1
|
Kiyama R, Wada-Kiyama Y. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. Biochem Pharmacol 2025; 232:116645. [PMID: 39577707 DOI: 10.1016/j.bcp.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
2
|
Zhang F, Zhang G, Wang C, Xu H, Che K, Sun T, Yao Q, Xiong Y, Zhou N, Chen M, Yu H, Chen H. Geographical variation in metabolite profiles and bioactivity of Thesium chinense Turcz. revealed by UPLC-Q-TOF-MS-based metabolomics. FRONTIERS IN PLANT SCIENCE 2025; 15:1471729. [PMID: 39866314 PMCID: PMC11760594 DOI: 10.3389/fpls.2024.1471729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025]
Abstract
Introduction This study aims to investigate the impact of geographical origin on the metabolite composition and bioactivity of Thesium chinense Turcz. (TCT), a member of the Apiaceae family renowned for its wide range of pharmacological properties, including antioxidant, antimicrobial, and anti-inflammatory effects. In this study, we investigated the whole plants of TCT from different regions in China, aiming to explore the geographical variation of TCT. Methods A non-targeted metabolomics approach was employed using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were utilized to identify and differentiate the metabolite profiles. We investigated the bioactivity, antioxidant activity, total flavonoid content (TFC), and the content of characteristic compounds from TCT sourced from different regions. This aims to further explore the metabolic differences and quality characteristics of TCT from various origins. Results PCA and PLS-DA analyses indicated that samples from different origins could be clearly distinguished. The analysis revealed 54 differential metabolites, predominantly flavonoids and alkaloids. KEGG pathway analysis indicated significant variations in the biosynthesis pathways of flavonoids and flavanols among the samples. TCT from Anhui province exhibited the highest TFC and strongest antioxidant and anti-inflammatory activities, while samples from Jilin province showed the lowest. Discussion A strong correlation was observed between metabolite content and geographical origins, suggesting that the bioactivity of TCT is significantly influenced by its provenance. Additionally, the antioxidant and anti-inflammatory activities of TCT were validated, showing a strong predictive relationship with TFC. This research highlights the potential of metabolomics in discerning the subtleties of plant metabolomes, contributing to the advancement of traditional Chinese medicine and its integration into modern healthcare practices.
Collapse
Affiliation(s)
- Fang Zhang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
- School of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Guanglei Zhang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
- School of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Cong Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Haonan Xu
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Ke Che
- School of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Tingting Sun
- School of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Qisheng Yao
- Planting Department, Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, China
| | - Youyi Xiong
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
| | - Niannian Zhou
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
| | - Mengyuan Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Yu
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
- Bozhou University, Bozhou, China
| | - Hao Chen
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
- Planting Department, Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
de Almada-Vilhena AO, dos Santos OVM, Machado MDA, Nagamachi CY, Pieczarka JC. Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use. Pharmaceuticals (Basel) 2024; 17:1449. [PMID: 39598361 PMCID: PMC11597570 DOI: 10.3390/ph17111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The Amazon rainforest is an important reservoir of biodiversity, offering vast potential for the discovery of new bioactive compounds from plants. In vitro studies allow for the investigation of biological processes and interventions in a controlled manner, making them fundamental for pharmacological and biotechnological research. These approaches are faster and less costly than in vivo studies, providing standardized conditions that enhance the reproducibility and precision of data. However, in vitro methods have limitations, including the inability to fully replicate the complexity of a living organism and the absence of a complete physiological context. Translating results to in vivo models is not always straightforward, due to differences in pharmacokinetics and biological interactions. In this context, the aim of this literature review is to assess the advantages and disadvantages of in vitro approaches in the search for new drugs from the Amazon, identifying the challenges and limitations associated with these methods and comparing them with in vivo testing. Thus, bioprospecting in the Amazon involves evaluating plant extracts through bioassays to investigate pharmacological, antimicrobial, and anticancer activities. Phenolic compounds and terpenes are frequently identified as the main bioactive agents, exhibiting antioxidant, anti-inflammatory, and antineoplastic activities. Chemical characterization, molecular modifications, and the development of delivery systems, such as nanoparticles, are highlighted to improve therapeutic efficacy. Therefore, the Amazon rainforest offers great potential for the discovery of new drugs; however, significant challenges, such as the standardization of extraction methods and the need for in vivo studies and clinical trials, must be overcome for these compounds to become viable medications.
Collapse
Affiliation(s)
| | | | | | | | - Julio C. Pieczarka
- Center for Advanced Biodiversity Studies, Cell Culture Laboratory, Institute of Biological Sciences, Federal University of Pará/Guamá Science and Technology Park, Avenida Perimetral da Ciência Km 01—Guamá, Belém 66075-750, PA, Brazil; (A.O.d.A.-V.); (O.V.M.d.S.); (M.d.A.M.); (C.Y.N.)
| |
Collapse
|
4
|
Gao X, Zhang N, Xie W. Advancements in the Cultivation, Active Components, and Pharmacological Activities of Taxus mairei. Molecules 2024; 29:1128. [PMID: 38474640 DOI: 10.3390/molecules29051128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Taxus mairei (Lemée and H.Lév.) S.Y.Hu, indigenous to the southern regions of China, is an evergreen tree belonging to the genus Taxus of the Taxaceae family. Owing to its content of various bioactive compounds, it exhibits multiple pharmacological activities and has been widely applied in clinical medicine. This article comprehensively discusses the current state of cultivation, chemical constituents, applications in the pharmaceutical field, and the challenges faced by T. mairei. The paper begins by detailing the ecological distribution of T. mairei, aiming to provide an in-depth understanding of its origin and cultivation overview. In terms of chemical composition, the article thoroughly summarizes the extracts and monomeric components of T. mairei, unveiling their pharmacological activities and elucidating the mechanisms of action based on the latest scientific research, as well as their potential as lead compounds in new drug development. The article also addresses the challenges in the T. mairei research, such as the difficulties in extracting and synthesizing active components and the need for sustainable utilization strategies. In summary, T. mairei is a rare species important for biodiversity conservation and demonstrates significant research and application potential in drug development and disease treatment.
Collapse
Affiliation(s)
- Xinyu Gao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ni Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
5
|
Wileński S, Koper A, Śledzińska P, Bebyn M, Koper K. Innovative strategies for effective paclitaxel delivery: Recent developments and prospects. J Oncol Pharm Pract 2024; 30:367-384. [PMID: 38204196 DOI: 10.1177/10781552231208978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
PURPOSE Paclitaxel is an effective chemotherapeutic agent against a variety of cancer types. However, the clinical utility of paclitaxel is restricted by its poor solubility in water and high toxicity, resulting in low drug tolerance. These difficulties could be resolved by using suitable pharmacological carriers. Hence, it is essential to determine innovative methods of administering this effective medication to overcome paclitaxel's inherent limitations. METHODS An extensive literature search was conducted using multiple electronic databases to identify relevant studies published. RESULTS In this comprehensive analysis, many different paclitaxel delivery systems are covered and discussed, such as albumin-bound paclitaxel, polymeric micelles, paclitaxel-loaded liposomes, prodrugs, cyclodextrins, and peptide-taxane conjugates. Moreover, the review also covers various delivery routes of conventional paclitaxel or novel paclitaxel formulations, such as oral administration, local applications, and intraperitoneal delivery. CONCLUSION In addition to albumin-bound paclitaxel, polymeric micelles appear to be the most promising formulations for innovative drug delivery systems at present. A variety of variants of polymeric micelles are currently undergoing advanced phases of clinical trials.
Collapse
Affiliation(s)
- Sławomir Wileński
- Department of Pharmaceutical Technology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Central Cytostatic Drug Department, Hospital Pharmacy, The F. Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Agnieszka Koper
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Paulina Śledzińska
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Krzysztof Koper
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
- Department of Clinical Oncology, and Nursing, Department of Oncological Surgery, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
6
|
Repp L, Skoczen SL, Rasoulianboroujeni M, Stern ST, Kwon GS. Plasma Stability and Plasma Metabolite Concentration-Time Profiles of Oligo(Lactic Acid) 8-Paclitaxel Prodrug Loaded Polymeric Micelles. AAPS J 2023; 25:39. [PMID: 37041376 PMCID: PMC10141660 DOI: 10.1208/s12248-023-00807-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Paclitaxel (PTX) is a frequently prescribed chemotherapy drug used to treat a wide variety of solid tumors. Oligo(lactic acid)8-PTX prodrug (o(LA)8-PTX) loaded poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) micelles have higher loading, slower release and higher antitumor efficacy in murine tumor models over PTX-loaded PEG-b-PLA micelles. The goal of this work is to study plasma stability of o(LA)8-PTX-loaded PEG-b-PLA micelles and its pharmacokinetics after IV injection in rats. In rat plasma, o(LA)8-PTX prodrug is metabolized into o(LA)1-PTX and PTX. In human plasma, o(LA)8-PTX is metabolized more slowly into o(LA)2-PTX, o(LA)1-PTX, and PTX. After IV injection of 10 mg/kg PTX-equiv of o(LA)8-PTX prodrug loaded PEG-b-PLA micelles in Sprague-Dawley rats, metabolite abundance in plasma follows the order: o(LA)1-PTX > o(LA)2-PTX > o(LA)4-PTX > o(LA)6-PTX. Bile metabolite profiles of the o(LA)8-PTX prodrug is similar to plasma metabolite profiles. In comparison to equivalent doses of Abraxane®, plasma PTX exposure is two orders of magnitude higher for Abraxane® than PTX from o(LA)8-PTX prodrug loaded PEG-b-PLA micelles, and plasma o(LA)1-PTX exposure is fivefold higher than PTX from Abraxane®, demonstrating heightened plasma metabolite exposure for enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Lauren Repp
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - Sarah L Skoczen
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research Sponsored By the National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Morteza Rasoulianboroujeni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research Sponsored By the National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, 53705, USA.
| |
Collapse
|
7
|
Clinically Expired Platelet Concentrates as a Source of Extracellular Vesicles for Targeted Anti-Cancer Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15030953. [PMID: 36986815 PMCID: PMC10056378 DOI: 10.3390/pharmaceutics15030953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The short shelf life of platelet concentrates (PC) of up to 5–7 days leads to higher wastage due to expiry. To address this massive financial burden on the healthcare system, alternative applications for expired PC have emerged in recent years. Engineered nanocarriers functionalized with platelet membranes have shown excellent targeting abilities for tumor cells owing to their platelet membrane proteins. Nevertheless, synthetic drug delivery strategies have significant drawbacks that platelet-derived extracellular vesicles (pEV) can overcome. We investigated, for the first time, the use of pEV as a carrier of the anti-breast cancer drug paclitaxel, considering it as an appealing alternative to improve the therapeutic potential of expired PC. The pEV released during PC storage showed a typical EV size distribution profile (100–300 nm) with a cup-shaped morphology. Paclitaxel-loaded pEV showed significant anti-cancer effects in vitro, as demonstrated by their anti-migratory (>30%), anti-angiogenic (>30%), and anti-invasive (>70%) properties in distinct cells found in the breast tumor microenvironment. We provide evidence for a novel application for expired PC by suggesting that the field of tumor treatment research may be broadened by the use of natural carriers.
Collapse
|
8
|
Min L, Han JC, Zhang W, Gu CC, Zou YP, Li CC. Strategies and Lessons Learned from Total Synthesis of Taxol. Chem Rev 2023; 123:4934-4971. [PMID: 36917457 DOI: 10.1021/acs.chemrev.2c00763] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Taxol (paclitaxel), the most well-known taxane diterpenoid, is the best-selling natural-source anticancer drug ever produced and one of the most common prescriptions in the treatment of breast, lung, and ovarian cancers, saving countless lives around the world. Structurally, Taxol possesses a highly oxygenated [6-8-6-4] core bearing 11 stereocenters, seven of which are contiguous chiral centers. Moreover, the extremely strained bicyclo[5.3.1] undecane ring system with a bridgehead double bond is a unique structural feature. All these features make Taxol a highly challenging synthetic target. Tremendous synthetic efforts from more than 60 research groups around the world have already culminated in ten total syntheses and three formal syntheses, as well as more than 60 synthetic model studies of Taxol. This review is intended to provide a long-overdue appraisal of the great achievements in the total syntheses of Taxol reported in the last few decades. In doing so, we summarize the development of synthesis toward Taxol from 1994 to 2022, including the evolution of synthetic strategy for accessing this complex molecular scaffold and key lessons learned from such endeavors. Finally, we briefly discuss the future of the research in this area.
Collapse
Affiliation(s)
- Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jing-Chun Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Wen Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chen-Chen Gu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yun-Peng Zou
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
9
|
Wenhao Zhou, Hu H, Wang T. Study on Modification of Paclitaxel and Its Antitumor Preparation. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
Liu C, Li S. Engineered biosynthesis of plant polyketides by type III polyketide synthases in microorganisms. Front Bioeng Biotechnol 2022; 10:1017190. [PMID: 36312548 PMCID: PMC9614166 DOI: 10.3389/fbioe.2022.1017190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Plant specialized metabolites occupy unique therapeutic niches in human medicine. A large family of plant specialized metabolites, namely plant polyketides, exhibit diverse and remarkable pharmaceutical properties and thereby great biomanufacturing potential. A growing body of studies has focused on plant polyketide synthesis using plant type III polyketide synthases (PKSs), such as flavonoids, stilbenes, benzalacetones, curcuminoids, chromones, acridones, xanthones, and pyrones. Microbial expression of plant type III PKSs and related biosynthetic pathways in workhorse microorganisms, such as Saccharomyces cerevisiae, Escherichia coli, and Yarrowia lipolytica, have led to the complete biosynthesis of multiple plant polyketides, such as flavonoids and stilbenes, from simple carbohydrates using different metabolic engineering approaches. Additionally, advanced biosynthesis techniques led to the biosynthesis of novel and complex plant polyketides synthesized by diversified type III PKSs. This review will summarize efforts in the past 10 years in type III PKS-catalyzed natural product biosynthesis in microorganisms, especially the complete biosynthesis strategies and achievements.
Collapse
Affiliation(s)
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Bordat A, Boissenot T, Ibrahim N, Ferrere M, Levêque M, Potiron L, Denis S, Garcia-Argote S, Carvalho O, Abadie J, Cailleau C, Pieters G, Tsapis N, Nicolas J. A Polymer Prodrug Strategy to Switch from Intravenous to Subcutaneous Cancer Therapy for Irritant/Vesicant Drugs. J Am Chem Soc 2022; 144:18844-18860. [PMID: 36193551 PMCID: PMC9585574 DOI: 10.1021/jacs.2c04944] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Chemotherapy is almost exclusively administered via the
intravenous
(IV) route, which has serious limitations (e.g., patient discomfort,
long hospital stays, need for trained staff, high cost, catheter failures,
infections). Therefore, the development of effective and less costly
chemotherapy that is more comfortable for the patient would revolutionize
cancer therapy. While subcutaneous (SC) administration has the potential
to meet these criteria, it is extremely restrictive as it cannot be
applied to most anticancer drugs, such as irritant or vesicant ones,
for local toxicity reasons. Herein, we report a facile, general, and
scalable approach for the SC administration of anticancer drugs through
the design of well-defined hydrophilic polymer prodrugs. This was
applied to the anticancer drug paclitaxel (Ptx) as a worst-case scenario
due to its high hydrophobicity and vesicant properties (two factors
promoting necrosis at the injection site). After a preliminary screening
of well-established polymers used in nanomedicine, polyacrylamide
(PAAm) was chosen as a hydrophilic polymer owing to its greater physicochemical,
pharmacokinetic, and tumor accumulation properties. A small library
of Ptx-based polymer prodrugs was designed by adjusting the nature
of the linker (ester, diglycolate, and carbonate) and then evaluated
in terms of rheological/viscosity properties in aqueous solutions,
drug release kinetics in PBS and in murine plasma, cytotoxicity on
two different cancer cell lines, acute local and systemic toxicity,
pharmacokinetics and biodistribution, and finally their anticancer
efficacy. We demonstrated that Ptx-PAAm polymer prodrugs could be
safely injected subcutaneously without inducing local toxicity while
outperforming Taxol, the commercial formulation of Ptx, thus opening
the door to the safe transposition from IV to SC chemotherapy.
Collapse
Affiliation(s)
- Alexandre Bordat
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Tanguy Boissenot
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Nada Ibrahim
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Marianne Ferrere
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Manon Levêque
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Léa Potiron
- Imescia, Université Paris-Saclay, 91400 Saclay, France
| | - Stéphanie Denis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Sébastien Garcia-Argote
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette F-91191, France
| | - Olivia Carvalho
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette F-91191, France
| | - Jérôme Abadie
- Laboniris, Départment de Biology, Pathologie et Sciences de l'Aliment, Oniris, F-44307 Nantes, France
| | - Catherine Cailleau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Grégory Pieters
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette F-91191, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
12
|
Vélëz H, Gauchan DP, García-Gil MDR. Taxol and β-tubulins from endophytic fungi isolated from the Himalayan Yew, Taxus wallichiana Zucc. Front Microbiol 2022; 13:956855. [PMID: 36246258 PMCID: PMC9557061 DOI: 10.3389/fmicb.2022.956855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Paclitaxel, better known as the anticancer drug Taxol®, has been isolated from several plant species and has been shown to be produced by fungi, actinomycetes, and even bacteria isolated from marine macroalgae. Given its cytostatic effect, studies conducted in the 1990's showed that paclitaxel was toxic to many pathogenic fungi and oomycetes. Further studies led to the idea that the differences in paclitaxel sensitivity exhibited by different fungi were due to differences in the β-tubulin protein sequence. With the recent isolation of endophytic fungi from the leaves and bark of the Himalayan Yew, Taxus wallichiana Zucc., and the availability of genomes from paclitaxel-producing fungi, we decided to further explore the idea that endophytic fungi isolated from Yews should be well-adapted to their environment by encoding β-tubulin proteins that are insensitive to paclitaxel. Our results found evidence of episodic positive/diversifying selection at 10 sites (default p-value threshold of 0.1) in the β-tubulin sequences, corresponding to codon positions 33, 55, 172, 218, 279, 335, 359, 362, 379, and 406. Four of these positions (i.e., 172, 279, 359, and 362) have been implicated in the binding of paclitaxel by β-tubulin or formed part of the binding pocket. As expected, all the fungal endophytes grew in different media regardless of the paclitaxel concentration tested. Furthermore, our results also showed that Taxomyces andreanae CBS 279.92, the first fungus shown to produce paclitaxel, is a Basidiomycete fungus as the two beta tubulins encoded by the fungus clustered together with other Basidiomycete fungi.
Collapse
Affiliation(s)
- Heriberto Vélëz
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Heriberto Vélëz
| | - Dhurva Prasad Gauchan
- Department of Biotechnology, School of Science, Kathmandu University, Dhulikhel, Nepal
| | - María del Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
13
|
Kuźma Ł, Gomulski J. Biologically Active Diterpenoids in the Clerodendrum Genus-A Review. Int J Mol Sci 2022; 23:11001. [PMID: 36232298 PMCID: PMC9569547 DOI: 10.3390/ijms231911001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
One of the key areas of interest in pharmacognosy is that of the diterpenoids; many studies have been performed to identify new sources, their optimal isolation and biological properties. An important source of abietane-, pimarane-, clerodane-type diterpenoids and their derivatives are the members of the genus Clerodendrum, of the Lamiaceae. Due to their diverse chemical nature, and the type of plant material, a range of extraction techniques are needed with various temperatures, solvent types and extraction times, as well as the use of an ultrasound bath. The diterpenoids isolated from Clerodendrum demonstrate a range of cytotoxic, anti-proliferative, antibacterial, anti-parasitic and anti-inflammatory activities. This review describes the various biological activities of the diterpenoids isolated so far from species of Clerodendrum with the indication of the most active ones, as well as those from other plant sources, taking into account their structure in terms of their activity, and summarises the methods for their extraction.
Collapse
Affiliation(s)
- Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | | |
Collapse
|
14
|
Nguyen A, Chao PH, Ong CY, Rouhollahi E, Fayez NAL, Lin L, Brown JI, Böttger R, Page B, Wong H, Li SD. Chemically engineering the drug release rate of a PEG-paclitaxel conjugate using click and steric hindrance chemistries for optimal efficacy. Biomaterials 2022; 289:121735. [DOI: 10.1016/j.biomaterials.2022.121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
|
15
|
Sun L, Zhao P, Chen M, Leng J, Luan Y, Du B, Yang J, Yang Y, Rong R. Taxanes prodrug-based nanomedicines for cancer therapy. J Control Release 2022; 348:672-691. [PMID: 35691501 DOI: 10.1016/j.jconrel.2022.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
Malignant tumor remains a huge threat to human health and chemotherapy still occupies an important place in clinical tumor treatment. As a kind of potent antimitotic agent, taxanes act as the first-line broad-spectrum cancer drug in clinical use. However, disadvantages such as prominent hydrophobicity, severe off-target toxicity or multidrug resistance lead to unsatisfactory therapeutic effects, which restricts its wider usage. The efficient delivery of taxanes is still quite a challenge despite the rapid developments in biomaterials and nanotechnology. Great progress has been made in prodrug-based nanomedicines (PNS) for cancer therapy due to their outstanding advantages such as high drug loading efficiency, low carrier induced immunogenicity, tumor stimuli-responsive drug release, combinational therapy and so on. Based on the numerous developments in this filed, this review summarized latest updates of taxanes prodrugs-based nanomedicines (TPNS), focusing on polymer-drug conjugate-based nanoformulations, small molecular prodrug-based self-assembled nanoparticles and prodrug-encapsulated nanosystems. In addition, the new trends of tumor stimuli-responsive TPNS were also discussed. Moreover, the future challenges of TPNS for clinical translation were highlighted. We here expect this review will inspire researchers to explore more practical taxanes prodrug-based nano-delivery systems for clinical use.
Collapse
Affiliation(s)
- Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Pan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Menghan Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jiayi Leng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yixin Luan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Baoxiang Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jia Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yong Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
16
|
Al-Hilfi A, Walker KD. Biocatalysis of precursors to new-generation SB-T-Taxanes effective against Paclitaxel-Resistant cancer cells. Arch Biochem Biophys 2022; 719:109165. [DOI: 10.1016/j.abb.2022.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
|
17
|
Li G, Lou M, Qi X. A brief overview of classical natural product drug synthesis and bioactivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01341f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript briefly overviewed the total synthesis and structure–activity relationship studies of eight classical natural products, which emphasizes the important role of total synthesis in natural product-based drug development.
Collapse
Affiliation(s)
- Gen Li
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Mingliang Lou
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Machulkin AE, Uspenskaya AA, Zyk NY, Nimenko EA, Ber AP, Petrov SA, Shafikov RR, Skvortsov DA, Smirnova GB, Borisova YA, Pokrovsky VS, Kolmogorov VS, Vaneev AN, Ivanenkov YA, Khudyakov AD, Kovalev SV, Erofeev AS, Gorelkin PV, Beloglazkina EK, Zyk NV, Khazanova ES, Majouga AG. PSMA-targeted small-molecule docetaxel conjugate: Synthesis and preclinical evaluation. Eur J Med Chem 2021; 227:113936. [PMID: 34717125 DOI: 10.1016/j.ejmech.2021.113936] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Prostate cancer is one of the most commonly diagnosed men's cancers and remains one of the leading causes of cancer death. The development of approaches to the treatment of this oncological disease is an ongoing process. In this work, we have carried out the selection of ligands for the creation of conjugates based on the drug docetaxel and synthesized a series of three docetaxel conjugates. In vitro cytotoxicity of these molecules was evaluated using the MTT assay. Based on the assay results, we selected the conjugate which showed cytotoxic potential close to unmodified docetaxel. At the same time, the molar solubility of the resulting compound increased up to 20 times in comparison with the drug itself. In vivo evaluation on 22Rv1 (PSMA+) xenograft model demonstrated a good potency of the synthesized conjugate to inhibit tumor growth: the inhibition turned out to be more than 80% at a dose of 30 mg/kg. Pharmacokinetic parameters of conjugate distribution were analyzed. Also, it was found that PSMA-targeted docetaxel conjugate is less toxic than docetaxel itself, the decrease of molar acute toxicity in comparison with free docetaxel was up to 20%. Obtained conjugate PSMA-DOC is a good candidate for further expanded preclinical trials because of high antitumor activity, fewer side toxic effects and better solubility.
Collapse
Affiliation(s)
- Aleksei E Machulkin
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation.
| | - Anastasia A Uspenskaya
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Nikolay Y Zyk
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Ekaterina A Nimenko
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Anton P Ber
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Stanislav A Petrov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Radik R Shafikov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow, 117997, Russian Federation
| | - Dmitry A Skvortsov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Faculty of Biology and Biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow, 101000, Russia
| | - Galina B Smirnova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia
| | - Yulia A Borisova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia
| | - Vadim S Pokrovsky
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia; RUDN University, Miklukho-Maklaya Str.6, Moscow, 117198, Russian Federation
| | - Vasilii S Kolmogorov
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Alexander N Vaneev
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Yan A Ivanenkov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region, 141700, Russian Federation; National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation; The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, 127055, Russia; Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences (IBG RAS), Oktyabrya Prospekt 71, Ufa, 450054, Russian Federation
| | - Alexander D Khudyakov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Sergei V Kovalev
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Alexander S Erofeev
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Petr V Gorelkin
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Elena K Beloglazkina
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Nikolay V Zyk
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Elena S Khazanova
- LLC Izvarino-Pharma, V. Vnukovskoe, Vnukovskoe Sh., 5th Km., Building 1, Moscow, 108817, Russian Federation
| | - Alexander G Majouga
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation; Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow, 125047, Russian Federation
| |
Collapse
|
19
|
Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, Živković J, Cruz-Martins N, Klimek-Szczykutowicz M, Ekiert H, Choudhary MI, Ayatollahi SA, Tynybekov B, Kobarfard F, Muntean AC, Grozea I, Daştan SD, Butnariu M, Szopa A, Calina D. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3687700. [PMID: 34707776 PMCID: PMC8545549 DOI: 10.1155/2021/3687700] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102 Arunachal Pradesh, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Olugbenga Samuel Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra 94976, Slovakia
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Covilca Muntean
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioana Grozea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
20
|
Ghaffari T, Hong JH, Asnaashari S, Farajnia S, Delazar A, Hamishehkar H, Kim KH. Natural Phytochemicals Derived from Gymnosperms in the Prevention and Treatment of Cancers. Int J Mol Sci 2021; 22:6636. [PMID: 34205739 PMCID: PMC8234227 DOI: 10.3390/ijms22126636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of various types of cancer is increasing globally. To reduce the critical side effects of cancer chemotherapy, naturally derived compounds have been considered for cancer treatment. Gymnosperms are a group of plants found worldwide that have traditionally been used for therapeutic applications. Paclitaxel is a commercially available anticancer drug derived from gymnosperms. Other natural compounds with anticancer activities, such as pinostrobin and pinocembrin, are extracted from pine heartwood, and pycnogenol and enzogenol from pine bark. Gymnosperms have great potential for further study for the discovery of new anticancer compounds. This review aims to provide a rational understanding and the latest developments in potential anticancer compounds derived from gymnosperms.
Collapse
Affiliation(s)
- Tayyebeh Ghaffari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran;
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
| | - Abbas Delazar
- Research Center for Evidence based Medicine, Tabriz University of Medical Sciences, Tabriz 15731, Iran;
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
| | - Ki-Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| |
Collapse
|
21
|
Jahangeer M, Fatima R, Ashiq M, Basharat A, Qamar SA, Bilal M, Iqbal HM. Therapeutic and Biomedical Potentialities of Terpenoids – A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021; 15:471-483. [DOI: 10.22207/jpam.15.2.04] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Terpenoids are the most diverse and largest class of chemicals of the innumerable plant-based compounds. Plants carry out a number of essential growth and production functions using terpenoid metabolites. In contrast, most terpenoids are used in the abiotic and biotic systems for complex chemical interactions and defense. Terpenoids derived from plants mostly used humans for pharmaceutical, food, and chemical industries in the past. However, recently biofuel products have been developed by terpenoids. The metabolism of high-quality terpenoids in plants and microbes is facilitated in synthetic biology by genomic resources and emerging tools. Further focus has been given to the ecological value of terpenoids for establishing effective pesticide control approaches and abiotic stress protection. The awareness of the diverse metabolic and molecular regulatory networks for terpenoid biosynthesis needs to be increased continuously in all these efforts. This review gives an overview and highlights current improvements in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and discusses the prominent therapeutic roles of terpenoids. This review provides an overview and highlights recent literature in our understanding about the biomedical and therapeutic importance of terpenoids, regulation as well as the diversion of core and specialized metabolized terpenoid pathways.
Collapse
|
22
|
Nawara HM, Afify SM, Hassan G, Zahra MH, Seno A, Seno M. Paclitaxel-Based Chemotherapy Targeting Cancer Stem Cells from Mono- to Combination Therapy. Biomedicines 2021; 9:biomedicines9050500. [PMID: 34063205 PMCID: PMC8147479 DOI: 10.3390/biomedicines9050500] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutical agent commonly used to treat several kinds of cancer. PTX is known as a microtubule-targeting agent with a primary molecular mechanism that disrupts the dynamics of microtubules and induces mitotic arrest and cell death. Simultaneously, other mechanisms have been evaluated in many studies. Since the anticancer activity of PTX was discovered, it has been used to treat many cancer patients and has become one of the most extensively used anticancer drugs. Regrettably, the resistance of cancer to PTX is considered an extensive obstacle in clinical applications and is one of the major causes of death correlated with treatment failure. Therefore, the combination of PTX with other drugs could lead to efficient therapeutic strategies. Here, we summarize the mechanisms of PTX, and the current studies focusing on PTX and review promising combinations.
Collapse
Affiliation(s)
- Hend M. Nawara
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
| | - Said M. Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Menoufia 32511, Egypt
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus 10769, Syria
| | - Maram H. Zahra
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
23
|
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front Cell Dev Biol 2021; 9:626910. [PMID: 33855017 PMCID: PMC8039396 DOI: 10.3389/fcell.2021.626910] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022] Open
Abstract
Paclitaxel (PTX) has been used for cancer treatment for decades and has become one of the most successful chemotherapeutics in the clinic and financially. However, serious problems with its use still exist, owing to its poor solubility and non-selective toxicity. With respect to these issues, recent advances have addressed the water solubility and tumor specificity related to PTX application. Many measures have been proposed to remedy these limitations by enhancing tumor recognition via ligand-receptor-mediated targeting as well as other associated strategies. In this review, we investigated various kinds of ligands that have emerged as PTX tumor-targeting tools. In particular, this article highlights small molecule-, protein-, and aptamer-functionalized conjugates and nanoparticles (NPs), providing a promising approach for PTX-based individualized treatment prospects.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Baoxian Zhang
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Angela Chun Fai Kung
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Jin Gao
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hengqin) Institute Co. Limited, Zhuhai, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
24
|
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front Cell Dev Biol 2021. [PMID: 33855017 DOI: 10.3389/fcell.2021.626910/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Paclitaxel (PTX) has been used for cancer treatment for decades and has become one of the most successful chemotherapeutics in the clinic and financially. However, serious problems with its use still exist, owing to its poor solubility and non-selective toxicity. With respect to these issues, recent advances have addressed the water solubility and tumor specificity related to PTX application. Many measures have been proposed to remedy these limitations by enhancing tumor recognition via ligand-receptor-mediated targeting as well as other associated strategies. In this review, we investigated various kinds of ligands that have emerged as PTX tumor-targeting tools. In particular, this article highlights small molecule-, protein-, and aptamer-functionalized conjugates and nanoparticles (NPs), providing a promising approach for PTX-based individualized treatment prospects.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Baoxian Zhang
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Angela Chun Fai Kung
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Jin Gao
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hengqin) Institute Co. Limited, Zhuhai, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
25
|
Engineering a Carotenoid-Overproducing Strain of Azospirillum brasilense for Heterologous Production of Geraniol and Amorphadiene. Appl Environ Microbiol 2020; 86:AEM.00414-20. [PMID: 32591387 DOI: 10.1128/aem.00414-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli and Saccharomyces cerevisiae have been used extensively for heterologous production of a variety of secondary metabolites. Neither has an endogenous high-flux isoprenoid pathway, required for the production of terpenoids. Azospirillum brasilense, a nonphotosynthetic GRAS (generally recognized as safe) bacterium, produces carotenoids in the presence of light. The carotenoid production increases multifold upon inactivating a gene encoding an anti-sigma factor (ChrR1). We used this A. brasilense mutant (Car-1) as a host for the heterologous production of two high-value phytochemicals, geraniol and amorphadiene. Cloned genes (crtE1 and crtE2) of A. brasilense encoding native geranylgeranyl pyrophosphate synthases (GGPPS), when overexpressed and purified, did not produce geranyl pyrophosphate (GPP) in vitro Therefore, we cloned codon-optimized copies of the Catharanthus roseus genes encoding GPP synthase (GPPS) and geraniol synthase (GES) to show the endogenous intermediates of the carotenoid biosynthetic pathway in the Car-1 strain were utilized for the heterologous production of geraniol in A. brasilense Similarly, cloning and expression of a codon-optimized copy of the amorphadiene synthase (ads) gene from Artemisia annua also led to the heterologous production of amorphadiene in Car-1. Geraniol or amorphadiene content was estimated using gas chromatography-mass spectrometry (GC-MS) and GC. These results demonstrate that Car-1 is a promising host for metabolic engineering, as the naturally available endogenous pool of the intermediates of the carotenoid biosynthetic pathway of A. brasilense can be effectively utilized for the heterologous production of high-value phytochemicals.IMPORTANCE To date, the major host organisms used for the heterologous production of terpenoids, i.e., E. coli and S. cerevisiae, do not have high-flux isoprenoid pathways and involve tedious metabolic engineering to increase the precursor pool. Since carotenoid-producing bacteria carry endogenous high-flux isoprenoid pathways, we used a carotenoid-producing mutant of A. brasilense as a host to show its suitability for the heterologous production of geraniol and amorphadiene as a proof-of-concept. The advantages of using A. brasilense as a model system include (i) dispensability of carotenoids and (ii) the possibility of overproducing carotenoids through a single mutation to exploit high carbon flux for terpenoid production.
Collapse
|
26
|
Kanda Y, Ishihara Y, Wilde NC, Baran PS. Two-Phase Total Synthesis of Taxanes: Tactics and Strategies. J Org Chem 2020; 85:10293-10320. [DOI: 10.1021/acs.joc.0c01287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuzuru Kanda
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yoshihiro Ishihara
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nathan C. Wilde
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
27
|
Kanda Y, Nakamura H, Umemiya S, Puthukanoori RK, Murthy Appala VR, Gaddamanugu GK, Paraselli BR, Baran PS. Two-Phase Synthesis of Taxol. J Am Chem Soc 2020; 142:10526-10533. [PMID: 32406238 PMCID: PMC8349513 DOI: 10.1021/jacs.0c03592] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Taxol (a brand name for paclitaxel) is widely regarded as among the most famed natural isolates ever discovered, and has been the subject of innumerable studies in both basic and applied science. Its documented success as an anticancer agent, coupled with early concerns over supply, stimulated a furious worldwide effort from chemists to provide a solution for its preparation through total synthesis. Those pioneering studies proved the feasibility of retrosynthetically guided access to synthetic Taxol, albeit in minute quantities and with enormous effort. In practice, all medicinal chemistry efforts and eventual commercialization have relied upon natural (plant material) or biosynthetically derived (synthetic biology) supplies. Here we show how a complementary divergent synthetic approach that is holistically patterned off of biosynthetic machinery for terpene synthesis can be used to arrive at Taxol.
Collapse
Affiliation(s)
- Yuzuru Kanda
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Hugh Nakamura
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Shigenobu Umemiya
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Ravi Kumar Puthukanoori
- Chemveda Life Sciences, Pvt. Ltd., Plot No. B – 11/1, IDA Uppal, Hyderabad, Telangana 500039, India
| | | | - Gopi Krishna Gaddamanugu
- Chemveda Life Sciences, Pvt. Ltd., Plot No. B – 11/1, IDA Uppal, Hyderabad, Telangana 500039, India
| | - Bheema Rao Paraselli
- Chemveda Life Sciences, Inc., 9920 Pacific Heights Blvd, Suite 150, San Diego, CA 92121, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
28
|
Zhang K, Zhou L, Chen F, Chen Y, Luo X. Injectable gel self-assembled by paclitaxel itself for in situ inhibition of tumor growth. J Control Release 2019; 315:197-205. [PMID: 31669210 DOI: 10.1016/j.jconrel.2019.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
|
29
|
Present status of Catharanthus roseus monoterpenoid indole alkaloids engineering in homo- and hetero-logous systems. Biotechnol Lett 2019; 42:11-23. [DOI: 10.1007/s10529-019-02757-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
|
30
|
Daniel J, Montaleytang M, Nagarajan S, Picard S, Clermont G, Lazar AN, Dumas N, Correard F, Braguer D, Blanchard-Desce M, Estève MA, Vaultier M. Hydrophilic Fluorescent Nanoprodrug of Paclitaxel for Glioblastoma Chemotherapy. ACS OMEGA 2019; 4:18342-18354. [PMID: 31720536 PMCID: PMC6844107 DOI: 10.1021/acsomega.9b02588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Highly water-soluble, nontoxic organic nanoparticles on which paclitaxel (PTX), a hydrophobic anticancer drug, has been covalently bound via an ester linkage (4.5% of total weight) have been prepared for the treatment of glioblastoma. These soft fluorescent organic nanoparticles (FONPs), obtained from citric acid and diethylenetriamine by microwave-assisted condensation, show suitable size (Ø = 17-30 nm), remarkable solubility in water, softness as well as strong blue fluorescence in an aqueous environment that are fully retained in cell culture medium. Moreover, these FONPs were demonstrated to show in vitro safety and preferential internalization in glioblastoma cells through caveolin/lipid raft-mediated endocytosis. The PTX-conjugated FONPs retain excellent solubility in water and remain stable in water (no leaching), while they showed anticancer activity against glioblastoma cells in two-dimensional and three-dimensional culture. PTX-specific effects on microtubules reveal that PTX is intracellularly released from the nanocarriers in its active form, in relation with an intracellular-promoted lysis of the ester linkage. As such, these hydrophilic prodrug formulations hold major promise as biocompatible nanotools for drug delivery.
Collapse
Affiliation(s)
- Jonathan Daniel
- Univ.
Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), Bâtiment A12, 351 Cours de
la Libération, 33405 Talence Cedex, France
| | - Maeva Montaleytang
- Aix
Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté
de Pharmacie, 27 Boulevard
Jean Moulin - CS 30064, 13385 Marseille Cedex 05, Marseille, France
- AP-HM,
Hôpital Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 05, France
| | - Sounderya Nagarajan
- Aix
Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté
de Pharmacie, 27 Boulevard
Jean Moulin - CS 30064, 13385 Marseille Cedex 05, Marseille, France
| | - Sébastien Picard
- Univ.
Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), Bâtiment A12, 351 Cours de
la Libération, 33405 Talence Cedex, France
| | - Guillaume Clermont
- Univ.
Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), Bâtiment A12, 351 Cours de
la Libération, 33405 Talence Cedex, France
| | - Adina N. Lazar
- Univ.
Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), Bâtiment A12, 351 Cours de
la Libération, 33405 Talence Cedex, France
| | - Noé Dumas
- Aix
Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté
de Pharmacie, 27 Boulevard
Jean Moulin - CS 30064, 13385 Marseille Cedex 05, Marseille, France
| | - Florian Correard
- Aix
Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté
de Pharmacie, 27 Boulevard
Jean Moulin - CS 30064, 13385 Marseille Cedex 05, Marseille, France
- AP-HM,
Hôpital Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 05, France
| | - Diane Braguer
- Aix
Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté
de Pharmacie, 27 Boulevard
Jean Moulin - CS 30064, 13385 Marseille Cedex 05, Marseille, France
- AP-HM,
Hôpital Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 05, France
| | - Mireille Blanchard-Desce
- Univ.
Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), Bâtiment A12, 351 Cours de
la Libération, 33405 Talence Cedex, France
| | - Marie-Anne Estève
- Aix
Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Faculté
de Pharmacie, 27 Boulevard
Jean Moulin - CS 30064, 13385 Marseille Cedex 05, Marseille, France
- AP-HM,
Hôpital Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 05, France
| | - Michel Vaultier
- Univ.
Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), Bâtiment A12, 351 Cours de
la Libération, 33405 Talence Cedex, France
| |
Collapse
|
31
|
Barkat MA, Beg S, Pottoo FH, Ahmad FJ. Nanopaclitaxel therapy: an evidence based review on the battle for next-generation formulation challenges. Nanomedicine (Lond) 2019; 14:1323-1341. [PMID: 31124758 DOI: 10.2217/nnm-2018-0313] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The poor solubility of paclitaxel (PTX), the most commonly used anticancer drug (Taxol®), has long hindered the development of successful formulations. In 2005, the launch of Abraxane®, a human albumin-based preparation of PTX, competed with Taxol® in the commercial market. The success of Abraxane pushed other generic preparations aside, sparking competition among the global pharmaceutical companies to develop the novel and superior PTX nanotechnology-driven formulations. Unsurprisingly, the success underlying with cancer treatment using nano PTX therapy has now entered into a new era of drug development, patentability, preclinical and clinical evaluation, leading eventually to a significant increase in the regulatory approval of the products. The present article aims to provide recent progress in the development of nano PTX formulations by various pharmaceutical companies for safe and effective drug therapies for patients benefit.
Collapse
Affiliation(s)
- Md Abul Barkat
- Department of Pharmaceutics, School of Medical & Allied Sciences, KR Mangalam University, Gurgaon, Sohna, Haryana, India.,Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Sarwar Beg
- Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), 31441, Dammam, Saudi Arabia
| | - Farhan J Ahmad
- Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
32
|
Synthesis and biological evaluation of PSMA-targeting paclitaxel conjugates. Bioorg Med Chem Lett 2019; 29:2229-2235. [DOI: 10.1016/j.bmcl.2019.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
|
33
|
Buee L. Dementia Therapy Targeting Tau. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:407-416. [PMID: 32096053 DOI: 10.1007/978-981-32-9358-8_30] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau is a microtubule-associated tau proteins but it has also non-microtubular functions. It aggregates in Alzheimer's disease and many neurodegenerative disorders referred to as tauopathies. Such aggregation may result from mutations on the tau gene, MAPT, dysregulation in alternative splicing, post-translational modifications or truncation. This final chapter addresses some of the various researches on a therapeutic potential around the tau protein and its gene, MAPT. Many therapeutic strategies are ongoing but they are hampered by the lack of knowledge on tau physiological functions.
Collapse
Affiliation(s)
- Luc Buee
- University of Lille, INSERM, CHU-Lille, Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France.
| |
Collapse
|
34
|
Sana T, Siddiqui BS, Shahzad S, Farooq AD, Siddiqui F, Sattar S, Begum S. Antiproliferative Activity and Characterization of Metabolites of Aspergillus nidulans: An Endophytic Fungus from Nyctanthes arbor-tristis Linn. Against Three Human Cancer Cell Lines. Med Chem 2018; 15:352-359. [PMID: 30152287 DOI: 10.2174/1573406414666180828124252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endophytic fungi are receiving attention as sources of structurally novel bioactive secondary metabolites towards drug discovery from natural products. This study reports the isolation and characterization of secondary metabolites from an endophytic fungus Aspergillus nidulans, associated with Nyctanthes arbor-tristis Linn., a plant which has a traditional use to cure many ailments including cancer. OBJECTIVE The objective of this study was to evaluate the antiproliferative activity of the metabolites of A. nidulans from N. arbor-tristis on three human cancer cell lines, lung (NCI-H460), breast (MCF-7) and uterine cervix (HeLa), and carry out their characterization. METHODS The extracts of the endophytic fungus cultured on potato dextrose agar were subjected to various chromatographic techniques. Structures of pure compounds were determined using spectroscopic techniques. The non-polar constituents were analyzed by GC-MS. Antiproliferative activity was determined by sulforhodamine B (SRB) assay. RESULTS The extracts and fractions showed moderate to good growth inhibition of the aforementioned human cancer cell lines. The broth extract was most potent (IC50 = 10 ± 3.1 μg/mL and LC50= 95 ± 3.9) against HeLa whereas petroleum ether insoluble fraction of mycelium was most active against NCI-H460 and MCF-7 (IC50 = 10 ± 2.1 µg/mL and 18 ± 3.1 µg/mL respectively). GC-MS led to identify 12 compounds in mycelium and 19 compounds in broth. Four pure compounds were isolated and characterized one compound 5, 10-dihydrophenazine-1-carboxylic acid (1) from broth and three 1-hydroxy-3-methylxanthone (2), ergosterol (3) and sterigmatocystin (4) from mycelium. 1 has not been reported earlier as a plant/fungal metabolite while 2-4 are new from this source. Sterigmatocystin exhibited growth inhibitory effect (IC50 = 50 ± 2.5 µM/mL) against only MCF-7 cell line whereas other compounds had IC50 > 100. CONCLUSIONS In this paper, the cytotoxicity of mycelium and broth constituents of endophytic fungus Aspergillus nidulans from Nyctanthes arbor-tristis is reported for the first time. The study shows that fungus Aspergillus nidulans from Nyctanthes arbor-tristis is capable of producing biologically active natural compounds and provides a scientific rationale for further chemical investigations of endophyte-producing natural products.
Collapse
Affiliation(s)
- Talea Sana
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Bina S Siddiqui
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Saleem Shahzad
- Department of Agriculture & Agribusiness Management, University of Karachi, Karachi, Pakistan
| | - Ahsana D Farooq
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Faheema Siddiqui
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Samia Sattar
- Department of Agriculture & Agribusiness Management, University of Karachi, Karachi, Pakistan
| | - Sabira Begum
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
35
|
Bio-production of Baccatin III, an Important Precursor of Paclitaxel by a Cost-Effective Approach. Mol Biotechnol 2018; 60:492-505. [DOI: 10.1007/s12033-018-0090-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, Goto M. Ionic-Liquid-Based Paclitaxel Preparation: A New Potential Formulation for Cancer Treatment. Mol Pharm 2018; 15:2484-2488. [DOI: 10.1021/acs.molpharmaceut.8b00305] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Md. Raihan Chowdhury
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiro Tahara
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
37
|
Du X, Khan AR, Fu M, Ji J, Yu A, Zhai G. Current development in the formulations of non-injection administration of paclitaxel. Int J Pharm 2018; 542:242-252. [PMID: 29555439 DOI: 10.1016/j.ijpharm.2018.03.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/05/2023]
Abstract
Paclitaxel (PTX) belongs to a class of taxane anti-tumor drug used for the clinic treatment of breast cancer, ovarian cancer, non-small-cell lung cancer, and so on. PTX has poor water solubility and oral bioavailability. It is generally administered via intravenous (i.v.) infusion. Traditional PTX injectable preparations contain Cremophor-EL and ethanol to improve its solubility, which would result in adverse reactions like severe hypersensitivity, neutropenia, etc. Adverse reactions can be reduced only by complicated pretreatment with glucocorticoid and antihistamines drugs and followed by PTX slow infusion for three hours, which has brought significant inconvenience to the patients. Though, a new-generation PTX formulation, Abraxane, free of Cremophor-EL and ethanol, is still being administrated by frequent i.v. infusions and extremely expensive. Therefore, non-injection administration of PTX is urgently needed to avoid the side effects as well as reduce inconvenience to the patients. Recently, a variety of non-injection drug delivery systems (DDSs) of PTX have been developed. This review aims to discuss the progress of non-injectable administration systems of PTX, including oral administration systems, vaginal administration systems, implantable DDSs, transdermal DDSs and intranasal administration for the future study and clinical applications.
Collapse
Affiliation(s)
- Xiyou Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Manfei Fu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Aihua Yu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China.
| |
Collapse
|
38
|
Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 2017; 267:100-118. [PMID: 28958854 PMCID: PMC5723209 DOI: 10.1016/j.jconrel.2017.09.026] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Paclitaxel (PTX) is one of the most successful drugs ever used in cancer chemotherapy, acting against a variety of cancer types. Formulating PTX with Cremophor EL and ethanol (Taxol®) realized its clinical potential, but the formulation falls short of expectations due to side effects such as peripheral neuropathy, hypotension, and hypersensitivity. Abraxane®, the albumin bound PTX, represents a superior replacement of Taxol® that mitigates the side effects associated with Cremophor EL. While Abraxane® is now considered a gold standard in chemotherapy, its 21% response rate leaves much room for further improvement. The quest for safer and more effective cancer treatments has led to the development of a plethora of innovative PTX formulations, many of which are currently undergoing clinical trials. In this context, we review recent development of PTX drug delivery systems and analyze the design principles underpinning each delivery strategy. We chose several representative examples to highlight the opportunities and challenges of polymeric systems, lipid-based formulations, as well as prodrug strategies.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michael Porter
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Alexandros Konstantopoulos
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States; Institute for NanoBiotechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
39
|
Ekladious I, Liu R, Zhang H, Foil DH, Todd DA, Graf TN, Padera RF, Oberlies NH, Colson YL, Grinstaff MW. Synthesis of poly(1,2-glycerol carbonate)-paclitaxel conjugates and their utility as a single high-dose replacement for multi-dose treatment regimens in peritoneal cancer. Chem Sci 2017; 8:8443-8450. [PMID: 29619192 PMCID: PMC5863611 DOI: 10.1039/c7sc03501b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
A high drug-density, biodegradable polymeric nanocarrier replaces multi-dose paclitaxel treatment regimens.
Current chemotherapeutic dosing strategies are limited by the toxicity of anticancer agents and therefore rely on multiple low-dose administrations. As an alternative, we describe a novel sustained-release, biodegradable polymeric nanocarrier as a single administration replacement of multi-dose paclitaxel (PTX) treatment regimens. The first synthesis of poly(1,2-glycerol carbonate)-graft-succinic acid-paclitaxel (PGC–PTX) is described, and its use enables high, controlled PTX loadings of up to 74 wt%. Moreover, the polymer backbone is composed of biocompatible building blocks—glycerol and carbon dioxide. When formulated as nanoparticles (NPs), PGC–PTX NPs exhibit PTX concentrations >15 mg mL–1, sub-100 nm diameters, narrow dispersity, storage stability for up to 6 months, and sustained and controlled PTX release kinetics over an extended period of 70 days. A safely administered single dose of PGC–PTX NPs contains more PTX than the median lethal dose of standard PTX. In murine models of peritoneal carcinomatosis, in which the clinical implementation of multi-dose intraperitoneal (IP) treatment regimens is limited by catheter-related complications, PGC–PTX NPs exhibit improved safety at high doses, tumor localization, and efficacy even after a single IP injection, with comparable curative effect to PTX administered as a multi-dose IP treatment regimen.
Collapse
Affiliation(s)
- Iriny Ekladious
- Departments of Biomedical Engineering and Chemistry , Boston University , Boston , MA 02215 , USA .
| | - Rong Liu
- Department of Surgery , Brigham and Women's Hospital , Boston , MA 02215 , USA .
| | - Heng Zhang
- Departments of Biomedical Engineering and Chemistry , Boston University , Boston , MA 02215 , USA .
| | - Daniel H Foil
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC 27402 , USA
| | - Daniel A Todd
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC 27402 , USA
| | - Tyler N Graf
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC 27402 , USA
| | - Robert F Padera
- Department of Pathology , Brigham and Women's Hospital , Boston , MA 02215 , USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC 27402 , USA
| | - Yolonda L Colson
- Department of Surgery , Brigham and Women's Hospital , Boston , MA 02215 , USA .
| | - Mark W Grinstaff
- Departments of Biomedical Engineering and Chemistry , Boston University , Boston , MA 02215 , USA .
| |
Collapse
|
40
|
Manning T, Plummer S, Woods R, Wylie G, Phillips D, Krajewski L. Cell line studies and analytical measurements of three paclitaxel complex variations. Bioorg Med Chem Lett 2017; 27:2793-2799. [PMID: 28495086 DOI: 10.1016/j.bmcl.2017.04.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
Abstract
The copper(II) cation, sucrose, and hydroxychloroquine were complexed with the chemotherapy agent paclitaxel and studied for medicinal activity. Data (GI50, LD50) from single dose and five dose National Cancer Institute sixty cell line panels are presented. Analytical measurements of different complexes were made using Nuclear Magnetic Resonance (1H NMR), Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry (MALDI-TOF-MS) and Fourier Transform-Ion Cyclotron Resonance (FT-ICR). Molecular modeling is utilized to better understand the impact that species could have on physical parameters associated with Lipinski's Rule of Five, such as logP and TPSA. On average, Cu(II) and hydroxychloroquine decreased GI50 values, while sucrose increased GI50 values of paclitaxel.
Collapse
Affiliation(s)
- Thomas Manning
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States.
| | - Sydney Plummer
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Rechelle Woods
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, United States
| | - Greg Wylie
- NMR Facility, Department of Chemistry, Texas A&M, College Station, TX 77843, United States
| | - Dennis Phillips
- PAMS Facility, Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Logan Krajewski
- ICR Facility, National High Field Magnet Lab, Tallahassee, FL 32310, United States
| |
Collapse
|
41
|
Tam YT, Gao J, Kwon GS. Oligo(lactic acid)n-Paclitaxel Prodrugs for Poly(ethylene glycol)-block-poly(lactic acid) Micelles: Loading, Release, and Backbiting Conversion for Anticancer Activity. J Am Chem Soc 2016; 138:8674-7. [PMID: 27374999 PMCID: PMC5576186 DOI: 10.1021/jacs.6b03995] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Poly(ethylene glycol)-block-poly(d,l-lactic acid) (PEG-b-PLA) micelles are nanocarriers for poorly water-soluble anticancer agents and have advanced paclitaxel (PTX) to humans due to drug solubilization, biocompatibility, and dose escalation. However, PEG-b-PLA micelles rapidly release PTX, resulting in widespread biodistribution and low tumor exposure. To improve delivery of PTX by PEG-b-PLA micelles, monodisperse oligo(l-lactic acid), o(LA)8 or o(LA)16, has been coupled onto PTX at the 7-OH position, forming ester prodrugs: o(LA)8-PTX and o(LA)16-PTX, respectively. As expected, o(LA)n-PTX was more compatible with PEG-b-PLA micelles than PTX, increasing drug loading from 11 to 54%. While in vitro release of PTX was rapid, resulting in precipitation, o(LA)n-PTX release was more gradual: t1/2 = 14 and 26 h for o(LA)8-PTX and o(LA)16-PTX, respectively. Notably, o(LA)8-PTX and o(LA)16-PTX in PEG-b-PLA micelles resisted backbiting chain end scission, based on reverse-phase HPLC analysis. By contrast, o(LA)8-PTX and o(LA)16-PTX degraded substantially in 1:1 acetonitrile:10 mM PBS, pH 7.4, at 37 °C, generating primarily o(LA)2-PTX. The IC50 value of o(LA)2-PTX was ∼2.3 nM for A549 human lung cancer cells, equipotent with PTX in vitro. After weekly IV injections at 20 mg/kg as PEG-b-PLA micelles, o(LA)8-PTX induced tumor regression in A549 tumor-bearing mice, whereas PTX delayed tumor growth. Surprisingly, o(LA)8-PTX caused less toxicity than PTX in terms of change in body weight. In conclusion, o(LA)n acts as a novel promoiety, undergoing backbiting conversion without a reliance on metabolizing enzymes, and o(LA)n-PTX improves PTX delivery by PEG-b-PLA micelles, providing a strong justification for clinical evaluation.
Collapse
Affiliation(s)
- Yu Tong Tam
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| | - Jieming Gao
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| |
Collapse
|
42
|
Ghosh C, Bhunia D, Ghosh S, Jana B, Ghosh S, Bhattacharyya K. Fluorescence Probing of Fluctuating Microtubule using a Covalent Fluorescent Probe: Effect of Taxol. ChemistrySelect 2016. [DOI: 10.1002/slct.201600353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Catherine Ghosh
- Department of Physical Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata- 700032 India
| | - Debmalya Bhunia
- Organic & Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Jadavpur Kolkata- 700032 India
| | - Shirsendu Ghosh
- Department of Physical Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata- 700032 India
| | - Batakrishna Jana
- Organic & Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Jadavpur Kolkata- 700032 India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Jadavpur Kolkata- 700032 India
| | - Kankan Bhattacharyya
- Department of Physical Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata- 700032 India
| |
Collapse
|
43
|
Taxanes in the Treatment of Advanced Gastric Cancer. Molecules 2016; 21:molecules21050651. [PMID: 27196887 PMCID: PMC6274234 DOI: 10.3390/molecules21050651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 01/11/2023] Open
Abstract
Although rapid advances in treatment options have improved the prognosis of advanced gastric cancer (AGC), it remains a major public health problem and the second leading cause of cancer-related deaths in the world. Taxanes (paclitaxel and docetaxel) are microtubule stabilizing agents that inhibit the process of cell division, and have shown antitumor activity in the treatment of AGC as a single or combination chemotherapy. Accordingly, this review focuses on the efficacy and tolerability of taxanes in the first- or second-line chemotherapy setting for AGC.
Collapse
|
44
|
Thapa P, Li M, Bio M, Rajaputra P, Nkepang G, Sun Y, Woo S, You Y. Far-Red Light-Activatable Prodrug of Paclitaxel for the Combined Effects of Photodynamic Therapy and Site-Specific Paclitaxel Chemotherapy. J Med Chem 2016; 59:3204-14. [PMID: 26974508 DOI: 10.1021/acs.jmedchem.5b01971] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Paclitaxel (PTX) is one of the most useful chemotherapeutic agents approved for several cancers, including ovarian, breast, pancreatic, and nonsmall cell lung cancer. However, it causes systemic side effects when administered parenterally. Photodynamic therapy (PDT) is a new strategy for treating local cancers using light and photosensitizer. Unfortunately, PDT is often followed by recurrence due to incomplete ablation of tumors. To overcome these problems, we prepared the far-red light-activatable prodrug of PTX by conjugating photosensitizer via singlet oxygen-cleavable aminoacrylate linker. Tubulin polymerization enhancement and cytotoxicity of prodrugs were dramatically reduced. However, once illuminated with far-red light, the prodrug effectively killed SKOV-3 ovarian cancer cells through the combined effects of PDT and locally released PTX. Ours is the first PTX prodrug that can be activated by singlet oxygen using tissue penetrable and clinically useful far-red light, which kills the cancer cells through the combined effects of PDT and site-specific PTX chemotherapy.
Collapse
Affiliation(s)
- Pritam Thapa
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Mengjie Li
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Moses Bio
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Pallavi Rajaputra
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Gregory Nkepang
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Yajing Sun
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Sukyung Woo
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Youngjae You
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| |
Collapse
|
45
|
Xiao Z, Morris-Natschke SL, Lee KH. Strategies for the Optimization of Natural Leads to Anticancer Drugs or Drug Candidates. Med Res Rev 2016; 36:32-91. [PMID: 26359649 PMCID: PMC4679534 DOI: 10.1002/med.21377] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural products have made significant contribution to cancer chemotherapy over the past decades and remain an indispensable source of molecular and mechanistic diversity for anticancer drug discovery. More often than not, natural products may serve as leads for further drug development rather than as effective anticancer drugs by themselves. Generally, optimization of natural leads into anticancer drugs or drug candidates should not only address drug efficacy, but also improve absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles and chemical accessibility associated with the natural leads. Optimization strategies involve direct chemical manipulation of functional groups, structure-activity relationship directed optimization and pharmacophore-oriented molecular design based on the natural templates. Both fundamental medicinal chemistry principles (e.g., bioisosterism) and state-of-the-art computer-aided drug design techniques (e.g., structure-based design) can be applied to facilitate optimization efforts. In this review, the strategies to optimize natural leads to anticancer drugs or drug candidates are illustrated with examples and described according to their purposes. Furthermore, successful case studies on lead optimization of bioactive compounds performed in the Natural Products Research Laboratories at UNC are highlighted.
Collapse
Affiliation(s)
- Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
46
|
Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26137480 DOI: 10.1155/2015/413076] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
|
47
|
Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26137480 DOI: 10.1155/2015/413076]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
|
48
|
Kampan NC, Madondo MT, McNally OM, Quinn M, Plebanski M. Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:413076. [PMID: 26137480 PMCID: PMC4475536 DOI: 10.1155/2015/413076] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
Affiliation(s)
- Nirmala Chandralega Kampan
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
| | - Mutsa Tatenda Madondo
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| | - Orla M. McNally
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Michael Quinn
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Magdalena Plebanski
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| |
Collapse
|
49
|
Mura S, Bui DT, Couvreur P, Nicolas J. Lipid prodrug nanocarriers in cancer therapy. J Control Release 2015; 208:25-41. [PMID: 25617724 DOI: 10.1016/j.jconrel.2015.01.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Application of nanotechnology in the medical field (i.e., nanomedicine) plays an important role in the development of novel drug delivery methods. Nanoscale drug delivery systems can indeed be customized with specific functionalities in order to improve the efficacy of the treatments. However, despite the progresses of the last decades, nanomedicines still face important obstacles related to: (i) the physico-chemical properties of the drug moieties which may reduce the total amount of loaded drug; (ii) the rapid and uncontrolled release (i.e., burst release) of the encapsulated drug after administration and (iii) the instability of the drug in biological media where a fast transformation into inactive metabolites can occur. As an alternative strategy to alleviate these drawbacks, the prodrug approach has found wide application. The covalent modification of a drug molecule into an inactive precursor from which the drug will be freed after administration offers several benefits such as: (i) a sustained drug release (mediated by chemical or enzymatic hydrolysis of the linkage between the drug-moiety and its promoiety); (ii) an increase of the drug chemical stability and solubility and, (iii) a reduced toxicity before the metabolization occurs. Lipids have been widely used as building blocks for the design of various prodrugs. Interestingly enough, these lipid-derivatized drugs can be delivered through a nanoparticulate form due to their ability to self-assemble and/or to be incorporated into lipid/polymer matrices. Among the several prodrugs developed so far, this review will focus on the main achievements in the field of lipid-based prodrug nanocarriers designed to improve the efficacy of anticancer drugs. Gemcitabine (Pubchem CID: 60750); 5-fluorouracil (Pubchem CID: 3385); Doxorubicin (Pubchem CID: 31703); Docetaxel (Pubchem CID: 148124); Methotrexate (Pubchem CID: 126941); Paclitaxel (Pubchem CID: 36314).
Collapse
Affiliation(s)
- Simona Mura
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France.
| | - Duc Trung Bui
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France.
| |
Collapse
|
50
|
Satsangi A, Roy SS, Satsangi RK, Vadlamudi RK, Ong JL. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells. Mol Pharm 2014; 11:1906-18. [PMID: 24847940 DOI: 10.1021/mp500128k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Breast cancer is the second most common cause of cancer-related deaths in women. Chemotherapy is an important treatment modality, and paclitaxel (PTX) is often the first-line therapy for its metastatic form. The two most notable limitations related to PTX-based treatment are the poor hydrophilicity of the drug and the systemic toxicity due to the drug's nonspecific and indiscriminate distribution among the tissues. The present work describes an approach to counter both challenges by designing a conjugate of PTX with a hydrophilic macromolecule that is coupled through a biocleavable linker, thereby allowing for active targeting to an enzyme significantly upregulated in cancer cells. The resultant strategy would allow for the release of the active ingredient preferentially at the site of action in related cancer cells and spare normal tissue. Thus, PTX was conjugated to the hydrophilic poly(amdioamine) [PAMAM] dendrimer through the cathepsin B-cleavable tetrapeptide Gly-Phe-Leu-Gly. The PTX prodrug conjugate (PGD) was compared to unbound PTX through in vitro evaluations against breast cancer cells and normal kidney cells as well as through in vivo evaluations using xenograft mice models. As compared to PTX, PGD demonstrated a higher cytotoxicity specific to cell lines with moderate-to-high cathepsin B activity; cells with comparatively lower cathepsin B activity demonstrated an inverse of this relationship. Regression analysis between the magnitude of PGD-induced cytotoxic increase over PTX and cathepsin B expression showed a strong, statistically significant correlation (r(2) = 0.652, p < 0.05). The PGD conjugate also demonstrated a markedly higher tumor reduction as compared to PTX treatment alone in MDA-MB-231 tumor xenograft models, with PGD-treated tumor volumes being 48% and 34% smaller than PTX-treated volumes at weeks 2 and 3 after treatment initiation.
Collapse
Affiliation(s)
- Arpan Satsangi
- Joint Graduate Program in Biomedical Engineering, University of Texas at San Antonio and the University of Texas Health Science Center at San Antonio , San Antonio, Texas 78249, United States
| | | | | | | | | |
Collapse
|