1
|
Estave PM, Sun H, Peck EG, Holleran KM, Chen R, Jones SR. Cocaine self-administration augments kappa opioid receptor system-mediated inhibition of dopamine activity in the mesolimbic dopamine system. IBRO Neurosci Rep 2023; 14:129-137. [PMID: 36748012 PMCID: PMC9898071 DOI: 10.1016/j.ibneur.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Prior studies examining the effects of cocaine on the dynorphin/kappa opioid receptor (Dyn/KOR) system primarily focus on non-contingent cocaine exposure, but the effects of self-administration, which more closely reflects human drug-taking behaviors, are not well studied. In this study we characterized the effects of escalated intravenous cocaine self-administration on the functional state of the Dyn/KOR system and its interaction with mesolimbic dopamine signaling. Rats self-administered cocaine in an extended access, limited intake cocaine procedure, in which animals obtained 40 infusions per day (1.5 mg/kg/inf) for 5 consecutive days to ensure comparable consumption levels. Following single day tests of cue reactivity and progressive ratio responding, quantitative real-time polymerase chain reaction was used to measure levels of Oprk and Pdyn transcripts in the ventral tegmental area and nucleus accumbens. Additionally, after self-administration, ex vivo fast-scan cyclic voltammetry in the NAc was used to examine the ability of the KOR agonist U50,488 to inhibit dopamine release. We found that KOR-induced inhibition of dopamine release was enhanced in animals that self-administered cocaine compared to controls, suggesting upregulated Dyn/KOR activity after cocaine self-administration. Furthermore, expression levels of Pdyn in the nucleus accumbens and ventral tegmental area, and Oprk in the nucleus accumbens, were elevated in cocaine animals compared to controls. Additionally, Pdyn expression in the nucleus accumbens was negatively correlated with progressive ratio breakpoints, a measure of motivation to self-administer cocaine. Overall, these data suggest that cocaine self-administration elevates KOR/Dyn system activity in the mesolimbic dopamine pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara R. Jones
- Correspondence to: Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
2
|
Kappa Opioid Receptor Mediated Differential Regulation of Serotonin and Dopamine Transporters in Mood and Substance Use Disorder. Handb Exp Pharmacol 2021; 271:97-112. [PMID: 34136961 DOI: 10.1007/164_2021_499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dynorphin (DYN) is an endogenous neurosecretory peptide which exerts its activity by binding to the family of G protein-coupled receptors, namely the kappa opioid receptor (KOR). Opioids are associated with pain, analgesia, and drug abuse, which play a central role in mood disorders with monoamine neurotransmitter interactions. Growing evidence demonstrates the cellular signaling cascades linked to KOR-mediated monoamine transporters regulation in cell models and native brain tissues. This chapter will review DYN/KOR role in mood and addiction in relevance to dopaminergic and serotonergic neurotransmissions. Also, we discuss the recent findings on KOR-mediated differential regulation of serotonin and dopamine transporters (SERT and DAT). These findings led to a better understanding of the role of DYN/KOR system in aminergic neurotransmission via its modulatory effect on both amine release and clearance. Detailed knowledge of these processes at the molecular level enables designing novel pharmacological reagents to target transporter motifs to treat mood and addiction and reduce unwanted side effects such as aversion, dysphoria, sedation, and psychomimesis.
Collapse
|
3
|
Salery M, Godino A, Nestler EJ. Drug-activated cells: From immediate early genes to neuronal ensembles in addiction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 90:173-216. [PMID: 33706932 DOI: 10.1016/bs.apha.2020.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Beyond their rapid rewarding effects, drugs of abuse can durably alter an individual's response to their environment as illustrated by the compulsive drug seeking and risk of relapse triggered by drug-associated stimuli. The persistence of these associations even long after cessation of drug use demonstrates the enduring mark left by drugs on brain reward circuits. However, within these circuits, neuronal populations are differently affected by drug exposure and growing evidence indicates that relatively small subsets of neurons might be involved in the encoding and expression of drug-mediated associations. The identification of sparse neuronal populations recruited in response to drug exposure has benefited greatly from the study of immediate early genes (IEGs) whose induction is critical in initiating plasticity programs in recently activated neurons. In particular, the development of technologies to manipulate IEG-expressing cells has been fundamental to implicate broadly distributed neuronal ensembles coincidently activated by either drugs or drug-associated stimuli and to then causally establish their involvement in drug responses. In this review, we summarize the literature regarding IEG regulation in different learning paradigms and addiction models to highlight their role as a marker of activity and plasticity. As the exploration of neuronal ensembles in addiction improves our understanding of drug-associated memory encoding, it also raises several questions regarding the cellular and molecular characteristics of these discrete neuronal populations as they become incorporated in drug-associated neuronal ensembles. We review recent efforts towards this goal and discuss how they will offer a more comprehensive understanding of addiction pathophysiology.
Collapse
Affiliation(s)
- Marine Salery
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
4
|
Gibula-Tarlowska E, Kotlinska JH. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance. Biomolecules 2020; 10:E1376. [PMID: 32998249 PMCID: PMC7599993 DOI: 10.3390/biom10101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-059 Lublin, Poland;
| | | |
Collapse
|
5
|
Cocaine Self-administration Regulates Transcription of Opioid Peptide Precursors and Opioid Receptors in Rat Caudate Putamen and Prefrontal Cortex. Neuroscience 2020; 443:131-139. [PMID: 32730947 DOI: 10.1016/j.neuroscience.2020.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
The brain opioid system plays an important role in cocaine reward. Altered signaling in the opioid system by chronic cocaine exposure contributes to cocaine-seeking and taking behavior. The current study investigated concurrent changes in the gene expression of multiple components in rat brain opioid system following cocaine self-administration. Animals were limited to 40 infusions (1.5 mg/kg/infusion) within 6 h per day for five consecutive days. We then examined the mRNA levels of opioid receptors including mu (Oprm), delta (Oprd), and kappa (Oprk), and their endogenous opioid peptide precursors including proopiomelanocortin (Pomc), proenkephalin (Penk), prodynorphin (Pdyn) in the dorsal striatum (CPu) and the prefrontal cortex (PFC) 18 h after the last cocaine infusion. We found that cocaine self-administration significantly increased the mRNA levels of Oprm and Oprd in both the CPu and PFC, but had no effect on Oprk mRNA levels in either brain region. Moreover, cocaine had a greater influence on the mRNA levels of opioid peptide precursors in rat CPu than in the PFC. In the CPu, cocaine self-administration significantly increased the mRNA levels of Penk and Pdyn and abolished the mRNA levels of Pomc. In the PFC, cocaine self-administration only increased Pdyn mRNA levels without changing the mRNA levels of Pomc and Penk. These data suggest that cocaine self-administration influences the expression of multiple genes in the brain opioid system, and the concurrent changes in these targets may underlie cocaine-induced reward and habitual drug-seeking behavior.
Collapse
|
6
|
Shahkarami K, Vousooghi N, Golab F, Mohsenzadeh A, Baharvand P, Sadat-Shirazi MS, Babhadi-Ashar N, Shakeri A, Zarrindast MR. Evaluation of dynorphin and kappa-opioid receptor level in the human blood lymphocytes and plasma: Possible role as a biomarker in severe opioid use disorder. Drug Alcohol Depend 2019; 205:107638. [PMID: 31710992 DOI: 10.1016/j.drugalcdep.2019.107638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/31/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The dynorphin (DYN)/kappa opioid receptor (KOR) system plays an important role in the development of addiction, and dysregulation of this system could lead to abnormal activity in the reward pathway. It has been reported that the expression state of the neurotransmitters and their receptors in the brain is reflected in peripheral blood lymphocytes (PBLs). METHODS We have evaluated the PBLs and plasma samples of four groups: 1) subjects with severe opioid use disorder (SOD), 2) methadone-maintenance treated (MMT) individuals, 3) long-term abstinent subjects having former SOD, and 4) healthy control subjects (n = 20 in each group). The mRNA expression level of preprodynorphin (pPDYN) and KOR in PBLs has been evaluated by real-time PCR. Peptide expression of PDYN in PBLs has been studied by western blot, and DYN concentration in plasma has been measured by ELISA. RESULTS The relative expression level of the pPDYN mRNA and PDYN peptide in PBLs were significantly up-regulated in SOD, MMT, and abstinent groups compared to control subjects. No significant difference was found in the plasma DYN concentration between study groups. The expression level of the KOR mRNA in PBLs was significantly decreased in all three study groups compared to the control subjects. CONCLUSION the expression changes in the DYN/KOR system after chronic exposure to opioids, including methadone, seems to be stable and does not return to normal levels even after 12 months abstinence. These long-time and permanent changes in PBLs may serve as a biomarker and footprint of SOD development in the periphery.
Collapse
Affiliation(s)
- Kourosh Shahkarami
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Mohsenzadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parastoo Baharvand
- Department of Social Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Babhadi-Ashar
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Shakeri
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
| |
Collapse
|
7
|
Martinez D, Slifstein M, Matuskey D, Nabulsi N, Zheng MQ, Lin SF, Ropchan J, Urban N, Grassetti A, Chang D, Salling M, Foltin R, Carson RE, Huang Y. Kappa-opioid receptors, dynorphin, and cocaine addiction: a positron emission tomography study. Neuropsychopharmacology 2019; 44:1720-1727. [PMID: 31026862 PMCID: PMC6785004 DOI: 10.1038/s41386-019-0398-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/28/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023]
Abstract
Animal studies indicate that the kappa-opioid receptor/dynorphin system plays an important role in cocaine binges and stress-induced relapse. Our goal was to investigate changes in kappa-opioid receptor (KOR) availability in the human brain using positron emission tomography (PET), before and after a cocaine binge. We also investigated the correlation between KOR and stress-induced cocaine self-administration. PET imaging was performed with the KOR selective agonist [11C]GR103545. Subjects with cocaine-use disorder (CUD) underwent PET scans and performed two types of cocaine self-administration sessions in the laboratory as follows: (1) choice sessions following a cold pressor test, to induce stress, and (2) binge dosing of cocaine. This allowed us investigate the following: (1) the association between KOR binding and a laboratory model of stress-induced relapse and (2) the change in KOR binding following a 3-day cocaine binge, which is thought to represent a change in endogenous dynorphin. A group of matched healthy controls was included to investigate between group differences in KOR availability. A significant association between [11C]GR103545 binding and cocaine self-administration was seen: greater KOR availability was associated with more choices for cocaine. In addition, the 3-day cocaine binge significantly reduced [11C]GR103545 binding by 18% in the striatum and 14% across brain regions. No difference in [11C]GR103545 binding was found between the CUD subjects and matched controls. In the context of previous studies, these findings add to the growing evidence that pharmacotherapies targeting the KOR have the potential to significantly impact treatment development for cocaine-use disorder.
Collapse
Affiliation(s)
- Diana Martinez
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA.
| | - Mark Slifstein
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - David Matuskey
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Ming-Qiang Zheng
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Shu-Fei Lin
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Nina Urban
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Alexander Grassetti
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Dinnisa Chang
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Michael Salling
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Richard Foltin
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, New York, NY, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Reed B, Butelman ER, Kreek MJ. Endogenous opioid system in addiction and addiction-related behaviors. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Noble F, Lenoir M, Marie N. The opioid receptors as targets for drug abuse medication. Br J Pharmacol 2015; 172:3964-79. [PMID: 25988826 DOI: 10.1111/bph.13190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/24/2015] [Accepted: 05/10/2015] [Indexed: 12/24/2022] Open
Abstract
The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse.
Collapse
Affiliation(s)
- Florence Noble
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Magalie Lenoir
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Nicolas Marie
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
10
|
Souza MF, Couto-Pereira NS, Freese L, Costa PA, Caletti G, Bisognin KM, Nin MS, Gomez R, Barros HMT. Behavioral effects of endogenous or exogenous estradiol and progesterone on cocaine sensitization in female rats. ACTA ACUST UNITED AC 2014; 47:505-14. [PMID: 24878606 PMCID: PMC4086178 DOI: 10.1590/1414-431x20143627] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/06/2014] [Indexed: 11/21/2022]
Abstract
Cocaine sensitization is a marker for some facets of addiction, is greater in female rats, and may be influenced by their sex hormones. We compared the modulatory effects of endogenous or exogenous estradiol and progesterone on cocaine-induced behavioral sensitization in 106 female rats. Ovariectomized female rats received progesterone (0.5 mg/mL), estradiol (0.05 mg/mL), progesterone plus estradiol, or the oil vehicle. Sham-operated control females received oil. Control and acute subgroups received injections of saline, while the repeated group received cocaine (15 mg/kg, ip) for 8 days. After 10 days, the acute and repeated groups received a challenge dose of cocaine, after which locomotion and stereotypy were monitored. The estrous cycle phase was evaluated and blood was collected to verify hormone levels. Repeated cocaine treatment induced overall behavioral sensitization in female rats, with increased locomotion and stereotypies. In detailed analysis, ovariectomized rats showed no locomotor sensitization; however, the sensitization of stereotypies was maintained. Only females with endogenous estradiol and progesterone demonstrated increased locomotor activity after cocaine challenge. Estradiol replacement enhanced stereotyped behaviors after repeated cocaine administration. Cocaine sensitization of stereotyped behaviors in female rats was reduced after progesterone replacement, either alone or concomitant with estradiol. The behavioral responses (locomotion and stereotypy) to cocaine were affected differently, depending on whether the female hormones were of an endogenous or exogenous origin. Therefore, hormonal cycling appears to be an important factor in the sensitization of females. Although estradiol increases the risk of cocaine sensitization, progesterone warrants further study as a pharmacological treatment in the prevention of psychostimulant abuse.
Collapse
Affiliation(s)
- M F Souza
- Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - N S Couto-Pereira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L Freese
- Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - P A Costa
- Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - G Caletti
- Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - K M Bisognin
- Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - M S Nin
- Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - R Gomez
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - H M T Barros
- Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| |
Collapse
|
11
|
Caputi FF, Di Benedetto M, Carretta D, Bastias del Carmen Candia S, D'Addario C, Cavina C, Candeletti S, Romualdi P. Dynorphin/KOP and nociceptin/NOP gene expression and epigenetic changes by cocaine in rat striatum and nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2014; 49:36-46. [PMID: 24184686 DOI: 10.1016/j.pnpbp.2013.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 12/11/2022]
Abstract
Cocaine induces neurochemical changes of endogenous prodynorphin-kappa opioid receptor (pDYN-KOP) and pronociceptin/orphaninFQ-nociceptin receptor (pN/OFQ-NOP) systems. Both systems play an important role in rewarding mechanisms and addictive stimulus processing by modulating drug-induced dopaminergic activation in the mesocortico-limbic brain areas. They are also involved in regulating stress mechanisms related to addiction. The aim of this study was to investigate possible changes of gene expression of the dynorphinergic and nociceptinergic system components in the nucleus accumbens (NA) and in medial and lateral caudate putamen (mCPu and lCPu, respectively) of rats, following chronic subcutaneous infusion of cocaine. In addition, the epigenetic histone modifications H3K4me3 and H3K27me3 (an activating and a repressive marker, respectively) at the promoter level of the pDYN, KOP, pN/OFQ and NOP genes were investigated. Results showed that cocaine induced pDYN gene expression up-regulation in the NA and lCPu, and its down-regulation in the mCPu, whereas KOP mRNA levels were unchanged. Moreover, cocaine exposure decreased pN/OFQ gene expression in the NA and lCPu, while NOP mRNA levels appeared significantly increased in the NA and decreased in the lCPu. Specific changes of the H3K4me3 and H3K27me3 levels were found at pDYN, pN/OFQ, and NOP gene promoter, consistent with the observed gene expression alterations. The present findings contribute to better define the role of endogenous pDYN-KOP and pN/OFQ-NOP systems in neuroplasticity mechanisms following chronic cocaine treatment. The epigenetic histone modifications underlying the gene expression changes likely mediate the effects of cocaine on transcriptional regulation of specific gene promoters that result in long-lasting drug-induced plasticity.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Manuela Di Benedetto
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Donatella Carretta
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | | | - Claudio D'Addario
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Chiara Cavina
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
12
|
Metaxas A, Keyworth H, Yoo J, Chen Y, Kitchen I, Bailey A. The stereotypy-inducing and OCD-like effects of chronic 'binge' cocaine are modulated by distinct subtypes of nicotinic acetylcholine receptors. Br J Pharmacol 2013; 167:450-64. [PMID: 22568685 DOI: 10.1111/j.1476-5381.2012.02023.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE High rates of cigarette smoking occur in cocaine-dependent individuals, reflecting an involvement of nicotinic acetylcholine receptors (nAChRs) in cocaine-elicited behaviour. This study was designed to assess the contribution of different nAChR subtypes to the behavioural and neurochemical effects of chronic cocaine treatment. EXPERIMENTAL APPROACH Cocaine (15 mg·kg(-1) , i.p.) was administered to male C57BL/6J mice in a chronic 'binge' paradigm, with and without the coadministration of the α7 preferring nAChR antagonist methyllycaconitine (MLA; 5 mg·kg(-1) , i.p.) or the β2* nAChR antagonist dihydro-β-erythroidine (DHβE; 2 mg·kg(-1) , i.p.). Quantitative autoradiography was used to examine the effect of cocaine exposure on α7 and α4β2* nAChRs, and on the high-affinity choline transporter. KEY RESULTS MLA+cocaine administration induced an intense self-grooming behaviour, indicating a likely role for α7 nAChRs in modulating this anxiogenic, compulsive-like effect of cocaine. In the major island of Calleja, a key area of action for neuroleptics, MLA+cocaine reduced choline transporter binding compared with cocaine (with or without DHβE) administration. DHβE treatment prevented the induction of stereotypy sensitisation to cocaine but prolonged locomotor sensitisation, implicating heteromeric β2* nAChRs in the neuroadaptations mediating cocaine-induced behavioural sensitisation. 'Binge' cocaine treatment region-specifically increased α4β2* nAChR binding in the midbrain dopaminergic regions: ventral tegmental area and substantia nigra pars compacta. CONCLUSIONS AND IMPLICATIONS We have shown a differential, subtype-selective, contribution of nAChRs to the behavioural and neurochemical sequelae of chronic cocaine administration. These data support the clinical utility of targeting specific nAChR subtypes for the alleviation of cocaine-abuse symptomatology.
Collapse
Affiliation(s)
- A Metaxas
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, Institute of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Trifilieff P, Martinez D. Kappa-opioid receptor signaling in the striatum as a potential modulator of dopamine transmission in cocaine dependence. Front Psychiatry 2013; 4:44. [PMID: 23760592 PMCID: PMC3669800 DOI: 10.3389/fpsyt.2013.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/14/2013] [Indexed: 11/13/2022] Open
Abstract
Cocaine addiction is accompanied by a decrease in striatal dopamine signaling, measured as a decrease in dopamine D2 receptor binding as well as blunted dopamine release in the striatum. These alterations in dopamine transmission have clinical relevance, and have been shown to correlate with cocaine-seeking behavior and response to treatment for cocaine dependence. However, the mechanisms contributing to the hypodopaminergic state in cocaine addiction remain unknown. Here we review the positron emission tomography (PET) imaging studies showing alterations in D2 receptor binding potential and dopamine transmission in cocaine abusers and their significance in cocaine-seeking behavior. Based on animal and human studies, we propose that the kappa receptor/dynorphin system, because of its impact on dopamine transmission and upregulation following cocaine exposure, could contribute to the hypodopaminergic state reported in cocaine addiction, and could thus be a relevant target for treatment development.
Collapse
Affiliation(s)
- Pierre Trifilieff
- New York State Psychiatric Institute, Columbia University , New York, NY , USA ; NutriNeuro, UMR 1286 INRA, University Bordeaux 2 , Bordeaux , France
| | | |
Collapse
|
14
|
Yoo JH, Kitchen I, Bailey A. The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us? Br J Pharmacol 2012; 166:1993-2014. [PMID: 22428846 DOI: 10.1111/j.1476-5381.2012.01952.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cocaine addiction has become a major concern in the UK as Britain tops the European 'league table' for cocaine abuse. Despite its devastating health and socio-economic consequences, no effective pharmacotherapy for treating cocaine addiction is available. Identifying neurochemical changes induced by repeated drug exposure is critical not only for understanding the transition from recreational drug use towards compulsive drug abuse but also for the development of novel targets for the treatment of the disease and especially for relapse prevention. This article focuses on the effects of chronic cocaine exposure and withdrawal on each of the endogenous opioid peptides and receptors in rodent models. In addition, we review the studies that utilized opioid peptide or receptor knockout mice in order to identify and/or clarify the role of different components of the opioid system in cocaine-addictive behaviours and in cocaine-induced alterations of brain neurochemistry. The review of these studies indicates a region-specific activation of the µ-opioid receptor system following chronic cocaine exposure, which may contribute towards the rewarding effect of the drug and possibly towards cocaine craving during withdrawal followed by relapse. Cocaine also causes a region-specific activation of the κ-opioid receptor/dynorphin system, which may antagonize the rewarding effect of the drug, and at the same time, contribute to the stress-inducing properties of the drug and the triggering of relapse. These conclusions have important implications for the development of effective pharmacotherapy for the treatment of cocaine addiction and the prevention of relapse.
Collapse
Affiliation(s)
- Ji Hoon Yoo
- Division of Biochemistry, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | |
Collapse
|
15
|
Kovalevich J, Corley G, Yen W, Rawls SM, Langford D. Cocaine-induced loss of white matter proteins in the adult mouse nucleus accumbens is attenuated by administration of a β-lactam antibiotic during cocaine withdrawal. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1921-7. [PMID: 23031254 DOI: 10.1016/j.ajpath.2012.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/02/2012] [Accepted: 08/15/2012] [Indexed: 01/04/2023]
Abstract
We report significantly decreased white matter protein levels in the nucleus accumbens in an adult mouse model of chronic cocaine abuse. Previous studies from human cocaine abuse patients show disruption of white matter and myelin loss, thus supporting our observations. Understanding the neuropathological mechanisms for white matter disruption in cocaine abuse patients is complicated by polydrug use and other comorbid factors, hindering the development of effective therapeutic strategies to ameliorate damage or compliment rehabilitation programs. In this context, our data further demonstrate that cocaine-induced loss of white matter proteins is absent in mice treated with the β-lactam antibiotic, ceftriaxone, during cocaine withdrawal. Other studies report that ceftriaxone, a glutamate transporter subtype-1 activator, is neuroprotective in murine models of multiple sclerosis, thereby demonstrating potential therapeutic properties for diseases with white matter loss. Cocaine-induced white matter abnormalities likely contribute to the cognitive, motor, and psychological deficits commonly afflicting cocaine abusers, yet the underlying mechanisms responsible for these changes remain unknown. Our observations describe an adult animal model for the study of cocaine-induced myelin loss for the first time, and highlight a potential pharmacological intervention to ameliorate cocaine-induced white matter loss.
Collapse
Affiliation(s)
- Jane Kovalevich
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
16
|
Kovalevich J, Corley G, Yen W, Kim J, Rawls SM, Langford D. Cocaine decreases expression of neurogranin via alterations in thyroid receptor/retinoid X receptor signaling. J Neurochem 2012; 121:302-13. [PMID: 22300446 DOI: 10.1111/j.1471-4159.2012.07678.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mounting evidence suggests a potential link between cocaine abuse, disruptions in hypothalamic-pituitary-thyroid axis signaling, and neuroplasticity, but molecular mechanisms remain unknown. Neurogranin (Ng) is a gene containing a thyroid hormone-responsive element within its first intron that is involved in synaptic plasticity. Transcriptional activation requires heterodimerization of thyroid hormone receptor (TR) and retinoid X receptor (RXR) bound by their respective ligands, tri-iodothryonine and 9-cis-retinoic acid (9-cis-RA), and subsequent binding of this complex to the thyroid hormone-responsive element of the Ng gene. In this study, the effects of chronic cocaine abuse on Ng expression in euthyroid and hypothyroid mice were assessed. In cocaine-treated mice, decreased Ng expression was observed in the absence of changes in levels of thyroid hormones or other hypothalamic-pituitary-thyroid signaling factors. Therefore, we hypothesized that cocaine decreases Ng expression via alterations in 9-cis-RA availability and TR/RXR signaling. In support of this hypothesis, RXR-γ was significantly decreased in brains of cocaine-treated mice while CYP26A1, the main enzyme responsible for neuronal RA degradation, was significantly increased. Results from this study provide the first evidence for a direct effect of cocaine abuse on TR/RXR signaling, RA metabolism, and transcriptional regulation of Ng, a gene essential for adult neuroplasticity.
Collapse
Affiliation(s)
- Jane Kovalevich
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
17
|
Leri F, Zhou Y, Carmichael B, Cummins E, Kreek MJ. Treatment-like steady-state methadone in rats interferes with incubation of cocaine sensitization and associated alterations in gene expression. Eur Neuropsychopharmacol 2012; 22:143-52. [PMID: 21745729 PMCID: PMC3810140 DOI: 10.1016/j.euroneuro.2011.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/12/2011] [Accepted: 06/14/2011] [Indexed: 01/11/2023]
Abstract
In a previous study, steady-state methadone treatment was found to prevent associative cocaine learning, as well as related decreases in mRNA expression of preprohypocretin/preproorexin (ppHcrt) in the lateral hypothalamus (LH) and dopamine D2 receptor (DR2) in the caudate-putamen (CP), and increases in mu-opioid receptor in the ventral striatum of rats. To investigate whether the same regimen of methadone exposure could prevent the incubation of cocaine sensitization and related alterations in gene expression, male Sprague-Dawley rats received 45 mg/kg/day steady-dose "binge" cocaine administration (IP) for 14 days followed by mini-pumps releasing 30 mg/kg/day methadone (SC). After 14 days of methadone, and a subsequent 10-day drug-free period, all rats were tested for sensitization (cocaine test dose: 15 mg/kg) and brain tissue was collected to quantify mRNA expression. Rats exposed to cocaine displayed cocaine-induced stereotypy at test, as well as enhanced ppHcrt mRNA in the LH and reduced DR2 mRNA in the CP. Importantly, these alterations were significantly reduced in rats treated with methadone following cocaine. These results suggest that steady-state methadone can interfere with the incubation of neuroadaptations underlying changes in behavioral responses to cocaine and cocaine-associated stimuli, and that these effects can be observed even after withdrawal from methadone.
Collapse
|
18
|
Influence of new deltorphin analogues on reinstatement of cocaine-induced conditioned place preference in rats. Behav Pharmacol 2010; 21:638-48. [DOI: 10.1097/fbp.0b013e32833e7e97] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev 2009; 89:1379-412. [PMID: 19789384 DOI: 10.1152/physrev.00005.2009] [Citation(s) in RCA: 688] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides processed from three protein precursors, proopiomelanocortin, proenkephalin, and prodynorphin. Opioid receptors are recruited in response to natural rewarding stimuli and drugs of abuse, and both endogenous opioids and their receptors are modified as addiction develops. Mechanisms whereby aberrant activation and modifications of the opioid system contribute to drug craving and relapse remain to be clarified. This review summarizes our present knowledge on brain sites where the endogenous opioid system controls hedonic responses and is modified in response to drugs of abuse in the rodent brain. We review 1) the latest data on the anatomy of the opioid system, 2) the consequences of local intracerebral pharmacological manipulation of the opioid system on reinforced behaviors, 3) the consequences of gene knockout on reinforced behaviors and drug dependence, and 4) the consequences of chronic exposure to drugs of abuse on expression levels of opioid system genes. Future studies will establish key molecular actors of the system and neural sites where opioid peptides and receptors contribute to the onset of addictive disorders. Combined with data from human and nonhuman primate (not reviewed here), research in this extremely active field has implications both for our understanding of the biology of addiction and for therapeutic interventions to treat the disorder.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département Neurobiologie et Génétique, Illkirch, France
| | | | | | | |
Collapse
|
20
|
Characterization of proteins in the rat striatum following acute cocaine administration. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0204-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Minerly AE, Wu HBK, Weierstall KM, Niyomchai T, Kemen L, Jenab S, Quinones-Jenab V. Testosterone differentially alters cocaine-induced ambulatory and rearing behavioral responses in adult and adolescent rats. Pharmacol Biochem Behav 2009; 94:404-9. [PMID: 19822170 DOI: 10.1016/j.pbb.2009.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/30/2009] [Accepted: 10/04/2009] [Indexed: 11/18/2022]
Abstract
Little is known about the physiological and behavioral effects of testosterone when co-administered with cocaine during adolescence. The present study aimed to determine whether exogenous testosterone administration differentially alters psychomotor responses to cocaine in adolescent and adult male rats. To this end, intact adolescent (30-days-old) and adult (60-day-old) male Fisher rats were pretreated with vehicle (sesame oil) or testosterone (5 or 10mg/kg) 45 min prior to saline or cocaine (20mg/kg) administration. Behavioral responses were monitored 1h after drug treatment, and serum testosterone levels were determined. Serum testosterone levels were affected by age: saline- and cocaine-treated adults in the vehicle groups had higher serum testosterone levels than adolescent rats, but after co-administration of testosterone the adolescent rats had higher serum testosterone levels than the adults. Pretreatment with testosterone affected baseline activity in adolescent rats: 5mg/kg of testosterone increased both rearing and ambulatory behaviors in saline-treated adolescent rats. After normalizing data to % saline, an interaction between hormone administration and cocaine-induced behavioral responses was observed; 5mg/kg of testosterone decreased both ambulatory and rearing behaviors among adolescents whereas 10mg/kg of testosterone decreased only rearing behaviors. Testosterone pretreatment did not alter cocaine-induced behavioral responses in adult rats. These findings suggest that adolescents are more sensitive than adults to an interaction between testosterone and cocaine, and, indirectly, suggest that androgen abuse may lessen cocaine-induced behavioral responses in younger cocaine users.
Collapse
Affiliation(s)
- Anachristina E Minerly
- Department of Psychology, Hunter College and Biopsychology and Behavioral Neuroscience Doctoral Subprogram, Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065, United States
| | | | | | | | | | | | | |
Collapse
|
22
|
Caster JM, Kuhn CM. Maturation of coordinated immediate early gene expression by cocaine during adolescence. Neuroscience 2009; 160:13-31. [PMID: 19245875 PMCID: PMC2668738 DOI: 10.1016/j.neuroscience.2009.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/13/2008] [Accepted: 01/01/2009] [Indexed: 11/17/2022]
Abstract
Adolescence may be a critical period for drug addiction. Young adolescent male rats have greater locomotor responses than adults after acute low dose cocaine administration. Further, repeated cocaine administration produces as much or more conditioned place preference but reduced locomotor sensitization in adolescents compared to adults. Acute activation of neurons by cocaine induces long-term changes in behavior by activating transcriptional complexes. The purpose of the present study was to correlate cocaine-induced locomotor activity with neuronal activation in subregions of the striatum and cortex by acute cocaine in young adolescent (postnatal (PN) 28) and adult (PN 65) male rats by measuring the induction of the plasticity-associated immediate early genes (IEGs) c-fos and zif268 using in situ hybridization. Animals were treated with saline, low (10 mg/kg), or high (40 mg/kg) dose cocaine in locomotor activity chambers and killed 30 min later. Low dose cocaine induced more locomotor activity and striatal c-fos expression in adolescents than adults whereas high dose cocaine induced more locomotor activity, striatal c-fos, and striatal zif268 expression in adults. Locomotor activity correlated with the expression of both genes in adults but correlated with striatal c-fos only in adolescents. Finally, there was a significant correlation between the expression of c-fos and zif268 in the adult striatum but not in adolescents. Our results suggest that the coordinated expression of transcription factors by cocaine continues to develop during adolescence. The immature regulation of transcription factors by cocaine could explain why adolescents show unique sensitivity to specific long-term behavioral alterations following cocaine treatment.
Collapse
Affiliation(s)
- J M Caster
- Department of Pharmacology and Cancer Biology, Research Park Building 2, Room 100B, Box 3813, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
23
|
Hearing MC, See RE, McGinty JF. Relapse to cocaine-seeking increases activity-regulated gene expression differentially in the striatum and cerebral cortex of rats following short or long periods of abstinence. Brain Struct Funct 2008; 213:215-27. [PMID: 18488248 PMCID: PMC5771260 DOI: 10.1007/s00429-008-0182-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/22/2008] [Indexed: 12/20/2022]
Abstract
One of the most insidious features of cocaine addiction is a high rate of relapse even after extended periods of abstinence. A wide variety of drug-associated stimuli, including the context in which a drug is taken, can gain incentive motivational properties that trigger drug desire and relapse to drug-seeking. Both animal and clinical studies suggest that extensive cocaine exposure may induce a transition from cortical to striatal control over decision-making as compulsive drug-seeking emerges. Using an animal model of relapse to cocaine-seeking, the present study investigated the expression patterns of three different activity-related genes (c-fos, zif/268, and arc) in cortical and striatal brain regions implicated in compulsive drug-seeking in order to determine the neuroadaptations that occur during context-induced relapse following brief or prolonged abstinence from cocaine self-administration. Re-exposure to the environment previously associated with cocaine self-administration following 22 h or 15 days of abstinence produced a significant increase in zif/268 and arc, but not c-fos mRNA, in the caudate-putamen and nucleus accumbens. With the exception of arc mRNA levels following 15 days of abstinence, all three genes were increased in the anterior cingulate cortex of animals with a cocaine history when they were re-exposed to the operant chamber. Additionally, c-fos, zif/268, and arc expression was differentially affected in the motor and sensory cortices at both timepoints. Together, these results support convergent evidence that drug-seeking induced by a cocaine-paired context changes the activity of corticostriatal circuits.
Collapse
Affiliation(s)
- M C Hearing
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue BSB 403, Charleston, SC 29425, USA
| | | | | |
Collapse
|
24
|
Kreek MJ, Schlussman SD, Reed B, Zhang Y, Nielsen DA, Levran O, Zhou Y, Butelman ER. Bidirectional translational research: Progress in understanding addictive diseases. Neuropharmacology 2008; 56 Suppl 1:32-43. [PMID: 18725235 DOI: 10.1016/j.neuropharm.2008.07.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
The focus of this review is primarily on recent developments in bidirectional translational research on the addictions, within the Laboratory of the Biology of Addictive Diseases at The Rockefeller University. This review is subdivided into major interacting aspects, including (a) Investigation of neurobiological and molecular adaptations (e.g., in genes for the opioid receptors or endogenous neuropeptides) in response to cocaine or opiates, administered under laboratory conditions modeling chronic patterns of human self-exposure (e.g., chronic escalating "binge"). (b) The impact of such drug exposure on the hypothalamic-pituitary-adrenal (HPA) axis and interacting neuropeptidergic systems (e.g., opioid, orexin and vasopressin). (c) Molecular genetic association studies using candidate gene and whole genome approaches, to define particular systems involved in vulnerability to develop specific addictions, and response to pharmacotherapy. (d) Neuroendocrine challenge studies in normal volunteers and current addictive disease patients along with former addicts in treatment, to investigate differential pharmacodynamics and responsiveness of molecular targets, in particular those also investigated in the experimental and molecular genetic approaches as described above.
Collapse
Affiliation(s)
- M J Kreek
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bailey A, Metaxas A, Yoo JH, McGee T, Kitchen I. Decrease of D2 receptor binding but increase in D2-stimulated G-protein activation, dopamine transporter binding and behavioural sensitization in brains of mice treated with a chronic escalating dose 'binge' cocaine administration paradigm. Eur J Neurosci 2008; 28:759-70. [PMID: 18671743 DOI: 10.1111/j.1460-9568.2008.06369.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the neurobiology of the transition from initial drug use to excessive drug use has been a challenge in drug addiction. We examined the effect of chronic 'binge' escalating dose cocaine administration, which mimics human compulsive drug use, on behavioural responses and the dopaminergic system of mice and compared it with a chronic steady dose (3 x 15 mg/kg/day) 'binge' cocaine administration paradigm. Male C57BL/6J mice were injected with saline or cocaine in an escalating dose paradigm for 14 days. Locomotor and stereotypy activity were measured and quantitative autoradiographic mapping of D(1) and D(2) receptors, dopamine transporters and D(2)-stimulated [(35)S]GTPgammaS binding was performed in the brains of mice treated with this escalating and steady dose paradigm. An initial sensitization to the locomotor effects of cocaine followed by a dose-dependent increase in the duration of the locomotor effect of cocaine was observed in the escalating but not the steady dose paradigm. Sensitization to the stereotypy effect of cocaine and an increase in cocaine-induced stereotypy score was observed from 3 x 20 to 3 x 25 mg/kg/day cocaine. There was a significant decrease in D(2) receptor density, but an increase in D(2)-stimulated G-protein activity and dopamine transporter density in the striatum of cocaine-treated mice, which was not observed in our steady dose paradigm. Our results document that chronic 'binge' escalating dose cocaine treatment triggers profound behavioural and neurochemical changes in the dopaminergic system, which might underlie the transition from drug use to compulsive drug use associated with addiction, which is a process of escalation.
Collapse
Affiliation(s)
- A Bailey
- Faculty of Health and Medical Sciences, AY Building, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | | | | | | | | |
Collapse
|
26
|
Isola R, Zhang H, Tejwani GA, Neff NH, Hadjiconstantinou M. Dynorphin and prodynorphin mRNA changes in the striatum during nicotine withdrawal. Synapse 2008; 62:448-55. [PMID: 18361441 DOI: 10.1002/syn.20515] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nicotine withdrawal causes somatic and negative affective symptoms that contribute to relapse and continued tobacco smoking. So far, the neuronal substrates involved are not fully understood, and an opioid role has been suggested. In this regard, the opioid dynorphin (Dyn) is of interest as it produces aversive states and has been speculated to play a role in the nicotine behavioral syndrome. These studies explore whether Dyn metabolism is altered during withdrawal following chronic administration of nicotine. Mice were administered nicotine, 2 mg/kg, s.c., four times daily for 14 days, and Dyn and prodynorphin (PD) mRNA estimated in selective brain regions at various times (30 min to 96 h) following drug discontinuation. The content of Dyn, estimated by RIA, was decreased in the striatum for a protracted time, from 30 min to over 72 h. In contrast, the mRNA for PD, evaluated by Northern blot, was elevated, appearing by 8 h and lasting over 96 h. Dyn was decreased in both ventral and dorsal striatum, and PD mRNA was differentially increased in the two striatal compartments as demonstrated by in situ hybridization. PD message was predominantly augmented in the nucleus accumbens, rostral pole, core, and shell, and the medial aspects of caudate/putamen. We interpret these data to indicate increased activity of striatal, particularly accumbal, dynorphinergic neurons during nicotine withdrawal resulting in enhanced peptide release and compensatory synthesis. Heightened dynorphinergic tone might be responsible, in part, for the emergence of the negative affective states observed during nicotine withdrawal.
Collapse
Affiliation(s)
- Raffaella Isola
- Department of Psychiatry, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
27
|
Freeman WM, Patel KM, Brucklacher RM, Lull ME, Erwin M, Morgan D, Roberts DCS, Vrana KE. Persistent alterations in mesolimbic gene expression with abstinence from cocaine self-administration. Neuropsychopharmacology 2008; 33:1807-17. [PMID: 17851536 PMCID: PMC2810407 DOI: 10.1038/sj.npp.1301577] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cocaine-responsive gene expression changes have been described after either no drug abstinence or short periods of abstinence. Little data exist on the persistence of these changes after long-term abstinence. Previously, we reported that after discrete-trial cocaine self-administration and 10 days of forced abstinence, incubation of cocaine reinforcement was observable by a progressive ratio schedule. The present study used rat discrete-trial cocaine self-administration and long-term forced abstinence to examine extinction responding, mRNA abundance of known cocaine-responsive genes, and chromatin remodeling. At 30 and 100 days of abstinence, extinction responding increased compared to 3-day abstinent rats. Decreases in both medial prefrontal cortex (mPFC) and nucleus accumbens c-fos, Nr4a1, Arc, and EGR1 mRNA were observed, and in most cases persisted, for 100 days of abstinence. The signaling peptides CART and neuropeptide Y (NPY) transiently increased in the mPFC, but returned to baseline levels following 10 days of abstinence. To investigate a potential regulatory mechanism for these persistent mRNA changes, levels of histone H3 acetylation at promoters for genes with altered mRNA expression were examined. In the mPFC, histone H3 acetylation decreased after 1 and 10 days of abstinence at the promoter for EGR1. H3 acetylation increased for NPY after 1 day of abstinence and returned to control levels by 10 days of abstinence. Behaviorally, these results demonstrate incubation after discrete-trial cocaine self-administration and prolonged forced abstinence. This incubation is accompanied by changes in gene expression that persist long after cessation of drug administration and may be regulated by chromatin remodeling.
Collapse
Affiliation(s)
- Willard M Freeman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ambrose-Lanci LM, Peiris NB, Unterwald EM, Van Bockstaele EJ. Cocaine withdrawal-induced trafficking of delta-opioid receptors in rat nucleus accumbens. Brain Res 2008; 1210:92-102. [PMID: 18417105 PMCID: PMC2474759 DOI: 10.1016/j.brainres.2008.02.105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 12/01/2022]
Abstract
Interactions between the opioidergic and dopaminergic systems in the nucleus accumbens (NAcb) play a critical role in mediating cocaine withdrawal-induced effects on cell signaling and behavior. In support of this, increased activation of striatal dopamine-D1 receptors (D1R) results in desensitization of delta-opioid receptor (DOR) signaling through adenylyl cyclase during early cocaine withdrawal. A potential cellular substrate underlying receptor desensitization is receptor internalization. The present study examined the effect of cocaine withdrawal on subcellular localization of DOR in dendrites of the NAcb core (NAcbC) and shell (NAcbS) using immunoelectron microscopy. Female and male rats received binge-pattern cocaine or saline for 14 days and subsequently underwent 48 h withdrawal. Animals were transcardially perfused and tissue sections were processed for immunogold-silver localization of DOR. Semi-quantitative analysis revealed that cocaine withdrawal caused an increase in the percentage of DOR localized intracellularly in the NAcbS of male and female rats and the NAcbC of male rats compared to saline controls. In contrast, in the NAcbC of female rats, there was an increase in DOR associated with the plasma membrane following cocaine withdrawal. To determine whether modulation of D1R could directly impact DOR containing neurons, the hypothesis that DOR and D1R co-exist in common neurons of the NAcb was examined in naïve rats. Semi-quantitative analysis revealed a subset of profiles containing both DOR and D1R immunoreactivities. The present findings demonstrate a redistribution of DOR in the NAcb following cocaine withdrawal and provide anatomical evidence supporting D1R regulation of DOR function in a subset of NAcb neurons.
Collapse
Affiliation(s)
- Lisa M Ambrose-Lanci
- Farber Institute for Neurosciences, Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
29
|
Hearing MC, Miller SW, See RE, McGinty JF. Relapse to cocaine seeking increases activity-regulated gene expression differentially in the prefrontal cortex of abstinent rats. Psychopharmacology (Berl) 2008; 198:77-91. [PMID: 18311559 PMCID: PMC5440231 DOI: 10.1007/s00213-008-1090-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 01/22/2008] [Indexed: 02/05/2023]
Abstract
RATIONALE Alterations in the activity of the prefrontal and orbitofrontal cortices of cocaine addicts have been linked with re-exposure to cocaine-associated stimuli. OBJECTIVES Using an animal model of relapse to cocaine seeking, the present study investigated the expression patterns of four different activity-regulated genes within prefrontal cortical brain regions after 22 h or 15 days of abstinence during context-induced relapse. MATERIALS AND METHODS Rats self-administered cocaine or received yoked-saline for 2 h/day for 10 days followed by 22 h or 2 weeks of abstinence when they were re-exposed to the self-administration chamber with or without levers available to press for 1 h. Brains were harvested and sections through the prefrontal cortex were processed for in situ hybridization using radioactive oligonucleotide probes encoding c-fos, zif/268, arc, and bdnf. RESULTS Re-exposure to the chamber in which rats previously self-administered cocaine but not saline, regardless of lever availability, increased the expression of all genes in the medial prefrontal and orbitofrontal cortices at both time points with one exception: bdnf mRNA was significantly increased in the medial prefrontal cortex at 22 h only if levers previously associated with cocaine delivery were available to press. Furthermore, re-exposure of rats to the chambers in which they received yoked saline enhanced both zif/268 and arc expression selectively in the orbitofrontal cortex after 15 days of abstinence. CONCLUSIONS These results support convergent evidence that cocaine-induced changes in the prefrontal cortex are important in regulating drug seeking following abstinence and may provide additional insight into the molecular mechanisms involved in these processes.
Collapse
Affiliation(s)
- M. C. Hearing
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue BSB 403, Charleston, SC 29245, USA
| | - S. W. Miller
- Department of Biostatistics, Bioinformatics, and Epidemiology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29245, USA
| | - R. E. See
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue BSB 403, Charleston, SC 29245, USA
| | - J. F. McGinty
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue BSB 403, Charleston, SC 29245, USA
| |
Collapse
|
30
|
Torres-Reveron A, Hurd YL, Dow-Edwards DL. Gender differences in prodynorphin but not proenkephalin mRNA expression in the striatum of adolescent rats exposed to prenatal cocaine. Neurosci Lett 2007; 421:213-7. [PMID: 17574751 PMCID: PMC4237583 DOI: 10.1016/j.neulet.2007.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 04/30/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
The objective of this study was to determine if prenatal cocaine affects the levels of prodynorphin and proenkephalin mRNA in male and female adolescent rats. Pregnant dams received cocaine or vehicle from gestational days 8-22 and upon delivery, the pups were fostered. At postnatal days 42-44, pups were killed and brains removed and frozen. Sections of striatum and nucleus accumbens were processed for prodynorphin and proenkephalin mRNA expression. Prenatal cocaine did not affect the expression of proenkephalin mRNA, but males showed higher expression than females. However, prodynorphin mRNA was lower in female rats exposed to cocaine compared to controls. Prenatal cocaine appears to have unique effects on neuropeptides during adolescence.
Collapse
Affiliation(s)
- Annelyn Torres-Reveron
- Program in Neural and Behavioral Sciences and Department of Physiology and Pharmacology, SUNY Health Sciences Center at Brooklyn, Brooklyn, NY, United States.
| | | | | |
Collapse
|
31
|
D'Addario C, Di Benedetto M, Candeletti S, Romualdi P. The kappa-opioid receptor agonist U-69593 prevents cocaine-induced phosphorylation of DARPP-32 at Thr(34) in the rat brain. Brain Res Bull 2007; 73:34-9. [PMID: 17499634 DOI: 10.1016/j.brainresbull.2007.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 11/15/2022]
Abstract
DARPP-32 (dopamine- and cAMP-regulated phosphoprotein) is a potent endogenous inhibitor of protein phosphatase-1, which plays an important role in dopaminergic transmission. A large body of evidence supports the key role of DARPP-32-dependent signalling in mediating the actions of multiple drugs of abuse, including cocaine, which, when acutely administered, increases the Thr(34) phosphorylation of DARPP-32 in the striatal and cortical areas. In this study, we have examined the contribution of the kappa opioid system to the regulation of DARPP-32 phosphorylation at Thr(34), following acute cocaine administration, in selected rat brain areas. Results showed that a single injection of cocaine induces a significant increase in DARPP-32 phosphorylation at Thr(34) in the hippocampus, caudate putamen and prefrontal cortex. In addition, pretreatment with the kappa opioid receptor agonist U-69593 prevented cocaine effects in all the investigated areas. These data could be considered consistent with the ability of kappa opioid agonists to attenuate many behavioural and neurochemical effects of cocaine.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Pharmacology, University of Bologna, Irnerio 48, Bologna 40126, Italy
| | | | | | | |
Collapse
|
32
|
Niyomchai T, Jenab S, Festa ED, Akhavan A, Quiñones-Jenab V. Effects of short- and long-term estrogen and progesterone replacement on behavioral responses and c-fos mRNA levels in female rats after acute cocaine administration. Brain Res 2006; 1126:193-9. [PMID: 16962079 DOI: 10.1016/j.brainres.2006.07.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/21/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
It is well established that there are estrous cycle differences in cocaine-induced behavioral activity, implicating fluctuations in levels of estrogen and progesterone throughout the cycle in these alterations in behavior. However, the mechanisms by which steroids alter cocaine-induced behavioral responses have yet to be determined. The aim of this study was to determine whether short- or long-term estrogen and progesterone administration differentially alters behavioral responses to cocaine. Estrogen (50 microg) was administered 30 min or 48 h before cocaine (15 mg/kg, i.p.) administration; progesterone (500 microg) was administered 30 min or 24 h before cocaine. Short-term estrogen replacement decreased cocaine-induced ambulations. Short-term progesterone decreased rearing, whereas long-term progesterone decreased ambulations. Although cocaine increased levels of c-fos mRNA, none of the estrogen or progesterone replacement paradigms affected this measure. Because long-term estrogen replacement has been shown to have no effect on locomotor activity after acute cocaine administration, our observations suggest that short-term estrogen may underlie behavioral alterations. These findings suggest that after acute cocaine administration, while estrogen may activate only membrane receptors to alter behavioral responses to cocaine, progesterone activates both nuclear and membrane receptors.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Brain/drug effects
- Brain/metabolism
- Cocaine/pharmacology
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/physiopathology
- Disease Models, Animal
- Dopamine Uptake Inhibitors/pharmacology
- Drug Administration Schedule
- Drug Interactions/physiology
- Estrogens/metabolism
- Estrogens/pharmacology
- Estrous Cycle/drug effects
- Estrous Cycle/physiology
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Female
- Hormone Replacement Therapy
- Motor Activity/drug effects
- Motor Activity/physiology
- Ovariectomy
- Progesterone/metabolism
- Progesterone/pharmacology
- Proto-Oncogene Proteins c-fos/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/drug effects
- Receptors, Steroid/metabolism
Collapse
Affiliation(s)
- Tipyamol Niyomchai
- Department of Psychology, Hunter College of the City University of New York, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
33
|
RØNNEKLEIV OLINEK, FANG YUAN, CHOI WANS, CHAI LIN. Changes in the Midbrain-Rostral Forebrain Dopamine Circuitry in the Cocaine-Exposed Primate Fetal Braina. Ann N Y Acad Sci 2006; 846:165-181. [DOI: 10.1111/j.1749-6632.1998.tb09735.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Horner KA, Keefe KA. Regulation of psychostimulant-induced preprodynorphin, c-fos and zif/268 messenger RNA expression in the rat dorsal striatum by mu opioid receptor blockade. Eur J Pharmacol 2006; 532:61-73. [PMID: 16443216 DOI: 10.1016/j.ejphar.2005.12.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/12/2005] [Accepted: 12/19/2005] [Indexed: 11/27/2022]
Abstract
Several studies have shown that psychostimulants can induce differential immediate early gene and neuropeptide expression in the patch versus matrix compartments of dorsal striatum. The patch compartment contains a high density of mu opioid receptors and activation of these receptors may contribute to psychostimulant-induced gene expression in the patch versus matrix compartments of dorsal striatum. However, the contribution of mu opioid receptor activation to psychostimulant-induced changes in gene expression in the patch compartment of dorsal striatum has not been examined. The current study examined the role of mu opioid receptors in psychostimulant induction of preprodynorphin, c-fos and zif/268 messenger RNA expression in the patch versus matrix compartments of dorsal striatum. Male Sprague-Dawley rats were treated with the mu opioid receptor antagonist, clocinnamox (1 mg/kg, s.c.), 24 h prior to treatment with cocaine (30 mg/kg, i.p.) or methamphetamine (15 mg/kg, s.c.) and sacrificed 45 min or 3 h later. Mu opioid receptor antagonism blocked psychostimulant-induced preprodynorphin messenger RNA expression only in the rostral patch compartment, whereas psychostimulant-induced zif/268 messenger RNA expression in the patch and matrix compartments was attenuated throughout the dorsal striatum. Clocinnamox pretreatment had no effect on stimulant-induced increases in c-fos expression. These data suggest that mu opioid receptor activation plays a specific role in psychostimulant-induced preprodynorphin messenger RNA expression in the rostral patch compartment and zif/268 messenger RNA expression throughout dorsal striatum.
Collapse
Affiliation(s)
- Kristen A Horner
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA.
| | | |
Collapse
|
35
|
Ziółkowska B, Stefański R, Mierzejewski P, Zapart G, Kostowski W, Przewłocki R. Contingency does not contribute to the effects of cocaine self-administration on prodynorphin and proenkephalin gene expression in the rat forebrain. Brain Res 2006; 1069:1-9. [PMID: 16412997 DOI: 10.1016/j.brainres.2005.11.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/14/2005] [Accepted: 11/16/2005] [Indexed: 11/28/2022]
Abstract
Neuroadaptations in the brain opioid systems produced by chronic exposure to drugs of abuse may contribute to the drug dependence and addiction. Although regulation of the gene expression of the opioid propeptides proenkephalin (PENK) and prodynorphin (PDYN) by psychostimulants has previously been described, little attention has been paid to dissociating effects of pharmacological actions of the drugs from those produced by motivational processes driving active drug intake in self-administration paradigms. In the present study, effects of response-dependent (contingent) and response-independent (noncontingent) cocaine administration on the PENK and PDYN gene expression in the rat forebrain have been directly compared using the "yoked" self-administration procedure. The i.v. cocaine treatment lasted for 5 weeks, and rats were sacrificed 24 h after the last self-administration session. In situ hybridization analysis revealed that levels of the PDYN mRNA were significantly increased in the caudate/putamen, to the same extent in rats self-administering cocaine as in animals receiving noncontingent injections of the drug at the same frequency and dosage. No changes in the expression of the PDYN gene were detected in the nucleus accumbens or in the central nucleus of amygdala. Levels of the PENK mRNA remained unaltered in all the above-mentioned forebrain regions of rats receiving contingent or noncontingent cocaine injections. The obtained data indicate that up-regulation of the PDYN gene expression in the caudate/putamen results from direct pharmacological actions of cocaine rather than from the motivational and cognitive processes underlying active self-administration of the drug.
Collapse
Affiliation(s)
- Barbara Ziółkowska
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | | | | | | | | | | |
Collapse
|
36
|
Schlussman SD, Zhou Y, Bailey A, Ho A, Kreek MJ. Steady-dose and escalating-dose "binge" administration of cocaine alter expression of behavioral stereotypy and striatal preprodynorphin mRNA levels in rats. Brain Res Bull 2005; 67:169-75. [PMID: 16144651 DOI: 10.1016/j.brainresbull.2005.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 04/14/2005] [Accepted: 04/14/2005] [Indexed: 10/25/2022]
Abstract
This study examined the effects of chronic (14-day) steady-dose and escalating-dose "binge" pattern cocaine administration on striatal preprodynorphin (ppDyn) mRNA levels and behavioral stereotypies. Animals in the steady-state and escalating groups received cocaine in a "binge" pattern (three equal injections starting 30 min following the start of the daily light cycle, separated by 1 h). The dose of cocaine in the "steady-dose" group was 15 mg/kg/injection and remained constant throughout the study. The escalating group received 15 mg/kg/injection on days 1-3, 20 mg/kg/injection on days 4-6, 25 mg/kg/injection on days 7-9 and 30 mg/kg/injection thereafter, for a maximum daily dose of 90 mg/kg. Levels of ppDyn mRNA were determined by solution hybridization. Cocaine significantly affected body weight. Both steady-dose and escalating-dose "binge" cocaine administration resulted in expression of behavioral stereotypy and induced intense, rapid head movements which were dose- and time-dependent. Cocaine, independent of dose, increased ppDyn mRNA levels in the caudate putamen (CPu), but not in the nucleus accumbens (NAc). These data suggest that the ppDyn response to cocaine in the CPu is not dose-dependent or that it has reached a maximal level at the 45 mg/kg daily dose.
Collapse
Affiliation(s)
- Stefan D Schlussman
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
37
|
Di Benedetto M, D'addario C, Candeletti S, Romualdi P. Chronic and acute effects of 3,4-methylenedioxy-N-methylamphetamine ('Ecstasy') administration on the dynorphinergic system in the rat brain. Neuroscience 2005; 137:187-96. [PMID: 16289352 DOI: 10.1016/j.neuroscience.2005.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/14/2005] [Accepted: 09/13/2005] [Indexed: 11/22/2022]
Abstract
The prodynorphin system is implicated in the neurochemical mechanism of psychostimulants. Exposure to different drugs of abuse can induce neuroadaptations in the brain and affect opioid gene expression. The present study aims to examine the possibility of a common neurobiological substrate in drug addiction processes. We studied the effects of single and repeated 3,4-methylenedioxy-N-methylamphetamine ('Ecstasy') on the gene expression of the opioid precursor prodynorphin, and on the levels of peptide dynorphin A in the rat brain. Acute (8 mg/kg, intraperitoneally) 3,4-methylenedioxy-N-methylamphetamine markedly raised, two hours later, prodynorphin mRNA levels in the prefrontal cortex, and in the caudate putamen, whereas it decreased gene expression in the ventral tegmental area. Chronic (8 mg/kg, intraperitoneally, twice a day for 7 days) 3,4-methylenedioxy-N-methylamphetamine increased prodynorphin mRNA in the nucleus accumbens, hypothalamus and caudate putamen and decreased it in the ventral tegmental area. Dynorphin A levels increased after chronic treatment in the ventral tegmental area and decreased after acute treatment in the nucleus accumbens, prefrontal cortex and hypothalamus. These findings confirm the role of the dynorphinergic system in mediating the effects of drugs of abuse, such as 3,4-methylenedioxy-N-methylamphetamine, in various regions of the rat brain, which may be important sites for the opioidergic mechanisms activated by addictive drugs.
Collapse
Affiliation(s)
- M Di Benedetto
- Department of Pharmacology, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
38
|
Bailey A, Yuferov V, Bendor J, Schlussman SD, Zhou Y, Ho A, Kreek MJ. Immediate withdrawal from chronic "binge" cocaine administration increases mu-opioid receptor mRNA levels in rat frontal cortex. ACTA ACUST UNITED AC 2005; 137:258-62. [PMID: 15950784 DOI: 10.1016/j.molbrainres.2005.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 01/27/2005] [Accepted: 02/13/2005] [Indexed: 10/25/2022]
Abstract
An increase in preprodynorphin (ppdyn) mRNA was detected in the caudate putamen of chronically cocaine-treated and 3-h withdrawn rats. An increase in mu-opioid receptor (MOP) mRNA levels was observed in the frontal cortex of 3-h withdrawn rats. Naloxone had no effect on the increase of MOP or ppdyn mRNA levels. The results indicate that the opioid system is altered during early withdrawal from chronic cocaine administration.
Collapse
Affiliation(s)
- Alexis Bailey
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Schlussman SD, Nyberg F, Kreek MJ. The effects of drug abuse on the stress responsive hypothalamic-pituitary-adrenal axis and the dopaminergic and endogenous opioid systems. Acta Psychiatr Scand Suppl 2005:121-4. [PMID: 12072142 DOI: 10.1034/j.1600-0447.106.s412.26.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Drugs of abuse have a significant impact on the stress responsive hypothalamic-pituitary-adrenal (HPA) axis and an abnormal response to stress may mediate the development or maintenance of addictive diseases. In animals, drugs of abuse, such as cocaine, lead to an activation of the HPA axis. Drugs of abuse also have an impact on the endogenous opioid system (EOS) and the dopaminergic system. Each of these systems has also been implicated in the mediation of aggressive behaviors. This brief report focuses on the effects of drugs of abuse on the stress responsive HPA, EOS and dopaminergic systems, and the role of these systems in mediating aggression and comorbidity of substance abuse and aggressive behaviors. METHOD Rodents were administered either 'binge' pattern cocaine (15 mg/kg x 3 each day) or the androgenic anabolic steroid nandrolone decanoate and the effects on mRNA levels, receptor binding and circulating levels of stress hormones were analyzed. RESULTS Both cocaine and nandrolone decanoate significantly impact the HPA axis, the EOS and the dopaminergic systems. CONCLUSION Drugs of abuse impact substantially the same neural systems that affect aggressive behavior.
Collapse
Affiliation(s)
- S D Schlussman
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
40
|
Yuferov V, Fussell D, LaForge KS, Nielsen DA, Gordon D, Ho A, Leal SM, Ott J, Kreek MJ. Redefinition of the human kappa opioid receptor gene (OPRK1) structure and association of haplotypes with opiate addiction. PHARMACOGENETICS 2004; 14:793-804. [PMID: 15608558 PMCID: PMC6141019 DOI: 10.1097/00008571-200412000-00002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The kappa opioid receptor (KOR) plays a role in stress responsivity, opiate withdrawal and responses to cocaine. KOR activation by its endogenous ligand dynorphin A(1-17) decreases basal and drug-induced striatal levels of dopamine. The complete structure of the human KOR gene (hOPRK1) has not been previously determined. This study: (i) characterized the genomic structure of the hOPRK1 gene; (ii) identified single nucleotide polymorphisms (SNPs) in the hOPRK1 gene; and (iii) investigated possible associations of these variants with vulnerability to develop heroin addiction. Analysis of 5'-RACE cDNA clones revealed the presence of a novel exon 1 ranging in length from 167 to 251 nucleotides in the 5' 5'-untranslated region of the hOPRK1 mRNA. We found that the hOPRK1 gene has four major exons and three introns, similar to rodent OPRK1 genes. Direct sequencing of amplified DNA containing all four exons and intron 1 of the hOPRK1 gene were evaluated for polymorphisms in 291 subjects (145 former heroin addicts and 146 controls). Twelve SNPs were identified, nine novel variants and three previously reported SNPs. Using logistic regression with opioid dependence as the dependent variable, the 36G>T SNP exhibited a point-wise significant association (P = 0.016) with disease status. The number of haplotypes seen in the three ethnic groups were nine, six and five for African-Americans, Caucasians, and Hispanics, respectively, with corresponding significance levels for differences in haplotype frequencies between cases and controls of P = 0.0742, 0.1015 and 0.0041. Combining ethnicities by Fisher's method yields an empirical significance level of P = 0.0020.
Collapse
Affiliation(s)
- Vadim Yuferov
- aLaboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ambrose LM, Unterwald EM, Van Bockstaele EJ. Ultrastructural evidence for co-localization of dopamine D2 and micro-opioid receptors in the rat dorsolateral striatum. ACTA ACUST UNITED AC 2004; 279:583-91. [PMID: 15224400 DOI: 10.1002/ar.a.20054] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies have shown significant changes in dopamine and opioid receptors in the basal ganglia following administration of cocaine. Cocaine administration results in a significant increase in the number of opioid receptors in dopamine-enriched brain regions. The aim of this study was to determine if dopamine D2 receptors (D2r) and micro-opioid receptors (microOr) are localized to the same neurons in the dorsolateral striatum. Immunoperoxidase and immunogold-silver labeling combined with electron microscopy was used to examine the ultrastructural localization of both receptors in the dorsolateral striatum. Approximately half of the microOr-labeled somatodendritic processes showed immunolabeling for the D2r. Similarly, about half of the D2r-labeled dendrites and cell bodies showed immunolabeling for the microOr. In conclusion, our results indicate that individual neurons in the rat dorsolateral striatum may be directly modulated by both dopaminergic and opioid ligands. These data also suggest that the molecular mechanism responsible for the up-regulation of microOrs in the caudate and putamen following cocaine exposure may depend, in part, on the co-existence of D2rs and micro-Ors in these cells.
Collapse
Affiliation(s)
- L M Ambrose
- Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
42
|
Di Benedetto M, Feliciani D, D'Addario C, Izenwasser S, Candeletti S, Romualdi P. Effects of the selective norepinephrine uptake inhibitor nisoxetine on prodynorphin gene expression in rat CNS. ACTA ACUST UNITED AC 2004; 127:115-20. [PMID: 15306127 DOI: 10.1016/j.molbrainres.2004.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2004] [Indexed: 11/28/2022]
Abstract
Cocaine binds to dopamine (DA), serotonin (5-HT) and norepinephrine (NE) transporters blocking the reuptake of these monoamines into presynaptic terminals. As previously reported, continuous infusion of cocaine for seven days or GBR 12909, a selective dopamine uptake inhibitor, produced significant decreases in prodynorphin (PDYN) gene expression in the hypothalamus. Cocaine also produced a significant increase in PDYN mRNA in the caudate putamen, whereas GBR12909 has no effect and the selective serotonin uptake inhibitor fluoxetine decreases PDYN mRNA in the same brain region. The effect of the selective norepinephrine uptake inhibitor nisoxetine was examined on PDYN gene expression. Nisoxetine or vehicle was infused continuously for 7 days via osmotic minipump into male rats. This treatment produced significant increases in PDYN gene expression in the hypothalamus (183% of control), nucleus accumbens (142% of control) and hippocampus (124% of control) and a significant decrease in the caudate putamen (69% of control). These data suggest that nisoxetine affects PDYN gene expression and support a role for NE in the mechanisms underlying the effects of chronic exposure to psychoactive drugs. Moreover, nisoxetine, as well as fluoxetine, decreases PDYN mRNA in the caudate putamen, in contrast to the up-regulation produced by cocaine. Thus, the inhibition of NE uptake alone cannot account for the cocaine-induced increase of PDYN gene expression. These findings suggest that PDYN gene expression regulation by cocaine in the caudate putamen might be due to a combination of effects on two or three monoamine transporters, or to a mechanism unrelated to transporters inhibition.
Collapse
Affiliation(s)
- Manuela Di Benedetto
- Department of Pharmacology, University of Bologna, Irnerio 48, Bologna, 40126 Italy
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Addiction can be viewed as a form of drug-induced neural plasticity. One of the best-established molecular mechanisms of addiction is upregulation of the cAMP second messenger pathway, which occurs in many neuronal cell types in response to chronic administration of opiates or other drugs of abuse. This upregulation and the resulting activation of the transcription factor CREB appear to mediate aspects of tolerance and dependence. In contrast, induction of another transcription factor, termed DeltaFosB, exerts the opposite effect and may contribute to sensitized responses to drug exposure. Knowledge of these mechanisms could lead to more effective treatments for addictive disorders.
Collapse
Affiliation(s)
- Jennifer Chao
- Department of Psychiatry and Center for Basic Neuroscience, The University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9070, USA
| | | |
Collapse
|
44
|
Zhang Y, Schlussman SD, Ho A, Kreek MJ. Effect of chronic "binge cocaine" on basal levels and cocaine-induced increases of dopamine in the caudate putamen and nucleus accumbens of C57BL/6J and 129/J mice. Synapse 2004; 50:191-9. [PMID: 14515336 DOI: 10.1002/syn.10251] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In vivo microdialysis was used to measure the effect of chronic "binge" pattern cocaine administration on basal and cocaine-induced dopamine levels in the caudate putamen and nucleus accumbens of C57BL/6J and 129/J mice. Mice were implanted with a guide cannula in the caudate putamen or nucleus accumbens and after 4 days recovery, one group received "binge" pattern cocaine administration for 13 days (15 mg/kg x 3, i.p. at hourly intervals) while another group received saline in the same pattern. On the day before microdialysis, dialysis probes were lowered into the caudate putamen and nucleus accumbens. The next morning, after baseline dopamine collection, all animals received "binge" cocaine administration. Dialysates were collected every 20 min and dopamine content was determined by HPLC with electrochemical detection. In the basal condition, the mean level of dopamine in the dialysate from both brain regions of mice pretreated with "binge" pattern cocaine administration was significantly lower than that of the mice pretreated with saline administration. The absolute levels of dopamine achieved following "binge" pattern cocaine challenge were lower in the mice that had received chronic cocaine administration. However, when expressed as percent increase over baseline, the dopamine response to cocaine in the nucleus accumbens was significantly higher in mice that received chronic than in mice that received acute cocaine administration. Chronic cocaine administration led to a lowering of both basal dopamine and the absolute levels of cocaine-induced increases of dopamine in the two brain regions, but enhanced the percent increases over the baseline in response to cocaine in the nucleus accumbens of both mouse strains.
Collapse
Affiliation(s)
- Yong Zhang
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
45
|
Schlussman SD, Zhang Y, Yuferov V, LaForge KS, Ho A, Kreek MJ. Acute 'binge' cocaine administration elevates dynorphin mRNA in the caudate putamen of C57BL/6J but not 129/J mice. Brain Res 2003; 974:249-53. [PMID: 12742644 DOI: 10.1016/s0006-8993(03)02561-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Preprodynorphin mRNA was measured in the nucleus accumbens (NAc) and caudate putamen (CPu) after 3-day 'binge' pattern cocaine administration in C57BL/6J and 129/J mice, strains which differ in behavior and in dopamine increases in the CPu after 'binge' cocaine. In the CPu, there was increased preprodynorphin mRNA in C57BL/6J (P<0.05), but not in 129/J mice, with no differences in the NAc. Thus, 129/J mice are hyporesponsive to the preprodynorphin activating effects of acute 'binge' cocaine in the CPu.
Collapse
Affiliation(s)
- Stefan D Schlussman
- The Laboratory on the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Willuhn I, Sun W, Steiner H. Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context. Eur J Neurosci 2003; 17:1053-66. [PMID: 12653981 DOI: 10.1046/j.1460-9568.2003.02525.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Psychostimulants alter gene expression in projection neurons of the striatum, and such neuroplasticity is implicated in drug addiction and dependence. Evidence indicates that excitatory inputs from the cortex and thalamus are critical for these molecular changes. In the present study, we determined the topography of cocaine-induced changes in gene expression in the rat striatum and investigated whether these molecular alterations are associated with particular cortical inputs. Acute induction of c-fos (by 25 mg/kg of cocaine), and the c-fos response and dynorphin expression after repeated cocaine treatment (25 mg/kg, 4 days) were assessed as examples for short-term and longer-term molecular changes, respectively. In addition, we examined whether these molecular effects were influenced by the behaviour performed during cocaine action (running-wheel training vs. open field). Our results demonstrate that the overall topography of cocaine-induced gene regulation in the striatum is remarkably stable. Both acute and longer-term molecular changes were maximal in caudal dorsal striatal sectors that receive convergent inputs from the medial agranular and the sensorimotor cortex. In contrast, relatively minor or no effects were found in rostral and ventral striatal sectors. However, running-wheel training under the influence of cocaine enhanced the c-fos response to a subsequent cocaine challenge selectively in parts of the caudal sensorimotor striatum. These results indicate that cocaine produces molecular adaptations preferentially in cortico-basal ganglia circuits through the sensorimotor striatum, and that some of these neuronal changes are influenced by the behaviour performed during drug exposure.
Collapse
Affiliation(s)
- Ingo Willuhn
- Department of Cellular and Molecular Pharmacology, Finch University of Health Sciences/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | |
Collapse
|
47
|
LaForge KS, Yuferov V, Zhou Y, Ho A, Nyberg F, Jeanne Kreek M. "Binge" cocaine differentially alters preproenkephalin mRNA levels in guinea pig brain. Brain Res Bull 2003; 59:353-7. [PMID: 12507685 DOI: 10.1016/s0361-9230(02)00927-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Male Hartley guinea pigs were administered i.p. injections of cocaine or saline for 2 or 7 days in a "binge" paradigm. RNA was isolated from dissected brain regions and levels of preproenkephalin mRNA and total RNA were quantified by RNase protection assays. Following 2 days of "binge" cocaine administration, no significant alterations in preproenkephalin mRNA levels were detected in six brain regions. Following 7 days of cocaine administration, however, lower levels of preproenkephalin mRNA were observed in the nucleus accumbens and hypothalamus of cocaine-treated animals and higher levels in the frontal cortex and amygdala. These findings differed from previous studies in the rat, so an additional experiment was performed with animals treated at the 7 day time point. For increased statistical power, data from the two experiments were combined and examined by two-way ANOVAs; in this combined analysis, increases in preproenkephalin mRNA were observed in frontal cortex, amygdala, and hippocampus, decreases were found in the nucleus accumbens and hypothalamus, with no change in thalamus, caudate putamen, or cerebellum. These observed differences between guinea pigs and rats make this species an interesting model for neurobiological studies of cocaine-induced alterations in neuropeptide gene expression in the mammalian brain.
Collapse
Affiliation(s)
- K Steven LaForge
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Jenab S, Niyomchai T, Chin J, Festa ED, Russo SJ, Perrotti LI, Quinones-Jenab V. Effects of cocaine on c-fos and preprodynorphin mRNA levels in intact and ovariectomized Fischer rats. Brain Res Bull 2002; 58:295-9. [PMID: 12128156 DOI: 10.1016/s0361-9230(02)00793-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Psychostimulants such as cocaine have been shown to regulate c-fos and opioid gene expression in male rats. However, little information is available on cocaine effects in female rats or how the ovarian hormones, estrogen and progesterone, modulate these effects. In this study we used quantitative solution hybridization assays to measure c-fos and preprodynorphin (PDYN) mRNA levels after cocaine administration in the caudate/putamen of intact male and female rats or ovariectomized (OVX) female rats that were pretreated with vehicle, estrogen and/or progesterone. The c-fos mRNA levels were increased in intact male and female rats after 30min or 3h of one single cocaine injection and after 14 days of single daily cocaine injections. The c-fos mRNA levels were also increased after 30min of a single cocaine injection in OVX female rats that were treated with vehicle, estrogen and/or progesterone. The PDYN mRNA levels did not change after 30min, 3h or 14 days in intact male or female rats. However, PDYN mRNA levels were increased in the caudate/putamen of OVX female rats pretreated with vehicle or a combination of estrogen and progesterone but not in OVX female rats that were pretreated with either estrogen or progesterone alone. Our data suggest hormonal regulation of cocaine effects on PDYN mRNA levels which may modulate cocaine-induced behaviors in female rats.
Collapse
Affiliation(s)
- Shirzad Jenab
- Department of Psychology, Hunter College of City University of New York, 695 Park Avenue, 10021, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Van De Witte SV, Groenewegen HJ, Voorn P. MK-801 alters the effects of priming with L-DOPA on dopamine D1 receptor-induced changes in neuropeptide mRNA levels in the rat striatal output neurons. Synapse 2002; 43:1-11. [PMID: 11746728 DOI: 10.1002/syn.1113] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In a previous study, we have shown in unilaterally dopamine-depleted rats that increased behavioral responsiveness to the dopamine D1-receptor agonist SKF-38393, which was induced by pretreatment with L-DOPA, is paralleled by specific alterations in striatal neuropeptide mRNA levels. The behavioral 'priming' effect of L-DOPA is prevented if L-DOPA is preceded by the NMDA-receptor antagonist MK-801. In the present study, the question is addressed whether blockade of the increased behavioral responsiveness with MK-801 also prevents the observed changes in striatal neuropeptide mRNA levels. After a challenge with SKF-38393 (3 mg/kg, s.c.), the striatal levels of preprodynorphin, preprotachykinin, and preproenkephalin mRNA were compared between unilaterally dopamine-depleted rats that were either primed with a single administration of L-DOPA (50 mg/kg, i.p.) or with L-DOPA preceded by MK-801 (0.1 mg/kg, i.p.). Priming with L-DOPA enhanced the increase in dynorphin mRNA levels in the dorsolateral part of the dopamine-depleted striatum that occurred after SKF-38393. On the other hand, it had no significant effect on substance P or enkephalin mRNA levels. MK-801 prior to L-DOPA prevented the increased responsiveness of dynorphin regulation. However, it induced a decreased response to dopamine D1-receptor stimulation in the substance P mRNA levels in dorsal regions of the dopamine-depleted striatum. The levels of enkephalin mRNA after challenge with SKF-38393 were not affected by the MK-801 administration. These results demonstrate that the increased behavioral responsiveness to the D1-receptor agonist SKF-38393 after priming with L-DOPA is primarily related to the upregulation of dynorphin mRNA levels in the dopamine-depleted striatum.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Disease Models, Animal
- Dizocilpine Maleate/pharmacology
- Dopamine Agents/pharmacology
- Dopamine Agonists/pharmacology
- Drug Interactions/physiology
- Dynorphins/genetics
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/physiopathology
- Enkephalins/genetics
- Excitatory Amino Acid Antagonists/pharmacology
- Immunohistochemistry
- Levodopa/pharmacology
- Male
- Motor Activity/drug effects
- Motor Activity/physiology
- Neostriatum/drug effects
- Neostriatum/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neuropeptides/genetics
- Oxidopamine/pharmacology
- Parkinsonian Disorders/drug therapy
- Parkinsonian Disorders/metabolism
- Parkinsonian Disorders/physiopathology
- Protein Precursors/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Tachykinins/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Serge V Van De Witte
- Department of Anatomy, Institute for Clinical and Experimental Neurosciences Vrije Universiteit [ICEN], 1081 BT Amsterdam, The Netherlands
| | | | | |
Collapse
|
50
|
Zhang Y, Schlussman SD, Ho A, Kreek MJ. Effect of acute binge cocaine on levels of extracellular dopamine in the caudate putamen and nucleus accumbens in male C57BL/6J and 129/J mice. Brain Res 2001; 923:172-7. [PMID: 11743985 DOI: 10.1016/s0006-8993(01)03032-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Levels of dopamine, both basal and after binge-pattern cocaine administration, were measured in the caudate putamen and nucleus accumbens of C57BL/6J and 129/J mice by in vivo microdialysis. Six-week old males were surgically implanted with a CMA guide cannula into the caudate putamen or nucleus accumbens. After 4 days recovery, dialysis probes were lowered into the caudate putamen or the nucleus accumbens and mice were placed in individual microdialysis chambers. The next morning experiments were carried out on freely moving animals. Experimental animals received 1-day binge cocaine administration (15 mg/kgx3, i.p. at hourly intervals) while control animals received saline in the same pattern. Dialysates were collected every 20 min and dopamine content was determined by HPLC with electrochemical detection. Basal levels of dopamine in the dialysate of the caudate putamen were 4.2+/-0.2 nM in C57BL/6J mice and 5.0+/-0.3 nM in 129/J mice. In the nucleus accumbens, basal levels of dopamine were 0.65+/-0.04 nM in the C57BL/6J mice and 0.75+/-0.03 nM in 129/J mice, with no significant differences between strains in either region. Binge cocaine administration significantly increased mean dopamine levels in the caudate putamen in the C57BL/6J mice (with a 3-h mean of 6.80 nM) and in the 129J mice (9.94 nM). In this region, 129/J mice had significantly higher levels of cocaine-induced dopamine than did C57BL/6J mice. In the nucleus accumbens, administration of cocaine also significantly increased dopamine levels in both strains (1.32 nM in C57BL/6J and 1.43 nM in 129/J), but with no difference between strains.
Collapse
Affiliation(s)
- Y Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY 10021, USA.
| | | | | | | |
Collapse
|