1
|
Shim SS, Berglund K, Yu SP. Lithium: An Old Drug for New Therapeutic Strategy for Alzheimer's Disease and Related Dementia. NEURODEGENER DIS 2023; 23:1-12. [PMID: 37666228 DOI: 10.1159/000533797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Although Alzheimer's disease (AD) is the most common form of dementia, the effective treatment of AD is not available currently. Multiple trials of drugs, which were developed based on the amyloid hypothesis of AD, have not been highly successful to improve cognitive and other symptoms in AD patients, suggesting that it is necessary to explore additional and alternative approaches for the disease-modifying treatment of AD. The diverse lines of evidence have revealed that lithium reduces amyloid and tau pathology, attenuates neuronal loss, enhances synaptic plasticity, and improves cognitive function. Clinical studies have shown that lithium reduces the risk of AD and deters the progress of mild cognitive impairment and early AD. SUMMARY Our recent study has revealed that lithium stabilizes disruptive calcium homeostasis, and subsequently, attenuates the downstream neuropathogenic processes of AD. Through these therapeutic actions, lithium produces therapeutic effects on AD with potential to modify the disease process. This review critically analyzed the preclinical and clinical studies for the therapeutic effects of lithium on AD. We suggest that disruptive calcium homeostasis is likely to be the early neuropathological mechanism of AD, and the stabilization of disruptive calcium homeostasis by lithium would be associated with its therapeutic effects on neuropathology and cognitive deficits in AD. KEY MESSAGES Lithium is likely to be efficacious for AD as a disease-modifying drug by acting on multiple neuropathological targets including disruptive calcium homeostasis.
Collapse
Affiliation(s)
- Seong Sool Shim
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Mental Health Service Line, Department of Veteran's Affair, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Ken Berglund
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shan Ping Yu
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Kraft L, Roe SM, Gill R, Atack JR. Co-crystallization of human inositol monophosphatase with the lithium mimetic L-690,330. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:973-978. [PMID: 30289407 DOI: 10.1107/s2059798318010380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/18/2018] [Indexed: 11/10/2022]
Abstract
Lithium, which is still the gold standard in the treatment of bipolar disorder, has been proposed to inhibit inositol monophosphatase (IMPase) and is hypothesized to exert its therapeutic effects by attenuating phosphatidylinositol (PI) cell signalling. Drug-discovery efforts have focused on small-molecule lithium mimetics that would specifically inhibit IMPase without exhibiting the undesired side effects of lithium. L-690,330 is a potent bisphosphonate substrate-based inhibitor developed by Merck Sharp & Dohme. To aid future structure-based inhibitor design, determination of the exact binding mechanism of L-690,330 to IMPase was of interest. Here, the high-resolution X-ray structure of human IMPase in complex with L690,330 and manganese ions determined at 1.39 Å resolution is reported.
Collapse
Affiliation(s)
- Lucas Kraft
- Sussex Drug Discovery Centre, University of Sussex, Chichester II, Falmer, Brighton BN1 9QJ, England
| | - S Mark Roe
- University of Sussex, Arundel Building, Falmer, Brighton BN1 9QJ, England
| | - Raj Gill
- Sussex Drug Discovery Centre, University of Sussex, Chichester II, Falmer, Brighton BN1 9QJ, England
| | - John R Atack
- School of Biosciences, Medicines Discovery Institute, Park Place, Cardiff CF10 3AT, Wales
| |
Collapse
|
3
|
Rae CD. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem Res 2013; 39:1-36. [PMID: 24258018 DOI: 10.1007/s11064-013-1199-5] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
|
4
|
Wang X, Hirao H. ONIOM (DFT:MM) Study of the Catalytic Mechanism of myo-Inositol Monophosphatase: Essential Role of Water in Enzyme Catalysis in the Two-Metal Mechanism. J Phys Chem B 2013; 117:833-42. [DOI: 10.1021/jp312483n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoqing Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore
637371
| | - Hajime Hirao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore
637371
| |
Collapse
|
5
|
Butler-Munro C, Coddington EJ, Shirley CH, Heyward PM. Lithium modulates cortical excitability in vitro. Brain Res 2010; 1352:50-60. [PMID: 20637740 DOI: 10.1016/j.brainres.2010.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 11/26/2022]
Abstract
The sometimes devastating mood swings of bipolar disorder are prevented by treatment with selected antiepileptic drugs, or with lithium. Abnormal membrane ion channel expression and excitability in brain neurons likely underlie bipolar disorder, but explaining therapeutic effects in these terms has faced an unresolved paradox: the antiepileptic drugs effective in bipolar disorder reduce Na(+) entry through voltage-gated channels, but lithium freely enters neurons through them. Here we show that lithium increases the excitability of output neurons in brain slices of the mouse olfactory bulb, an archetypical cortical structure. Treatment in vitro with lithium (1 to 10mM) depolarizes mitral cells, blocks action potential hyperpolarization, and modulates their responses to synaptic input. We suggest that Na(+) entry through voltage-gated channels normally directly activates K(+) channels regulating neuron excitability, but that at therapeutic concentrations, lithium entry and accumulation reduces this K(+) channel activation. The antiepileptic drugs effective in bipolar disorder and lithium may thus share a membrane target consisting of functionally coupled Na(+) and K(+) channels that together control brain neuron excitability.
Collapse
|
6
|
Quiroz JA, Machado-Vieira R, Zarate CA, Manji HK. Novel insights into lithium's mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology 2010; 62:50-60. [PMID: 20453535 PMCID: PMC2889681 DOI: 10.1159/000314310] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The monovalent cation lithium partially exerts its effects by activating neurotrophic and neuroprotective cellular cascades. Here, we discuss the effects of lithium on oxidative stress, programmed cell death (apoptosis), inflammation, glial dysfunction, neurotrophic factor functioning, excitotoxicity, and mitochondrial stability. In particular, we review evidence demonstrating the action of lithium on cyclic adenosine monophosphate (cAMP)-mediated signal transduction, cAMP response element binding activation, increased expression of brain-derived neurotrophic factor, the phosphatidylinositide cascade, protein kinase C inhibition, glycogen synthase kinase 3 inhibition, and B-cell lymphoma 2 expression. Notably, we also review data from clinical studies demonstrating neurotrophic effects of lithium. We expect that a better understanding of the clinically relevant pathophysiological targets of lithium will lead to improved treatments for those who suffer from mood as well as neurodegenerative disorders.
Collapse
Affiliation(s)
- Jorge A. Quiroz
- Hoffman-La Roche Inc., Pharma Development and Exploratory Neuroscience, Nutley, N.J
| | - Rodrigo Machado-Vieira
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, NIMH-NIH, Bethesda, Md
| | - Carlos A. Zarate
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, NIMH-NIH, Bethesda, Md
| | - Husseini K. Manji
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Titusville, N.J., USA,*Husseini K. Manji, MD, FRCPC, Johnson & Johnson Pharmaceuticals Group, 1125 Trenton-Harbourton Road, E32000, Titusville, NJ 08560 (USA), Tel. +1 609 730 2968, Fax +1 609 730 2940, E-Mail
| |
Collapse
|
7
|
Machado-Vieira R, Manji HK, Zarate CA. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord 2009; 11 Suppl 2:92-109. [PMID: 19538689 PMCID: PMC2800957 DOI: 10.1111/j.1399-5618.2009.00714.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lithium has been and continues to be the mainstay of bipolar disorder (BD) pharmacotherapy for acute mood episodes, switch prevention, prophylactic treatment, and suicide prevention. Lithium is also the definitive proof-of-concept agent in BD, although it has recently been studied in other psychoses as well as diverse neurodegenerative disorders. Its neurotrophic effects can be viewed as a unifying model to explain several integrated aspects of the pathophysiology of mood disorders and putative therapeutics for those disorders. Enhancing neuroprotection (which directly involves neurotrophic effects) is a therapeutic strategy intended to slow or halt the progression of neuronal loss, thus producing long-term benefits by favorably influencing outcome and preventing either the onset of disease or clinical decline. The present article: (i) reviews what has been learned regarding lithium's neurotrophic effects since Cade's original studies with this compound; (ii) presents human data supporting the presence of cellular atrophy and death in BD as well as neurotrophic effects associated with lithium in human studies; (iii) describes key direct targets of lithium involved in these neurotrophic effects, including neurotrophins, glycogen synthase kinase 3 (GSK-3), and mitochondrial/endoplasmic reticulum key proteins; and (iv) discusses lithium's neurotrophic effects in models of apoptosis and excitotoxicity as well as its potential neurotrophic effects in models of neurological disorders. Taken together, the evidence reviewed here suggests that lithium's neurotrophic effects in BD are an example of an old molecule acting as a new proof-of-concept agent. Continued work to decipher lithium's molecular actions will likely lead to the development of not only improved therapeutics for BD, but to neurotrophic enhancers that could prove useful in the treatment of many other illnesses.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, NIMH-NIH, Department of Health and Human Services, Bethesda, MD
| | - Husseini K Manji
- Johnson and Johnson Pharmaceutical Research and Development, Titusville, NJ, USA
| | - Carlos A Zarate
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, NIMH-NIH, Department of Health and Human Services, Bethesda, MD
| |
Collapse
|
8
|
Garcia-Murillas I, Pettitt T, Macdonald E, Okkenhaug H, Georgiev P, Trivedi D, Hassan B, Wakelam M, Raghu P. lazaro encodes a lipid phosphate phosphohydrolase that regulates phosphatidylinositol turnover during Drosophila phototransduction. Neuron 2006; 49:533-46. [PMID: 16476663 DOI: 10.1016/j.neuron.2006.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/30/2005] [Accepted: 02/01/2006] [Indexed: 10/25/2022]
Abstract
An essential step in Drosophila phototransduction is the hydrolysis of phosphatidylinositol 4,5 bisphosphate PI(4,5)P2 by phospholipase Cbeta (PLCbeta) to generate a second messenger that opens the light-activated channels TRP and TRPL. Although the identity of this messenger remains unknown, recent evidence has implicated diacylglycerol kinase (DGK), encoded by rdgA, as a key enzyme that regulates its levels, mediating both amplification and response termination. In this study, we demonstrate that lazaro (laza) encodes a lipid phosphate phosphohydrolase (LPP) that functions during phototransduction. We demonstrate that the synergistic activity of laza and rdgA regulates response termination during phototransduction. Analysis of retinal phospholipids revealed a reduction in phosphatidic acid (PA) levels and an associated reduction in phosphatidylinositol (PI) levels. Together our results demonstrate the contribution of PI depletion to the rdgA phenotype and provide evidence that depletion of PI and its metabolites might be a key signal for TRP channel activation in vivo.
Collapse
Affiliation(s)
- Isaac Garcia-Murillas
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Silverstone PH, McGrath BM, Kim H. Bipolar disorder and myo-inositol: a review of the magnetic resonance spectroscopy findings. Bipolar Disord 2005; 7:1-10. [PMID: 15654927 DOI: 10.1111/j.1399-5618.2004.00174.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Myo-inositol is an important component of the phosphatidylinositol second messenger system (PI-cycle). Alterations in PI-cycle activity have been suggested to be involved in the pathophysiology and/or treatment of bipolar disorder. More specifically, lithium has been suggested to act primarily by lowering myo-inositol concentrations, the so-called inositol-depletion hypothesis. myo-Inositol concentrations can be measured in vivo with magnetic resonance spectroscopy (MRS). METHODS The current review primarily examines animal and human MRS studies that evaluated the role of myo-inositol in bipolar illness and treatment. RESULTS Studies have been carried out in patients who are manic, depressed, and euthymic, both on and off treatment. However, there are several limitations of these studies. CONCLUSIONS The preclinical and clinical MRS findings were generally supportive of the involvement of myo-inositol in bipolar disorder and its treatment. Overall, in bipolar patients who are manic or depressed there are abnormalities in brain myo-inositol concentrations, with changes in frontal and temporal lobes, as well as the cingulate gyrus and basal ganglia. These abnormalities are not seen in either euthymic patients or healthy controls, possibly due to a normalizing effect of treatment with either lithium or sodium valproate. There is also increasing evidence that sodium valproate may also act upon the PI-cycle. Nonetheless, it remains uncertain if these changes in myo-inositol concentration are primary or secondary. Findings regarding the specific inositol-depletion hypothesis are also generally supportive in acutely ill patients, although it is not yet possible to definitively confirm or refute this hypothesis based on the current MRS evidence.
Collapse
|
11
|
Gould TD, Quiroz JA, Singh J, Zarate CA, Manji HK. Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Mol Psychiatry 2004; 9:734-55. [PMID: 15136794 DOI: 10.1038/sj.mp.4001518] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bipolar disorder afflicts approximately 1-3% of both men and women, and is coincident with major economic, societal, medical, and interpersonal consequences. Current mediations used for its treatment are associated with variable rates of efficacy and often intolerable side effects. While preclinical and clinical knowledge in the neurosciences has expanded at a tremendous rate, recent years have seen no major breakthroughs in the development of novel types of treatment for bipolar disorder. We review here approaches to develop novel treatments specifically for bipolar disorder. Deliberate (ie not by serendipity) treatments may come from one of two general mechanisms: (1) Understanding the mechanism of action of current medications and thereafter designing novel drugs that mimics these mechanism(s); (2) Basing medication development upon the hypothetical or proven underlying pathophysiology of bipolar disorder. In this review, we focus upon the first approach. Molecular and cellular targets of current mood stabilizers include lithium inhibitable enzymes where lithium competes for a magnesium binding site (inositol monophosphatase, inositol polyphosphate 1-phosphatase, glycogen synthase kinase-3 (GSK-3), fructose 1,6-bisphosphatase, bisphosphate nucleotidase, phosphoglucomutase), valproate inhibitable enzymes (succinate semialdehyde dehydrogenase, succinate semialdehyde reductase, histone deacetylase), targets of carbamazepine (sodium channels, adenosine receptors, adenylate cyclase), and signaling pathways regulated by multiple drugs of different classes (phosphoinositol/protein kinase C, cyclic AMP, arachidonic acid, neurotrophic pathways). While the task of developing novel medications for bipolar disorder is truly daunting, we are hopeful that understanding the mechanism of action of current mood stabilizers will ultimately lead clinical trials with more specific medications and thus better treatments those who suffer from this devastating illness.
Collapse
Affiliation(s)
- T D Gould
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
12
|
Groenen PM, Peer PG, Wevers RA, Swinkels DW, Franke B, Mariman EC, Steegers-Theunissen RP. Maternal myo-inositol, glucose, and zinc status is associated with the risk of offspring with spina bifida. Am J Obstet Gynecol 2003; 189:1713-9. [PMID: 14710103 DOI: 10.1016/s0002-9378(03)00807-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the maternal and children's myo-inositol, glucose, and zinc status in association with spina bifida risk. STUDY DESIGN Sixty-three mothers and 70 children with spina bifida and 102 control mothers and 85 control children were investigated. The maternal and child serum myo-inositol, serum glucose, and red blood cell zinc concentrations were measured when the child was between 1 and 3 years old. These data were compared between cases and control subjects. The association with spina bifida was expressed by the ratio of geometric means and by odds ratios and 95% CI for a cutoff value at the extreme 10th percentile of the control group. RESULTS The geometric mean of the maternal myo-inositol concentration tended to be 5% (95% CI, -1% to 11%) lower in cases. Interestingly, the odds ratio for the extreme low maternal myo-inositol concentration was 2.6 (95% CI, 1.1-6.0). The glucose and zinc concentrations were significantly higher at 7% (95% CI, 4%-10%) and significantly lower at 5% (95% CI, 0%-9%), in case mothers compared with control mothers. The odds ratios (95% CI) for maternal high glucose and low zinc concentrations were 4.6 (2.0-10.5) and 2.9 (1.2-7.0), respectively. The geometric mean of the myo-inositol concentration tended to be 7% (95% CI, 0%-14%) lower in children with spina bifida; the glucose and zinc concentrations were comparable. CONCLUSION Maternal myo-inositol, glucose, and zinc status are associated with the risk of spina bifida in offspring. Furthermore, the myo-inositol status of the child seems to contribute to this risk as well.
Collapse
Affiliation(s)
- Pascal M Groenen
- Department of Epidemiology and Biostatistics, University Medical Center Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Bashir-Uddin Surfraz M, Miller DJ, Gani D, Allemann RK. Product-like inhibitors of inositol monophosphatase. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)01878-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Lenox RH, Wang L. Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol Psychiatry 2003; 8:135-44. [PMID: 12610644 DOI: 10.1038/sj.mp.4001306] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clinical efficacy of lithium in the prophylaxis of recurrent affective episodes in bipolar disorder is characterized by a lag in onset and remains for weeks to months after discontinuation. Thus, the long-term therapeutic effect of lithium likely requires reprogramming of gene expression. Protein kinase C and glycogen synthase kinase-3 signal transduction pathways are perturbed by chronic lithium at therapeutically relevant concentrations and have been implicated in modulating synaptic function in nerve terminals. These signaling pathways offer an opportunity to model critical signals for altering gene expression programs that underlie adaptive responses of neurons to long-term lithium exposure. While the precise physiological events critical for the clinical efficacy of lithium remain unknown, we propose that linking lithium-responsive genes as a regulatory network will provide a strategy to identify signature gene expression patterns that distinguish between therapeutic and nontherapeutic actions of lithium.
Collapse
Affiliation(s)
- R H Lenox
- Molecular Neuropsychopharmacology Program, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
15
|
Abstract
Mood stabilizers represent a class of drugs that are efficacious in the treatment of bipolar disorder. The most established medications in this class are lithium, valproic acid, and carbamazepine. In addition to their therapeutic effects for treatment of acute manic episodes, these medications often are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. While important extracellular effects have not been excluded, most available evidence suggests that the therapeutically relevant targets of this class of medications are in the interior of cells. Herein we give a prospective of a rapidly evolving field, discussing common effects of mood stabilizers as well as effects that are unique to individual medications. Mood stabilizers have been shown to modulate the activity of enzymes, ion channels, arachidonic acid turnover, G protein coupled receptors and intracellular pathways involved in synaptic plasticity and neuroprotection. Understanding the therapeutic targets of mood stabilizers will undoubtedly lead to a better understanding of the pathophysiology of bipolar disorder and to the development of improved therapeutics for the treatment of this disease. Furthermore, the involvement of mood stabilizers in pathways operative in neuroprotection suggests that they may have utility in the treatment of classical neurodegenerative disorders.
Collapse
Affiliation(s)
- Todd D. Gould
- Laboratory of Molecular Pathophysiology, Building 49, Room B1EE16, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guang Chen
- Laboratory of Molecular Pathophysiology, Building 49, Room B1EE16, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Husseini K. Manji
- Laboratory of Molecular Pathophysiology, Building 49, Room B1EE16, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Chiu TTY, Rogers MS, Law ELK, Briton-Jones CM, Cheung LP, Haines CJ. Follicular fluid and serum concentrations of myo-inositol in patients undergoing IVF: relationship with oocyte quality. Hum Reprod 2002; 17:1591-6. [PMID: 12042283 DOI: 10.1093/humrep/17.6.1591] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The follicular microenvironment is an important determinant of oocyte development. The aim of this study was to examine whether the myo-inositol (MI) content in human follicular fluid (FF) was associated with better oocyte quality. METHODS A total of 53 patients treated with IVF was recruited to a prospective observational study. FF and serum samples collected were divided into two groups: group A consisted of FF associated with matured and fertilized oocytes, whilst group B was from follicles with immature and unfertilized oocytes. RESULTS Patient's age, total ampoules of HMG used, days of stimulation, basal levels of FSH, estradiol (E(2)) levels on the day of HCG, and serum MI content were not significantly different between the two groups. FF volume and its MI content were significantly higher in group A compared with group B (P < 0.05). The levels of MI in FF were positively correlated with the amount of E(2) in their corresponding FF samples and also correlated with embryo quality. CONCLUSIONS We propose that higher concentrations of MI and E(2) in human FF appear to play a role in follicular maturity and provide a marker of good quality oocytes.
Collapse
Affiliation(s)
- Tony T Y Chiu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
17
|
Tritsaris K, Gromada J, Jørgensen TD, Nauntofte B, Dissing S. Reduction in the rate of inositol 1,4,5-trisphosphate synthesis in rat parotid acini by lithium. Arch Oral Biol 2001; 46:365-73. [PMID: 11269870 DOI: 10.1016/s0003-9969(00)00109-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stimulation of muscarinic cholinergic receptors on rat parotid acinar cells causes a rapid production of inositol phosphates, with the key metabolic event being the breakdown of phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and diacylglycerol. Here a high-performance liquid chromatographic technique was used to measure the effects of intracellular lithium ions on the amount of various inositol phosphates produced. When acini were stimulated maximally with acetylcholine (ACh), the sum of all inositol phosphates produced followed a monoexponential function with a production rate constant for Ins(1,4,5)P3 of 0.07 +/- 0.01 solidus/sec. The presence of 23 mM LiCl intracellularly reduced the production rate constant of Ins(1,4,5)P3 induced by ACh to 0.03 +/- 0.01 solidus/sec, resulting in a decrease in the Ins(1,4,5)P3 production as well as in the magnitude of the rise in the intracellular free Ca2+ concentration. The lithium ion (Li+) did not affect the rate of conversion of Ins(1,4,5)P3 to either inositol 1,4-bisphosphate or inositol 1,3,4,5-tetrakisphosphate. The rate of the inositol phosphate production after the addition of the Ca2+ ionophore ionomycin was unaffected by intracellular Li+ (23 mM), which implies that the action of Li+ was at the muscarinic cholinergic receptor, on G-protein or on the interactions between G-proteins and phospholipase C. Thus, in the early events after receptor stimulation with ACh, Li+ causes a reduction in the concentration of the cellular messengers Ins(1,4,5)P3 and Ca2+.
Collapse
Affiliation(s)
- K Tritsaris
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
18
|
Dursun SM, Blackburn JR, Kutcher SP. An exploratory approach to the serotonergic hypothesis of depression: bridging the synaptic gap. Med Hypotheses 2001; 56:235-43. [PMID: 11425295 DOI: 10.1054/mehy.2000.1187] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this exploratory review, we attempt to integrate pre and post synaptic theories of the biochemical basis of depression--in particular with regard to 5-HT. We will be providing evidence that in major depressive disorder, there is a continuity of dysfunction of neural function, i.e. pre and post synaptic serotonergic symptoms are affected. Furthermore, we will also be providing the implications of this approach for normal treatments for depressive disorder.
Collapse
Affiliation(s)
- S M Dursun
- Psychopharmacology Unit, Department of Psychiatry, Dalhousie University, Queen Elizabeth II Health Sciences Centre, Abbie J. Lane Building, 4th Floor Suite 4083, Halifax, Nova Scotia B3H 2E2, Canada.
| | | | | |
Collapse
|
19
|
Miller DJ, Beaton MW, Wilkie J, Gani D. The 6-OH group of D-inositol 1-phosphate serves as an H-bond donor in the catalytic hydrolysis of the phosphate ester by inositol monophosphatase. Chembiochem 2000; 1:262-71. [PMID: 11828418 DOI: 10.1002/1439-7633(20001117)1:4<262::aid-cbic262>3.0.co;2-%23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inositol monophosphatase plays a pivotal role in the biosynthesis of secondary messengers and is believed to be a target for lithium therapy. It is established how a lithium ion works in inhibiting the enzyme but details of the mechanism for the direct magnesium ion activated hydrolysis of the substrate have been elusive. It is known that substrates require a minimal 1,2-diol phosphate structural motif, which in D-myo-inositol 1-phosphate relates to the fragment comprising the 1-phosphate ester and the 6-hydroxy group. Here it is shown that inhibitors that are D-myo-inositol 1-phosphate substrate analogues possessing 6-substituents larger than the 6-hydroxy group of the substrate, for example, the 6-O-methyl analogue, are able to bind to the enzyme in a congruous manner to the substrate. It is demonstrated, however, that such compounds show no substrate activity whatsoever. It is also shown that a 6-amino group is able to fulfil the role of the 6-hydroxy group of the substrate in conferring substrate activity and that a 6-methylamino group is similarly able to support catalysis. The results indicate that a 6-substituent capable of serving as a hydrogen-bond donor is required in the catalytic mechanism for hydrolysis. It has recently been shown that inositol is displaced from phosphorus with inversion of stereochemistry and we expect that the nucleophilic species is associated with Mg(2+)-1. It is proposed here that the role of the 6-hydroxy group of the substrate is to H-bond with a water molecule or hydroxide ion located on Mg(2+)-2. From this analysis, it appears that the water molecule bound to Mg(2+)-2 serves as a proton donor for the inositolate leaving group in a process that stabilises the alkoxide product and retards the back-reaction.
Collapse
Affiliation(s)
- D J Miller
- School of Chemistry The University of Birmingham Edgbaston, Birmingham B15 2TT UK
| | | | | | | |
Collapse
|
20
|
Miller D, Beaton M, Wilkie J, Gani D. The 6‐OH Group of
D
‐Inositol 1‐Phosphate Serves as an H‐Bond Donor in the Catalytic Hydrolysis of the Phosphate Ester by Inositol Monophosphatase. Chembiochem 2000. [DOI: 10.1002/1439-7633(20001117)1:4<262::aid-cbic262>3.0.co;2-#] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David J. Miller
- School of Chemistry The University of Birmingham Edgbaston, Birmingham B15 2TT (UK) Fax: (+44) 121‐414‐7871
| | - Martin W. Beaton
- School of Chemistry The University of St. Andrews St. Andrews, Fife, KY16 9ST (UK)
| | - John Wilkie
- School of Chemistry The University of Birmingham Edgbaston, Birmingham B15 2TT (UK) Fax: (+44) 121‐414‐7871
| | - David Gani
- School of Chemistry The University of Birmingham Edgbaston, Birmingham B15 2TT (UK) Fax: (+44) 121‐414‐7871
| |
Collapse
|
21
|
van Calker D, Belmaker RH. The high affinity inositol transport system--implications for the pathophysiology and treatment of bipolar disorder. Bipolar Disord 2000; 2:102-7. [PMID: 11252649 DOI: 10.1034/j.1399-5618.2000.020203.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The 'inositol-depletion hypothesis' postulates that the therapeutic effects of lithium are due to inhibition of inositol monophosphatase, which leads to depletion of brain cells of myo-inositol and consequently to dampening of phosphoinositide (PI) signaling. This article examines the potential relevance of an alternative mechanism for inositol depletion: inhibition of myo-inositol uptake that proceeds via the sodium/myo-inositol cotransport (SMIT). We discuss recent in vitro experiments that show a pronounced downregulation of SMIT after chronic treatment with lithium, carbamazepine, and valproate at therapeutically relevant concentrations. It is concluded that downregulation of SMIT could represent a common mechanism of action of mood stabilizers.
Collapse
Affiliation(s)
- D van Calker
- Department of Psychiatry, University of Freiburg, Germany.
| | | |
Collapse
|
22
|
Lubrich B, Spleiss O, Gebicke-Haerter PJ, van Calker D. Differential expression, activity and regulation of the sodium/myo-inositol cotransporter in astrocyte cultures from different regions of the rat brain. Neuropharmacology 2000; 39:680-90. [PMID: 10728889 DOI: 10.1016/s0028-3908(99)00162-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high-affinity sodium/myo-inositol cotransporter (SMIT) is involved in osmoregulation in several cells and tissues. In the CNS the activity of SMIT also determines the individual susceptibility of neural cells to the inositol depleting effect of lithium, which is considered to be important in lithium's therapeutic effects in manic-depressive illness. Among neural cells SMIT is particularly active in astrocytes. In the present work we have cloned the cDNA of SMIT of the rat and assessed its activity, expression and regulation in primary astroglia cultures derived from five different rat brain regions: cerebellum, cortex, diencephalon, hippocampus and tegmentum. After an incubation period of 24 h in medium containing 3[H]labeled myo-inositol different steady-state concentrations were detected which were dependent on the brain region from which the astrocytes were cultured. In addition, myo-inositol uptake in astrocytes from different areas was characterized by two different Km values (27 microM for cerebellum and diencephalon, 50 microM for cortex, hippocampus and tegmentum) and by three different v(max) values (approx. 200 pmol/mg protein/min for astrocytes from cerebellum and tegmentum, 298 for hippocampus and 465 for cortex), indicating that the active myo-inositol uptake into astroglial cells is distinct in the various brain regions. The efficacy of uptake as determined by v(max) values of 3[H]myo-inositol uptake correlated with the level of mRNA of SMIT in the astrocyte cultures from the various brain regions as determined by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). Both 3[H]myo-inositol uptake and SMIT mRNA content was upregulated by incubation of astrocytes in medium of increased osmolarity. In astrocytes from cerebellum, cortex, hippocampus and tegmentum 3[H]myo-inositol uptake was downregulated by chronic incubation with 400 microM inositol. This effect was not observed in astrocytes from diencephalon. Furthermore, in astrocytes from cortex and hippocampus but not from cerebellum, diencephalon and tegmentum incubation with corticosterone for three days upregulated 3[H]myo-inositol uptake. It is concluded that SMIT is differentially expressed and regulated in astrocytes from distinct brain regions. These regional differences suggest particular consideration of localized effects in investigations of the role of myo-inositol in the mechanism of action of antibipolar drugs.
Collapse
Affiliation(s)
- B Lubrich
- Department of Psychiatry, University of Freiburg, Germany
| | | | | | | |
Collapse
|
23
|
Manji HK, McNamara R, Chen G, Lenox RH. Signalling pathways in the brain: cellular transduction of mood stabilisation in the treatment of manic-depressive illness. Aust N Z J Psychiatry 1999; 33 Suppl:S65-83. [PMID: 10622182 DOI: 10.1111/j.1440-1614.1999.00670.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The long-term treatment of manic-depressive illness (MDI) likely involves the strategic regulation of signalling pathways and gene expression in critical neuronal circuits. Accumulated evidence has identified signalling pathways, in particular the family of protein kinase C (PKC) isozymes, as targets for the long-term action of lithium. Chronic lithium administration produces a reduction in the expression of PKC alpha and epsilon, as well as a major PKC substrate, MARCKS, which has been implicated in long-term neuroplastic events in the developing and adult brain. More recently, studies have demonstrated robust effects of lithium on another kinase system, GSK-3beta, and on neuroprotective/neurotrophic proteins in the brain. Given the key roles of these signalling cascades in the amplification and integration of signals in the central nervous system, these findings have clear implications not only for research into the neurobiology of MDI, but also for the future development of novel and innovative treatment strategies.
Collapse
Affiliation(s)
- H K Manji
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
24
|
Manji HK, Lenox RH. Ziskind-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 1999; 46:1328-51. [PMID: 10578449 DOI: 10.1016/s0006-3223(99)00235-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding the biology of the pharmacological stabilization of mood will undoubtedly serve to provide significant insight into the pathophysiology of manic-depressive illness (MDI). Accumulating evidence from our laboratories and those of other researchers has identified the family of protein kinase C isozymes as a shared target in the brain for the long-term action of both lithium and valproate. In rats chronically treated with lithium, there is a reduction in the hippocampus of the expression of two protein kinase isozymes, alpha and epsilon, as well as a reduction in the expression of a major PKC substrate, MARCKS, which has been implicated in long-term neuroplastic events in the developing and adult brain. In addition, we have been investigating the down-stream impact of these mood stabilizers on another kinase system, GSK-3 beta and on the AP-1 family of transcription factors. Further studies have generated promising preliminary data in support of the antimanic action of tamoxifen, and antiestrogen that is also a PKC inhibitor. Future studies must address the therapeutic relevance of these protein targets in the brain using innovative strategies in both animal and clinical investigations to ultimately create opportunities for the discovery of the next generations of mood stabilizers for the treatment of MDI.
Collapse
Affiliation(s)
- H K Manji
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
25
|
Gomez JR, Karkanias NB, Lenox RH, Papke RL. Lithium homeostasis in Xenopus oocytes: implications for the study of signal transduction. Life Sci 1998; 63:1715-24. [PMID: 9806227 DOI: 10.1016/s0024-3205(98)00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Xenopus oocyte has been shown to be a useful model for the study of signal transduction pathways. The present study investigated whether or not the oocyte could be used to study the effects of lithium on signal transduction mechanisms by comparing the dynamics of lithium homeostasis in the oocyte and a human immortalized hippocampal cell line using Flame Atomic Emission Spectroscopy (FAES). A biphasic pattern of lithium uptake was observed in the oocyte in the presence of 5 mM extracellular lithium. The late phase of lithium uptake, which started after 30 minutes of incubation time, was sensitive to phloretin, an inhibitor of Na+/Li+ counter-transport. Differences in lithium efflux kinetics further characterized the two observed phases of accumulation and also suggested that lithium might be distributed in different pools within the oocyte, including one sequestered in organelles or associated with cytosolic proteins. An analogous sequestered pool was not, however, observed in the hippocampal cell line indicating that lithium is distributed differently in these cell types. This suggests that the Xenopus oocyte might not be a suitable model for evaluating the effects of lithium on signal transduction pathways because of the unknown contribution of the sequestered pool on predicting relevant physiological effects.
Collapse
Affiliation(s)
- J R Gomez
- Department of Pharmacology, University of Florida Medical College, J. H. Miller Health Center, Gainesville 32610-0267, USA
| | | | | | | |
Collapse
|
26
|
Beaton M, Gani D. Synthesis of 6-amino-3,5-deoxyinositol 1-phosphates via (1R,2R,4R,6S)-1,6-Epoxy-2,4-bis-benzyloxycyclohexane aminolysis in aqueous ytterbium triflate solution. Tetrahedron Lett 1998. [DOI: 10.1016/s0040-4039(98)01909-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Lau CK, Lo SC, Li W, Churchich DR, Kwok F, Churchich JE. Partially folded conformations of inositol monophosphatase endowed with catalytic activity. JOURNAL OF PROTEIN CHEMISTRY 1998; 17:789-97. [PMID: 9988525 DOI: 10.1023/a:1020726318091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The stability of porcine brain inositol monophosphatase in the presence of increasing concentrations of urea was investigated at pH 7.5. Exposure of the enzyme to 8 M urea brings about the dissociation of the dimeric species of 58 kDa into monomeric forms as revealed by gel filtration chromatography. Unfolding of the protein by 8 M urea results in a decrease of the ellipticity at 220 nm (20%) together with a perturbation of the near-UV circular dichroism spectrum. Urea-treated inositol monophosphatase binds Co2+ ions with a dissociation constant of 3.3 microM. The enzyme is catalytically competent when assayed with 4-nitrophenyl-phosphate in the presence of the activating ion Co2+ at pH 7.5 in 8 M urea. The apparent activation constant for Co2+ is 2.5 mM. It is postulated that partially folded conformations of monomeric species preserve their catalytic function because the affinity of Co2+ ions for the metal coordination center of the protein is not perturbed by exposure to 8 M urea.
Collapse
Affiliation(s)
- C K Lau
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong
| | | | | | | | | | | |
Collapse
|
28
|
Ganzhorn AJ, Hoflack J, Pelton PD, Strasser F, Chanal MC, Piettre SR. Inhibition of myo-inositol monophosphatase isoforms by aromatic phosphonates. Bioorg Med Chem 1998; 6:1865-74. [PMID: 9839016 DOI: 10.1016/s0968-0896(98)00148-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
alpha-Hydroxyphosphonates are moderately potent (Ki = 6-600 microM) inhibitors of the enzyme myo-inositol monophosphatase (McLeod et al., Med. Chem. Res. 1992, 2, 96). Hydroxy-[4-(5,6,7,8-tetrahydronaphtyl-1-oxy)phenyl]methyl phosphonate (3) was resynthesized and its inhibitory potency towards the recombinant bovine brain enzyme confirmed (Ki = 20 microM). Similar aromatic difluoro-, keto-, and ketodifluorophosphonates (5, 7, 9) were inactive. Compound 3 was 15-fold less active on the human as compared to the bovine enzyme. Molecular modeling suggested that the hydrophobic part of the inhibitor interacts with amino acid side chains that are located at the interface between the enzyme subunits in an area (amino acids 175-185) with low similarity between the two isozymes. Phe-183 in the human enzyme was replaced with leucine, the corresponding residue in the bovine isoform. The three isozymes (human wild-type, bovine wild-type and human F183L) had similar kinetic properties, except that the bovine enzyme was less effectively inhibited by high concentrations of the activator Mg2+. The F183L mutant enzyme had a twofold increased affinity for compound 3 as compared to the human wild-type form. We conclude that residue 183 contributes to the binding of aromatic hydroxyphosphonates to IMPase, but it is not the only determining factor for inhibitor specificity with respect to different isozymes.
Collapse
Affiliation(s)
- A J Ganzhorn
- Marion Merrell Research Institute, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
29
|
Kabakov AY, Karkanias NB, Lenox RH, Papke RL. Synapse-specific accumulation of lithium in intracellular microdomains: a model for uncoupling coincidence detection in the brain. Synapse 1998; 28:271-9. [PMID: 9517835 DOI: 10.1002/(sici)1098-2396(199804)28:4<271::aid-syn2>3.0.co;2-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lithium's therapeutic specificity for the treatment of bipolar disorder may be attributable in part to an ability to target sites where there are high levels of synaptic activity. We show that glutamate receptors expressed in oocytes are highly permeable to lithium. Mathematical simulations of Li+ diffusion in mature dendritic spines suggest that in the presence of 1 mM extracellular lithium one synaptic current can increase Li+ concentration in the spine head by 4 mM with a decay time constant of about 15-20 ms. Two or more current spikes will produce oscillations between 6 and 8 mM or potentially higher. These results predict that the local intracellular lithium in dendritic spines can rise to high enough levels to uncouple second messenger mechanisms of coincidence detection.
Collapse
Affiliation(s)
- A Y Kabakov
- Department of Pharmacology and Therapeutics, University of Florida Medical College, J.H. Miller Health Center, Gainesville 32610, USA
| | | | | | | |
Collapse
|
30
|
Batty IH, Currie RA, Downes CP. Evidence for a model of integrated inositol phospholipid pools implies an essential role for lipid transport in the maintenance of receptor-mediated phospholipase C activity in 1321N1 cells. Biochem J 1998; 330 ( Pt 3):1069-77. [PMID: 9494070 PMCID: PMC1219246 DOI: 10.1042/bj3301069] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The compartmentation of inositol phospholipids was examined by using a combination of radiolabelling approaches in intact and permeabilized 1321N1 astrocytoma cells. A 'chase' protocol was developed with whole cells in which phosphoinositide (PI) pools were labelled to steady state with [3H]inositol and the cellular [3H]inositol pool was then diluted selectively with non-radioactive inositol. In these cells muscarinic-receptor-stimulated phospholipase C (PLC) hydrolysed [3H]PI at approx. 1-2%/min. However, after the chase procedure the relative specific radioactivity of [3H]Ins(1,3,4)P3, a rapidly metabolized and sensitive marker of PLC activity, decreased only after more than 5 min and over a time course similar to that during which the labelling of each [3H]PtdIns, [3H]PtdInsP and [3H]PtdInsP2 declined by at least 50%. These results demonstrate a large receptor-responsive [3H]PI pool that is accessed by stimulated PLC without apparent metabolic compartmentation, despite its probable distribution between different membrane fractions. Support for this was obtained in intact cells by using an acute [3H]inositol labelling method in which increases in the specific radioactivity of [3H]inositol phosphates stimulated by carbachol occurred only in parallel with similar increases in the labelling of the bulk of cellular [3H]PI. In [3H]inositol-prelabelled cells permeabilized to deplete cytosolic proteins, carbachol and guanosine 5'-[gamma-thio]triphosphate stimulated the endogenous PLC to degrade only approx. 5% of [3H]PI. This was increased to approx. 30% in the presence of exogenous PtdIns transfer protein, which, at a concentration approx. 5-10% of that in 1321N1 cell cytosol, was sufficient to support PLC activity comparable with that observed in response to carbachol in whole cells. These and earlier results in 1321N1 cells suggest a model of integrated PI pools involving an obligatory role for lipid transport. Given the multifunctional capacity of PI in cellular signalling mechanisms, this model has important implications, particularly for the hypothesis that the ability of Li+ ions to influence these selectively might account for its therapeutic actions.
Collapse
Affiliation(s)
- I H Batty
- Department of Biochemistry, Medical Sciences Institute, University of Dundee, Dundee DD1 4HN, Scotland, U.K
| | | | | |
Collapse
|
31
|
Abstract
Lithium, despite its simple structure, has numerous biological effects. It also has a remarkable therapeutic effect in the prophylactic treatment of manic depression, and is finding a role in controlling aggressive and self-mutilating behavior. The special feature of lithium is that it only acts on overactive systems to bring them back to normal, without affecting the stable system. The mechanisms of action of this simple cation are still largely unknown although the inositol depletion theory is the most widely accepted model. A recent paper described a different molecular mechanism for its effect on development, which may also explain its action in manic depression.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute, Oakland University, Rochester, MI 48309-4401, USA
| |
Collapse
|
32
|
Gadd GM, Foster SA. Metabolism of inositol 1,4,5-trisphosphate in Candida albicans: significance as a precursor of inositol polyphosphates and in signal transduction during the dimorphic transition from yeast cells to germ tubes. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 2):437-448. [PMID: 9043121 DOI: 10.1099/00221287-143-2-437] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The metabolism of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was examined in yeast cells and germ tubes of Candida albicans. Methods have been developed for analysis of the two key metabolic enzymes, Ins(1,4,5)P3, kinase and phosphatase. ATP-dependent Ins(1,4,5)P3 kinase activity was detected predominantly in the soluble fraction of cell extracts and exhibited a Km of approximately 9 microM. The apparent Km of Ins(1,4,5)P3 phosphatase for Ins(1,4,5)P3 was approximately 480 microM. The slow rate of dephosphorylation of Ins(1,4,5_P3 to inositol bisphosphate suggests a lower importance of the phosphatase within cells compared to the kinase. Since both yeast cells and germ tubes of C. albicans rapidly phosphorylated Ins(1,4,5)P3 to inositol tetrakisphosphate and inositol penta/hexakisphosphate, it is suggested that Ins(1,4,5)P3 has an important role as a precursor for production of these compounds. A sustained increase in cellular Ins(1,4,5)P3 levels was observed during germ tube formation and, prior to the onset of germination between 1 and 2 incubation, the Ins(1,4,5)P3 content increased up to eightfold. Transient increases in the level of Ins(1,4,5)P3 were also observed during yeast-like growth of C. albicans. The possible role and relative importance of Ins(1,4,5)P3 as a precursor for inositol polyphosphates and in signal transduction involving Ca2+ release from internal stores is discussed.
Collapse
Affiliation(s)
- Geoffrey M Gadd
- Department of Biologica Sciences, University of Dundee, Dundee DD1 4HN, UK
| | - Sally A Foster
- Department of Biologica Sciences, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
33
|
Kwon OS, Churchich JE. Binding of the activating ion Co(II) to myo-inositol monophosphatase monitored by fluorescence and phosphorescence spectroscopy. JOURNAL OF PROTEIN CHEMISTRY 1997; 16:1-9. [PMID: 9055202 DOI: 10.1023/a:1026353509519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two extrinsic probes, pyrene-maleimide and eosin-maleimide, were used to label specific SH groups of the enzyme myo-inositol monophosphatase. The fluorescence of pyrene-monophosphatase is enhanced upon addition of the activating metal ions Co(II) and Mg(II). Co(II) ions bind with a dissociation constant of 4 microM, whereas the apparent activation constant Ka is 0.4 mM. Energy transfer measurements demonstrated that the pyrene chromophore, covalently linked to Cys-218, is within 9 A of the metal ion Tb(III) coordinated to the metal-binding site. The phosphorescence emitted by eosin covalently linked to the protein is quenched by the addition of the activating cations Co(II) and Mg(II). Phosphorescence titrations conducted under anaerobic conditions were used to determine a dissociation constant of approximately 3 microM for the binding of Co(II) ions. The results are consistent with the hypothesis that two activating ions per monomeric subunit participate in the catalytic mechanism. The affinity of the tightly bound ion is at least 100-fold greater than the affinity of the weakly bound ion.
Collapse
Affiliation(s)
- O S Kwon
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu, Korea
| | | |
Collapse
|
34
|
Schulz J, Gani D. Synthesis of (−)-(1R,2R,4R,6S)-1,6-epoxy-4-benzyloxycyclohexan-2-ol, A key precursor to inositol monophosphatase inhibitors, from (−)-quinic acid. Tetrahedron Lett 1997. [DOI: 10.1016/s0040-4039(96)02229-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Moreno F, Corrales S, Garcia Blanco F, Gore MG, Rees-Milton K, Churchich JE. Reversible denaturation of myo-inositol monophosphatase. The stability of the metal-binding loop. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:435-42. [PMID: 8841409 DOI: 10.1111/j.1432-1033.1996.0435h.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The unfolding of bovine brain myo-inositol monophosphatase by guanidine. HCl (Gdn. HCl) has been investigated. The recovery of circular dichroism, emission spectra, and catalytic activity after dilution of Gdn.HCl-treated samples indicate that the overall process is reversible. The steepness of the spectroscopic changes between 3 M and 5 M Gdn.HCl, and the lack of any discernible plateau suggest that unfolding of the protein is a cooperative process. The sensitized luminescence of bound Tb(III) was used as a probe of conformational changes of the metal-binding loop. Denaturation of the enzyme by Gdn.HCl does not abolish sensitized luminescence. A 50% decrease in sensitized luminescence was observed in 5 M Gdn.HCl. Under this set of experimental conditions, the protein binds terbium with an association constant of 1 x 10(6)M-1. It is suggested that a residual structure of denatured myo-inositol monophosphatase is responsible for the binding of terbium ions. The kinetics of unfolding and refolding as a function of Gdn.HCl concentration were monitored by protein fluorescence in a stopped-flow instrument. The monophosphatase unfolded in a single kinetic phase with rate constants in the range 80-65 s-1 at 25 degrees C. The refolding kinetics fit monoexponential functions with rate constants in the range 120-65 s-1 depending on the Gdn.HCl concentration. Substantial refolding of the protein occurs within the dead time of mixing.
Collapse
Affiliation(s)
- F Moreno
- Unidad de RMN, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Ganzhorn AJ, Lepage P, Pelton PD, Strasser F, Vincendon P, Rondeau JM. The contribution of lysine-36 to catalysis by human myo-inositol monophosphatase. Biochemistry 1996; 35:10957-66. [PMID: 8718889 DOI: 10.1021/bi9603837] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The role of lysine residues in the catalytic mechanism of myo-inositol monophosphatase (EC 3.1.3.25) was investigated. The enzyme was completely inactivated by amidination with ethyl acetimidate or reductive methylation with formaldehyde and cyanoborohydride. Activity was retained when the active site was protected with Mg2+, Li+, and D,L-myo-inositol 1-phosphate. Using radiolabeling, peptide mapping, and sequence analysis, Lys-36 was shown to be the protected residue, which is responsible for inactivation. Replacing Lys-36 with glutamine produced a mutant protein, K36Q, with similar affinities for the substrate and the activator Mg2+, but a 50-fold lower turnover number as compared to the wild-type enzyme. Crystallographic studies did not indicate any gross structural changes in the mutant as compared to the native form. Initial velocity data were best described by a rapid equilibrium ordered mechanism with two Mg2+ binding before and a third one binding after the substrate. Inhibition by calcium was unaffected by the mutation, but inhibition by lithium was greatly reduced and became noncompetitive. The pH dependence of catalysis and the solvent isotope effect on kcat are altered in the mutant enzyme. D,L-myo-Inositol 1-phosphate, 4-nitrophenyl phosphate, and D-glucose 6-phosphate are cleaved at different rates by the wild-type enzyme, but with similar efficiency by K36Q. All data taken together are consistent with the hypothesis that modifying or replacing the lysine residue in position 36 decreases its polarizing effect on one of the catalytic metal ions and prevents the efficient deprotonation of the metal-bound water nucleophile.
Collapse
Affiliation(s)
- A J Ganzhorn
- Marion Merrel Research Institute, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
37
|
Silverstone PH, Hanstock CC, Fabian J, Staab R, Allen PS. Chronic lithium does not alter human myo-inositol or phosphomonoester concentrations as measured by 1H and 31P MRS. Biol Psychiatry 1996; 40:235-46. [PMID: 8871769 DOI: 10.1016/0006-3223(95)00382-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lithium may act by decreasing intracellular concentrations of myo-inositol. The present study measured the effects of chronic lithium on myo-inositol concentrations in volunteers. Eleven subjects received either lithium (n = 7) or placebo (n = 4) for 7 days in a double-blind study. Myo-inositol concentrations at baseline and day 8 were measured in vivo using 1H magnetic resonance spectroscopy (MRS). The results showed that lithium did not alter brain myo-inositol concentrations compared to placebo. In 5 other subjects we used 1H MRS and 31P MRS to measure changes in both myo-inositol and phosphomonoester concentrations. This second study showed that lithium did not alter myo-inositol or phosphomonoester concentrations. Thus, the present studies do not support the hypothesis that lithium significantly affects the brain concentrations of myo-inositol or phosphomonoesters; however, it is possible these findings represent an inability to detect the changes in myo-inositol and phosphomonoester concentrations that may have occurred following lithium administration.
Collapse
Affiliation(s)
- P H Silverstone
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Yu J, Spencer JB. Stereoselective Deoxygenation of myo-Inositol Monotosylates with Lithium Triethylborohydride. J Org Chem 1996. [DOI: 10.1021/jo960413b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jinquan Yu
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K
| | | |
Collapse
|
40
|
Bramham J, Carter AN, Riddell FG. The uptake of Li+ into human 1321 N1 astrocytomas using 7Li NMR spectroscopy. J Inorg Biochem 1996; 61:273-84. [PMID: 8867454 DOI: 10.1016/0162-0134(95)00075-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The uptake of Li+ ions into human 1321 N1 astrocytomas cultured on the surface of microcarrier beads was followed by 7Li NMR spectroscopy. The intracellular and extracellular 7Li resonances were separated by the use of dysprosium tripolyphosphate as a shift reagent. Excellent spectra were obtained from which the uptake of Li+ was found to be approximately ten times faster than that into human erythrocytes using the same technique and a steady-state intracellular Li+ concentration was observed within 60 min. The low intracellular Li+ concentration attained, relative to the extracellular concentration, indicates the presence of an efflux mechanism in astrocytomas that actively transports Li+ against its concentration gradient. The intracellular volume was estimated by quantitative 23Na NMR spectroscopy and the viability of the cells was confirmed by 31P NMR spectroscopy.
Collapse
Affiliation(s)
- J Bramham
- Department of Biochemistry, University, Dundee, Scotland
| | | | | |
Collapse
|
41
|
Hawthorne JN. Phosphoinositides and synaptic transmission. Subcell Biochem 1996; 26:43-57. [PMID: 8744261 DOI: 10.1007/978-1-4613-0343-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J N Hawthorne
- Department of Biochemistry, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
42
|
Atack JR, Broughton HB, Pollack SJ. Inositol monophosphatase--a putative target for Li+ in the treatment of bipolar disorder. Trends Neurosci 1995; 18:343-9. [PMID: 7482796 DOI: 10.1016/0166-2236(95)93926-o] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Attenuation of the phosphatidylinositol (PI) signal transduction pathway as a consequence of inhibition of inositol monophosphatase (IMPase) has been proposed as the mechanism for the efficacy of Li+ in the treatment of bipolar disorder. Nevertheless, Li+ also affects other aspects of PI signal transduction, and it is therefore not clear whether modulation of PI responses by Li+ can be attributed solely to inhibition of IMPase. However, inhibitors of IMPase mimic the effects of Li+ on some aspects of PI cell signalling, thus highlighting the potential of IMPase as a target for the treatment of bipolar disorder. The recent description of the three-dimensional structure of IMPase in conjunction with site-directed mutagenesis and kinetic studies has led to the elucidation of the enzyme mechanism. These structural and mechanistic data should prove useful in the development of novel inhibitors of IMPase that might ultimately prove useful clinically.
Collapse
Affiliation(s)
- J R Atack
- Merck Sharp & Dohme Research Laboratories, Harlow, Essex, UK
| | | | | |
Collapse
|
43
|
Strasser F, Pelton PD, Ganzhorn AJ. Kinetic characterization of enzyme forms involved in metal ion activation and inhibition of myo-inositol monophosphatase. Biochem J 1995; 307 ( Pt 2):585-93. [PMID: 7733900 PMCID: PMC1136688 DOI: 10.1042/bj3070585] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Activation and inhibition of recombinant bovine myo-inositol monophosphatase by metal ions was studied with two substrates, D,L-inositol 1-phosphate and 4-nitrophenyl phosphate. Mg2+ and Co2+ are essential activators of both reactions. At high concentrations, they inhibit hydrolysis of inositol 1-phosphate, but not 4-nitrophenyl phosphate. Mg2+ is highly selective for inositol 1-phosphate (kcat. = 26 s-1) compared with the aromatic substrate (kcat. = 1 s-1), and follows sigmoid activation kinetics in both cases. Co2+ catalyses the two reactions at similar rates (kcat. = 4 s-1), but shows sigmoid activation only with the natural substrate. Li+ and Ca2+ are uncompetitive inhibitors with respect to inositol 1-phosphate, but non-competitive with respect to 4-nitrophenyl phosphate. Both metal ions are competitive inhibitors with respect to Mg2+ with 4-nitrophenyl phosphate as the substrate. With inositol 1-phosphate, Ca2+ is competitive and Li+ non-competitive with respect to Mg2+. Multiple inhibition studies indicate that Li+ and Pi can bind simultaneously, whereas no such complex was detected with Ca2+ and Pi. Several sugar phosphates were also characterized as substrates of myo-inositol monophosphatase. D-Ribose 5-phosphate is slowly hydrolysed (kcat. = 3 s-1), but inhibition by Li+ is very efficient (Ki = 0.15 mM), non-competitive with respect to the substrate and competitive with respect to Mg2+. Depending on the nature of the substrate, Li+ inhibits by preferential binding to free enzyme (E), the enzyme-substrate (E.S) or the enzyme-phosphate (E.Pi) complex. Ca2+, on the other hand, inhibits by binding to E and E.S, in competition with Mg2+. The results are discussed in terms of a catalytic mechanism involving two metal ions.
Collapse
Affiliation(s)
- F Strasser
- Marion Merrell Dow Research Institute, Strasbourg, France
| | | | | |
Collapse
|
44
|
Fisher SK. Homologous and heterologous regulation of receptor-stimulated phosphoinositide hydrolysis. Eur J Pharmacol 1995; 288:231-50. [PMID: 7774668 DOI: 10.1016/0922-4106(95)90035-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Signal transduction at a diverse range of pharmacologically distinct receptors is effected by the enhanced turnover of inositol phospholipids, with the attendant formation of inositol 1,4,5-trisphosphate and diacylglycerol. Although considerable progress has been made in recent years towards the identification and characterization of the individual components of this pathway, much less is known of mechanisms that may underlie its regulation. In this review, evidence is presented for the potential regulation of inositol lipid turnover at the level of receptor, phosphoinositide-specific phospholipase C and substrate availability in response to either homologous or heterologous stimuli. Available data indicate that the extent of receptor-stimulated inositol lipid hydrolysis is regulated by multiple mechanisms that operate at different levels of the signal transduction pathway.
Collapse
Affiliation(s)
- S K Fisher
- Neuroscience Laboratory, University of Michigan, Ann Arbor 48104-1687, USA
| |
Collapse
|
45
|
Cole AG, Wilkie J, Gani D. Probes for the position and mechanistic role of the second ‘catalytic’ magnesium ion in the inositol monophosphatase reaction. ACTA ACUST UNITED AC 1995. [DOI: 10.1039/p19950002695] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Cole AG, Gani D. ‘Active’ conformation of the inositol monophosphatase substrate, adenosine 2′-phosphate: role of the ribofuranosyl O-atoms in chelating a second Mg2+ion. ACTA ACUST UNITED AC 1995. [DOI: 10.1039/p19950002685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Schulz J, Wilkie J, Lightfoot P, Rutherford T, Gani D. Synthesis and properties of mechanism-based inhibitors and probes for inositol monophosphatase derived from 6-O-(2′-hydroxyethyl)-(1R,2R,4R,6R)-cyclohexane-1,2,4,6-tetraol. ACTA ACUST UNITED AC 1995. [DOI: 10.1039/c39950002353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
York JD, Ponder JW, Chen ZW, Mathews FS, Majerus PW. Crystal structure of inositol polyphosphate 1-phosphatase at 2.3-A resolution. Biochemistry 1994; 33:13164-71. [PMID: 7947723 DOI: 10.1021/bi00249a002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bovine inositol polyphosphate 1-phosphatase (1-ptase), M(r) = 44,000, is a Mg(2+)-dependent/Li(+)-sensitive enzyme that catalyzes the hydrolysis of the 1-position phosphate from inositol 1,4-bisphosphate and inositol 1,3,4-trisphosphate. We have determined the crystal structure of recombinant bovine 1-ptase in the presence of Mg2+ by multiple isomorphous replacement. The structure is currently refined to an R value of 0.198 for 15,563 reflections within a resolution range of 8.0-2.3 A. 1-Ptase is monomeric in the crystal, consistent with biochemical data, and folds into an alternatively layered alpha/beta/alpha/beta sandwich. The central core of 1-ptase consists of a six-stranded antiparallel beta sheet perpendicular to two parallel three-turn alpha-helices. The beta sheet is flanked by two antiparallel six-turn alpha-helices aligned parallel to the beta sheet, and the central helices are flanked by a five-stranded largely parallel beta sheet. Two neighboring metal binding sites are located in adjacent acidic pockets formed by the intersection of several secondary structure elements including an unusual kink structure formed by the "DPIDST" sequence motif. The fold of 1-ptase is similar to that of two other metal-dependent/Li(+)-sensitive phosphatases, inositol monophosphate phosphatase and fructose 1,6-bisphosphatase despite minimal amino acid identity. Comparison of the active-site pockets of these proteins will likely provide insight into substrate binding and the mechanisms of metal-dependent catalysis and Li+ inhibition.
Collapse
Affiliation(s)
- J D York
- Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
49
|
Mørk A, Geisler A. Lithium in situ decreases extracellular levels of cyclic AMP in the dorsal hippocampus of living rats. PHARMACOLOGY & TOXICOLOGY 1994; 74:300-2. [PMID: 8090703 DOI: 10.1111/j.1600-0773.1994.tb01115.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A Mørk
- Department of Pharmacology, Panum Institute, University of Copenhagen, Denmark
| | | |
Collapse
|
50
|
Batty IH, Downes CP. The inhibition of phosphoinositide synthesis and muscarinic-receptor-mediated phospholipase C activity by Li+ as secondary, selective, consequences of inositol depletion in 1321N1 cells. Biochem J 1994; 297 ( Pt 3):529-37. [PMID: 8110190 PMCID: PMC1137866 DOI: 10.1042/bj2970529] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Conditions are described for culture of 1321N1 cells under which cellular inositol is decreased from approximately 20 mM to < 0.5 mM but phosphoinositide concentrations are unaffected. The effects of the muscarinic-receptor agonist carbachol (1 mM) and/or LiCl (10 mM) on phosphoinositide turnover in these or in inositol-replete cells was examined after steady-state [3H]inositol labelling of phospholipid pools. In both inositol-replete and -depleted cells, carbachol stimulated similar initial (0-15 min) rates of phospholipase C (PLC) activity, in the presence of Li+. Subsequently (> 30-60 min) stimulated PLC activity and [3H]PtdIns concentrations declined dramatically only in depleted cells. In inositol-depleted cells, carbachol alone evoked increased concentrations of [3H]inositol, [3H]InsP1, [3H]InsP2, [3H]InsP3 and [3H]InsP4, which were largely sustained over 90 min, and concentrations of [3H]PtdIns, [3H]PtdInsP and [3H]PtdInsP2 were decreased only to approximately 82, 84 and 93% of control respectively. In the presence of Li+ in these cells, the stimulated rise in [3H]inositol was prevented and, although accumulation of [3H]InsP1, [3H]InsP2 and [3H]InsP3 was initially (0-30 min) potentiated, rates of accumulation of [3H]InsP1 and concentrations of [3H]polyphosphates later (> 30-60 min) declined, and concentrations of [3H]PtdIns, [3H]PtdInsP and [3H]PtdInsP2 were decreased respectively to approximately 39, 48 and 81% of control. After 60 min in the presence of both carbachol and Li+, stimulated PLC activity was decreased by approximately 70% compared with the initial rate in depleted cells. This decreased PLC activity was reflected by changes in the stimulated concentrations of [3H]Ins(1,3,4)P3 but not of [3H]Ins(1,4,5)P3, but effects of Li+ on the latter may have been obscured by the demonstrated, concomitant and equal stimulated accumulation of [3H]inositol 1:2cyclic,4,5-trisphosphate. These data suggest that receptor-mediated PLC activity is selectively impaired by Li+ as a secondary consequence of inositol monophosphatase inhibition in cells which are highly dependent on inositol re-cycling, but imply that, although Li+ attenuation of PLC activity correlates closely with parameters indicative of limiting inositol supply, it is not readily attributed to decreased PtdInsP2 availability. The potential for complex regulation of PLC and PtdIns synthase is discussed.
Collapse
Affiliation(s)
- I H Batty
- Department of Biochemistry, University of Dundee, Scotland, U.K
| | | |
Collapse
|