1
|
Olazábal DE, Alsina-Llanes M. Neural basis of aggressive behavior toward newborns in Mice: Advances and future Challenges. Neuroscience 2025; 574:1-12. [PMID: 40158612 DOI: 10.1016/j.neuroscience.2025.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Infanticidal or pup-directed aggressive behavior is present in most species, including humans. It occurs in both reproductive and non-reproductive contexts and its incidence and biological basis may vary among species, strains, sex, and individual experiences. This review has two objectives: 1) to describe the most likely neural circuit that mediates aggressive behavior towards pups in mice, including hormonal, neuroendocrine and neurochemical changes that may increase the probability of attacking pups; and 2) to discuss whether aggressive behavior toward pups in mice is rewarding, an impulsive or predatory response, or a form of maltreatment or adaptive behavior. We propose a neural model to explain aggressive behavior towards pups and discuss evidence suggesting that infanticidal and pup-directed aggressive behavior, although hard-wired in the brain, can be blocked or inhibited by changing the experiences of the subject prior to the access to pups.
Collapse
Affiliation(s)
- Daniel E Olazábal
- Unidad Académica Fisiología, Facultad de Medicina, Udelar, Montevideo, Uruguay.
| | | |
Collapse
|
2
|
Chien YC, Lin SH, Lien CC, Wood JN, Chen CC. Lacking ASIC1a in ASIC4-positive amygdala/bed nucleus of the stria terminalis (BNST) neurons reduces anxiety and innate fear in mice. J Biomed Sci 2025; 32:43. [PMID: 40264173 PMCID: PMC12016152 DOI: 10.1186/s12929-025-01138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Anxiety is an innate response in the face of danger. When anxiety is overwhelming or persistent, it could be considered an anxiety disorder. Recent studies have shown that acid-sensing ion channels (ASICs) represent a novel class of promising targets for developing effective therapies for anxiety. Especially, ASIC1a and ASIC4 of the ASIC family are widely expressed in the central nervous system and their gene knockouts result in reducing or enhancing anxiety-like responses in mice respectively. However, how ASIC1a and ASIC4 modulate anxiety-associated responses remains unknown. METHODS Here we combined chemo-optogenetic, conditional knockout, gene rescue, molecular biology and biochemistry, and electrophysiological approaches to probe the roles of ASIC4 and ASIC4-expressing cells in anxiety-associated responses in mouse models. RESULTS Chemo-optogenetically activating ASIC4-positive cells induced fear and anxiety-like responses in mice. Also, mice lacking ASIC4 (Asic4-/-) in the amygdala or the bed nucleus of the stria terminalis (BNST) exhibited anxiety-associated phenotypes. Conditional knockout of ASIC1a in ASIC4-positive cells reduced anxiety-associated behaviors. In situ hybridization analyses indicated that ASIC4 transcripts were highly co-localized with ASIC1a in the amygdala and BNST. We identified two glycosylation sites of ASIC4, Asn191 and Asn341, that were involved in interacting with ASIC1a and thus could modulate ASIC1a surface protein expression and channel activity. More importantly, viral vector-mediated gene transfer of wild-type ASIC4 but not Asn191 and Asn341 mutants in the amygdala or BNST rescued the anxiogenic phenotypes of Asic4-/- mice. CONCLUSIONS Together, these data suggest that ASIC4 plays an important role in fear and anxiety-related behaviors in mice by modulating ASIC1a activity in the amygdala and BNST.
Collapse
Affiliation(s)
- Ya-Chih Chien
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shing-Hong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - John N Wood
- The Wolfson Institute for Biomedical Research, University College London, WIBR UCL, Gower Street, London, WC1E 6BT, UK.
| | - Chih-Cheng Chen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Taiwan Mouse Clinic-National Comprehensive Phenotyping and Drug Testing Center, Academia Sinica, 128, Section , Academia Road, Taipei, 115, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Peregud DI, Shirobokova NI, Kvichansky AA, Stepanichev MY, Gulyaeva NV. Purmorphamine Alters Anxiety-Like Behavior and Expression of Hedgehog Cascade Components in Rat Brain after Alcohol Withdrawal. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1938-1949. [PMID: 39647823 DOI: 10.1134/s0006297924110087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/13/2024] [Accepted: 08/06/2024] [Indexed: 12/10/2024]
Abstract
Disturbances in the Hedgehog (Hh) signaling play an important role in dysmorphogenesis of bone tissue and central nervous system during prenatal alcohol exposure, which underlies development of fetal alcohol syndrome. The involvement of Hh proteins in the mechanisms of alcohol intake in adults remains obscure. We investigated the role of the Hh cascade in voluntary ethanol drinking and development of anxiety-like behavior (ALB) during early abstinence and assessed changes in the expression of Hh pathway components in different brain regions of male Wistar rats in a model of voluntary alcohol drinking using the intermittent access to 20% ethanol in a two-bottle choice procedure. Purmorphamine (Hh cascade activator and Smoothened receptor agonist) was administered intraperitoneally at a dose of 5 mg/kg body weight prior to 16-20 sessions of alcohol access. Purmorphamine had no effect on the ethanol preference; however, rats exposed to ethanol and receiving purmorphamine demonstrated changes in the ALB during the early abstinence period. Alcohol drinking affected the content of the Sonic hedgehog (Shh) and Patched mRNAs only in the amygdala. In rats exposed to ethanol and receiving purmorphamine, the level of Shh mRNA in the amygdala correlated negatively with the time spent in the open arms of the elevated plus maze. Therefore, we demonstrated for the first time that alterations in the Hh cascade induced by administration of purmorphamine did not affect alcohol preference in voluntary alcohol drinking. It was suggested that Hh cascade is involved in the development of anxiety after alcohol withdrawal through specific changes in the Hh cascade components in the amygdala.
Collapse
Affiliation(s)
- Danil I Peregud
- Serbsky National Medical Research Center for Psychiatry and Drug Addiction, Ministry of Health of the Russian Federation, Moscow, 119034, Russia.
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Nataliya I Shirobokova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Aleksei A Kvichansky
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Mikhail Yu Stepanichev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
- Research and Clinical Center for Neuropsychiatry, Moscow City Health Department, Moscow, 115419, Russia
| |
Collapse
|
4
|
Arruda Sanchez T, Ramos LR, Araujo F, Schenberg EE, Yonamine M, Lobo I, de Araujo DB, Luna LE. Emotion regulation effects of Ayahuasca in experienced subjects during implicit aversive stimulation: An fMRI study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117430. [PMID: 37979818 DOI: 10.1016/j.jep.2023.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/15/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayahuasca is a beverage used in Amazonian traditional medicine and it has been part of the human experience for millennia as well as other different psychoactive plants. Although Ayahuasca has been proposed as potentially therapeutic as an anxiolytic and antidepressant, whilst no studies have been carried out so far investigating their direct effect on brain emotional processing. AIM OF THE STUDY This study aimed to measure the emotional acute effect of Ayahuasca on brain response to implicit aversive stimulation using a face recognition task in functional magnetic resonance imaging (fMRI). MATERIALS AND METHODS Nineteen male experienced Ayahuasca users participated in this study in two fMRI sessions before and after 50 min of the Ayahuasca ingestion. Subjects were presented with pictures of neutral (A) and aversive (B) (fearful or disgusted) faces from the Pictures of Facial Affect Series. Subjects were instructed to identify the gender of the faces (gender discrimination task) while the emotional content was implicit. Subjective mood states were also evaluated before Ayahuasca intake and after the second fMRI session, using a visual analogue mood scale (VAMS). RESULTS During the aversive stimuli, the activity in the bilateral amygdala was attenuated by Ayahuasca (qFDR<0.05). Furthermore, in an exploratory analysis of the effects after intake, Ayahuasca enhances the activation in the insular cortex bilaterally, as well as in the right dorsolateral prefrontal cortex (qFDR<0.05). In the psychometric VAMS scale, subjects reported attenuation of both anxiety and mental sedation (p < 0.01) during acute effects. CONCLUSIONS Together, all reported results including neuroimaging, behavioral data and psychometric self-report suggest that Ayahuasca can promote an emotion regulation mechanism in response to aversive stimuli with corresponding improved cognition including reduced anxiety and mental sedation.
Collapse
Affiliation(s)
- Tiago Arruda Sanchez
- Laboratory of Neuroimaging and Psychophysiology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Lucas Rego Ramos
- Laboratory of Neuroimaging and Psychophysiology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Felipe Araujo
- Laboratory of Neuroimaging and Psychophysiology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Mauricio Yonamine
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Isabela Lobo
- Instituto de Biodiversidade e Sustentabilidade (NUPEM), UFRJ, Macaé, RJ, Brazil
| | - Draulio Barros de Araujo
- Brain Institute / Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Luis Eduardo Luna
- Research Centre for the study of psychointegrator plants, Visionary Art and Consciousness - Wasiwaska, Florianópolis, SC, Brazil
| |
Collapse
|
5
|
Rodrigues-Ribeiro L, Resende BL, Pinto Dias ML, Lopes MR, de Barros LLM, Moraes MA, Verano-Braga T, Souza BR. Neuroproteomics: Unveiling the Molecular Insights of Psychiatric Disorders with a Focus on Anxiety Disorder and Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:103-128. [PMID: 38409418 DOI: 10.1007/978-3-031-50624-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Anxiety and depression are two of the most common mental disorders worldwide, with a lifetime prevalence of up to 30%. These disorders are complex and have a variety of overlapping factors, including genetic, environmental, and behavioral factors. Current pharmacological treatments for anxiety and depression are not perfect. Many patients do not respond to treatment, and those who do often experience side effects. Animal models are crucial for understanding the complex pathophysiology of both disorders. These models have been used to identify potential targets for new treatments, and they have also been used to study the effects of environmental factors on these disorders. Recent proteomic methods and technologies are providing new insights into the molecular mechanisms of anxiety disorder and depression. These methods have been used to identify proteins that are altered in these disorders, and they have also been used to study the effects of pharmacological treatments on protein expression. Together, behavioral and proteomic research will help elucidate the factors involved in anxiety disorder and depression. This knowledge will improve preventive strategies and lead to the development of novel treatments.
Collapse
Affiliation(s)
- Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruna Lopes Resende
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Luiza Pinto Dias
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Megan Rodrigues Lopes
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Larissa Luppi Monteiro de Barros
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Muiara Aparecida Moraes
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil.
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Bruno Rezende Souza
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Vörös D, Kiss O, Ollmann T, Mintál K, Péczely L, Zagoracz O, Kertes E, Kállai V, László BR, Berta B, Toth A, Lénárd L, László K. Intraamygdaloid Oxytocin Increases Time Spent on Social Interaction in Valproate-Induced Autism Animal Model. Biomedicines 2023; 11:1802. [PMID: 37509444 PMCID: PMC10376246 DOI: 10.3390/biomedicines11071802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder that affects about 1.5% of children worldwide. One of the core symptoms is impaired social interaction. Since proper treatment has not been found yet, an investigation of the exact pathophysiology of autism is essential. The valproate (VPA)-induced rat model can be an appropriate way to study autism. Oxytocin (OT) may amend some symptoms of ASD since it plays a key role in developing social relationships. In the present study, we investigated the effect of the intraamygdaloid OT on sham and intrauterine VPA-treated rats' social interaction using Crawley's social interaction test. Bilateral guide cannulae were implanted above the central nucleus of the amygdala (CeA), and intraamygdaloid microinjections were carried out before the test. Our results show that male Wistar rats prenatally exposed to VPA spent significantly less time on social interaction. Bilateral OT microinjection increased the time spent in the social zone; it also reached the level of sham-control animals. OT receptor antagonist blocked this effect of the OT but in itself did not significantly influence the behavior of the rats. Based on our results, we can establish that intraamygdaloid OT has significantly increased time spent on social interaction in the VPA-induced autism model, and its effect is receptor-specific.
Collapse
Affiliation(s)
- Dávid Vörös
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Orsolya Kiss
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Tamás Ollmann
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Kitti Mintál
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Cellular Bioimpedance Research Group, Szentágothai Research Center, University of Pécs, 7602 Pécs, Hungary
| | - László Péczely
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Olga Zagoracz
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Erika Kertes
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Veronika Kállai
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Bettina Réka László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Beáta Berta
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Attila Toth
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Cellular Bioimpedance Research Group, Szentágothai Research Center, University of Pécs, 7602 Pécs, Hungary
| | - László Lénárd
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Molecular Endocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, 7602 Pécs, Hungary
| | - Kristóf László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| |
Collapse
|
7
|
Chavanne AV, Paillère Martinot ML, Penttilä J, Grimmer Y, Conrod P, Stringaris A, van Noort B, Isensee C, Becker A, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Martinot JL, Artiges E. Anxiety onset in adolescents: a machine-learning prediction. Mol Psychiatry 2023; 28:639-646. [PMID: 36481929 PMCID: PMC9908534 DOI: 10.1038/s41380-022-01840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
Recent longitudinal studies in youth have reported MRI correlates of prospective anxiety symptoms during adolescence, a vulnerable period for the onset of anxiety disorders. However, their predictive value has not been established. Individual prediction through machine-learning algorithms might help bridge the gap to clinical relevance. A voting classifier with Random Forest, Support Vector Machine and Logistic Regression algorithms was used to evaluate the predictive pertinence of gray matter volumes of interest and psychometric scores in the detection of prospective clinical anxiety. Participants with clinical anxiety at age 18-23 (N = 156) were investigated at age 14 along with healthy controls (N = 424). Shapley values were extracted for in-depth interpretation of feature importance. Prospective prediction of pooled anxiety disorders relied mostly on psychometric features and achieved moderate performance (area under the receiver operating curve = 0.68), while generalized anxiety disorder (GAD) prediction achieved similar performance. MRI regional volumes did not improve the prediction performance of prospective pooled anxiety disorders with respect to psychometric features alone, but they improved the prediction performance of GAD, with the caudate and pallidum volumes being among the most contributing features. To conclude, in non-anxious 14 year old adolescents, future clinical anxiety onset 4-8 years later could be individually predicted. Psychometric features such as neuroticism, hopelessness and emotional symptoms were the main contributors to pooled anxiety disorders prediction. Neuroanatomical data, such as caudate and pallidum volume, proved valuable for GAD and should be included in prospective clinical anxiety prediction in adolescents.
Collapse
Grants
- MRF_MRF-058-0004-RG-DESRI MRF
- MR/R00465X/1 Medical Research Council
- R01 MH085772 NIMH NIH HHS
- U54 EB020403 NIBIB NIH HHS
- R56 AG058854 NIA NIH HHS
- MR/W002418/1 Medical Research Council
- MR/S020306/1 Medical Research Council
- MRF_MRF-058-0009-RG-DESR-C0759 MRF
- MR/N000390/1 Medical Research Council
- R01 DA049238 NIDA NIH HHS
- This work received support from the following sources: the European Union-funded FP6 Integrated Project IMAGEN (Reinforcement-related behaviour in normal brain function and psychopathology) (LSHM-CT- 2007-037286), the Horizon 2020 funded ERC Advanced Grant ‘STRATIFY’ (Brain network based stratification of reinforcement-related disorders) (695313), Human Brain Project (HBP SGA 2, 785907, and HBP SGA 3, 945539), the Medical Research Council Grant 'c-VEDA’ (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1), the National Institute of Health (NIH) (R01DA049238, A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers), the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, the Bundesministerium für Bildung und Forschung (BMBF grants 01GS08152; 01EV0711; Forschungsnetz AERIAL 01EE1406A, 01EE1406B; Forschungsnetz IMAC- Mind 01GL1745B), the Deutsche Forschungsgemeinschaft (DFG grants SM 80/7-2, SFB 940, TRR 265, NE 1383/14-1), the Medical Research Foundation and Medical Research Council (grants MR/R00465X/1 and MR/S020306/1), the National Institutes of Health (NIH) funded ENIGMA (grants 5U54EB020403-05 and 1R56AG058854-01). Further support was provided by grants from: - the ANR (ANR-12-SAMA-0004, AAPG2019 - GeBra), the Eranet Neuron (AF12-NEUR0008-01 - WM2NA; and ANR-18-NEUR00002-01 - ADORe), the Fondation de France (00081242), the Fondation pour la Recherche Médicale (DPA20140629802), the Mission Interministérielle de Lutte-contre-les-Drogues-et-les-Conduites-Addictives (MILDECA), the Assistance-Publique-Hôpitaux-de-Paris and INSERM (interface grant), Paris Sud University IDEX 2012, the Fondation de l’Avenir (grant AP-RM-17-013), the Fédération pour la Recherche sur le Cerveau; the National Institutes of Health, Science Foundation Ireland (16/ERCD/3797), U.S.A. (Axon, Testosterone and Mental Health during Adolescence; RO1 MH085772-01A1), and by NIH Consortium grant U54 EB020403, supported by a cross-NIH alliance that funds Big Data to Knowledge Centres of Excellence. The INSERM, and the Strasbourg University and SATT CONECTUS, provided sponsorship (PI: Jean-Luc Martinot).
Collapse
Affiliation(s)
- Alice V Chavanne
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marie Laure Paillère Martinot
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France
- Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Jani Penttilä
- Department of Social and Health Care, Psychosocial Services Adolescent Outpatient Clinic Kauppakatu 14, Lahti, Finland
| | - Yvonne Grimmer
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patricia Conrod
- Department of Psychiatry, CHU Sainte-Justine Hospital, University of Montréal, Montreal, QC, Canada
| | | | - Betteke van Noort
- Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, Campus CharitéMitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Corinna Isensee
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Andreas Becker
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CHU Sainte-Justine Research Center, Population Neuroscience Laboratory, University of Montreal, Montreal, QC, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Section of Systems Neuroscience, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Section of Systems Neuroscience, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University Shanghai and Department of Psychiatry and Neuroscience, Charité University Medicine, Berlin, Germany
| | - Jean-Luc Martinot
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France.
| | - Eric Artiges
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France
- Department of Psychiatry, EPS Barthélémy Durand, Etampes, France
| |
Collapse
|
8
|
Albernaz-Mariano KA, Souza RR, Canto-de-Souza A. Blockade of the mineralocorticoid receptors in the medial prefrontal cortex prevents the acquisition of one-trial tolerance in mice. Behav Brain Res 2022; 431:113938. [PMID: 35618080 DOI: 10.1016/j.bbr.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
One-trial tolerance (OTT) is characterized by the lack of anxiolytic-like effects of benzodiazepines in animals submitted to a trial 2 in the elevated plus-maze (EPM) and is described to be influenced by learning mechanisms. Mineralocorticoid receptors (MR) in the infralimbic subregion (IL) of the medial prefrontal cortex (mPFC) are important modulators of emotional learning, but the MR involvement in the establishment of OTT remains unclear. We investigated the effects of intra-IL infusions of RU 28318 (an MR antagonist) on the OTT to the anxiolytic effects of midazolam (MDZ, GABAA-benzodiazepine agonist) in mice exposed to a two-trial protocol in the EPM. First, mice were treated with saline or MDZ (2mgkg-1, i.p.) 30minutes before trial 1 or 2 in the EPM, to characterize the OTT. To investigate the role of MR in the OTT, independent groups of mice received intra-IL infusions of vehicle or RU 28318 (5 or 10ng 0.1µL-1) immediately before or after first trial in the EPM. Twenty-four hours later, the same mice received injections of saline or MDZ and were re-tested in the EPM. The MDZ decreased anxiety-like behaviors in trial 1, but the same anxiolytic-like effect was not observed in MDZ-mice prior to the second EPM test, confirming the OTT. Blockade of MR in the IL before, but not after, trial 1 restored the anxiolytic effects if MDZ administered in trial 2. These findings indicate that the MR in the IL-mPFC contributing to the OTT by mediating the acquisition, but not the consolidation of emotional learning.
Collapse
Affiliation(s)
- Kairo Alan Albernaz-Mariano
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil.
| | - Rimenez Rodrigues Souza
- The University of Texas at Dallas, School of Behavior and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States.
| | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Graduate Program in Psychology UFSCar, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Disrupted Cacna1c gene expression perturbs spontaneous Ca 2+ activity causing abnormal brain development and increased anxiety. Proc Natl Acad Sci U S A 2022; 119:2108768119. [PMID: 35135875 PMCID: PMC8851547 DOI: 10.1073/pnas.2108768119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
The gene CACNA1C encodes for a calcium channel that has been linked to various psychiatric conditions, including schizophrenia and bipolar disorder, through hitherto unknown cellular mechanisms. Here, we report that deletion of Cacna1c in neurons of the developing brain disrupts spontaneous calcium activity and causes abnormal brain development and anxiety. Our results indicate that marginally alterations in the expression level of Cacna1c have major effects on the intrinsic spontaneous calcium activity of neural progenitors that play a crucial role in brain development. Thus, Cacna1c acts as a molecular switch that can increase susceptibility to psychiatric disease. The L-type voltage-gated Ca2+ channel gene CACNA1C is a risk gene for various psychiatric conditions, including schizophrenia and bipolar disorder. However, the cellular mechanism by which CACNA1C contributes to psychiatric disorders has not been elucidated. Here, we report that the embryonic deletion of Cacna1c in neurons destined for the cerebral cortex using an Emx1-Cre strategy disturbs spontaneous Ca2+ activity and causes abnormal brain development and anxiety. By combining computational modeling with electrophysiological membrane potential manipulation, we found that neural network activity was driven by intrinsic spontaneous Ca2+ activity in distinct progenitor cells expressing marginally increased levels of voltage-gated Ca2+ channels. MRI examination of the Cacna1c knockout mouse brains revealed volumetric differences in the neocortex, hippocampus, and periaqueductal gray. These results suggest that Cacna1c acts as a molecular switch and that its disruption during embryogenesis can perturb Ca2+ handling and neural development, which may increase susceptibility to psychiatric disease.
Collapse
|
10
|
Lazarini-Lopes W, Silva-Cardoso GK, Leite-Panissi CRA, Garcia-Cairasco N. Increased TRPV1 Channels and FosB Protein Expression Are Associated with Chronic Epileptic Seizures and Anxiogenic-like Behaviors in a Preclinical Model of Temporal Lobe Epilepsy. Biomedicines 2022; 10:biomedicines10020416. [PMID: 35203625 PMCID: PMC8962263 DOI: 10.3390/biomedicines10020416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsies are neurological disorders characterized by chronic seizures and their related neuropsychiatric comorbidities, such as anxiety. The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel has been implicated in the modulation of seizures and anxiety-like behaviors in preclinical models. Here, we investigated the impact of chronic epileptic seizures in anxiety-like behavior and TRPV1 channels expression in a genetic model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. WARs were submitted to audiogenic kindling (AK), a preclinical model of temporal lobe epilepsy (TLE) and behavioral tests were performed in the open-field (OF), and light-dark box (LDB) tests 24 h after AK. WARs displayed increased anxiety-like behavior and TRPV1R expression in the hippocampal CA1 area and basolateral amygdala nucleus (BLA) when compared to control Wistar rats. Chronic seizures increased anxiety-like behaviors and TRPV1 and FosB expression in limbic and brainstem structures involved with epilepsy and anxiety comorbidity, such as the hippocampus, superior colliculus, and periaqueductal gray matter. Therefore, these results highlight previously unrecognized alterations in TRPV1 expression in brain structures involved with TLE and anxiogenic-like behaviors in a genetic model of epilepsy, the WAR strain, supporting an important role of TRPV1 in the modulation of neurological disorders and associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Gleice Kelli Silva-Cardoso
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Christie Ramos Andrade Leite-Panissi
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Physiology Department, Ribeirão Preto School of Medicine and Neuroscience and Behavioral Sciences Department, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Correspondence:
| |
Collapse
|
11
|
Pati D, Kash TL. Tumor necrosis factor-α modulates GABAergic and dopaminergic neurons in the ventrolateral periaqueductal gray of female mice. J Neurophysiol 2021; 126:2119-2129. [PMID: 34817244 PMCID: PMC8715045 DOI: 10.1152/jn.00251.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
Neuroimmune signaling is increasingly identified as a critical component of various illnesses, including chronic pain, substance use disorder, and depression. However, the underlying neural mechanisms remain unclear. Proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), may play a role by modulating synaptic function and long-term plasticity. The midbrain structure periaqueductal gray (PAG) plays a well-established role in pain processing, and although TNF-α inhibitors have emerged as a therapeutic strategy for pain-related disorders, the impact of TNF-α on PAG neuronal activity has not been thoroughly characterized. Recent studies have identified subpopulations of ventrolateral PAG (vlPAG) with opposing effects on nociception, with dopamine (DA) neurons driving pain relief in contrast to GABA neurons. Therefore, we used slice physiology to examine the impact of TNF-α on neuronal activity of both these subpopulations. We focused on female mice since the PAG is a sexually dimorphic region and most studies use male subjects, limiting our understanding of mechanistic variations in females. We selectively targeted GABA and DA neurons using transgenic reporter lines. Following exposure to TNF-α, there was an increase in excitability of GABA neurons along with a reduction in glutamatergic synaptic transmission. In DA neurons, TNF-α exposure resulted in a robust decrease in excitability along with a modest reduction in glutamatergic synaptic transmission. Interestingly, TNF-α had no effect on inhibitory transmission onto DA neurons. Collectively, these data suggest that TNF-α differentially affects the function of GABA and DA neurons in female mice and enhances our understanding of how TNF-α-mediated signaling modulates vlPAG function.NEW & NOTEWORTHY This study describes the effects of TNF-α on two distinct subpopulations of neurons in the vlPAG. We show that TNF-α alters both neuronal excitability and glutamatergic synaptic transmission on GABA and dopamine neurons within the vlPAG of female mice. This provides critical new information on the role of TNF-α in the potential modulation of pain, since activation of vlPAG GABA neurons drives nociception, whereas activation of dopamine neurons drives analgesia.
Collapse
Affiliation(s)
- Dipanwita Pati
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Overall KL. Pharmacotherapeutics in clinical ethology: treatment efficacy, clinical pathology and outcome. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The use of psychopharmaceutical agents is a core aspect of treatment in veterinary behavioural medicine. Psychotropic medication use has shifted the focus of treatment from purely behavioural and environmental interventions to a multi-modal approach. Objective measures of efficacy are required for the licensing of medication. Pharmacotherapeutics have come to encompass supplements and diets, in addition to prescription medications. The first part of this paper examines the efficacy of medications, supplements and diets used in behavioural medicine. Foci include the role of evolution in the types of behavioural concerns reported, the importance of defining abnormal or pathological behaviour, use of terminology that supports stratified mechanistic diagnoses aid in understanding presentation and response clusters, and rational use of medication to relieve emotional, mental and behavioural suffering, given these diagnoses and clusters. The second part of this paper examines the extent to which variation in patient response to medication can enlighten us about mechanisms and outcomes of distress using a series of 3 patient populations who are the focus of studies on separation anxiety and noise reactivity. This response surface approach can be useful for understanding differences in populations in susceptibility to behavioural pathology and in medication response, and may suggest new avenues for drug development and application.
Collapse
Affiliation(s)
- Karen L. Overall
- Department of Health Management, Atlantic Veterinary College, UPEI, 550 University Avenue, Charlottetown, PEI, Canada C1A 4P3
| |
Collapse
|
13
|
Chen CV, Jordan CL, Breedlove SM. Testosterone works through androgen receptors to modulate neuronal response to anxiogenic stimuli. Neurosci Lett 2021; 753:135852. [PMID: 33785380 DOI: 10.1016/j.neulet.2021.135852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
Testosterone (T) exerts anxiolytic effects through functional androgen receptors (ARs) in rodents. T treatment of castrated mice reduces anxiety-like behavior in wild-type (WT) males, but not males with a spontaneous mutation that renders AR dysfunctional (testicular feminization mutation, Tfm). Using Cre-LoxP technology we created males carrying induced dysfunctional AR allele (induced TFM; iTfm) to determine the brain regions responsible for T-induced anxiolysis. Adult WT and iTfm mice were castrated and T treated. Castrated WTs given a blank capsule (WT + B) served as additional controls. Mice were later exposed to the anxiogenic light/dark box, sacrificed and their brains processed for immediate early gene cFos immunoreactivity. Analyses revealed that T treatment increased cFos-expressing neurons in the basolateral amygdala (blAMY) of WT males, but not in iTfm males, which did not differ from WT + B mice. In contrast, WT + T males displayed fewer cFos + cells than iTfm + T or WT + B groups in the suprachiasmatic nucleus of the hypothalamus (SCN). No effects of genotype or hormone were seen in cFos expression in the hippocampus, medial prefrontal cortex, paraventricular nucleus of the hypothalamus, oval and anterodorsal bed nucleus of the stria terminalis, or dorsal periaqueductal grey. AR immunohistochemistry indicated that ∼65 % of cells in the blAMY and SCN were AR + in WT males, so AR could act directly within neurons in these regions to modulate the animals' response to anxiogenic stimuli. Because absence of a functional AR did not affect cFos response to mild stress in the other brain regions, they are unlikely to mediate androgen's anxiolytic effects.
Collapse
Affiliation(s)
- Chieh V Chen
- Texas A&M University, Psychiatry Department, Clinical Building 1 Suite 1100, 8441 Riverside Parkway, Bryan, TX 77807, United States; Michigan State University, United States.
| | - Cynthia L Jordan
- Psychology Department, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States; Neuroscience Program, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States
| | - S Marc Breedlove
- Psychology Department, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States; Neuroscience Program, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States
| |
Collapse
|
14
|
Sowers LP, Wang M, Rea BJ, Taugher RJ, Kuburas A, Kim Y, Wemmie JA, Walker CS, Hay DL, Russo AF. Stimulation of Posterior Thalamic Nuclei Induces Photophobic Behavior in Mice. Headache 2020; 60:1961-1981. [PMID: 32750230 DOI: 10.1111/head.13917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE A hallmark of migraine is photophobia. In mice, photophobia-like behavior is induced by calcitonin gene-related peptide (CGRP), a neuropeptide known to be a key player in migraine. In this study, we sought to identify sites within the brain from which CGRP could induce photophobia. DESIGN We focused on the posterior thalamic region, which contains neurons responsive to both light and dural stimulation and has CGRP binding sites. We probed this area with both optogenetic stimulation and acute CGRP injections in wild-type mice. Since the light/dark assay has historically been used to investigate anxiety-like responses in animals, we measured anxiety in a light-independent open field assay and asked if stimulation of a brain region, the periaqueductal gray, that induces anxiety would yield similar results to posterior thalamic stimulation. The hippocampus was used as an anatomical control to ensure that light-aversive behaviors could not be induced by the stimulation of any brain region. RESULTS Optogenetic activation of neuronal cell bodies in the posterior thalamic nuclei elicited light aversion in both bright and dim light without an anxiety-like response in an open field assay. Injection of CGRP into the posterior thalamic region triggered similar light-aversive behavior without anxiety. In contrast to the posterior thalamic nuclei, optogenetic stimulation of dorsal periaqueductal gray cell bodies caused both light aversion and an anxiety-like response, while CGRP injection had no effect. In the dorsal hippocampus, neither optical stimulation nor CGRP injection affected light aversion or open field behaviors. CONCLUSION Stimulation of posterior thalamic nuclei is able to initiate light-aversive signals in mice that may be modulated by CGRP to cause photophobia in migraine.
Collapse
Affiliation(s)
- Levi P Sowers
- Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.,Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Mengya Wang
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Brandon J Rea
- Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.,Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Rebecca J Taugher
- Veterans Administration Health Center, Iowa City, IA, USA.,Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Adisa Kuburas
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - John A Wemmie
- Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Andrew F Russo
- Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.,Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Department of Neurology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
15
|
Terpou BA, Harricharan S, McKinnon MC, Frewen P, Jetly R, Lanius RA. The effects of trauma on brain and body: A unifying role for the midbrain periaqueductal gray. J Neurosci Res 2019; 97:1110-1140. [PMID: 31254294 DOI: 10.1002/jnr.24447] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
Post-traumatic stress disorder (PTSD), a diagnosis that may follow the experience of trauma, has multiple symptomatic phenotypes. Generally, individuals with PTSD display symptoms of hyperarousal and of hyperemotionality in the presence of fearful stimuli. A subset of individuals with PTSD; however, elicit dissociative symptomatology (i.e., depersonalization, derealization) in the wake of a perceived threat. This pattern of response characterizes the dissociative subtype of the disorder, which is often associated with emotional numbing and hypoarousal. Both symptomatic phenotypes exhibit attentional threat biases, where threat stimuli are processed preferentially leading to a hypervigilant state that is thought to promote defensive behaviors during threat processing. Accordingly, PTSD and its dissociative subtype are thought to differ in their proclivity to elicit active (i.e., fight, flight) versus passive (i.e., tonic immobility, emotional shutdown) defensive responses, which are characterized by the increased and the decreased expression of the sympathetic nervous system, respectively. Moreover, active and passive defenses are accompanied by primarily endocannabinoid- and opioid-mediated analgesics, respectively. Through critical review of the literature, we apply the defense cascade model to better understand the pathological presentation of defensive responses in PTSD with a focus on the functioning of lower-level midbrain and extended brainstem systems.
Collapse
Affiliation(s)
- Braeden A Terpou
- Department of Neuroscience, Western University, London, Ontario, Canada
| | | | - Margaret C McKinnon
- Mood Disorders Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Homewood Research Institute, Guelph, Ontario, Canada
| | - Paul Frewen
- Department of Psychology, Western University, London, Ontario, Canada
| | - Rakesh Jetly
- Canadian Forces, Health Services, Ottawa, Canada
| | - Ruth A Lanius
- Department of Neuroscience, Western University, London, Ontario, Canada.,Department of Psychiatry, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Fernandes GG, Frias AT, Spiacci A, Pinheiro LC, Tanus-Santos JE, Zangrossi H. Nitric oxide in the dorsal periaqueductal gray mediates the panic-like escape response evoked by exposure to hypoxia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:321-327. [PMID: 30742862 DOI: 10.1016/j.pnpbp.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023]
Abstract
Exposure of rats to an environment with low O2 levels evokes a panic-like escape behavior and recruits the dorsal periaqueductal gray (dPAG), which is considered to be a key region in the pathophysiology of panic disorder. The neurochemical basis of this response is, however, currently unknown. We here investigated the role played by nitric oxide (NO) within the dPAG in mediation of the escape reaction induced by hypoxia exposure. The results showed that exposure of male Wistar rats to 7% O2 increased nitrite levels, a NO metabolite, in the dPAG but not in the amygdala or hypothalamus. Nitrite levels in the dPAG were correlated with the number of escape attempts during the hypoxia challenge. Injections of the NO synthesis inhibitor NPA, the NO-scavenger c- PTIO, or the NMDA receptor antagonist AP-7 into the dorsolateral column of the periaqueductal gray (dlPAG) inhibited escape expression during hypoxia, without affecting the rats' locomotion. Intra-dlPAG administration of c-PTIO had no effect on the escape response evoked by the elevated-T maze, a defensive behavior that has also been associated with panic attacks. Altogether, our results suggest that NO plays a critical role in mediation of the panic-like defensive response evoked by exposure to low O2 concentrations.
Collapse
Affiliation(s)
- Gabriel Gripp Fernandes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Alana Tercino Frias
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Ailton Spiacci
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
17
|
Pourrahimi AM, Abbasnejad M, Esmaeili-Mahani S, Kooshki R, Raoof M. Intra-periaqueductal gray matter administration of orexin-A exaggerates pulpitis-induced anxiogenic responses and c-fos expression mainly through the interaction with orexin 1 and cannabinoid 1 receptors in rats. Neuropeptides 2019; 73:25-33. [PMID: 30587409 DOI: 10.1016/j.npep.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/15/2023]
Abstract
Different types of trigeminal pains are frequently associated with psychophysiological concerns. Orexin-A and orexin 1 receptor (OX1R) are involved in modulation of both trigeminal pain and anxiety responses. Ventrolateral periaqueductal gray matter (vlPAG), a controlling site for nociception and emotion, receives orexinergic inputs. Here, the role of vlPAG OX1Rs and their interaction with cannabinoid 1 (CB1) receptor was evaluated in anxiety-like behavior following capsaicin-induced dental pulp pain. Rats were cannulated in the vlPAG and orexin-A was injected at the doses of 0.17, 0.35 and 0.51 μg/rat prior to the induction of pain. The elevated plus maze (EPM) and open field (OF) tests were used for assessing the anxiety responses. In addition, the induction of c-fos, in the vlPAG, was investigated using immunofluorescence microscopy. Capsaicin-treated rats displayed significantly higher anxiogenic behavior on EPM and OF tests. Pretreatment with orexin-A (0.51 μg/rat) attenuated capsaicin-mediated nociception, while exaggerated anxiogenic responses (p < 0.05). In addition, orexin-A effects were diminished by the administration of OX1R (SB-334867, 12 μg/rat) and cannabinoid 1 (AM251, 4 μg/rat) receptor antagonists. Intradental capsaicin induced a significant increase in c-fos expression in the vlPAG that was exaggerated by orexin-A (0.51 μg/rat). Blockage of OX1R and CB1 receptors attenuated the effect of orexin-A on c-fos expression in capsaicin-treated rats. In conclusion, the data suggest that manipulation of OX1R and CB1 receptors in the vlPAG alters capsaicin-evoked anxiety like behaviors and c-fos induction in rats.
Collapse
Affiliation(s)
- Ali Mohammad Pourrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Razieh Kooshki
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Raoof
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Kokhan VS, Lebedeva-Georgievskaya KB, Kudrin VS, Bazyan AS, Maltsev AV, Shtemberg AS. An investigation of the single and combined effects of hypogravity and ionizing radiation on brain monoamine metabolism and rats' behavior. LIFE SCIENCES IN SPACE RESEARCH 2019; 20:12-19. [PMID: 30797429 DOI: 10.1016/j.lssr.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ionizing radiation and hypogravity can cause central nervous system (CNS) dysfunctions. This is a key limiting factor for deep space missions. Up until now, the mechanisms through which they affect the neural tissue are not completely understood. OBJECTIVES We studied how the combination of hypogravity (antiorthostatic suspension model, AS) and ionizing radiations (γ-quanta and 1H+ together, R) affects the CNS. METHODS We applied separately and in combination AS and R to determine the influence of these factors on behavior and metabolism of monoamines in Wistar rat's brain. RESULTS We found out that R has a slight effect on both the behavior and metabolism of monoamines. However, when applied in combination with AS the former was able to reduce the negative effects of the latter. The combined effect of ionizing radiation and hypogravity led to the recovery of locomotor activity, orientation and exploratory behavior, and long-term context memory impaired under the impact of hypogravity only. These changes came together with an increase in the serotonin and dopamine turnover in all of the brain structures that were studied. CONCLUSIONS We received the first evidence of interferential interaction between the effects of ionizing radiation and hypogravity factors with regard to a behavior and monoamine turnover in the brain. Further studies with heavy nuclei at relevant doses (<0.5 Gy) are needed.
Collapse
Affiliation(s)
- Viktor S Kokhan
- Laboratory of Radiation and Extreme Neurophysiology, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76A, Moscow 123007, Russia.
| | - Kseniya B Lebedeva-Georgievskaya
- Laboratory of Radiation and Extreme Neurophysiology, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76A, Moscow 123007, Russia
| | - Vladimir S Kudrin
- Laboratory of Radiation and Extreme Neurophysiology, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76A, Moscow 123007, Russia
| | - Ara S Bazyan
- Laboratory of Radiation and Extreme Neurophysiology, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76A, Moscow 123007, Russia; Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - Andrey V Maltsev
- Institute of Physiologically Active Compounds RAS, Chernogolovka, Russia
| | - Andrey S Shtemberg
- Laboratory of Radiation and Extreme Neurophysiology, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76A, Moscow 123007, Russia
| |
Collapse
|
19
|
Alsebaaly J, Dugast E, Favot L, Rabbaa Khabbaz L, Solinas M, Thiriet N. Persistent Neuroadaptations in the Expression of Genes Involved in Cholesterol Homeostasis Induced by Chronic, Voluntary Alcohol Intake in Rats. Front Mol Neurosci 2018; 11:457. [PMID: 30618609 PMCID: PMC6300585 DOI: 10.3389/fnmol.2018.00457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Alcohol use disorder (AUD) is associated with persistent adaptations in the brain that are believed to participate in the long-lasting vulnerability to relapse after abstinence. Cholesterol, the major sterol compound found in the central nervous system (CNS), plays a major role in maintenance of neuronal morphology, synaptogenesis and synaptic communication and may be involved in alcohol-induced neuroadaptations. In this study, we investigated whether alcohol consumption in a two-bottle choice paradigm followed by 3 weeks of abstinence could alter the expression of genes encoding proteins involved in cholesterol homeostasis in brain regions involved in addiction and relapse, namely the prefrontal cortex (PFC), the nucleus accumbens (NAc), the mesencephalon and the amygdala. We found that voluntary alcohol intake followed by 3 weeks of forced abstinence produces changes in the transcription of several genes encoding proteins directly involved in cholesterol synthesis such as 3-hydroxyl-3-methylglutaryl-coenzyme A (HMGCoA) reductase, farnesyl-diphosphate farnesyltransferase 1 (FDFT1) and farnesyl diphosphate synthase (FDPS) and in its regulation such as sterol regulatory element-binding factor-2 (SREBF2), in cholesterol transport such as ATP-binding cassette subfamily A member 1 (ABCA1) and in cholesterol degradation such as CYP46A1. Interestingly, these changes appeared to be region-specific and suggest that previous chronic exposure to alcohol might durably increase cholesterol metabolism in the PFC, the NAc and the mesencephalon and decrease cholesterol metabolism in the amygdala. Altogether, these results suggest that alcohol consumption leads to durable deregulations in cholesterol metabolism in key areas involved in loss of control over drug use and addiction. These long-term neuroadaptations may participate in the changes in brain structure and functioning that are responsible for the long-lasting risks of relapse to alcohol.
Collapse
Affiliation(s)
- Josette Alsebaaly
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM, U-1084, Poitiers, France
- Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments (LPCQM), Faculty of Pharmacy, PTS, University of Saint-Joseph of Beirut, Beirut, Lebanon
| | - Emilie Dugast
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM, U-1084, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Laure Favot
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA4331, University of Poitiers, Poitiers, France
| | - Lydia Rabbaa Khabbaz
- Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments (LPCQM), Faculty of Pharmacy, PTS, University of Saint-Joseph of Beirut, Beirut, Lebanon
| | - Marcello Solinas
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM, U-1084, Poitiers, France
| | - Nathalie Thiriet
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM, U-1084, Poitiers, France
| |
Collapse
|
20
|
Galgano J, Pantazatos S, Allen K, Yanagihara T, Hirsch J. Functional connectivity of PAG with core limbic system and laryngeal cortico-motor structures during human phonation. Brain Res 2018; 1707:184-189. [PMID: 30500402 DOI: 10.1016/j.brainres.2018.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 11/25/2022]
Abstract
Previous studies in animals and humans suggest the periaqueductal grey region (PAG) is a final integration station between the brain and laryngeal musculature during phonation. To date, a limited number of functional magnetic neuroimaging (fMRI) studies have examined the functional connectivity of the PAG during volitional human phonation. An event-related, stimulus-induced, volitional movement paradigm was used to examine neural activity during sustained vocalization in neurologically healthy adults and was compared to controlled exhalation through the nose. The contrast of vocalization greater than controlled expiration revealed activation of bilateral auditory cortex, dorsal and ventral laryngeal motor areas (dLMA and vLMA) (p < 0.05, corrected), and suggested activation of the cerbellum, insula, dorsomedial prefrontal cortex (dmPFC), amygdala, and PAG. The functionally defined PAG cluster was used as a seed region for psychophysiological interaction analysis (PPI) to identify regions with greater functional connectivity with PAG during volitional vocalization, while the above functionally defined amygdala cluster was used in an ROI PPI analysis. Whole-brain results revealed increased functional connectivity of the PAG with left vLMA during voicing, relative to controlled expiration, while trend-level evidence was observed for increased PAG/amygdala coupling during voicing (p = 0.07, uncorrected). Diffusion tensor imaging (DTI) analysis confirmed structural connectivity between PAG and vLMA. The present study sheds further light on neural mechanisms of volitional vocalization that include multiple inputs from both limbic and motor structures to PAG. Future studies should include investigation of how these neural mechanisms are affected in individuals with voice disorders during volitional vocalization.
Collapse
Affiliation(s)
- Jessica Galgano
- Program for Imaging & Cognitive Sciences (PICS), Columbia University, New York, NY, USA; Department of Rehabilitation, New York University Langone School of Medicine, New York, NY, USA.
| | - Spiro Pantazatos
- Program for Imaging & Cognitive Sciences (PICS), Columbia University, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA; Molecular Biology and Neuropathology Division, New York Psychiatric Institute, New York, NY, USA
| | - Kachina Allen
- Department of Psychology, Princeton University, Princeton, NJ, USA; Department of Psychology, Rutgers University, Newark, NJ, USA
| | - Ted Yanagihara
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; New York Presbyterian - Brooklyn Methodist Hospital, Brooklyn, NY, USA
| | - Joy Hirsch
- Program for Imaging & Cognitive Sciences (PICS), Columbia University, New York, NY, USA; Departments of Psychiatry, Neuroscience, and Comparative Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Medical Physics and Biomedical Engineering, University College London, UK
| |
Collapse
|
21
|
Aβ dimers induce behavioral and neurochemical deficits of relevance to early Alzheimer's disease. Neurobiol Aging 2018; 69:1-9. [DOI: 10.1016/j.neurobiolaging.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 11/23/2022]
|
22
|
Bey AL, Wang X, Yan H, Kim N, Passman RL, Yang Y, Cao X, Towers AJ, Hulbert SW, Duffney LJ, Gaidis E, Rodriguiz RM, Wetsel WC, Yin HH, Jiang YH. Brain region-specific disruption of Shank3 in mice reveals a dissociation for cortical and striatal circuits in autism-related behaviors. Transl Psychiatry 2018; 8:94. [PMID: 29700290 PMCID: PMC5919902 DOI: 10.1038/s41398-018-0142-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
We previously reported a new line of Shank3 mutant mice which led to a complete loss of Shank3 by deleting exons 4-22 (Δe4-22) globally. Δe4-22 mice display robust ASD-like behaviors including impaired social interaction and communication, increased stereotypical behavior and excessive grooming, and a profound deficit in instrumental learning. However, the anatomical and neural circuitry underlying these behaviors are unknown. We generated mice with Shank3 selectively deleted in forebrain, striatum, and striatal D1 and D2 cells. These mice were used to interrogate the circuit/brain-region and cell-type specific role of Shank3 in the expression of autism-related behaviors. Whole-cell patch recording and biochemical analyses were used to study the synaptic function and molecular changes in specific brain regions. We found perseverative exploratory behaviors in mice with deletion of Shank3 in striatal inhibitory neurons. Conversely, self-grooming induced lesions were observed in mice with deletion of Shank3 in excitatory neurons of forebrain. However, social, communicative, and instrumental learning behaviors were largely unaffected in these mice, unlike what is seen in global Δe4-22 mice. We discovered unique patterns of change for the biochemical and electrophysiological findings in respective brain regions that reflect the complex nature of transcriptional regulation of Shank3. Reductions in Homer1b/c and membrane hyper-excitability were observed in striatal loss of Shank3. By comparison, Shank3 deletion in hippocampal neurons resulted in increased NMDAR-currents and GluN2B-containing NMDARs. These results together suggest that Shank3 may differentially regulate neural circuits that control behavior. Our study supports a dissociation of Shank3 functions in cortical and striatal neurons in ASD-related behaviors, and it illustrates the complexity of neural circuit mechanisms underlying these behaviors.
Collapse
Affiliation(s)
- Alexandra L. Bey
- 0000 0004 1936 7961grid.26009.3dDepartments of Neurobiology, Duke University, Durham, NC 27710 USA
| | - Xiaoming Wang
- 0000 0004 1936 7961grid.26009.3dPediatrics, Duke University, Durham, NC 27710 USA
| | - Haidun Yan
- 0000 0004 1936 7961grid.26009.3dPediatrics, Duke University, Durham, NC 27710 USA
| | - Namsoo Kim
- 0000 0004 1936 7961grid.26009.3dPsychology and Neuroscience, Duke University, Durham, NC 27710 USA
| | - Rebecca L. Passman
- 0000 0004 1936 7961grid.26009.3dBiology, Duke University, Durham, NC 27710 USA
| | - Yilin Yang
- 0000 0004 1936 7961grid.26009.3dPediatrics, Duke University, Durham, NC 27710 USA
| | - Xinyu Cao
- 0000 0004 1936 7961grid.26009.3dPediatrics, Duke University, Durham, NC 27710 USA
| | - Aaron J. Towers
- 0000 0004 1936 7961grid.26009.3dGenomics and Genetics Graduate Program, Duke University, Durham, NC 27710 USA
| | - Samuel W. Hulbert
- 0000 0004 1936 7961grid.26009.3dDepartments of Neurobiology, Duke University, Durham, NC 27710 USA
| | - Lara J. Duffney
- 0000 0004 1936 7961grid.26009.3dPediatrics, Duke University, Durham, NC 27710 USA
| | - Erin Gaidis
- 0000 0004 1936 7961grid.26009.3dPsychology and Neuroscience, Duke University, Durham, NC 27710 USA
| | - Ramona M. Rodriguiz
- 0000 0004 1936 7961grid.26009.3dPsychiatry and Behavioral Sciences, Duke University, Durham, NC 27710 USA
| | - William C. Wetsel
- 0000 0004 1936 7961grid.26009.3dDepartments of Neurobiology, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dPsychiatry and Behavioral Sciences, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dCell Biology, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dDuke Institute for Brain Sciences, Duke University, Durham, NC 27710 USA
| | - Henry H. Yin
- 0000 0004 1936 7961grid.26009.3dDepartments of Neurobiology, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dPsychology and Neuroscience, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dDuke Institute for Brain Sciences, Duke University, Durham, NC 27710 USA
| | - Yong-hui Jiang
- 0000 0004 1936 7961grid.26009.3dDepartments of Neurobiology, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dPediatrics, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dGenomics and Genetics Graduate Program, Duke University, Durham, NC 27710 USA ,0000 0004 1936 7961grid.26009.3dDuke Institute for Brain Sciences, Duke University, Durham, NC 27710 USA
| |
Collapse
|
23
|
Decrease in NMDA receptor-signalling activity in the anterior cingulate cortex diminishes defensive behaviour and unconditioned fear-induced antinociception elicited by GABAergic tonic inhibition impairment in the posterior hypothalamus. Eur Neuropsychopharmacol 2017; 27:1120-1131. [PMID: 28939165 DOI: 10.1016/j.euroneuro.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 11/20/2022]
Abstract
Acute γ-aminobutyric acid (GABA) disinhibition in the posterior hypothalamus (PH) elicits defensive reactions that are considered anxiety- and panic attack-like behaviour, and these defensive reactions are followed by antinociception. Evidence indicates that the PH connects with the medial prefrontal cortex, particularly the anterior cingulate cortex (ACC), which seems to regulate these unconditioned fear-induced defensive responses. However, few studies have shown the participation of cortical regions in the control of behavioural and antinociceptive responses organised by diencephalic structures. It has been suggested that the glutamatergic system can mediate this cortical influence, as excitatory imbalance is believed to play a role in both defensive mechanisms. Thus, the aim of the present study was to investigate the involvement of ACC glutamatergic connections via blockade of local N-methyl-D-aspartate (NMDA) receptors to elaborate panic-like defensive behaviours and unconditioned fear-induced antinociception organised by PH neurons. Wistar rats were treated with microinjections of 0.9% NaCl or LY235959 (a selective NMDA receptor antagonist) in the ACC at different concentrations (2, 4 and 8 nmol/0.2μL), followed by GABAA receptor blockade in the PH. Defensive reactions were analysed for 20min, and the nociceptive threshold was then measured at 10-min intervals for 60min. Pretreatment of the ACC with LY235959 reduced both panic-like defensive behaviour and fear-induced antinociception evoked by PH GABAergic disinhibition. Our findings suggest that ACC NMDA receptor-signalled glutamatergic inputs play a relevant role in the organisation of anxiety- and panic attack-like behaviours and in fear-induced antinociception.
Collapse
|
24
|
León LA, Castro-Gomes V, Zárate-Guerrero S, Corredor K, Mello Cruz AP, Brandão ML, Cardenas FP, Landeira-Fernandez J. Behavioral Effects of Systemic, Infralimbic and Prelimbic Injections of a Serotonin 5-HT 2A Antagonist in Carioca High- and Low-Conditioned Freezing Rats. Front Behav Neurosci 2017; 11:117. [PMID: 28736518 PMCID: PMC5500641 DOI: 10.3389/fnbeh.2017.00117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
The role of serotonin (5-hydroxytryptamine [5-HT]) and 5-HT2A receptors in anxiety has been extensively studied, mostly without considering individual differences in trait anxiety. Our laboratory developed two lines of animals that are bred for high and low freezing responses to contextual cues that are previously associated with footshock (Carioca High-conditioned Freezing [CHF] and Carioca Low-conditioned Freezing [CLF]). The present study investigated whether ketanserin, a preferential 5-HT2A receptor blocker, exerts distinct anxiety-like profiles in these two lines of animals. In the first experiment, the animals received a systemic injection of ketanserin and were exposed to the elevated plus maze (EPM). In the second experiment, these two lines of animals received microinjections of ketanserin in the infralimbic (IL) and prelimbic (PL) cortices and were exposed to either the EPM or a contextual fear conditioning paradigm. The two rat lines exhibited bidirectional effects on anxiety-like behavior in the EPM and opposite responses to ketanserin. Both systemic and intra-IL cortex injections of ketanserin exerted anxiolytic-like effects in CHF rats but anxiogenic-like effects in CLF rats. Microinjections of ketanserin in the PL cortex also exerted anxiolytic-like effects in CHF rats but had no effect in CLF rats. These results suggest that the behavioral effects of 5-HT2A receptor antagonism might depend on genetic variability associated with baseline reactions to threatening situations and 5-HT2A receptor expression in the IL and PL cortices. Highlights -CHF and CLF rats are two bidirectional lines that are based on contextual fear conditioning.-CHF rats have a more "anxious" phenotype than CLF rats in the EPM.-The 5-HT2A receptor antagonist ketanserin had opposite behavioral effects in CHF and CLF rats.-Systemic and IL injections either decreased (CHF) or increased (CLF) anxiety-like behavior.-PL injections either decreased (CHF) anxiety-like behavior or had no effect (CLF).
Collapse
Affiliation(s)
- Laura A. León
- Laboratory of Neuropsychopharmacology, FFCLRP, São Paulo University, Campus USP, and Behavioral Neuroscience Institute (INeC)Ribeirão Preto, São Paulo, Brazil
- Department of Psychology, Pontifical Catholic University of Rio de JaneiroRio de Janeiro, Brazil
- Programa de Psicología, Universidad Sergio ArboledaBogotá, Colombia
| | - Vitor Castro-Gomes
- Laboratory of Experimental and Computational Neuroscience, Department of Bio-systems Engineering, Federal University of São João del ReiSão João del Rei, Brazil
| | | | - Karen Corredor
- Laboratorio de Neurociencia y Comportamiento, Universidad de los AndesBogotá, Colombia
| | | | - Marcus L. Brandão
- Laboratory of Neuropsychopharmacology, FFCLRP, São Paulo University, Campus USP, and Behavioral Neuroscience Institute (INeC)Ribeirão Preto, São Paulo, Brazil
| | - Fernando P. Cardenas
- Laboratorio de Neurociencia y Comportamiento, Universidad de los AndesBogotá, Colombia
| | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
25
|
Roncon CM, Yamashita PSDM, Frias AT, Audi EA, Graeff FG, Coimbra NC, Zangrossi H. μ-Opioid and 5-HT1A receptors in the dorsomedial hypothalamus interact for the regulation of panic-related defensive responses. J Psychopharmacol 2017; 31:715-721. [PMID: 28583050 DOI: 10.1177/0269881117693747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The dorsomedial hypothalamus (DMH) and the dorsal periaqueductal gray (DPAG) have been implicated in the genesis and regulation of panic-related defensive behaviors, such as escape. Previous results point to an interaction between serotonergic and opioidergic systems within the DPAG to inhibit escape, involving µ-opioid and 5-HT1A receptors (5-HT1AR). In the present study we explore this interaction in the DMH, using escape elicited by electrical stimulation of this area as a panic attack index. The obtained results show that intra-DMH administration of the non-selective opioid receptor antagonist naloxone (0.5 nmol) prevented the panicolytic-like effect of a local injection of serotonin (20 nmol). Pretreatment with the selective μ-opioid receptor (MOR) antagonist CTOP (1 nmol) blocked the panicolytic-like effect of the 5-HT1AR agonist 8-OHDPAT (8 nmol). Intra-DMH injection of the selective MOR agonist DAMGO (0.3 nmol) also inhibited escape behavior, and a previous injection of the 5-HT1AR antagonist WAY-100635 (0.37 nmol) counteracted this panicolytic-like effect. These results offer the first evidence that serotonergic and opioidergic systems work together within the DMH to inhibit panic-like behavior through an interaction between µ-opioid and 5-HT1A receptors, as previously described in the DPAG.
Collapse
Affiliation(s)
- Camila Marroni Roncon
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paula Shimene de Melo Yamashita
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Alana Tercino Frias
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elisabeth Aparecida Audi
- 3 Laboratory of Psychopharmacology, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Frederico Guilherme Graeff
- 4 Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil.,5 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,4 Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil.,5 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| | - Helio Zangrossi
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,4 Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil.,5 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
26
|
Motta SC, Carobrez AP, Canteras NS. The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking. Neurosci Biobehav Rev 2017; 76:39-47. [DOI: 10.1016/j.neubiorev.2016.10.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022]
|
27
|
Siba IP, Bortolanza M, Frazão Vital MAB, Andreatini R, da Cunha JM, Del Bel EA, Zanoveli JM. Fish oil prevents rodent anxious states comorbid with diabetes: A putative involvement of nitric oxide modulation. Behav Brain Res 2017; 326:173-186. [DOI: 10.1016/j.bbr.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 01/17/2023]
|
28
|
Divergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray. eNeuro 2017; 4:eN-NWR-0129-16. [PMID: 28374016 PMCID: PMC5370278 DOI: 10.1523/eneuro.0129-16.2017] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/27/2022] Open
Abstract
The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception.
Collapse
|
29
|
Sant’Ana AB, Weffort LF, de Oliveira Sergio T, Gomes RC, Frias AT, Matthiesen M, Vilela-Costa HH, Yamashita PSDM, Vasconcelos AT, de Bortoli V, Del-Ben CM, Zangrossi H. Panic-modulating effects of alprazolam, moclobemide and sumatriptan in the rat elevated T-maze. Behav Brain Res 2016; 315:115-22. [DOI: 10.1016/j.bbr.2016.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 01/10/2023]
|
30
|
Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception. Pain 2016; 156:2479-2491. [PMID: 26262826 DOI: 10.1097/j.pain.0000000000000318] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain represents a major clinical challenge in the management of many gastrointestinal disorders, eg, pancreatitis. However, cerebral neurobiological mechanisms underlying visceral nociception are poorly understood. As a representative model of visceral nociception, we applied cerulein hyperstimulation in C57BL6 mice to induce acute pancreatitis and performed a behavioral test battery and c-Fos staining of brains. We observed a specific pain phenotype and a significant increase in c-Fos immunoreactivity in the paraventricular nucleus of the thalamus (PVT), the periaqueductal gray, and the medial prefrontal cortex (mPFC). Using neuronal tracing, we observed projections of the PVT to cortical layers of the mPFC with contacts to inhibitory GABAergic neurons. These inhibitory neurons showed more activation after cerulein treatment suggesting thalamocortical "feedforward inhibition" in visceral nociception. The activity of neurons in pancreatitis-related pain centers was pharmacogenetically modulated by designer receptors exclusively activated by designer drugs, selectively and cell type specifically expressed in target neurons using adeno-associated virus-mediated gene transfer. Pharmacogenetic inhibition of PVT but not periaqueductal gray neurons attenuated visceral pain and induced an activation of the descending inhibitory pain pathway. Activation of glutamatergic principle neurons in the mPFC, but not inhibitory neurons, also reversed visceral nociception. These data reveal novel insights into central pain processing that underlies visceral nociception and may trigger the development of novel, potent centrally acting analgesic drugs.
Collapse
|
31
|
Carvalho-Costa PG, Branco LGS, Leite-Panissi CRA. Activation of locus coeruleus heme oxygenase-carbon monoxide pathway promoted an anxiolytic-like effect in rats. ACTA ACUST UNITED AC 2016; 49:e5135. [PMID: 27074170 PMCID: PMC4830028 DOI: 10.1590/1414-431x20165135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/27/2016] [Indexed: 11/22/2022]
Abstract
The heme oxygenase-carbon monoxide pathway has been shown to play an important role
in many physiological processes and is capable of altering nociception modulation in
the nervous system by stimulating soluble guanylate cyclase (sGC). In the central
nervous system, the locus coeruleus (LC) is known to be a region that expresses the
heme oxygenase enzyme (HO), which catalyzes the metabolism of heme to carbon monoxide
(CO). Additionally, several lines of evidence have suggested that the LC can be
involved in the modulation of emotional states such as fear and anxiety. The purpose
of this investigation was to evaluate the activation of the heme oxygenase-carbon
monoxide pathway in the LC in the modulation of anxiety by using the elevated plus
maze test (EPM) and light-dark box test (LDB) in rats. Experiments were performed on
adult male Wistar rats weighing 250-300 g (n=182). The results showed that the
intra-LC microinjection of heme-lysinate (600 nmol), a substrate for the enzyme HO,
increased the number of entries into the open arms and the percentage of time spent
in open arms in the elevated plus maze test, indicating a decrease in anxiety.
Additionally, in the LDB test, intra-LC administration of heme-lysinate promoted an
increase on time spent in the light compartment of the box. The
intracerebroventricular microinjection of guanylate cyclase, an sGC inhibitor
followed by the intra-LC microinjection of the heme-lysinate blocked the
anxiolytic-like reaction on the EPM test and LDB test. It can therefore be concluded
that CO in the LC produced by the HO pathway and acting via cGMP plays an
anxiolytic-like role in the LC of rats.
Collapse
Affiliation(s)
- P G Carvalho-Costa
- Programa de Pós-Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - L G S Branco
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - C R A Leite-Panissi
- Programa de Pós-Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
32
|
Asakawa T, Fang H, Sugiyama K, Nozaki T, Hong Z, Yang Y, Hua F, Ding G, Chao D, Fenoy AJ, Villarreal SJ, Onoe H, Suzuki K, Mori N, Namba H, Xia Y. Animal behavioral assessments in current research of Parkinson's disease. Neurosci Biobehav Rev 2016; 65:63-94. [PMID: 27026638 DOI: 10.1016/j.neubiorev.2016.03.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is traditionally classified as a movement disorder. Patients typically suffer from many motor dysfunctions. Presently, clinicians and scientists recognize that many non-motor symptoms are associated with PD. There is an increasing interest in both motor and non-motor symptoms in clinical studies on PD patients and laboratory research on animal models that imitate the pathophysiologic features and symptoms of PD patients. Therefore, appropriate behavioral assessments are extremely crucial for correctly understanding the mechanisms of PD and accurately evaluating the efficacy and safety of novel therapies. This article systematically reviews the behavioral assessments, for both motor and non-motor symptoms, in various animal models involved in current PD research. We addressed the strengths and weaknesses of these behavioral tests and their appropriate applications. Moreover, we discussed potential mechanisms behind these behavioral tests and cautioned readers against potential experimental bias. Since most of the behavioral assessments currently used for non-motor symptoms are not particularly designed for animals with PD, it is of the utmost importance to greatly improve experimental design and evaluation in PD research with animal models. Indeed, it is essential to develop specific assessments for non-motor symptoms in PD animals based on their characteristics. We concluded with a prospective view for behavioral assessments with real-time assessment with mobile internet and wearable device in future PD research.
Collapse
Affiliation(s)
- Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan.
| | - Huan Fang
- Department of Pharmacy, Jinshan Hospital of Fudan University, Shanghai, China
| | - Kenji Sugiyama
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Takao Nozaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Zhen Hong
- Department of Neurology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yilin Yang
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Fei Hua
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Guanghong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Sebastian J Villarreal
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Hirotaka Onoe
- Functional Probe Research Laboratory, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Ying Xia
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA.
| |
Collapse
|
33
|
Faria MP, Miguel TT, Gomes KS, Nunes-de-Souza RL. Anxiety-like responses induced by nitric oxide within the BNST in mice: Role of CRF1 and NMDA receptors. Horm Behav 2016; 79:74-83. [PMID: 26774463 DOI: 10.1016/j.yhbeh.2016.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/10/2015] [Accepted: 01/11/2016] [Indexed: 11/28/2022]
Abstract
It has been shown that the bed nucleus of the stria terminalis (BNST) of rats contains nitrergic neurons, which are activated during animal exposure to aversive stimuli. The BNST is also populated by glutamatergic and corticotrophin releasing factor (CRFergic) neurons, which in turn are activated under stressful situations. Here we investigated the anxiogenic-like effects of intra-BNST injections of a nitric oxide (NO) donor, NOC-9 in mice. The role of CRFergic and glutamatergic systems on defensive behavior induced by NOC-9 was investigated with previous intra-BNST infusion of different doses of CP376395, a CRF type 1 receptor antagonist (CRF1), or AP-7, an NMDA (N-methyl-D-aspartate) receptor antagonist. Anxiety-like behavior was assessed immediately and 5 min after intra-BNST drug injection, exposing mice to a novel arena and to the elevated plus-maze (EPM; an anxiogenic situation). Results showed that NOC-9 provoked a short period (≈ 150 s) of freezing behavior in the novel arena and increased anxiety in the EPM. Both CP and AP-7 attenuated the anxiogenic-like effects of NOC-9 in the EPM without changing freezing behavior in the novel arena. When given alone (i.e. without prior intra-BNST injection of NOC-9), AP-7 (0.20 nmol), but not CP (0.75, 1.50, or 3.00 nmol), attenuated anxiety in mice exposed to the EPM. These results suggest that CRF1 and NMDA receptors located within the BNST differentially modulate aversive effects induced by NO production in this limbic forebrain structure.
Collapse
MESH Headings
- Aminopyridines/pharmacology
- Animals
- Anxiety/chemically induced
- Anxiety/metabolism
- Behavior, Animal/drug effects
- Corticotropin-Releasing Hormone/metabolism
- Freezing Reaction, Cataleptic/drug effects
- Male
- Maze Learning/drug effects
- Mice
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Nitric Oxide/pharmacology
- Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Corticotropin-Releasing Hormone/physiology
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/physiology
- Septal Nuclei/drug effects
- Stress, Psychological/chemically induced
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
- Triazenes/pharmacology
Collapse
Affiliation(s)
- M P Faria
- Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos and Universidade Estadual Paulista, Araraquara, SP, Brazil; Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, 14800-903 Araraquara, SP, Brazil
| | - T T Miguel
- Farmacologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - K S Gomes
- Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, 14800-903 Araraquara, SP, Brazil
| | - R L Nunes-de-Souza
- Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos and Universidade Estadual Paulista, Araraquara, SP, Brazil; Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, 14800-903 Araraquara, SP, Brazil.
| |
Collapse
|
34
|
Glenn DE, Acheson DT, Geyer MA, Nievergelt CM, Baker DG, Risbrough VB. HIGH AND LOW THRESHOLD FOR STARTLE REACTIVITY ASSOCIATED WITH PTSD SYMPTOMS BUT NOT PTSD RISK: EVIDENCE FROM A PROSPECTIVE STUDY OF ACTIVE DUTY MARINES. Depress Anxiety 2016; 33:192-202. [PMID: 26878585 DOI: 10.1002/da.22475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/03/2015] [Accepted: 01/24/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Heightened startle response is a symptom of PTSD, but evidence for exaggerated startle in PTSD is inconsistent. This prospective study aimed to clarify whether altered startle reactivity represents a trait risk-factor for developing PTSD or a marker of current PTSD symptoms. METHODS Marines and Navy Corpsmen were assessed before (n = 2,571) and after (n = 1,632) deployments to Iraq or Afghanistan with the Clinician-Administered PTSD Scale (CAPS). A predeployment startle-threshold task was completed with startle probes presented over 80-114 dB[A] levels. Latent class mixture modeling identified three growth classes of startle performance: "high," "low," and "moderate" threshold classes. Zero-inflated negative binomial regression was used to assess relationships between predeployment startle threshold and pre- and postdeployment psychiatric symptoms. RESULTS At predeployment, the low-threshold class had higher PTSD symptom scores. Relative to the moderate-threshold class, low-threshold class membership was associated with decreased likelihood of being symptom-free at predeployment, based on CAPS, with particular associations with numbing and hyperarousal subscales, whereas high-threshold class membership was associated with more severe predeployment PTSD symptoms, in particular avoidance. Associations between low-threshold membership and CAPS symptoms were independent from measures of trauma burden, whereas associations between high-threshold membership and CAPS were not. Predeployment startle threshold did not predict postdeployment symptoms. CONCLUSIONS This study found that both low startle threshold (heightened reactivity) and high startle threshold (blunted reactivity) were associated with greater current PTSD symptomatology, suggesting that startle reactivity is associated with current PTSD rather than a risk marker for developing PTSD.
Collapse
Affiliation(s)
- Daniel E Glenn
- Center of Excellence for Stress and Mental Health, San Diego Veterans Affairs Health Services, San Diego, California.,Department of Psychiatry, University of California, San Diego, California
| | - Dean T Acheson
- Center of Excellence for Stress and Mental Health, San Diego Veterans Affairs Health Services, San Diego, California.,Department of Psychiatry, University of California, San Diego, California
| | - Mark A Geyer
- Department of Psychiatry, University of California, San Diego, California.,Research Service, San Diego Veterans Affairs Healthcare System, San Diego, California
| | - Caroline M Nievergelt
- Center of Excellence for Stress and Mental Health, San Diego Veterans Affairs Health Services, San Diego, California.,Department of Psychiatry, University of California, San Diego, California
| | - Dewleen G Baker
- Center of Excellence for Stress and Mental Health, San Diego Veterans Affairs Health Services, San Diego, California.,Department of Psychiatry, University of California, San Diego, California
| | - Victoria B Risbrough
- Center of Excellence for Stress and Mental Health, San Diego Veterans Affairs Health Services, San Diego, California.,Department of Psychiatry, University of California, San Diego, California
| | | |
Collapse
|
35
|
Sanguedo FV, Dias CVB, Dias FRC, Samuels RI, Carey RJ, Carrera MP. Reciprocal activation/inactivation of ERK in the amygdala and frontal cortex is correlated with the degree of novelty of an open-field environment. Psychopharmacology (Berl) 2016; 233:841-50. [PMID: 26685992 DOI: 10.1007/s00213-015-4163-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023]
Abstract
RATIONALE Phosphorylated extracellular signal-regulated kinase (ERK) has been used to identify brain areas activated by exogenous stimuli including psychostimulant drugs. OBJECTIVE Assess the role of the amygdala in emotional responses. METHODS Experimental manipulations were performed in which environmental familiarity was the variable. To provide the maximal degree of familiarity, ERK was measured after removal from the home cage and re-placement back into the same cage. To maximize exposure to an unfamiliar environment, ERK was measured following placement into a novel open field. To assess whether familiarity was the critical variable in the ERK response to the novel open field, ERK was also measured after either four or eight placements into the same environment. ERK quantification was carried out in the amygdala, frontal cortex, and the nucleus accumbens. RESULTS After home cage re-placement, ERK activation was found in the frontal cortex and nucleus accumbens but was absent in the amygdala. Following placement in a novel environment, ERK activation was more prominent in the amygdala than the frontal cortex or nucleus accumbens. In contrast, with habituation to the novel environment, ERK phosphors declined markedly in the amygdala but increased in the frontal cortex and nucleus accumbens to the level observed following home cage re-placement. CONCLUSIONS The differential responsiveness of the amygdala versus the frontal cortex and the nucleus accumbens to a novel versus a habituated environment is consistent with a reciprocal interaction between these neural systems and points to their important role in the mediation of behavioral activation to novelty and behavioral inactivation with habituation.
Collapse
Affiliation(s)
- Frederico Velasco Sanguedo
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil
| | - Caio Vitor Bueno Dias
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil
| | - Flavia Regina Cruz Dias
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil
| | - Richard Ian Samuels
- Department of Entomology and Plant Pathology, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Robert J Carey
- Research and Development (151), VA Medical Center and SUNY Upstate Medical University, 800 Irving Avenue, Syracuse, NY, 13210, USA
| | - Marinete Pinheiro Carrera
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil.
| |
Collapse
|
36
|
Abstract
Affective disorders such as anxiety, phobia and depression are a leading cause of disabilities worldwide. Monoamine neuromodulators are used to treat most of them, with variable degrees of efficacy. Here, we review and interpret experimental findings about the relation of neuromodulation and emotional feelings, in pursuit of two goals: (a) to improve the conceptualisation of affective/emotional states, and (b) to develop a descriptive model of basic emotional feelings related to the actions of neuromodulators. In this model, we hypothesize that specific neuromodulators are effective for basic emotions. The model can be helpful for mental health professionals to better understand the affective dynamics of persons and the actions of neuromodulators - and respective psychoactive drugs - on this dynamics.
Collapse
Affiliation(s)
- Fushun Wang
- Professor of Psychology, Director of the Institute of Emotional Psychology, Nanjing University of Traditional Medicine, 138 Xianlin Rd, Qixia district, Nanjing City, Jiangsu Province, China 210023. E-mail:
| | - Alfredo Pereira
- Adjunct Professor, Department of Education, São Paulo State University (UNESP), Campus of Rubião Jr, 18618-970 - Botucatu - São Paulo - Brasil
| |
Collapse
|
37
|
Brown GG, Ostrowitzki S, Stein MB, von Kienlin M, Liu TT, Simmons A, Wierenga C, Stein OY, Bruns A, Bischoff-Grethe A, Paulus M. Temporal profile of brain response to alprazolam in patients with generalized anxiety disorder. Psychiatry Res 2015. [PMID: 26211623 DOI: 10.1016/j.pscychresns.2015.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigated the temporal pattern of brain response to emotional stimuli during 28 days of alprazolam treatment among patients with generalized anxiety disorder (GAD) randomized 2:1 to drug or placebo in a double-blind design. Functional magnetic resonance imaging scans obtained during an emotion face matching task (EFMT) and an affective stimulus expectancy task (STIMEX) were performed at baseline, one hour after initial drug administration and 28 days later. Alprazolam significantly reduced scores on the Hamilton Anxiety Scale and the Penn State Worry Questionnaire after one week and 28 days of treatment. Brain activation in the amygdala during the EFMT and in the insula during the STIMEX was reduced one hour after alprazolam administration but returned to baseline levels at Day 28. Exploratory analyses revealed significant treatment differences in brain activity during the STIMEX on Day 28 in frontal lobe, caudate nucleus, middle temporal gyrus, secondary visual cortex, and supramarginal gyrus. These results are consistent with the notion that the neural mechanisms supporting sustained treatment effects of benzodiazepines in GAD differ from those underlying their acute effects.
Collapse
Affiliation(s)
- Gregory G Brown
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.
| | - Susanne Ostrowitzki
- Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Markus von Kienlin
- Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Thomas T Liu
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Alan Simmons
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Christina Wierenga
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Orah Y Stein
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Andreas Bruns
- Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Martin Paulus
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Laureate Institute for Brain Research, Tulsa, OK, USA
| |
Collapse
|
38
|
Reimer AE, de Oliveira AR, Diniz JB, Hoexter MQ, Chiavegatto S, Brandão ML. Rats with differential self-grooming expression in the elevated plus-maze do not differ in anxiety-related behaviors. Behav Brain Res 2015; 292:370-80. [PMID: 26142783 DOI: 10.1016/j.bbr.2015.06.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 11/28/2022]
Abstract
Individual differences are important biological predictors for reactivity to stressful stimulation. The extent to which trait differences underlie animal's reactions to conditioned and unconditioned fear stimuli, for example, is still to be clarified. Although grooming behavior has been associated with some aspects of the obsessive-compulsive disorder in humans, its relation with other anxiety disorders is still unknown. Given that grooming behavior could be a component of the whole spectrum of these disorders, in the present study we allocated male Wistar rats in low, intermediate and high self-grooming groups according to the duration of such behavior in the elevated plus-maze (EPM). These groups were then evaluated in unconditioned fear tests, such as the EPM and the open-field, and in conditioned fear tests, such as fear-potentiated startle and fear extinction retention. Additionally, we studied the expression of unconditioned behaviors in marble burying test and the sensorimotor gate function with prepulse inhibition test. Neurochemicals and neuroendocrine parameters were also evaluated, with the quantification of basal corticosterone in the plasma, and dopamine, serotonin and their metabolites in brain structures involved with fear processing. In general, rats classified according to grooming expression showed similar performance in all behavioral tests. Accordingly, corticosterone and monoamine concentrations were similar among groups. Thus, despite grooming expression elicited by different approaches--especially pharmacological ones--has been related with some aspects of anxiety disorders, rats with different expression of spontaneous self-grooming in the EPM do not differ in anxiety-like behaviors nor in neurochemical and neuroendocrine parameters generally associated with anxiety disorders.
Collapse
Affiliation(s)
- Adriano Edgar Reimer
- Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Instituto de Neurociências e Comportamento, Ribeirão Preto, Brazil.
| | - Amanda Ribeiro de Oliveira
- Instituto de Neurociências e Comportamento, Ribeirão Preto, Brazil; Grupo de Psicobiologia, Centro de Educação e Ciências Humanas, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Juliana Belo Diniz
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Queiroz Hoexter
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Silvana Chiavegatto
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcus Lira Brandão
- Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Instituto de Neurociências e Comportamento, Ribeirão Preto, Brazil
| |
Collapse
|
39
|
Gibula-Bruzda E, Marszalek-Grabska M, Witkowska E, Izdebski J, Kotlinska JH. Enkephalin analog, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), inhibits the ethanol withdrawal-induced anxiety-like behavior in rats. Alcohol 2015; 49:229-36. [PMID: 25716198 DOI: 10.1016/j.alcohol.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
Abstract
An analog of enkephalin, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), is predominantly a functional agonist of μ-opioid receptors (MOPr) and, to a lesser extent, of δ-opioid receptors (DOPr) in vitro. The aim of the present study was to determine whether cUENK6 could affect ethanol withdrawal-induced anxiety-like behavior in the elevated plus maze (EPM) test in rats. An anxiety-like effect of withdrawal was predicted to occur in the EPM test 24 h after the last ethanol administration (2 g/kg, intraperitoneally [i.p.]; 15% w/v once daily for 9 days). Ethanol withdrawal decreased the percent of time spent by rats in the open arms and the percent of open-arms entries. cUENK6 (0.25 nmol), given by intracerebroventricular (i.c.v.) injection, significantly reversed these anxiety-like effects of ethanol withdrawal and elevated the percent of time spent by rats in the open arms and the percent of open-arms entries. These effects of cUENK6 were significantly inhibited by the DOPr antagonist naltrindole (NTI) (5 nmol, i.c.v.), but not by the MOPr antagonist β-funaltrexamine (β-FNA) (5 nmol, i.c.v.). The preferential DOPr agonist [Leu(5)]-enkephalin (LeuEnk) (2.7 and 5.4 nmol, i.c.v.) and the MOPr agonist morphine (6.5 and 13 nmol, i.c.v.) reduced the anxiety-like effects of ethanol withdrawal. cUENK6 at the dose of 0.25 nmol did not disturb locomotor activity in the EPM, in contrast to cUENK6 at the dose of 0.5 nmol, and morphine at 6.5 and 13 nmol. However, similarly to LeuEnk, cUENK6 induced the anxiolytic-like effects in naïve rats. Thus, our study suggests that cUENK6 reduced ethanol withdrawal-induced anxiety-like behavior by activation of δ-opioid receptors rather than μ-opioid receptors.
Collapse
|
40
|
Activation of 5-HT₁A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson's disease. Neuropharmacology 2015; 95:181-91. [PMID: 25797491 DOI: 10.1016/j.neuropharm.2015.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 11/21/2022]
Abstract
Although the medial subdivision of the central nucleus of the amygdala (CeM) and serotonin-1A (5-HT1A) receptors are involved in the regulation of anxiety, their roles in Parkinson's disease (PD)-associated anxiety are still unknown. Here we assessed the importance of CeM 5-HT1A receptors for anxiety in rats with unilateral 6-hydroxydopamine (6-OHDA) lesion of the medial forebrain bundle (MFB). The lesion induced anxiety-like behaviors, increased the firing rate and burst-firing pattern of CeM γ-aminobutyric acid (GABA) neurons, as well as decreased dopamine (DA) levels in the striatum, medial prefrontal cortex (mPFC), amygdala and ventral part of hippocampus (vHip). Intra-CeM injection of the selective 5-HT1A receptor agonist 8-OH-DPAT produced anxiolytic effects in the lesioned rats, and decreased the firing rate of CeM GABAergic neurons in two groups of rats. Compared to sham-operated rats, the duration of the inhibitory effect on the firing rate of GABAergic neurons was shortened in the lesioned rats. The injection increased DA levels in the mPFC and amygdala in two groups of rats and the vHip in the lesioned rats, and increased 5-HT level in the lesioned rats, whereas it decreased NA levels in the mPFC in two groups of rats and the vHip in the lesioned rats. Moreover, the mean density of 5-HT1A receptor and GABA double-labeled neurons in the CeM was reduced after the lesioning. These results suggest that activation of CeM 5-HT1A receptor produces anxiolytic effects in the 6-OHDA-lesioned rats, which involves decreased firing rate of the GABAergic neurons, and changed monoamine levels in the limbic and limbic-related brain regions.
Collapse
|
41
|
Horovitz O, Richter-Levin G. Dorsal periaqueductal gray simultaneously modulates ventral subiculum induced-plasticity in the basolateral amygdala and the nucleus accumbens. Front Behav Neurosci 2015; 9:53. [PMID: 25788880 PMCID: PMC4349162 DOI: 10.3389/fnbeh.2015.00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/12/2015] [Indexed: 11/25/2022] Open
Abstract
The ventral subiculum of the hippocampus projects both to the basolateral amygdala (BLA), which is typically, associated with a response to aversive stimuli, as well as to the nucleus accumbens (NAcc), which is typically associated with a response to appetitive stimuli. Traditionally, studies of the responses to emotional events focus on either negative or positive affect-related processes, however, emotional experiences often affect both. The ability of high-level processing brain regions (e.g., medial prefrontal cortex) to modulate the balance between negative and positive affect-related regions was examined extensively. In contrast, the ability of low-level processing areas (e.g., periaqueductal gray—PAG) to do so, has not been sufficiently studied. To address whether midbrain structures have the ability to modulate limbic regions, we first examined the ventral subiculum stimulation’s (vSub) ability to induce plasticity in the BLA and NAcc simultaneously in rats. Further, dorsal PAG (dPAG) priming ability to differentially modulate vSub stimulation induced plasticity in the BLA and the NAcc was subsequently examined. vSub stimulation resulted in plasticity in both the BLA and the NAcc simultaneously. Moreover, depending on stimulus intensity, differential dPAG priming effects on LTP in these two regions were observed. The results demonstrate that negative and positive affect-related processes may be simultaneously modulated. Furthermore, under some conditions lower-level processing areas, such as the dPAG, may differentially modulate plasticity in these regions and thus affect the long-term emotional outcome of the experience.
Collapse
Affiliation(s)
- Omer Horovitz
- The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel
| | - Gal Richter-Levin
- The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel ; Department of Psychology, University of Haifa Haifa, Israel ; Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| |
Collapse
|
42
|
Azizi-Malekabadi H, Hosseini M, Pourganji M, Zabihi H, Saeedjalali M, Anaeigoudari A. Deletion of ovarian hormones induces a sickness behavior in rats comparable to the effect of lipopolysaccharide. Neurol Res Int 2015; 2015:627642. [PMID: 25705518 PMCID: PMC4325213 DOI: 10.1155/2015/627642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/26/2014] [Accepted: 01/05/2015] [Indexed: 11/17/2022] Open
Abstract
Neuroimmune factors have been proposed as the contributors to the pathogenesis of sickness behaviors. The effects of female gonadal hormones on both neuroinflammation and depression have also been well considered. In the present study, the capability of deletion of ovarian hormones to induce sickness-like behaviors in rats was compared with the effect lipopolysaccharide (LPS). The groups were including Sham, OVX, Sham-LPS, and OVX-LPS. The Sham-LPS and OVX-LPS groups were treated with LPS (250 μg/kg) two hours before conducting the behavioral tests. In the forced swimming (FST), the immobility times in both OVX and Sham-LPS groups were higher than that of Sham (P < 0.001). In open-field (OP) test, the central crossing number by OVX and Sham-LPS groups were lower than Sham (P < 0.001) while there were no significant differences between OVX-LPS and OVX groups. In elevated plus maze (EPM), the percent of entries to the open arm by both OVX and Sham-LPS groups was lower than that of Sham group (P < 0.001). The results of present study showed that deletion of ovarian hormones induced sickness behaviors in rats which were comparable to the effects of LPS. Moreover, further investigations are required in order to better understand the mechanism(s) involved.
Collapse
Affiliation(s)
- Hamid Azizi-Malekabadi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad 9177947564, Iran
- Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoume Pourganji
- Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Zabihi
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Saeedjalali
- Mashhad Technical Faculty, Technical and Vocational University, Mashhad, Iran
| | - Akbar Anaeigoudari
- Neurocognitive Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad 9177947564, Iran
- Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Saito VM, Brandão ML. The benzodiazepine midazolam acts on the expression of the defensive behavior, but not on the processing of aversive information, produced by exposure to the elevated plus maze and electrical stimulations applied to the inferior colliculus of rats. Neuropharmacology 2015; 88:180-6. [DOI: 10.1016/j.neuropharm.2014.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/01/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
|
44
|
Hestermann D, Temel Y, Blokland A, Lim LW. Acute serotonergic treatment changes the relation between anxiety and HPA-axis functioning and periaqueductal gray activation. Behav Brain Res 2014; 273:155-65. [DOI: 10.1016/j.bbr.2014.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
|
45
|
Garcia-Leal C, Graeff FG, Del-Ben CM. Experimental public speaking: contributions to the understanding of the serotonergic modulation of fear. Neurosci Biobehav Rev 2014; 46 Pt 3:407-17. [PMID: 25277282 DOI: 10.1016/j.neubiorev.2014.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 06/24/2014] [Accepted: 09/11/2014] [Indexed: 01/30/2023]
Abstract
Public speaking is widely used as a model of experimental fear and anxiety. This review aimed to evaluate the effects of pharmacological challenges on public speaking responses and their implications for the understanding of the neurobiology of normal and pathological anxiety, specifically panic disorder. We also describe methodological features of experimental paradigms using public speaking as an inducer of fear and stress. Public speaking is a potent stressor that can provoke significant subjective and physiological responses. However, variations in the manners in which public speaking is modelled can lead to different responses that need to be considered when interpreting the results. Results from pharmacological studies with healthy volunteers submitted to simulated public speaking tests have similarities with the pharmacological responses of panic patients observed in clinical practice and panic patients differ from controls in the response to the public speaking test. These data are compatible with the Deakin and Graeff hypothesis that serotonin inhibits fear, as accessed by public speaking tasks, and that this inhibition is likely related to the actions of serotonin in the dorsal periaqueductal grey matter.
Collapse
Affiliation(s)
- Cybele Garcia-Leal
- Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Frederico Guilherme Graeff
- Institute of Behavioral Neuroscience (INeC), University of São Paulo, Ribeirão Preto, SP, Brazil; Neurobiology of Emotion Research Center (NuPNE), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristina Marta Del-Ben
- Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
46
|
Garabadu D, Krishnamurthy S. Asparagus racemosus attenuates anxiety-like behavior in experimental animal models. Cell Mol Neurobiol 2014; 34:511-21. [PMID: 24557501 PMCID: PMC11488869 DOI: 10.1007/s10571-014-0035-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
Asparagus racemosus Linn. (AR) is used worldwide as a medicinal plant. In the present study, the anxiolytic activity of standardized methanolic extract of root of AR (MAR) was evaluated in open-field test (OFT), hole-board, and elevated plus maze (EPM) tests. Rats received oral pretreatment of MAR in the doses of 50, 100, and 200 mg/kg daily for 7 days and then were evaluated for the anxiolytic activity in different animal models. Both MAR (100 and 200 mg/kg) and diazepam (1 mg/kg, p.o.) increased the grooming behavior, number of central squares crossed, and time spent in the central area during OFT. Further, MAR (100 and 200 mg/kg) increased the head-dip and head-dip/sniffing behavior, and decreased sniffing activity in hole-board test. Furthermore, MAR (100 and 200 mg/kg) increased the percentage entries and time spent to open arm in EPM test paradigm. The anxiolytic activity in the experimental models was similar to that of diazepam. MAR (100 and 200 mg/kg) enhanced the level of amygdalar serotonin and norepinephrine. It also increased the expression of 5-HT2A receptors in the amygdala. In another set of experiment, flumazenil attenuated the anxiolytic effect of minimum effective dose of MAR (100 mg/kg) in OFT, hole-board, and EPM tests, indicating GABAA-mediated mechanism. Moreover, the anxiolytic dose of MAR did not show sedative-like effect in OFT and EPM tests compared to diazepam (6 mg/kg, p.o.). Thus, the anxiolytic response of MAR may involve GABA and serotonergic mechanisms. These preclinical data show that AR can be a potential agent for treatment of anxiety disorders.
Collapse
Affiliation(s)
- Debapriya Garabadu
- Neurotherapeutics Lab, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Sairam Krishnamurthy
- Neurotherapeutics Lab, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| |
Collapse
|
47
|
Ferreira R, Nobre MJ. Conditioned fear in low- and high-anxious rats is differentially regulated by cortical subcortical and midbrain 5-HT(1A) receptors. Neuroscience 2014; 268:159-68. [PMID: 24657773 DOI: 10.1016/j.neuroscience.2014.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/25/2014] [Accepted: 03/05/2014] [Indexed: 02/01/2023]
Abstract
Interactions between the prelimbic cortex and the basolateral amygdala underlie fear memory processing, mostly through acquiring and consolidating the learning of a conditioned fear. More recently, studies highlighted the role of the dorsal periaqueductal gray (DPAG) in the modulation of learning fear responses. In addition, extensive data in the literature have signaled the importance of serotonin (5-HT) on fear and anxiety. In the present study, the role of 5-HT neurotransmission of the prelimbic cortex, basolateral amygdala or the DPAG on the unconditioned and conditioned fear responses in rats previously selected as low- (LA) or high-anxious (HA) were assessed through local infusions of 5-HT itself (10nmol/0.2μl) or the selective 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT - 0.3μg/0.2μl). Behavioral analysis was conducted using the fear-potentiated startle (FPS) procedure. Dependent variables recorded were the latency and amplitude of the unconditioned startle response and FPS. Our findings suggest that, on the prelimbic cortex, 5-HT modulates the expression of conditioned fear response in HA rats and this modulation is dependent on 5-HT1A receptors. This is not true, however, for the basolateral amygdala or the DPAG. In these regions LA but not HA rats were susceptible to the anxiolytic-like effect of 5-HT1A receptor activation. It is thought that the expression of conditioned fear in HA subjects may be dependent on other 5-HT receptors, as the 5-HT1B subtype, and/or changes in other systems such as the GABA and glutamate neurotransmitters. These results increase our understanding of the rostrocaudal influence of 5-HT on the unconditioned and conditioned fear responses in LA and HA subjects and, to some extent, are in disagreement with the theoretical current that emphasizes the role of 5-HT on anxiety, mainly at the subcortical and midbrain levels.
Collapse
Affiliation(s)
- R Ferreira
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - M J Nobre
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Departamento de Psicologia, Uni-FACEF, 14401-135 Franca, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
48
|
Sanguedo FVC, Cruz Dias FR, Bloise E, Cespedes IC, Giraldi-Guimarães A, Samuels RI, Carey RJ, Carrera MP. Increase in medial frontal cortex ERK activation following the induction of apomorphine sensitization. Pharmacol Biochem Behav 2014; 118:60-8. [DOI: 10.1016/j.pbb.2013.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/17/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
|
49
|
Rabin BM, Shukitt-Hale B, Carrihill-Knoll KL, Gomes SM. Comparison of the Effects of Partial- or Whole-Body Exposures to16O Particles on Cognitive Performance in Rats. Radiat Res 2014; 181:251-7. [DOI: 10.1667/rr13469.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats. Proc Natl Acad Sci U S A 2013; 110:14795-800. [PMID: 23959880 DOI: 10.1073/pnas.1310845110] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The periaqueductal gray (PAG) and amygdala are known to be important for defensive responses, and many contemporary fear-conditioning models present the PAG as downstream of the amygdala, directing the appropriate behavior (i.e., freezing or fleeing). However, empirical studies of this circuitry are inconsistent and warrant further examination. Hence, the present study investigated the functional relationship between the PAG and amygdala in two different settings, fear conditioning and naturalistic foraging, in rats. In fear conditioning, electrical stimulation of the dorsal PAG (dPAG) produced unconditional responses (URs) composed of brief activity bursts followed by freezing and 22-kHz ultrasonic vocalization. In contrast, stimulation of ventral PAG and the basolateral amygdalar complex (BLA) evoked freezing and/or ultrasonic vocalization. Whereas dPAG stimulation served as an effective unconditional stimulus for fear conditioning to tone and context conditional stimuli, neither ventral PAG nor BLA stimulation supported fear conditioning. The conditioning effect of dPAG, however, was abolished by inactivation of the BLA. In a foraging task, dPAG and BLA stimulation evoked only fleeing toward the nest. Amygdalar lesion/inactivation blocked the UR of dPAG stimulation, but dPAG lesions did not block the UR of BLA stimulation. Furthermore, in vivo recordings demonstrated that electrical priming of the dPAG can modulate plasticity of subiculum-BLA synapses, providing additional evidence that the amygdala is downstream of the dPAG. These results suggest that the dPAG conveys unconditional stimulus information to the BLA, which directs both innate and learned fear responses, and that brain stimulation-evoked behaviors are modulated by context.
Collapse
|