes to R6/2 and Q140 mice and then motor performance and striatal pathology were evaluated. RESULTS NT-3 levels, TrkB/TrkC phosphorylation, and AKT signaling were reduced in the R6/2 striatum; LM22B-10 counteracted these deficits. LM22B-10 also reduced intranuclear huntingtin aggregates, dendritic spine loss, microglial activation, and degeneration of dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP-32) and parvalbumin-containing neurons in the R6/2 and/or Q140 striatum. Moreover, both HD mouse models showed improved motor performance after LM22B-10 treatment. CONCLUSIONS These results reveal an NT-3/TrkC signaling deficiency in the striatum of R6/2 mice, support the idea that targeting TrkB/TrkC alleviates HD-related neurodegeneration and motor dysfunction, and suggest a novel, disease-modifying, multi-target strategy for treating HD.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
36
|
Martel AC, Galvan A. Connectivity of the corticostriatal and thalamostriatal systems in normal and parkinsonian states: An update. Neurobiol Dis 2022; 174:105878. [PMID: 36183947 PMCID: PMC9976706 DOI: 10.1016/j.nbd.2022.105878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/06/2023] Open
Abstract
The striatum receives abundant glutamatergic afferents from the cortex and thalamus. These inputs play a major role in the functions of the striatal neurons in normal conditions, and are significantly altered in pathological states, such as Parkinson's disease. This review summarizes the current knowledge of the connectivity of the corticostriatal and thalamostriatal pathways, with emphasis on the most recent advances in the field. We also discuss novel findings regarding structural changes in cortico- and thalamostriatal connections that occur in these connections as a consequence of striatal loss of dopamine in parkinsonism.
Collapse
Affiliation(s)
- Anne-Caroline Martel
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
37
|
Kaar SJ, Angelescu I, Nour MM, Marques TR, Sharman A, Sajjala A, Hutchison J, McGuire P, Large C, Howes OD. The effects of AUT00206, a novel Kv3.1/3.2 potassium channel modulator, on task-based reward system activation: a test of mechanism in schizophrenia. Psychopharmacology (Berl) 2022; 239:3313-3323. [PMID: 36094619 PMCID: PMC9481488 DOI: 10.1007/s00213-022-06216-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
The pathophysiology of schizophrenia involves abnormal reward processing, thought to be due to disrupted striatal and dopaminergic function. Consistent with this hypothesis, functional magnetic resonance imaging (fMRI) studies using the monetary incentive delay (MID) task report hypoactivation in the striatum during reward anticipation in schizophrenia. Dopamine neuron activity is modulated by striatal GABAergic interneurons. GABAergic interneuron firing rates, in turn, are related to conductances in voltage-gated potassium 3.1 (Kv3.1) and 3.2 (Kv3.2) channels, suggesting that targeting Kv3.1/3.2 could augment striatal function during reward processing. Here, we studied the effect of a novel potassium Kv3.1/3.2 channel modulator, AUT00206, on striatal activation in patients with schizophrenia, using the MID task. Each participant completed the MID during fMRI scanning on two occasions: once at baseline, and again following either 4 weeks of AUT00206 or placebo treatment. We found a significant inverse relationship at baseline between symptom severity and reward anticipation-related neural activation in the right associative striatum (r = -0.461, p = 0.035). Following treatment with AUT00206, there was a significant increase in reward anticipation-related activation in the left associative striatum (t(13) = 4.23, peak-level p(FWE) < 0.05)), but no significant effect in the ventral striatum. This provides preliminary evidence that the Kv3.1/3.2 potassium channel modulator, AUT00206, may address reward-related striatal abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Stephen J Kaar
- Institute of Psychiatry, Psychology & Neuroscience - King's College London, 16 De Crespigny Park, Camberwell, London, SE5 8AB, UK. .,Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK. .,Division of Psychology and Mental Health, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9WL, UK. .,Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK.
| | - Ilinca Angelescu
- Institute of Psychiatry, Psychology & Neuroscience - King's College London, 16 De Crespigny Park, Camberwell, London, SE5 8AB, UK.,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, WC1B 5EH, UK
| | - Matthew M Nour
- Institute of Psychiatry, Psychology & Neuroscience - King's College London, 16 De Crespigny Park, Camberwell, London, SE5 8AB, UK.,Wellcome Trust Centre for Human Neuroimaging, University College London, London, WC1N 3AR, UK.,Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Tiago Reis Marques
- Institute of Psychiatry, Psychology & Neuroscience - King's College London, 16 De Crespigny Park, Camberwell, London, SE5 8AB, UK
| | - Alice Sharman
- Autifony Therapeutics Limited, Stevenage, SG1 2FX, UK
| | - Anil Sajjala
- Autifony Therapeutics Limited, Stevenage, SG1 2FX, UK
| | | | - Philip McGuire
- Institute of Psychiatry, Psychology & Neuroscience - King's College London, 16 De Crespigny Park, Camberwell, London, SE5 8AB, UK
| | - Charles Large
- Autifony Therapeutics Limited, Stevenage, SG1 2FX, UK
| | - Oliver D Howes
- Institute of Psychiatry, Psychology & Neuroscience - King's College London, 16 De Crespigny Park, Camberwell, London, SE5 8AB, UK.,Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.,South London and Maudsley NHS Foundation Trust, London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
38
|
Tics: neurological disorders determined by a deficit in sensorimotor gating processes. Neurol Sci 2022; 43:5839-5850. [PMID: 35781754 PMCID: PMC9474467 DOI: 10.1007/s10072-022-06235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
Abstract
Tic related disorders affect 4–20% of the population, mostly idiopathic, can be grouped in a wide spectrum of severity, where the most severe end is Tourette Syndrome (TS). Tics are arrhythmic hyperkinesias to whom execution the subject is forced by a “premonitory urge” that can be classified as sensory tic, just-right experience or urge without obsession. If an intact volitional inhibition allows patients to temporarily suppress tics, a lack or deficit in automatic inhibition is involved in the genesis of the disorder. Studies have assessed the presence of intrinsic microscopic and macroscopic anomalies in striatal circuits and relative cortical areas in association with a hyperdopaminergic state in the basal forebrain. Prepulse inhibition (PPI) of the startle reflex is a measure of inhibitory functions by which a weak sensory stimulus inhibits the elicitation of a startle response determined by a sudden intense stimulus. It is considered an operation measure of sensorimotor gating, a neural process by which unnecessary stimuli are eliminated from awareness. Evidence points out that the limbic domain of the CSTC loops, dopamine and GABA receptors within the striatum play an important role in PPI modulation. It is conceivable that a sensorimotor gating deficit may be involved in the genesis of premonitory urge and symptoms. Therefore, correcting the sensorimotor gating deficit may be considered a target for tic-related disorders therapies; in such case PPI (as well as other indirect estimators of sensorimotor gating) could represent therapeutic impact predictors.
Collapse
|
39
|
Shang Z, Yang L, Wang Z, Tian Y, Gao Y, Su Z, Guo R, Li W, Liu G, Li X, Yang Z, Li Z, Zhang Z. The transcription factor Zfp503 promotes the D1 MSN identity and represses the D2 MSN identity. Front Cell Dev Biol 2022; 10:948331. [PMID: 36081908 PMCID: PMC9445169 DOI: 10.3389/fcell.2022.948331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
The striatum is primarily composed of two types of medium spiny neurons (MSNs) expressing either D1- or D2-type dopamine receptors. However, the fate determination of these two types of neurons is not fully understood. Here, we found that D1 MSNs undergo fate switching to D2 MSNs in the absence of Zfp503. Furthermore, scRNA-seq revealed that the transcription factor Zfp503 affects the differentiation of these progenitor cells in the lateral ganglionic eminence (LGE). More importantly, we found that the transcription factors Sp8/9, which are required for the differentiation of D2 MSNs, are repressed by Zfp503. Finally, sustained Zfp503 expression in LGE progenitor cells promoted the D1 MSN identity and repressed the D2 MSN identity. Overall, our findings indicated that Zfp503 promotes the D1 MSN identity and represses the D2 MSN identity by regulating Sp8/9 expression during striatal MSN development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhenmeiyu Li
- *Correspondence: Zhenmeiyu Li, ; Zhuangzhi Zhang,
| | | |
Collapse
|
40
|
Li Z, Shang Z, Sun M, Jiang X, Tian Y, Yang L, Wang Z, Su Z, Liu G, Li X, You Y, Yang Z, Xu Z, Zhang Z. Transcription factor Sp9 is a negative regulator of D1-type MSN development. Cell Death Dis 2022; 8:301. [PMID: 35773249 PMCID: PMC9247084 DOI: 10.1038/s41420-022-01088-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
The striatum is the main input structure of the basal ganglia, receiving information from the cortex and the thalamus and consisting of D1- and D2- medium spiny neurons (MSNs). D1-MSNs and D2-MSNs are essential for motor control and cognitive behaviors and have implications in Parkinson’s Disease. In the present study, we demonstrated that Sp9-positive progenitors produced both D1-MSNs and D2-MSNs and that Sp9 expression was rapidly downregulated in postmitotic D1-MSNs. Furthermore, we found that sustained Sp9 expression in lateral ganglionic eminence (LGE) progenitor cells and their descendants led to promoting D2-MSN identity and repressing D1-MSN identity during striatal development. As a result, sustained Sp9 expression resulted in an imbalance between D1-MSNs and D2-MSNs in the mouse striatum. In addition, the fate-changed D2-like MSNs survived normally in adulthood. Taken together, our findings supported that Sp9 was sufficient to promote D2-MSN identity and repress D1-MSN identity, and Sp9 was a negative regulator of D1-MSN fate.
Collapse
Affiliation(s)
- Zhenmeiyu Li
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zicong Shang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Mengge Sun
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Xin Jiang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Yu Tian
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Lin Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Ziwu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zihao Su
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Guoping Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Xiaosu Li
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Yan You
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zhengang Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zhejun Xu
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China.
| | - Zhuangzhi Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
41
|
Heshmati M, Bruchas MR. Historical and Modern Evidence for the Role of Reward Circuitry in Emergence. Anesthesiology 2022; 136:997-1014. [PMID: 35362070 PMCID: PMC9467375 DOI: 10.1097/aln.0000000000004148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increasing evidence supports a role for brain reward circuitry in modulating arousal along with emergence from anesthesia. Emergence remains an important frontier for investigation, since no drug exists in clinical practice to initiate rapid and smooth emergence. This review discusses clinical and preclinical evidence indicating a role for two brain regions classically considered integral components of the mesolimbic brain reward circuitry, the ventral tegmental area and the nucleus accumbens, in emergence from propofol and volatile anesthesia. Then there is a description of modern systems neuroscience approaches to neural circuit investigations that will help span the large gap between preclinical and clinical investigation with the shared aim of developing therapies to promote rapid emergence without agitation or delirium. This article proposes that neuroscientists include models of whole-brain network activity in future studies to inform the translational value of preclinical investigations and foster productive dialogues with clinician anesthesiologists.
Collapse
Affiliation(s)
- Mitra Heshmati
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, and Department of Biological Structure, University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, and Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
42
|
Tokarska A, Silberberg G. GABAergic interneurons expressing the α2 nicotinic receptor subunit are functionally integrated in the striatal microcircuit. Cell Rep 2022; 39:110842. [PMID: 35613598 DOI: 10.1016/j.celrep.2022.110842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
The interactions between the striatal cholinergic and GABAergic systems are crucial in shaping reward-related behavior and reinforcement learning; however, the synaptic pathways mediating them are largely unknown. Here, we use Chrna2-Cre mice to characterize striatal interneurons (INs) expressing the nicotinic α2 receptor subunit. Using triple patch-clamp recordings combined with optogenetic stimulations, we characterize the electrophysiological, morphological, and synaptic properties of striatal Chrna2-INs. Striatal Chrna2-INs have diverse electrophysiological properties, distinct from their counterparts in other brain regions, including the hippocampus and neocortex. Unlike in other regions, most striatal Chrna2-INs are fast-spiking INs expressing parvalbumin. Striatal Chrna2-INs are intricately integrated in the striatal microcircuit, forming inhibitory synaptic connections with striatal projection neurons and INs, including other Chrna2-INs. They receive excitatory inputs from primary motor cortex mediated by both AMPA and NMDA receptors. A subpopulation of Chrna2-INs responds to nicotinic input, suggesting reciprocal interactions between this GABAergic interneuron population and striatal cholinergic synapses.
Collapse
Affiliation(s)
- Anna Tokarska
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
43
|
Caubit X, Gubellini P, Roubertoux PL, Carlier M, Molitor J, Chabbert D, Metwaly M, Salin P, Fatmi A, Belaidouni Y, Brosse L, Kerkerian-Le Goff L, Fasano L. Targeted Tshz3 deletion in corticostriatal circuit components segregates core autistic behaviors. Transl Psychiatry 2022; 12:106. [PMID: 35292625 PMCID: PMC8924251 DOI: 10.1038/s41398-022-01865-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/15/2023] Open
Abstract
We previously linked TSHZ3 haploinsufficiency to autism spectrum disorder (ASD) and showed that embryonic or postnatal Tshz3 deletion in mice results in behavioral traits relevant to the two core domains of ASD, namely social interaction deficits and repetitive behaviors. Here, we provide evidence that cortical projection neurons (CPNs) and striatal cholinergic interneurons (SCINs) are two main and complementary players in the TSHZ3-linked ASD syndrome. In the cerebral cortex, TSHZ3 is expressed in CPNs and in a proportion of GABAergic interneurons, but not in cholinergic interneurons or glial cells. In the striatum, TSHZ3 is expressed in all SCINs, while its expression is absent or partial in the other main brain cholinergic systems. We then characterized two new conditional knockout (cKO) models generated by crossing Tshz3flox/flox with Emx1-Cre (Emx1-cKO) or Chat-Cre (Chat-cKO) mice to decipher the respective role of CPNs and SCINs. Emx1-cKO mice show altered excitatory synaptic transmission onto CPNs and impaired plasticity at corticostriatal synapses, with neither cortical neuron loss nor abnormal layer distribution. These animals present social interaction deficits but no repetitive patterns of behavior. Chat-cKO mice exhibit no loss of SCINs but changes in the electrophysiological properties of these interneurons, associated with repetitive patterns of behavior without social interaction deficits. Therefore, dysfunction in either CPNs or SCINs segregates with a distinct ASD behavioral trait. These findings provide novel insights onto the implication of the corticostriatal circuitry in ASD by revealing an unexpected neuronal dichotomy in the biological background of the two core behavioral domains of this disorder.
Collapse
Affiliation(s)
- Xavier Caubit
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Paolo Gubellini
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Pierre L. Roubertoux
- grid.5399.60000 0001 2176 4817Aix-Marseille Univ, INSERM, MMG, UMR1251 Marseille, France
| | - Michèle Carlier
- grid.463724.00000 0004 0385 2989Aix-Marseille Univ, CNRS, LPC, UMR7290 Marseille, France
| | - Jordan Molitor
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Dorian Chabbert
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Mehdi Metwaly
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Pascal Salin
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Ahmed Fatmi
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Yasmine Belaidouni
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Lucie Brosse
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | | | - Laurent Fasano
- Aix-Marseille Univ, CNRS, IBDM, UMR7288, Marseille, France.
| |
Collapse
|
44
|
Vasilev DS, Dubrovskaya NМ, Tumanova NL, Nalivaeva NN. Analysis of Expression of the Amyloid-Degrading Enzyme Neprilysin in Brain Structures of 5xFAD Transgenic Mice. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Nosaka D, Wickens JR. Striatal Cholinergic Signaling in Time and Space. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041202. [PMID: 35208986 PMCID: PMC8878708 DOI: 10.3390/molecules27041202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
The cholinergic interneurons of the striatum account for a small fraction of all striatal cell types but due to their extensive axonal arborization give the striatum the highest content of acetylcholine of almost any nucleus in the brain. The prevailing theory of striatal cholinergic interneuron signaling is that the numerous varicosities on the axon produce an extrasynaptic, volume-transmitted signal rather than mediating rapid point-to-point synaptic transmission. We review the evidence for this theory and use a mathematical model to integrate the measurements reported in the literature, from which we estimate the temporospatial distribution of acetylcholine after release from a synaptic vesicle and from multiple vesicles during tonic firing and pauses. Our calculations, together with recent data from genetically encoded sensors, indicate that the temporospatial distribution of acetylcholine is both short-range and short-lived, and dominated by diffusion. These considerations suggest that acetylcholine signaling by cholinergic interneurons is consistent with point-to-point transmission within a steep concentration gradient, marked by transient peaks of acetylcholine concentration adjacent to release sites, with potential for faithful transmission of spike timing, both bursts and pauses, to the postsynaptic cell. Release from multiple sites at greater distance contributes to the ambient concentration without interference with the short-range signaling. We indicate several missing pieces of evidence that are needed for a better understanding of the nature of synaptic transmission by the cholinergic interneurons of the striatum.
Collapse
|
46
|
Dopamine D2L Receptor Deficiency Alters Neuronal Excitability and Spine Formation in Mouse Striatum. Biomedicines 2022; 10:biomedicines10010101. [PMID: 35052781 PMCID: PMC8773425 DOI: 10.3390/biomedicines10010101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
The striatum contains several types of neurons including medium spiny projection neurons (MSNs), cholinergic interneurons (ChIs), and fast-spiking interneurons (FSIs). Modulating the activity of these neurons by the dopamine D2 receptor (D2R) can greatly impact motor control and movement disorders. D2R exists in two isoforms: D2L and D2S. Here, we assessed whether alterations in the D2L and D2S expression levels affect neuronal excitability and synaptic function in striatal neurons. We observed that quinpirole inhibited the firing rate of all three types of striatal neurons in wild-type (WT) mice. However, in D2L knockout (KO) mice, quinpirole enhanced the excitability of ChIs, lost influence on spike firing of MSNs, and remained inhibitory effect on spike firing of FSIs. Additionally, we showed mIPSC frequency (but not mIPSC amplitude) was reduced in ChIs from D2L KO mice compared with WT mice, suggesting spontaneous GABA release is reduced at GABAergic terminals onto ChIs in D2L KO mice. Furthermore, we found D2L deficiency resulted in reduced dendritic spine density in ChIs, suggesting D2L activation plays a role in the formation/maintenance of dendritic spines of ChIs. These findings suggest new molecular and cellular mechanisms for causing ChIs abnormality seen in Parkinson’s disease or drug-induced dyskinesias.
Collapse
|
47
|
Marino G, Calabresi P, Ghiglieri V. Alpha-synuclein and cortico-striatal plasticity in animal models of Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:153-166. [PMID: 35034731 DOI: 10.1016/b978-0-12-819410-2.00008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alpha-synuclein (α-synuclein) is a small, acidic protein containing 140 amino acids, highly expressed in the brain and primarily localized in the presynaptic terminals. It is found in high concentrations in Lewy Bodies, proteinaceous aggregates that constitute a typical histopathologic hallmark of Parkinson's disease. Altered environmental conditions, genetic mutations and post-translational changes can trigger abnormal aggregation processes with the increased frequency of oligomers, protofibrils, and fibrils formation that perturbs the neuronal homeostasis leading to cell death. Relevant to neuronal activity, a function of α-synuclein that has been extensively detailed is its regulatory actions in the trafficking of synaptic vesicles, including the processes of exocytosis, endocytosis and neurotransmitter release. Most recently, increasing attention has been paid to the possible role that α-synuclein plays at a postsynaptic level by interacting with selective subunits of the glutamate N-methyl-d-aspartate receptor, altering the corticostriatal plasticity of distinct neuronal populations.
Collapse
Affiliation(s)
- Gioia Marino
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
48
|
Abstract
The last century was characterized by a significant scientific effort aimed at unveiling the neurobiological basis of learning and memory. Thanks to the characterization of the mechanisms regulating the long-term changes of neuronal synaptic connections, it was possible to understand how specific neural networks shape themselves during the acquisition of memory traces or complex motor tasks. In this chapter, we will summarize the mechanisms underlying the main forms of synaptic plasticity taking advantage of the studies performed in the hippocampus and in the nucleus striatum, key brain structures that play a crucial role in cognition. Moreover, we will discuss how the molecular pathways involved in the induction of physiologic synaptic long-term changes could be disrupted during neurodegenerative and neuroinflammatory disorders, highlighting the translational relevance of this intriguing research field.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Antonio de Iure
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy
| | - Barbara Picconi
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy; University San Raffaele, Rome, Italy.
| |
Collapse
|
49
|
Neuroadaptations and TGF-β signaling: emerging role in models of neuropsychiatric disorders. Mol Psychiatry 2022; 27:296-306. [PMID: 34131268 PMCID: PMC8671568 DOI: 10.1038/s41380-021-01186-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Neuropsychiatric diseases are manifested by maladaptive behavioral plasticity. Despite the greater understanding of the neuroplasticity underlying behavioral adaptations, pinpointing precise cellular mediators has remained elusive. This has stymied the development of pharmacological interventions to combat these disorders both at the level of progression and relapse. With increased knowledge on the putative role of the transforming growth factor (TGF- β) family of proteins in mediating diverse neuroadaptations, the influence of TGF-β signaling in regulating maladaptive cellular and behavioral plasticity underlying neuropsychiatric disorders is being increasingly elucidated. The current review is focused on what is currently known about the TGF-β signaling in the central nervous system in mediating cellular and behavioral plasticity related to neuropsychiatric manifestations.
Collapse
|
50
|
Zinsmaier AK, Dong Y, Huang YH. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry 2022; 27:669-686. [PMID: 33963288 PMCID: PMC8691189 DOI: 10.1038/s41380-021-01112-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Cocaine craving, seeking, and relapse are mediated, in part, by cocaine-induced adaptive changes in the brain reward circuits. The nucleus accumbens (NAc) integrates and prioritizes different emotional and motivational inputs to the reward system by processing convergent glutamatergic projections from the medial prefrontal cortex, basolateral amygdala, ventral hippocampus, and other limbic and paralimbic brain regions. Medium spiny neurons (MSNs) are the principal projection neurons in the NAc, which can be divided into two major subpopulations, namely dopamine receptor D1- versus D2-expressing MSNs, with complementing roles in reward-associated behaviors. After cocaine experience, NAc MSNs exhibit complex and differential adaptations dependent on cocaine regimen, withdrawal time, cell type, location (NAc core versus shell), and related input and output projections, or any combination of these factors. Detailed characterization of these cellular adaptations has been greatly facilitated by the recent development of optogenetic/chemogenetic techniques combined with transgenic tools. In this review, we discuss such cell type- and projection-specific adaptations induced by cocaine experience. Specifically, (1) D1 and D2 NAc MSNs frequently exhibit differential adaptations in spinogenesis, glutamatergic receptor trafficking, and intrinsic membrane excitability, (2) cocaine experience differentially changes the synaptic transmission at different afferent projections onto NAc MSNs, (3) cocaine-induced NAc adaptations exhibit output specificity, e.g., being different at NAc-ventral pallidum versus NAc-ventral tegmental area synapses, and (4) the input, output, subregion, and D1/D2 cell type may together determine cocaine-induced circuit plasticity in the NAc. In light of the projection- and cell-type specificity, we also briefly discuss ensemble and circuit mechanisms contributing to cocaine craving and relapse after drug withdrawal.
Collapse
Affiliation(s)
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|