1
|
Wong L, Chong YS, Lin W, Kisiswa L, Sim E, Ibáñez CF, Sajikumar S. Age-related changes in hippocampal-dependent synaptic plasticity and memory mediated by p75 neurotrophin receptor. Aging Cell 2021; 20:e13305. [PMID: 33448137 PMCID: PMC7884039 DOI: 10.1111/acel.13305] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/25/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
The plasticity mechanisms in the nervous system that are important for learning and memory are greatly impacted during aging. Notably, hippocampal-dependent long-term plasticity and its associative plasticity, such as synaptic tagging and capture (STC), show considerable age-related decline. The p75 neurotrophin receptor (p75NTR ) is a negative regulator of structural and functional plasticity in the brain and thus represents a potential candidate to mediate age-related alterations. However, the mechanisms by which p75NTR affects synaptic plasticity of aged neuronal networks and ultimately contribute to deficits in cognitive function have not been well characterized. Here, we report that mutant mice lacking the p75NTR were resistant to age-associated changes in long-term plasticity, associative plasticity, and associative memory. Our study shows that p75NTR is responsible for age-dependent disruption of hippocampal homeostatic plasticity by modulating several signaling pathways, including BDNF, MAPK, Arc, and RhoA-ROCK2-LIMK1-cofilin. p75NTR may thus represent an important therapeutic target for limiting the age-related memory and cognitive function deficits.
Collapse
Affiliation(s)
- Lik‐Wei Wong
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
- Healthy Longevity Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - Yee Song Chong
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
| | - Wei Lin
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
| | - Lilian Kisiswa
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
| | - Eunice Sim
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
| | - Carlos F. Ibáñez
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Sreedharan Sajikumar
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
- Healthy Longevity Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
2
|
Stepanichev M, Onufriev M, Aniol V, Freiman S, Brandstaetter H, Winter S, Lazareva N, Guekht A, Gulyaeva N. Effects of cerebrolysin on nerve growth factor system in the aging rat brain. Restor Neurol Neurosci 2018; 35:571-581. [PMID: 29172008 PMCID: PMC5701766 DOI: 10.3233/rnn-170724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aging is associated with some cognitive decline and enhanced risk of development of neurodegenerative diseases. It is assumed that altered metabolism and functions of neurotrophin systems may underlie these age-related functional and structural modifications. CerebrolysinTM (CBL) is a neuropeptide mixture with neurotrophic effects, which is widely used for the treatment of stroke and traumatic brain injury patients. It is also evident that CBL has an overall beneficial effect and a favorable benefit-risk ratio in patients with dementia. However, the effects of CBL on cognition and brain neurotrophin system in normal aging remain obscure. OBJECTIVE The aim of the present study was to examine the age-related modifications of endogenous neurotrophin systems in the brain of male Wistar rats and the effects of CBL on learning and memory as well as the levels neurotrophins and their receptors. METHODS Old (23-24 months) and young (2-3 months) male Wistar rats were used for the study. A half of animals were subjected to CBL course (2.5 ml/kg, 20 i.p. injections). Behavior of rats was studied using the open field test and simple water maze training. The contents of NGF and BDNF were studied using enzyme-linked immunosorbent assay; the expression of neurotrophin receptors was estimated by Western-blot analysis. RESULTS CBL treatment did not affect general status, age-related weight changes, general locomotor activity as well as general brain histology. In a water maze task, a minor effect of CBL was observed in old rats at the start of training and no effect on memory retention was found. Aging induced a decrease in neurotrophin receptors TrkA, TrkB, and p75NTR in the neocortex. CBL counteracted effects of aging on neocortical TrkA and p75NTR receptors and decreased expression of proNGF without influencing overall NGF levels. BDNF system was not significantly affected by CBL. CONCLUSION The pro-neuroplastic "antiaging" effects of CBL in the neocortex of old animals were generally related to the NGF rather than the BDNF system.
Collapse
Affiliation(s)
- Mikhail Stepanichev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Onufriev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Moscow State Budgetary Health Institution "Moscow Research and Clinical Center for Neuropsychiatry" of the Healthcare Department of Moscow, Russia
| | - Viktor Aniol
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia Freiman
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Moscow State Budgetary Health Institution "Moscow Research and Clinical Center for Neuropsychiatry" of the Healthcare Department of Moscow, Russia
| | - Hemma Brandstaetter
- Department of Research and Medical, EVER Neuro Pharma GmbH, Unterach, Austria
| | - Stefan Winter
- Department of Research and Medical, EVER Neuro Pharma GmbH, Unterach, Austria
| | - Natalia Lazareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Alla Guekht
- Moscow State Budgetary Health Institution "Moscow Research and Clinical Center for Neuropsychiatry" of the Healthcare Department of Moscow, Russia
| | - Natalia Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Moscow State Budgetary Health Institution "Moscow Research and Clinical Center for Neuropsychiatry" of the Healthcare Department of Moscow, Russia
| |
Collapse
|
3
|
Bruno MA, Cuello AC. Cortical peroxynitration of nerve growth factor in aged and cognitively impaired rats. Neurobiol Aging 2012; 33:1927-37. [DOI: 10.1016/j.neurobiolaging.2011.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 10/15/2022]
|
4
|
O'Callaghan RM, Griffin EW, Kelly AM. Long-term treadmill exposure protects against age-related neurodegenerative change in the rat hippocampus. Hippocampus 2009; 19:1019-29. [PMID: 19309034 DOI: 10.1002/hipo.20591] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The potential of exercise or environmental enrichment to prevent or reverse age-related cognitive decline in rats has been widely investigated. The data suggest that the efficacy of these interventions as neuroprotectants may depend upon the duration and nature of the protocols and age of onset. Investigations of the mechanisms underlying these neuroprotective strategies indicate a potential role for the neurotrophin family of proteins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). In this study, we have assessed the effects of 8 months of forced exercise, begun in middle-age, on the expression of long-term potentiation (LTP) and on spatial learning in the Morris water maze in aged Wistar rats. We also assessed these measures in a cage control group and in a group of rats exposed to the stationary treadmill for the same duration as the exercised rats. Our data confirm an age-related decline in expression of LTP and in spatial learning concomitant with decreased expression of NGF and BDNF mRNA in dentate gyrus (DG). The age-related impairments in both plasticity and growth factor expression were prevented in the long-term exercised group and, surprisingly, the treadmill control group. Given the extensive handling that the treadmill control group received and their regular exposure to an environment outside the home cage, this group can be considered to have experienced environmentally enriched conditions when compared with the cage control group. Significant correlations were observed between both learning and LTP and the expression of NGF and BDNF mRNA in the dentate gyrus. We conclude that decreased expression of NGF and BDNF in the dentate gyrus of aged rats is associated with impaired LTP and spatial learning. We suggest that the reversal of these age-related impairments by enrichment and exercise may be linked with prevention of the age-related decline in expression of these growth factors and, furthermore, that enrichment is as efficacious as exercise in preventing this age-related decline.
Collapse
Affiliation(s)
- Rachel M O'Callaghan
- Department of Physiology, School of Medicine, and Trinity College Institute of Neuroscience, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
5
|
Niewiadomska G, Baksalerska-Pazera M, Riedel G. The septo-hippocampal system, learning and recovery of function. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:791-805. [PMID: 19389457 DOI: 10.1016/j.pnpbp.2009.03.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 03/30/2009] [Indexed: 12/23/2022]
Abstract
We understand this review as an attempt to summarize recent advances in the understanding of cholinergic function in cognition. Such a role has been highlighted in the 1970s by the discovery that dementia patients have greatly reduced cholinergic activity in cortex and hippocampus. A brief anatomical description of the major cholinergic pathways focuses on the basal forebrain and its projections to cortex and hippocampus. From this distinction, compelling evidence suggests that the basal forebrain --> cortex projection regulates the excitability of principal cortical neurons and is thereby critically involved in attention, stimulus detection and memory function, although the biological conditions for these functions are still debated. Similar uncertainties remain for the septo-hippocampal cholinergic system. Although initial lesions of the septum caused memory deficits reminiscent of hippocampal ablations, recent and more refined neurotoxic lesion studies which spared non-cholinergic cells of the basal forebrain failed to confirm these memory impairments in experimental animals despite a near total loss of cholinergic labeling. Yet, a decline in cholinergic markers in aging and dementia still stands as the most central piece of evidence for a link between the cholinergic system and cognition and appear to provide valuable targets for therapeutic approaches.
Collapse
|
6
|
Al-Shawi R, Hafner A, Olsen J, Olson J, Chun S, Raza S, Thrasivoulou C, Lovestone S, Killick R, Simons P, Cowen T. Neurotoxic and neurotrophic roles of proNGF and the receptor sortilin in the adult and ageing nervous system. Eur J Neurosci 2008; 27:2103-14. [PMID: 18412630 DOI: 10.1111/j.1460-9568.2008.06152.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The precursor form of the nerve growth factor (proNGF), forms a heterotrimeric complex with the receptors p75 and sortilin; this complex has been implicated in neuron cell death. However, it is not known whether proNGF and the receptors p75 and sortilin contribute to age- and disease-related neurodegeneration. Here we show that proNGF induces cell death in subpopulations of basal forebrain and peripheral sympathetic neurons of old, but not of young, adult rodents. In contrast, proNGF appears to induce neurite outgrowth rather than cell death of young adult sympathetic neurons. We have examined the neurotoxic role of proNGF in old age, and find that proNGF protein is elevated during ageing in the projection areas of some populations of vulnerable central and peripheral neurons; caloric restriction, which has known neuroprotective effects, partially prevents these increases. Sortilin was found to play a significant part in the observed patterns of age-related proNGF-mediated neurotoxicity. In particular, survival of aged neurons was rescued by neurotensin, an alternative sortilin ligand that blocks the sortilin-mediated effects of proNGF. Furthermore, sortilin immunoreactivity increases markedly in ageing rodent basal forebrain and sympathetic neurons; in contrast, p75 levels are either unchanged or reduced. From these data we propose that selective age-related neuronal atrophy and neurodegeneration may be mediated by increased sortilin expression in neurons, together with elevated levels of proNGF expression in some targets.
Collapse
Affiliation(s)
- Raya Al-Shawi
- Centre for Biomedical Sciences, University College London, Hampstead Campus, Rowland Hill Campus, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bimonte-Nelson HA, Granholm ACE, Nelson ME, Moore AB. Patterns of neurotrophin protein levels in male and female Fischer 344 rats from adulthood to senescence: how young is "young" and how old is "old"? Exp Aging Res 2008; 34:13-26. [PMID: 18189165 DOI: 10.1080/03610730701761908] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The current study assessed neurotrophin protein levels in male and female rat brain tissues at four different ages ranging from postpuberty to senescence. In both sexes nerve growth factor (NGF) increased, and brain-derived neurotrophic factor (BDNF) decreased, from 4 to 24 months of age. Using a slightly older age for the young group, or a slightly younger age for the aged group, had profound effects on whether age effects were realized. There were no sex differences in the pattern of change in neurotrophin levels across age, and neurotrophin levels did not correlate with estrogen levels in females or estrogen or testosterone levels in males. The current findings suggest that profound changes in neurotrophin protein levels can occur within only a few months time, and that these changes influence whether age-related neurotrophin alterations are realized.
Collapse
Affiliation(s)
- Heather A Bimonte-Nelson
- Department of Psychology, Behavioral Neuroscience Division, Arizona State University, Tempe, Arizona 85287, USA.
| | | | | | | |
Collapse
|
8
|
Gatzinsky KP, Thrasivoulou C, Campioni-Noack M, Underwood C, Cowen T. The role of NGF uptake in selective vulnerability to cell death in ageing sympathetic neurons. Eur J Neurosci 2005; 20:2848-56. [PMID: 15579138 DOI: 10.1111/j.1460-9568.2004.03780.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have examined the hypothesis that differences in nerve growth factor (NGF) uptake and transport determine vulnerability to age-related neurodegeneration. Neurons projecting to cerebral blood vessels (CV) in aged rats are more vulnerable to age-related degeneration than those projecting to the iris. Uptake of NGF was therefore examined in sympathetic neurons projecting from the superior cervical ganglion (SCG) to CV and iris in young and old rats by treating the peripheral processes of these neurons with different doses of I125-NGF. Total uptake of I125-NGF was reduced in old CV-projecting, but not iris-projecting, neurons. Numbers of radiolabelled neurons projecting to each target were counted in sectioned ganglia. The data showed age-related reductions in numbers of labelled neurons projecting to CV, but no change in numbers of neurons projecting to the iris. Calculation of uptake of I125-NGF per neuron unexpectedly showed no major age-related differences in either of the two neuron populations. However, uptake per neuron was considerably lower for young and old CV-projecting, compared to iris-projecting, SCG neurons. We hypothesized that variations in NGF uptake might affect neuronal survival in old age. Counts of SCG neurons using a physical disector following retrograde tracing with Fluorogold confirmed the selective vulnerability of CV-projecting neurons by showing a significant 37% loss of these neurons in the period between 15 and 24 months. In contrast, there was no significant loss of iris-projecting neurons. We conclude that vulnerability to, or protection from, age-related neurodegeneration and neuronal cell death are associated with life-long low, or high, levels of NGF uptake, respectively.
Collapse
Affiliation(s)
- Kliment P Gatzinsky
- Department of Clinical Neuroscience, University of Göteborg, Sahlgrenska University Hospital, 413 45 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
9
|
Maher FO, Martin DSD, Lynch MA. Increased IL-1beta in cortex of aged rats is accompanied by downregulation of ERK and PI-3 kinase. Neurobiol Aging 2004; 25:795-806. [PMID: 15165704 DOI: 10.1016/j.neurobiolaging.2003.08.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Revised: 04/30/2003] [Accepted: 08/26/2003] [Indexed: 01/19/2023]
Abstract
Ageing is accompanied by a myriad of changes, which lead to deficits in synaptic function and recent studies have identified an increase in concentration of the proinflammatory cytokine, interleukin-1beta (IL-1beta), as a factor which significantly contributes to deterioration of cell function. Here, we consider that increased IL-1beta concentration and upregulation of IL-1beta-induced cell signalling cascades may be accompanied by downregulation of survival signals, perhaps as a consequence of decreased neurotrophins-associated signalling. The data indicate that increased IL-1beta concentration was coupled with downregulation of ERK and phosphoinositide-3 kinase (PI-3 kinase) in cortical tissue prepared from aged rats. These changes could not be attributed to decreased concentration of NGF or BDNF but the evidence suggested that they may be a consequence of an age-related change in the anti-inflammatory cytokine, IL-4. Significantly, treatment of aged rats with eicosapentaenoic acid reversed the age-related increases in IL-1beta and IL-1beta-induced signalling and also the age-related changes in IL-4, ERK and PI-3 kinase.
Collapse
Affiliation(s)
- F O Maher
- Department of Physiology, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
10
|
Abstract
One of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie learning and memory formation. The past decade has seen remarkable progress in understanding changes that accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP) has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP also underlie memory consolidation, significant advances have been made in understanding cell signaling events that contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed. The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on memory/learning and LTP.
Collapse
Affiliation(s)
- M A Lynch
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland.
| |
Collapse
|
11
|
Gibbs RB. Effects of ageing and long-term hormone replacement on cholinergic neurones in the medial septum and nucleus basalis magnocellularis of ovariectomized rats. J Neuroendocrinol 2003; 15:477-85. [PMID: 12694373 DOI: 10.1046/j.1365-2826.2003.01012.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ovariectomized aged rats, some of which received long-term hormone replacement with oestrogen or oestrogen plus progesterone, were evaluated for the number and size of basal forebrain cholinergic neurones, as well as relative levels of choline acetyltransferase (ChAT) and trkA mRNA, in order to determine whether effects on basal forebrain cholinergic cell survival and function correspond with differences in cognitive performance previously described. The results show that ageing combined with long-term loss of ovarian function produced substantial reductions in the levels of ChAT and trkA mRNA in the medial septum and nucleus basalis magnocellularis, relative to much younger ovariectomized controls. In contrast, no significant effects on the number or size of the cholinergic cells were detected, indicating that loss of ovarian function does not cause a loss of cholinergic neurones with age. Long-term hormone replacement had no apparent effect on the number of ChAT-positive neurones detected, and did not prevent the reductions in ChAT and trkA mRNA associated with ovariectomy and ageing. Collectively, the data suggest that ageing combined with long-term loss of ovarian function has a severe negative impact on basal forebrain cholinergic function, but not on cholinergic cell survival per se.
Collapse
Affiliation(s)
- R B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA. gibbsr+@pitt.edu
| |
Collapse
|
12
|
Albeck D, Mesches MH, Juthberg S, Browning M, Bickford PC, Rose GM, Granholm AC. Exogenous NGF restores endogenous NGF distribution in the brain of the cognitively impaired aged rat. Brain Res 2003; 967:306-10. [PMID: 12650994 DOI: 10.1016/s0006-8993(03)02272-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alzheimer's disease and normal aging may impair retrograde transport of nerve growth factor (NGF) from cortical areas to basal forebrain cholinergic neurons. We demonstrate a relationship between performance in a spatial reference memory task and NGF distribution in the aged rat brain. In addition, exogenous NGF restored endogenous NGF distribution in cognitively impaired aged rats. These data suggest that NGF administration restores utilization of endogenous growth factor in the brain of cognitively impaired aged rats.
Collapse
Affiliation(s)
- Dave Albeck
- Department of Psychology, University of Colorado at Denver, Campus Box 173, P.O. Box 173364, 80217-3364, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Giardino L, Giuliani A, Battaglia A, Carfagna N, Aloe L, Calza' L. Neuroprotection and aging of the cholinergic system: a role for the ergoline derivative nicergoline (Sermion). Neuroscience 2002; 109:487-97. [PMID: 11823061 DOI: 10.1016/s0306-4522(01)00470-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aging brain is characterized by selective neurochemical changes involving several neural populations. A deficit in the cholinergic system of the basal forebrain is thought to contribute to the development of cognitive symptoms of dementia. Attempts to prevent age-associated cholinergic vulnerability and deterioration therefore represent a crucial point for pharmacotherapy in the elderly. In this paper we provide evidence for the protective effect of nicergoline (Sermion) on the degeneration of cholinergic neurons induced by nerve growth factor deprivation. Nerve growth factor deprivation was induced by colchicine administration in rats 13 and 18 months old. Colchicine induces a rapid and substantial down-regulation of choline acetyltransferase messenger RNA level in the basal forebrain in untreated adult, middle-aged and old rats. Colchicine failed to cause these effects in old rats treated for 120 days with nicergoline 10 mg/kg/day, orally. Moreover, a concomitant increase of both nerve growth factor and brain-derived neurotrophic factor content was measured in the basal forebrain of old, nicergoline-treated rats. Additionally, the level of messenger RNA for the brain isoform of nitric oxide synthase in neurons of the basal forebrain was also increased in these animals. Based on the present findings, nicergoline proved to be an effective drug for preventing neuronal vulnerability due to experimentally induced nerve growth factor deprivation.
Collapse
Affiliation(s)
- L Giardino
- Department of Veterinary Morphophysiology and Animal Production (DIMORFIPA), University of Bologna, 40064 Ozano dell'Emilia, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Nerve growth factor (NGF) was discovered 50 years ago as a molecule that promoted the survival and differentiation of sensory and sympathetic neurons. Its roles in neural development have been characterized extensively, but recent findings point to an unexpected diversity of NGF actions and indicate that developmental effects are only one aspect of the biology of NGF. This article considers expanded roles for NGF that are associated with the dynamically regulated production of NGF and its receptors that begins in development, extends throughout adult life and aging, and involves a surprising variety of neurons, glia, and nonneural cells. Particular attention is given to a growing body of evidence that suggests that among other roles, endogenous NGF signaling subserves neuroprotective and repair functions. The analysis points to many interesting unanswered questions and to the potential for continuing research on NGF to substantially enhance our understanding of the mechanisms and treatment of neurological disorders.
Collapse
Affiliation(s)
- M V Sofroniew
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095-1763, USA.
| | | | | |
Collapse
|
15
|
Willott JF, Hnath Chisolm T, Lister JJ. Modulation of presbycusis: current status and future directions. Audiol Neurootol 2001; 6:231-49. [PMID: 11729326 DOI: 10.1159/000046129] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Literature and ideas are reviewed concerning the modulation of presbycusis - the influence of variables that can alter the severity and/or time course of presbycusis or counteract its negative aspects. Eleven topics are identified: variables related to biological aging; genetics; noise-induced hearing loss; moderately augmented acoustic environment; neural plasticity and the central auditory system; neural plasticity and hearing aids; socioeconomic and cultural barriers to hearing aid use; lifestyle (diet, exercise, etc.); medical variables; pharmaceutical interventions for presbycusis, and cognitive variables. It is concluded that the field of otogerontology will best be served by a comprehensive, integrative interaction among basic researchers and clinical scientists who will continue to learn how the auditory problems associated with presbycusis can be intentionally modulated in beneficial ways.
Collapse
Affiliation(s)
- J F Willott
- Department of Psychology, The Jackson Laboratory, Bar Harbor, ME, USA.
| | | | | |
Collapse
|
16
|
Ickes BR, Pham TM, Sanders LA, Albeck DS, Mohammed AH, Granholm AC. Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol 2000; 164:45-52. [PMID: 10877914 DOI: 10.1006/exnr.2000.7415] [Citation(s) in RCA: 410] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of studies have demonstrated that both morphological and biochemical indices in the brain undergo alterations in response to environmental influences. In previous work we have shown that rats raised in an enriched environmental condition (EC) perform better on a spatial memory task than rats raised in isolated conditions (IC). We have also found that EC rats have a higher density of immunoreactivity than IC rats for both low and high affinity nerve growth factor (NGF) receptors in the basal forebrain. In order to determine if these alterations were coupled with altered levels of neurotrophins in other brain regions as well, we measured neurotrophin levels in rats that were raised in EC or IC conditions. Rats were placed in the different environments at 2 months of age and 12 months later brain regions were dissected and analyzed for NGF, brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) levels using Promega ELISA kits. We found that NGF and BDNF levels were increased in the cerebral cortex, hippocampal formation, basal forebrain, and hindbrain in EC animals compared to age-matched IC animals. NT-3 was found to be increased in the basal forebrain and cerebral cortex of EC animals as well. These findings demonstrate significant alterations in NGF, BDNF, and NT-3 protein levels in several brain regions as a result of an enriched versus an isolated environment and thus provide a possible biochemical basis for behavioral and morphological alterations that have been found to occur with a shifting environmental stimulus.
Collapse
Affiliation(s)
- B R Ickes
- Department of Basic Science, University of Colorado HSC, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
17
|
Scaccianoce S, Lombardo K, Angelucci L. Nerve growth factor brain concentration and stress: changes depend on type of stressor and age. Int J Dev Neurosci 2000; 18:469-79. [PMID: 10817931 DOI: 10.1016/s0736-5748(00)00014-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the relationship between the hippocampus and the hypothalamo-pituitary-adrenocortical axis, trophic and tropic actions of nerve growth factor are involved in parallel with those on the cholinergic nuclei of the basal forebrain. Here, we report the changes produced by stress activation of the hypothalamo-pituitary-adrenocortical axis on hippocampal and basal forebrain nerve growth factor concentrations in 3-month-old male Wistar rats. The stressors used were: restraint; cold exposure; foot-shock; and rotatory platform. Restraint stress tended to reduce nerve growth factor in the hippocampus and reduced it significantly in the basal forebrain. Nerve growth factor levels in the hippocampus were not modified by cold exposure. However, a single unrepeated exposure significantly increased nerve growth factor in the basal forebrain. Both acute and chronic foot-shock reduced nerve growth factor in the hippocampus, leaving the levels in the basal forebrain unmodified. Acute but not chronic rotatory platform reduced nerve growth factor in the hippocampus, while showing a tendency, more pronounced after chronic application, toward an increase in the basal forebrain. Since with aging both activity of the hypothalamus-pituitary-adrenal axis and nerve growth factor trophic and tropic functions change, we studied the effect of restraint and cold stress in the 24-month-old male rat. The variations in nerve growth factor concentrations in the basal forebrain following stress activation are no longer present in the aged rat. The picture that emerges is indicative of a complex relationship between stress and nerve growth factor which is influenced by the kind of stressor and by age. Lack of uniformity in the effects produced by different stressors might reside in different qualitative and/or quantitative degree of involvement of neurotransmitters and/or neurohormones for each of them.
Collapse
Affiliation(s)
- S Scaccianoce
- Institute of Pharmacology, Fourth Chair, Medical Faculty, University "La Sapienza", Rome, Italy.
| | | | | |
Collapse
|
18
|
Kelly A, Maguire C, Lynch MA. Deficits in nerve growth factor release and tyrosine receptor kinase phosphorylation are associated with age-related impairment in long-term potentiation in the dentate gyrus. Neuroscience 2000; 95:359-65. [PMID: 10658615 DOI: 10.1016/s0306-4522(99)00460-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous findings have indicated that nerve growth factor may play a role in the expression of long-term potentiation in perforant path-granule cell synapses and that nerve growth factor treatment restores the ability of aged rats to sustain long-term potentiation. In this study, we have attempted to analyse the changes which occur in nerve growth factor release and tyrosine receptor kinase phosphorylation following tetanization in tissue prepared from dentate gyrus of young rats, as well as aged rats which did or did not sustain long-term potentiation. We report that KCl-stimulated nerve growth factor release was significantly increased in slices of the dentate gyrus or whole hippocampus, but not in synaptosomes prepared from the dentate gyrus. KCl-induced nerve growth factor release was also significantly enhanced in slices prepared from tetanized, compared with untetanized, tissue obtained from young rats and aged rats which sustained long-term potentiation; this response was absent in tissue prepared from aged rats which failed to sustain long-term potentiation, perhaps due to the enhanced basal nerve growth factor release observed in this tissue. Tetanization increased tyrosine receptor kinase phosphorylation in the dentate gyrus of young rats and aged rats which sustained long-term potentiation. In parallel with the changes in nerve growth factor release, tyrosine receptor kinase phosphorylation was markedly increased in untetanized tissue, which may contribute to the lack of effect in tetanized tissue prepared from aged rats which failed to sustain long-term potentiation. We observed that nerve growth factor concentration and tyrosine receptor kinase expression were decreased in aged, compared with young, rats. The data suggest that deficits in nerve growth factor release and subsequent signalling may contribute to age-related deficits in long-term potentiation.
Collapse
Affiliation(s)
- A Kelly
- Department of Physiology, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
19
|
Brauer MM, Shockley KP, Chávez R, Richeri A, Cowen T, Crutcher KA. The role of NGF in pregnancy-induced degeneration and regeneration of sympathetic nerves in the guinea pig uterus. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 79:19-27. [PMID: 10683502 DOI: 10.1016/s0165-1838(99)00094-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the guinea pig, pregnancy is associated with a generalised depletion of noradrenaline in uterine sympathetic nerves and, in the areas of the uterus surrounding the foetus, by a complete degeneration of sympathetic nerve fibres. These pregnancy-induced changes have been interpreted as a selective effect of placental hormones on the system of short sympathetic fibres arising from the paracervical ganglia. An alternative explanation is that pregnancy affects the neurotrophic capacity of the uterus. We measured NGF-protein levels in the guinea pig uterine horn, tubal end and cervix at early pregnancy, late pregnancy and early postpartum, using a two-site enzyme-linked immunosorbent assay. For comparative purposes the distribution and relative density of noradrenaline-containing sympathetic nerve fibres were assessed histochemically, and tissue levels of noradrenaline were measured biochemically, using high-performance liquid chromatography with electrochemical detection. In all the uterine regions analysed, NGF-protein levels showed a decline at term pregnancy, but in no case was this change statistically significant. After delivery, NGF-protein levels showed a marked increase in the cervix as well as in both the fertile and empty horns. These results suggest that alterations in NGF-protein do not account for the impairment of uterine sympathetic innervation during pregnancy, but may contribute to their recovery after delivery.
Collapse
Affiliation(s)
- M M Brauer
- División Biología Celular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|
20
|
Pham TM, Ickes B, Albeck D, Söderström S, Granholm AC, Mohammed AH. Changes in brain nerve growth factor levels and nerve growth factor receptors in rats exposed to environmental enrichment for one year. Neuroscience 1999; 94:279-86. [PMID: 10613518 DOI: 10.1016/s0306-4522(99)00316-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study examined the effects of long-term differential rearing on levels of brain nerve growth factor, its receptors, and their relationships to cognitive function. Adult rats (two months old) were placed into either enriched or standard housing conditions where they remained for 12 months. Animals from the enriched condition group had significantly higher levels of nerve growth factor in hippocampus, visual and entorhinal cortices compared with animals housed in isolated condition. Immunohistochemical analysis of brain tissue from the medial septal area revealed higher staining intensity and fibre density with both the low-affinity and the high-affinity nerve growth factor receptors. Enriched rats performed better than isolated rats in acquisition of spatial learning and had lower locomotion scores in the open field. These results provide further evidence that experimental stimulation results in increased production of trophic factors and structural reorganization in specific brain regions known to be involved in cognitive function.
Collapse
Affiliation(s)
- T M Pham
- Department of Clinical Neuroscience, Occupational Therapy and Elderly Care Research, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | | | | | |
Collapse
|
21
|
Kuchel GA, Crutcher KA, Naheed U, Thrasivoulou C, Cowen T. NGF expression in the aged rat pineal gland does not correlate with loss of sympathetic axonal branches and varicosities. Neurobiol Aging 1999; 20:685-93. [PMID: 10674435 DOI: 10.1016/s0197-4580(99)00064-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The factors that determine the ability of some, but not all neurons, to sustain their axonal projections during aging remain largely unknown. Because sympathetic neurons remain responsive to nerve growth factor (NGF) in old age, it has been proposed that the selective decrease observed in the sympathetic innervation to some targets in aged rats may be the result of a deficit in target-derived NGF. In this study we utilized two different techniques to demonstrate decreased target innervation by sympathetic fibers in the aged rat pineal gland, which is an appropriate and relevant model for examining mechanisms of neuron-target interactions in aging. Tyrosine hydroxylase immunoreactive profiles were quantified in pineal glands of young and aged male Sprague-Dawley rats. The density of tyrosine hydroxylase-immunoreactive fibers was 30% lower in aged pineals, although the remaining fibers contained 20% more tyrosine hydroxylase-immunoreactivity. Othograde tracing of the pineal sympathetic innervation using biotinylated dextran revealed that average axon length, varicosity numbers, branch point numbers, and numbers of terminations were all decreased by approximately 50% in aged tissues, indicating possible functional deficits. These findings suggest that whole branches, along with their associated varicosities were lost in old age. A sensitive quantitative ribonuclease protection assay and a two-site ELISA assay were used to examine whether reduced NGF availability might correlate with sympathetic nerve atrophy. No significant differences were detected in either NGF mRNA or NGF protein levels when comparing young and aged pineal glands, suggesting that atrophy in aged sympathetic neurons is not causally related to reduced availability of NGF at the target. Our results indicate that mechanisms other than NGF expression need to be explored in order to explain the age-related axonal regression observed in this target.
Collapse
Affiliation(s)
- G A Kuchel
- Geriatric Medicine, The Montreal General Hospital Research Institute, McGill University Health Centre, Quebec, Canada.
| | | | | | | | | |
Collapse
|
22
|
Albeck DS, Bäckman C, Veng L, Friden P, Rose GM, Granholm A. Acute application of NGF increases the firing rate of aged rat basal forebrain neurons. Eur J Neurosci 1999; 11:2291-304. [PMID: 10383618 DOI: 10.1046/j.1460-9568.1999.00644.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nerve growth factor (NGF) has been widely used in animal models to ameliorate age-related neurodegeneration, but it cannot cross the blood-brain barrier (BBB). NGF conjugated to an antibody against the transferrin receptor (OX-26) crosses the BBB and affects the biochemistry and morphology of NGF-deprived basal forebrain neurons. The rapid actions of NGF, including electrophysiological effects on these neurons, are not well understood. In the present study, two model systems in which basal forebrain neurons either respond dysfunctionally to NGF (aged rats) or do not have access to target-derived NGF (intraocular transplants of forebrain neurons) were tested. One group of transplanted and one group of aged animals received unconjugated OX-26 and NGF comixture as a control, while other groups received replacement NGF in the form of OX-26-NGF conjugate during the 3 months preceding the electrophysiological recording session. Neurons from animals in both the transplanted and aged control groups showed a significant increase in firing rate in response to acute NGF application, while none of the conjugate-treated groups or young intact rats showed any response. After the recordings, forebrain transplants and aged brains were immunocytochemically stained for the low-affinity NGF receptor. All conjugate treatment groups showed significantly greater staining intensity compared to controls. These data from both transplants and aged rats in situ indicate that NGF-deprived basal forebrain neurons respond to acute NGF with an increased firing rate. This novel finding may have importance even for long-term biological effects of this trophic factor in the basal forebrain.
Collapse
Affiliation(s)
- D S Albeck
- Department of Basic Science, University of Colorado Health Sciences Center, Denver, 80262, USA.
| | | | | | | | | | | |
Collapse
|
23
|
McLay RN, Freeman SM, Harlan RE, Kastin AJ, Zadina JE. Tests used to assess the cognitive abilities of aged rats: their relation to each other and to hippocampal morphology and neurotrophin expression. Gerontology 1999; 45:143-55. [PMID: 10202259 DOI: 10.1159/000022077] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aged rodents have proven to be a useful tool in studying age-related cognitive decline, particularly with regard to hippocampal function. A number of maze tests have been developed to evaluate hippocampal function in aged rodents, including the eight-arm radial maze, Barnes circular platform maze and Morris water maze. To some extent, these mazes have been used interchangeably to evaluate aged animals. Few researchers, however, have examined how performance of individual, aged animals compares in these three mazes. OBJECTIVE The purpose of this study was to compare the performances in the three mazes and to examine how such performances are related to each other, to hippocampal morphology and to neurotrophin gene expression. METHODS We screened groups of young and old Fisher 344 x Brown Norway rats for general health and physical abilities, tested the animals in the three mazes and examined correlations among performances in the mazes and in screening tests. Hippocampal neuron density and expression of hippocampal neurotrophin mRNAs were also examined and compared with behavior in the three mazes. RESULTS Aged animals were found to be impaired in all three mazes and to have lower hippocampal neuron densities compared with young animals, with poor learning behavior significantly correlating with reduced hippocampal neuron density. Differences were observed between performance in the different mazes, but in general the Morris water maze and Barnes circular platform maze were found to give similar results.
Collapse
Affiliation(s)
- R N McLay
- Neuroscience Program, Tulane University Medical School, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
24
|
Katoh-Semba R, Semba R, Kato K. An enhanced conversion from tightly bound to loosely bound form of NGF in selected regions of brains from male mice. Neurochem Int 1998; 33:327-34. [PMID: 9840223 DOI: 10.1016/s0197-0186(98)00035-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most of the nerve growth factor (NGF) protein in the rat and mouse brain is readily extractable in the presence of guanidine hydrochloride as is the case of brain-derived neurotrophic factor. In the present study, we measured amounts of NGF that could be extracted in the presence and absence of 1 M guanidine hydrochloride from various regions of the brains of male and female mice. About 14% of the total NGF in the hippocampus from female mice at 4 months of age could be extracted without 1 M guanidine hydrochloride (designated loosely bound NGF; about 32% in the rat hippocampus) and the remainder only in its presence (designated tightly bound NGF). The molecular masses of the NGF-immunoreactive protein in both cases were approximately 14 kDa. There were significant differences in respective concentrations of total NGF (the loosely bound plus tightly bound NGF) in the hypothalamus and hypophysis, but not in other brain regions, between male and female mice at 4 months of age. However, levels of loosely bound NGF in the cerebellum and olfactory bulb from males were significantly higher than those in the same regions from females. This difference resulted in two-fold higher ratios of the concentrations of loosely bound to total NGF in males as compared to females. On the other hand, the ratio in the hypophysis was close to unity in both sexes. The concentrations of loosely bound NGF in the hippocampus and cerebral cortex decreased slightly with age in both males and females. Levels of loosely bound NGF increased significantly from 2 to 12 months after birth in the whole brain, olfactory bulb, cerebellum, hypothalamus and hypophysis to a greater extent in males than in females. Thus, it is suggested that high ratios of loosely bound to total NGF in selected regions of brains from male mice are due to an enhanced conversion from tightly to loosely bound form, which is considered to be regulated by androgens (see Brain Res. 322, 112-117, 1990). They may also influence the total NGF expression.
Collapse
Affiliation(s)
- R Katoh-Semba
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Japan.
| | | | | |
Collapse
|
25
|
Abstract
In the present study, we compare the effects of cholinergic deafferentation of the hippocampus, cortex, and olfactory bulb of young and aged rats on nerve growth factor (NGF) protein levels in these areas. We also describe glial responses to intraventricular injections of the immunotoxin, 192 IgG-saporin in the aged. Choline acetyltransferase (ChAT) activity was dramatically decreased in the basal forebrain and target areas of the cholinergic basal forebrain neurons (CBFNs) in the young immunolesioned rats and to a lesser extent in their aged counterparts. After total immunolesion, NGF protein levels significantly increased in the hippocampus, cortex, and olfactory bulb of the young rats but not of the aged rats, except for small increases in the olfactory bulb after two weeks. After immunolesion NGF protein levels in the basal forebrain increased in young rats and less so in the aged rats. The total immunolesions had no effects on NGF and BDNF mRNA levels in the hippocampus and cortex. Two weeks after injection of the immunotoxin, the profiles of AChE- and p75NTR-positive cells significantly decreased in medial septum, vertical and horizontal limbs of diagonal band and nucleus basalis of Meynert. There was also an increase in microglia while but not astrocytes in the subnuclei of basal forebrain. In conclusion, 192 IgG-saporin was effective in producing cholinergic lesions in both young and aged rat brains, the lesion-induced NGF response was partially extinguished in the aged rat brains and immunolesions induced a microglial response in aged brain.
Collapse
Affiliation(s)
- Z Gu
- Department of Human Biological Chemistry & Genetics, The University of Texas Medical Branch, Galveston 77555-0652, USA
| | | | | |
Collapse
|
26
|
Katoh-Semba R, Semba R, Takeuchi IK, Kato K. Age-related changes in levels of brain-derived neurotrophic factor in selected brain regions of rats, normal mice and senescence-accelerated mice: a comparison to those of nerve growth factor and neurotrophin-3. Neurosci Res 1998; 31:227-34. [PMID: 9809668 DOI: 10.1016/s0168-0102(98)00040-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Age-related changes in the levels of brain-derived neurotrophic factor (BDNF) in selected regions of brains from rats, normal mice and senescence-accelerated mice were compared to those of nerve growth factor (NGF) and neurotrophin-3 (NT-3). The concentration of BDNF increased with age in the rat hippocampus while it decreased in the rat cerebral cortex. The level of BDNF in the hippocampus from aged rats was about 260%, of that in the same region from young adult rats. A strong staining with antibodies specific for BDNF was observed in the hilus of the dentate gyrus in the hippocampus from aged rats. By contrast, BDNF levels were significantly lower in four brain regions from aged rats as compared to young adult rats (30, 56, 52 and 52%, lower in the septum, cerebral cortex, cerebellum and striatum, respectively). Patterns of age-related changes in the level of BDNF in the mouse hippocampus. cerebral cortex, cerebellum and olfactory bulb were similar to those in the respective regions from rats. In rats, the concentration of NGF decreased with age in the cerebral cortex but remained unchanged in the hippocampus, cerebellum and olfactory bulb. In mice, levels of NGF increased in all four brain regions from 1 to 18 months after birth. The concentrations of NT-3 increased and decreased with age in the rat cerebral cortex and cerebellum, respectively, while minimal changes were observed in the rat hippocampus and olfactory bulb as was also true in mice. In senescence-accelerated mice with memory disturbances, no marked increases in levels of NGF and BDNF in the hippocampus and in the level of NT-3 in the cerebral cortex were found. Thus, increases in levels of BDNF and NT-3 occurred in the murine hippocampus and cerebral cortex, respectively, during normal aging, but not during aging of mice with pathological changes.
Collapse
Affiliation(s)
- R Katoh-Semba
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Japan.
| | | | | | | |
Collapse
|
27
|
Sugaya K, Greene R, Personett D, Robbins M, Kent C, Bryan D, Skiba E, Gallagher M, McKinney M. Septo-hippocampal cholinergic and neurotrophin markers in age-induced cognitive decline. Neurobiol Aging 1998; 19:351-61. [PMID: 9733168 DOI: 10.1016/s0197-4580(98)00072-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Messenger RNA (mRNA) molecules encoding proteins related to the presynaptic cholinergic and neurotrophin systems were quantitated in the hippocampus and basal forebrain of Long-Evans rats with spatial learning ability assessed in the Morris water maze. The reverse transcriptase-polymerase chain reaction showed that the mRNAs for the low-affinity neurotrophin receptor (p75-NTR) and the growth-associated protein GAP-43 were decreased in level in the basal forebrain of aged-impaired rats. In the hippocampus of these aged-impaired rats, the mRNA for VGF, another neurotrophin-inducible gene, also was decreased. In situ hybridization histochemistry revealed that mRNAs for nerve growth factor (NGF) and brain-derived neurotrophic factor increased in level in the aged rat hippocampus; when age effects were removed, NGF mRNA level remained significantly correlated with maze performance. Enzyme-linked immunosorbent assay indicated that NGF protein was expressed at normal levels in the aged rat hippocampus. These mRNA and protein alterations may signify that a defect in neurotrophin signaling exists in the brains of aged Long-Evans rats, underlying reduced plasticity responses in the basal forebrain cholinergic system.
Collapse
Affiliation(s)
- K Sugaya
- Department of Pharmacology, Mayo Clinic Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Martínez-Serrano A, Björklund A. Ex vivo nerve growth factor gene transfer to the basal forebrain in presymptomatic middle-aged rats prevents the development of cholinergic neuron atrophy and cognitive impairment during aging. Proc Natl Acad Sci U S A 1998; 95:1858-63. [PMID: 9465107 PMCID: PMC19203 DOI: 10.1073/pnas.95.4.1858] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nerve growth factor (NGF) is able to restore spatial learning and reverse forebrain cholinergic neuron atrophy when administered intracerebrally to behaviorally impaired aged rats. In the present study, behaviorally unimpaired, middle-aged rats (14-16 months old) received transplants of ex vivo transduced, clonal NGF-secreting immortalized neural progenitor cells, bilaterally in the nucleus basalis and septum. During the subsequent 9 months the aged control animals developed the expected impairment in spatial learning in the water maze task, whereas the animals with NGF-secreting grafts maintained a performance level not different from the 12-month-old control rats. The marked age-induced atrophy (-25%) of the cholinergic neurons in medial septum and nucleus basalis, seen in the aged control rats, was not present in the NGF-treated aged animals. 3H-labeled thymidine autoradiography showed that the transduced cells survived well and had become integrated into the host tissue surrounding the injection sites, and reverse transcription-PCR analysis revealed expression of the NGF transgene, at both 4 and 9 months postgrafting, in the grafted tissue. The results show that long-term supply of NGF from ex vivo transduced immortalized neural progenitor cells locally within the nucleus basalis and septum can prevent the subsequent development of age-dependent neuronal atrophy and behavioral impairments when the animals reach advanced age.
Collapse
Affiliation(s)
- A Martínez-Serrano
- Wallenberg Neuroscience Center, University of Lund, Sölvegatan 17, S-223 62-Lund, Sweden.
| | | |
Collapse
|
29
|
Abstract
The nature of neural plasticity and the factors that influence it vary throughout life. Adult neurons undergo extensive and continual adaptation in response to demands that are quite different from those of early development. We review the main influences on the survival, growth and neurotransmitter expression in adult and ageing sympathetic neurons, comparing these influences to those at work in early development. This "developmental" approach is proposed because, despite the contrasting needs of different phases of development, each phase has a profound influence on the mechanisms of plasticity available to its successors. Interactions between neurons and their targets, whether effector cells or other neurons, are vital to all of these aspects of neural plasticity. Sympathetic neurons require access to target-derived diffusible neurotrophic factors such as NGF, NT3 and GDNF, as well as to bound elements of the extracellular matrix such as laminin. These factors probably influence plasticity throughout life. In adult life, and even in old age, sympathetic neurons are relatively resistant to cell death. However, they continue to require target-derived diffusible and bound factors for their maintenance, growth and neurotransmitter expression. Failure to maintain appropriate neuronal function in old age, for example in the breakdown of homeostasis, may result partly from a disturbance of the dynamic, trophic relationship between neurons and their targets. However, there is no clear evidence that this is due to a failure of targets to synthesize neurotrophic factors. On the neural side of the equation, altered responsiveness of sympathetic neurons to neurotrophic factors suggests that expression of the trk and p75 neurotrophin receptors contributes to neuronal survival, maintenance and growth in adulthood and old age. Altered receptor expression may therefore underlie the selective vulnerability of some sympathetic neurons in old age. The role of neural connectivity and activity in the regulation of synthesis of target-derived factors, as well as in neurotransmitter dynamics, is reviewed.
Collapse
Affiliation(s)
- T Cowen
- Department of Anatomy and Developmental Biology, Royal Free Hospital School of Medicine, London, U.K
| | | |
Collapse
|
30
|
McLay RN, Freeman SM, Harlan RE, Ide CF, Kastin AJ, Zadina JE. Aging in the hippocampus: interrelated actions of neurotrophins and glucocorticoids. Neurosci Biobehav Rev 1997; 21:615-29. [PMID: 9353795 DOI: 10.1016/s0149-7634(96)00046-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past two decades, evidence has been accumulating that diffusible molecules, such as growth factors and steroids hormones, play an important part in neural senescence, particularly in the hippocampus. There is also evidence that these molecules do not act as independent signals, but show interrelated regulation and cooperative control over the aging process. Here, we review some of the changes that occur in the hippocampus with age, and the influence of two classes of signaling substances: glucocorticoids and neurotrophins. We also examine the interactions between these substances and how this could influence the aging process.
Collapse
Affiliation(s)
- R N McLay
- Tulane University Medical School, Neuroscience Program, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Taglialatela G, Robinson R, Gegg M, Perez-Polo JR. Nerve growth factor, central nervous system apoptosis, and adrenocortical activity in aged Fischer-344/brown Norway F1 hybrid rats. Brain Res Bull 1997; 43:229-33. [PMID: 9222536 DOI: 10.1016/s0361-9230(97)00001-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During aging there is a progressive loss of neuronal function in the basal forebrain that results in cognitive impairment and cholinergic deficits. While altered neurotrophin (NT)-mediated signal transduction may account for some age-associated deficits, there are differences in the extent of NT responsiveness among different laboratory rat strains. Here we measured nerve growth factor (NGF) protein levels and fragmented DNA in the CNS, and basal and NGF-stimulated activity levels of the hypothalamus-pituitary-adrenocortical axis (HPAA) in 3-, 18-, and 30-month-old Fischer-344/Brown Norway rats. Our results show that while there is no age-associated differences in NGF protein levels, in aged Fischer-344/Brown Norway rats, there are increases in levels of immunoreactive fragmented DNA in the CNS and in adrenocortical responses to the peripheral administration of NGF. These data contribute to the characterization of the Fischer-344/Brown Norway F1 hybrid rat and provide baseline values useful for future studies on aged CNS.
Collapse
Affiliation(s)
- G Taglialatela
- Department of Human Biological Chemistry & Genetics, University of Texas Medical Branch at Galveston 77555-0652, USA
| | | | | | | |
Collapse
|
33
|
Cooper JD, Sofroniew MV. Increased vulnerability of septal cholinergic neurons to partial loss of target neurons in aged rats. Neuroscience 1996; 75:29-35. [PMID: 8923520 DOI: 10.1016/0306-4522(96)00240-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To investigate whether the ageing process might affect neuron-target interactions which influence the phenotype of septal cholinergic neurons, we compared the response of these neurons to partial loss of target tissue in young adult and aged animals. Groups of young adult (four to six months) or aged (24-33 months) male Sprague-Dawley rats received unilateral infusions into the hippocampus of either the excitotoxic amino acid N-methyl-D-aspartate, or vehicle. The resulting excitotoxic lesions reduced the mean cross-sectional area of the hippocampus by 55-60%. Ipsilateral septal cholinergic neurons immunohistochemically stained for either choline acetyltransferase or low-affinity neurotrophin receptor (p75NTR) were morphometrically evaluated. In young adult rats with partial hippocampal lesions, the number and staining intensity of ipsilateral septal cholinergic neurons were not significantly different from age-matched control values, but these cholinergic neurons exhibited a significant 12% reduction in cross-sectional area. In aged rats with hippocampal lesions of equivalent size, ipsilateral cholinergic neurons showed a significant 29% reduction in cross-sectional area, a significant 19% reduction in choline acetyltransferase staining intensity as measured by densitometry, and a significant 21% reduction in the number of choline acetyltransferase- but not p75NTR-stained septal neurons, as compared with age-matched control animals. These findings show that in aged rats, septal cholinergic neurons atrophy more severely in response to the partial loss of their target neurons than in young adult rats, in the form of pronounced cell shrinkage and down-regulation of intracellular levels of the transmitter-synthesizing enzyme, choline acetyltransferase, in some cases to the point of the absence of detectable staining for this marker in some cells. The continued detection of p75NTR indicates that significant neuronal cell death did not take place. These findings suggest that basal forebrain cholinergic neurons have an increased vulnerability to disturbances of neuron-target interactions in aged animals, which may contribute to the degenerative changes exhibited by these cholinergic neurons in ageing and age-related conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- J D Cooper
- MRC Cambridge Centre for Brain Repair, University of Cambridge, U.K
| | | |
Collapse
|
34
|
Smith MA, Cizza G. Stress-induced changes in brain-derived neurotrophic factor expression are attenuated in aged Fischer 344/N rats. Neurobiol Aging 1996; 17:859-64. [PMID: 9363796 DOI: 10.1016/s0197-4580(96)00066-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aging and stress can sometimes result in a decline in brain function. We addressed the question whether changes in the expression of neurotrophic factors, which are necessary for the survival and maintenance of neurons, might occur during aging and stress. Therefore, we used in situ hybridization to investigate the effects of aging and stress on neurotrophic factor expression in young (3-4 month) and old (24 month) male Fischer 344/N rats. The ability of acute immobilization stress (2 h) to modulate BDNF mRNA levels in old rats was significantly reduced both in the hippocampus (a smaller decrease in BDNF) and the PVN (a smaller increase in BDNF) compared to young rats. In contrast, the induction of nerve growth factor and neurotrophin 3 (NT-3) by stress was not influenced by age. The diminished BDNF responses to stress in aged rats may be relevant to difficulties in adaptation to stress encountered during old age.
Collapse
Affiliation(s)
- M A Smith
- Biological Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
35
|
De Lacalle S, Cooper JD, Svendsen CN, Dunnett SB, Sofroniew MV. Reduced retrograde labelling with fluorescent tracer accompanies neuronal atrophy of basal forebrain cholinergic neurons in aged rats. Neuroscience 1996; 75:19-27. [PMID: 8923519 DOI: 10.1016/0306-4522(96)00239-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During ageing, basal forebrain cholinergic neurons are prone to degeneration for unknown reasons. In this study we morphometrically evaluated the retrograde labelling of basal forebrain neurons obtained after injection of FluoroGold into multiple sites in the cerebral neocortex in aged (24-33 months) as compared with young adult (four to six months) male Sprague-Dawley rats. In addition, we looked for differences in the distribution of degenerative changes in topographic subdivisions of the basal forebrain cholinergic complex of neurons identified by immunohistochemical detection of the cholinergic markers choline acetyltransferase or low-affinity neurotrophin receptor. After injection of FluoroGold into the cerebral neocortex, the number of retrogradely labelled neurons in the horizontal diagonal band/ substantia innominata and basal nucleus was significantly lower in aged rats, by 41% and 48%, respectively. In aged rats injected with FluoroGold as well as in non-injected aged rats, the numbers of neurons immunoreactive for choline acetyltransferase and low-affinity neurotrophin receptor were significantly lower, by 23-27% in the basal forebrain system as a whole, with no significant difference in the degree of decline amongst different subdivisions (i.e. medial septum, diagonal band, substantia innominata and basal nucleus). The ratios of the number of neurons labelled with FluoroGold as compared with the number of neurons immunoreactive for either cholinergic marker were significantly lower in aged rats, by 32-37%, indicating that the decline in the number of neurons retrogradely transporting tracer was greater than the decline in the number of immunoreactive neurons in aged animals. Immunoreactive as well as retrogradely labelled neurons showed a significant shrinkage of cell surface area of 6-13% in different subdivisions of the basal forebrain cholinergic system in aged rats. These findings confirm significant loss and atrophy of basal forebrain cholinergic neurons in aged rats, and demonstrate significantly reduced retrograde labelling of these neurons with fluorescent tracer applied to their target cortex. This reduced retrograde labelling suggests an impairment of either uptake or retrograde transport mechanisms in these neurons in aged rats. Such an impairment may contribute to the degenerative changes of basal forebrain cholinergic neurons observed in ageing and age-related degenerative conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- S De Lacalle
- MRC Cambridge Centre for Brain Repair, University of Cambridge, U.K
| | | | | | | | | |
Collapse
|
36
|
Taglialatela G, Caprioli A, Giuliani A, Ghirardi O. Spatial memory and NGF levels in aged rats: natural variability and effects of acetyl-L-carnitine treatment. Exp Gerontol 1996; 31:577-87. [PMID: 9415113 DOI: 10.1016/0531-5565(96)00052-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The natural variability of behavioral performance of aged rats was used to evaluate the effect of acetyl-L-carnitine (ALCAR) on spatial learning and NGF levels in different brain areas. We used a cluster analysis procedure to subdivide the aged animals into three classes of performance (good, intermediate, and poor). These three classes were equally subdivided into controls and ALCAR-treated animals in order to investigate its effect on spatial retention. The stratification of animals prior to treatment allowed us to highlight the state dependency of the action of ALCAR. The effect of the molecule in improving spatial retention was evident only in the intermediate performance group. Furthermore, the drug reduced the NGF levels in the basal forebrain of treated animals, especially in the intermediate performance group. These results suggest a performance-dependent effect of ALCAR and a nonlinear relationship between NGF levels and learning ability in aged rats.
Collapse
Affiliation(s)
- G Taglialatela
- Institute for Research on Senescence, Sigma Tau S.p.A., Pomezia, Rome, Italy
| | | | | | | |
Collapse
|
37
|
Hoener MC, Hewitt E, Conner JM, Costello JW, Varon S. Nerve growth factor (NGF) content in adult rat brain tissues is several-fold higher than generally reported and is largely associated with sedimentable fractions. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00386-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Gavazzi I, Cowen T. Can the neurotrophic hypothesis explain degeneration and loss of plasticity in mature and ageing autonomic nerves? JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1996; 58:1-10. [PMID: 8740653 DOI: 10.1016/0165-1838(95)00111-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The causes of age-related degeneration in the peripheral nervous system remain unclear. The search for clues has focused on developmental mechanisms and particularly on the neurotrophic hypothesis and its principal player, nerve growth factor, reduced levels of which are thought to cause degeneration of some autonomic and central neurons in old age. Nerve growth factor may well be important in the mature and ageing nervous system, but recent experiments on sympathetic nerves in ageing rats suggest that lack of NGF is not the only limiting factor in neuronal growth and survival. Other candidates include laminin, which is bound in the extracellular matrix and may act in synergy with NGF to regulate neuronal maintenance and growth in maturity. Reduced, region-specific patterns of availability of one or both of these substances may underlie age-related degeneration in autonomic nerves. Different combinations of these factors may influence particular aspects of neuronal plasticity, such as collateral sprouting and regeneration. In addition to extrinsic factors, it appears increasingly likely that altered neuronal responsiveness to neurotrophic factors in old age contributes to structural and functional deficits in autonomic nerves.
Collapse
Affiliation(s)
- I Gavazzi
- Department of Anatomy and Developmental Biology, Royal Free Hospital School of Medicine, London, UK
| | | |
Collapse
|
39
|
Bizon JL, Lauterborn JC, Isackson PJ, Gall CM. Acidic fibroblast growth factor mRNA is expressed by basal forebrain and striatal cholinergic neurons. J Comp Neurol 1996; 366:379-89. [PMID: 8907353 DOI: 10.1002/(sici)1096-9861(19960311)366:3<379::aid-cne1>3.0.co;2-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Evidence for the importance of the basal forebrain cholinergic system in the maintenance of cognitive function has stimulated efforts to identify trophic mechanisms that protect this cell population from atrophy and dysfunction associated with aging and disease. Acidic fibroblast growth factor (aFGF) has been reported to support cholinergic neuronal survival and has been localized in basal forebrain with the use of immunohistochemical techniques. Although these data indicate that aFGF is present in regions containing cholinergic cell bodies, the actual site of synthesis of this factor has yet to be determined. In the present study, in situ hybridization techniques were used to evaluate the distribution and possible colocalization of mRNAs for aFGF and the cholinergic neuron marker choline acetyltransferase (ChAT) in basal forebrain and striatum. In single-labeling preparations, aFGF mRNA-containing neurons were found to be codistributed with ChAT mRNA+ cells throughout all fields of basal forebrain, including the medial septum/diagonal band complex and striatum. By using a double-labeling (colormetric and isotopic) technique, high levels of colocalization (over 85%) of aFGF and ChAT mRNAs were observed in the medial septum, the diagonal bands of Broca, the magnocellular preoptic area, and the nucleus basalis of Meynert. The degree of colocalization was lower in the striatum, with 64% of the cholinergic cells in the caudate and 33% in the ventral striatum and olfactory tubercle labeled by the aFGF cRNA. These data demonstrate substantial regionally specific patterns of colocalization and support the hypothesis that, via an autocrine mechanism, aFGF provides local trophic support for cholinergic neurons in the basal forebrain and the striatum.
Collapse
Affiliation(s)
- J L Bizon
- Department of Psychobiology, University of California at Irvine 92717, USA
| | | | | | | |
Collapse
|
40
|
Parhad IM, Scott JN, Cellars LA, Bains JS, Krekoski CA, Clark AW. Axonal atrophy in aging is associated with a decline in neurofilament gene expression. J Neurosci Res 1995; 41:355-66. [PMID: 7563228 DOI: 10.1002/jnr.490410308] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurofilaments (Nfs) are major determinants of axonal caliber. Nf transcript levels increase during development and maturation, and are associated with an increase in Nf protein, Nf numbers, and caliber of axons. With aging there is axonal atrophy. In this study we asked whether the axonal atrophy of aging was associated with a decline in Nf transcript expression, Nf protein levels, and Nf numbers. Expression of transcripts for the three Nf subunits was evaluated in dorsal root ganglia (DRG) of Fischer-344 rats aged 3-32 months by Northern and in situ hybridization. There was an approximately 50% decrease in Nf subunit mRNA levels in DRG of aged (> 23 months) as compared to young and mature (3 and 12 months) rats, whereas expression of another neuronal mRNA, GAP-43, showed no decline. Western analysis showed a corresponding decrease in Nf subunit proteins and no decline in GAP-43. Morphometric analysis showed a 50% decrease in Nf numbers within axons. The decrease in Nf gene expression and Nf numbers was accompanied by a decrease in cross-sectional area and circularity of all myelinated fibers, with the largest fibers showing the most marked changes, and a shrinkage in the perikaryal area of large neurons. Furthermore, we found a concomitant decrease in the expression of transcripts for the nerve growth factor receptors trkA and p75 with aging. Although the mechanisms leading to the decrease in Nf gene expression with aging are not known, a decrease in the availability of growth factors, or the neuron's ability to respond to them, may play a role in this process.
Collapse
Affiliation(s)
- I M Parhad
- Department of Pathology, University of Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Thrasivoulou C, Cowen T. Regulation of rat sympathetic nerve density by target tissues and NGF in maturity and old age. Eur J Neurosci 1995; 7:381-7. [PMID: 7539692 DOI: 10.1111/j.1460-9568.1995.tb00333.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies in our laboratory using a transplantation model have shown that target tissues of some autonomic neurons, including cerebral blood vessels, exert a controlling influence on nerve fibre loss in old age. The present study was undertaken in order to discover whether the influence of targets extends to controlling age changes in specific populations of nerves. In old rats, we have demonstrated a significant decrease of approximately 50% in the sympathetic innervation of middle cerebral arteries, using tyrosine hydroxylase-like immunoreactivity. Following transplantation, tyrosine hydroxylase-like immunoreactive nerve density on both young and old implanted middle cerebral arteries mirrored the nerve densities seen in normal, non-transplanted vessels. Furthermore, implanted tissue from old donors became reinnervated with a nerve density approximately 50% less than that of young implanted vessels. Treatment of transplants with nerve growth factor, however, was able to reverse these age changes and restore the sympathetic innervation of aged middle cerebral arteries to levels above those seen in young middle cerebral arteries. These results suggest that the pattern and density of sympathetic innervation that the middle cerebral artery receives is determined by the target rather than by the neurons supplying the tissue. The ability of nerve growth factor to induce regrowth in sympathetic neurons innervating ageing target tissues implies that age-related neuronal atrophy may be due to reduced synthesis or availability of target-derived neurotrophic factors.
Collapse
Affiliation(s)
- C Thrasivoulou
- Department of Anatomy and Developmental Biology, Royal Free Hospital School of Medicine, London, UK
| | | |
Collapse
|
42
|
Zhou AW, Guo J, Wang HY, Gu BX, Du YC. Enhancement of NGF gene expression in rat brain by the memory-enhancing peptide AVP(4-8). Peptides 1995; 16:581-6. [PMID: 7479287 DOI: 10.1016/0196-9781(95)00034-h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Northern blot analysis of nerve growth factor (NGF) was used to evaluate the effect of exogenous AVP(4-8) on the transcription of NGF gene in rat brain. NGF expression was found to be significantly enhanced by exogenous AVP(4-8) in the hippocampus as well as in the cerebral cortex in a time period of 12 h. This effect was inhibited by an antagonist to AVP(4-8). In addition, gel mobility shift assay was also used to observe the in vitro expression of c-fos gene in rat hippocampal slices. Our results suggest that NGF gene is one of the target genes responsible for memory-enhancing responses induced by AVP(4-8) and that the enhancement of NGF gene expression may share the signaling pathway mediated by AVP(4-8) receptor and c-fos gene expression.
Collapse
Affiliation(s)
- A W Zhou
- Shanghai Institute of Biochemistry, Chinese Academy of Sciences, Shanghai
| | | | | | | | | |
Collapse
|
43
|
Gibbs RB. Estrogen and nerve growth factor-related systems in brain. Effects on basal forebrain cholinergic neurons and implications for learning and memory processes and aging. Ann N Y Acad Sci 1994; 743:165-96; discussion 197-9. [PMID: 7802412 DOI: 10.1111/j.1749-6632.1994.tb55792.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Estrogen replacement can significantly affect the expression of ChAT and NGF receptors in specific basal forebrain cholinergic neurons. The time-course of the effects is consistent with a direct up-regulation of ChAT followed by either direct or indirect down-regulation of p75NGFR and trkA NGF receptors, possibly due to increased cholinergic activity in the hippocampal formation and cortex and a decrease in hippocampal levels of NGF. Current evidence suggests ChAT, p75NGFR, trkA, and NGF all play a role in regulating cholinergic function in the hippocampal formation and cortex. In addition, all have been implicated in the maintenance of normal learning and memory processes as well as in changes in cognitive function associated with aging and with neurodegenerative disease. It is possible that estrogen may affect cognitive function via effects on NGF-related systems and basal forebrain cholinergic neurons. Effects of estrogen on cognitive function have been reported, as has some preliminary evidence for beneficial effects of estrogen in decreasing the prevalence of and reducing some cognitive deficits associated with Alzheimer's disease. Whether these effects are related to effects on NGF-related systems or basal forebrain cholinergic neurons is currently unknown. Indirect evidence suggests that estrogen interacts with NGF-related systems and that changes in circulating levels of estrogen can contribute to age-related changes in hippocampal levels of NGF. These findings have important implications for consideration of estrogen replacement therapy in pre- and post-menopausal women. Further studies examining effects of different regimens of estrogen replacement as well as estrogen combined with progesterone on NGF and basal forebrain cholinergic neurons in young and aged animals are required. Prospective studies correlating aging and estrogen replacement with numbers of basal forebrain cholinergic neurons and hippocampal and cortical levels of NGF also need to be performed to better assess the potential benefits of estrogen replacement in reducing age- and disease-related cognitive decline.
Collapse
Affiliation(s)
- R B Gibbs
- Department of Pharmacy, University of Pittsburgh School of Pharmacy, Pennsylvania 15261
| |
Collapse
|
44
|
Rylett RJ, Williams LR. Role of neurotrophins in cholinergic-neurone function in the adult and aged CNS. Trends Neurosci 1994; 17:486-90. [PMID: 7531891 DOI: 10.1016/0166-2236(94)90138-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cholinergic neurones in the CNS undergo complex changes during normal aging. In recent years, considerable attention has focussed on the neurotrophins and, in particular, nerve growth factor, as potential maintenance factor for cholinergic-neurone function, and as therapeutic agents for use in a variety of neurodegenerative disorders including Alzheimer's disease. While brain cholinergic neurones from the neonate to the aged respond to nerve growth factor with enhanced expression of transmitter phenotype, there appears to be an age-related, region-specific decline in responsiveness. This age-related decrement in neurotrophin action might play a role in dysfunction of cholinergic neurones, and cognitive loss, and could limit the use of these factors as therapeutic agents.
Collapse
Affiliation(s)
- R J Rylett
- Dept of Physiology, University of Western, Ontario, London, Canada
| | | |
Collapse
|
45
|
Cooper JD, Lindholm D, Sofroniew MV. Reduced transport of [125I]nerve growth factor by cholinergic neurons and down-regulated TrkA expression in the medial septum of aged rats. Neuroscience 1994; 62:625-9. [PMID: 7532836 DOI: 10.1016/0306-4522(94)90462-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Basal forebrain cholinergic neurons atrophy and degenerate in aging and Alzheimer's disease for unknown reasons. In this study, aged male Sprague-Dawley rats (26-30 months old) showed a significant 31% reduction in the number of septal cholinergic neurons which take up and retrogradely transport 125I-labelled nerve growth factor injected into their target hippocampus, as compared with young adult rats (three to six months old). In aged rats, cholinergic neurons not transporting nerve growth factor were severely atrophied and had a significant 60% reduction in mean cross-sectional area as compared with [125I]nerve growth factor transporting neurons. These changes were accompanied by a significant 43% decline in relative levels of messenger RNA encoding the high affinity nerve growth factor receptor TrkA, in the septal region of aged rats. There was no difference between young and aged rats in messenger RNA levels encoding the low affinity nerve growth factor receptor, p75NGFR. These findings suggest that aged basal forebrain cholinergic neurons exhibit a reduced capacity to sustain receptor mediated uptake and retrograde transport of target-derived neurotrophin. This reduced capacity is associated with severe neuronal atrophy and may contribute to the pronounced vulnerability of these neurons to degeneration in aging and Alzheimer's disease.
Collapse
Affiliation(s)
- J D Cooper
- MRC Cambridge Centre for Brain Repair, University of Cambridge, U.K
| | | | | |
Collapse
|
46
|
Abstract
Nerve growth factor (NGF) is a well-characterized protein that exerts pharmacological effects on a group of cholinergic neurons known to atrophy in Alzheimer's disease (AD). Considerable evidence from animal studies suggests that NGF may be useful in reversing, halting, or at least slowing the progression of AD-related cholinergic basal forebrain atrophy, perhaps even attenuating the cognitive deficit associated with the disorder. However, many questions remain concerning the role of NGF in AD. Levels of the low-affinity receptor for NGF appear to be at least stable in AD basal forebrain, and the recent finding of AD-related increases in cortical NGF brings into question whether endogenous NGF levels are related to the observed cholinergic atrophy and whether additional NGF will be useful in treating this disorder. Evidence regarding the localization of NGF within the central nervous system and its presumed role in maintaining basal forebrain cholinergic neurons is summarized, followed by a synopsis of the relevant aspects of AD neuropathology. The available data regarding levels of NGF and its receptor in the AD brain, as well as potential roles for NGF in the pathogenesis and treatment of AD, are also reviewed. NGF and its low affinity receptor are abundantly present within the AD brain, although this does not rule out an NGF-related mechanism in the degeneration of basal forebrain neurons, nor does it eliminate the possibility that exogenous NGF may be successfully used to treat AD. Further studies of the degree and distribution of NGF within the human brain in normal aging and in AD, and of the possible relationship between target NGF levels and the status of basal forebrain neurons in vivo, are necessary before engaging in clinical trials.
Collapse
Affiliation(s)
- S A Scott
- Department of Neurosurgery, University of Cincinnati, Ohio 45267-0515
| | | |
Collapse
|
47
|
Scott SA, Liang S, Weingartner JA, Crutcher KA. Increased NGF-like activity in young but not aged rat hippocampus after septal lesions. Neurobiol Aging 1994; 15:337-46. [PMID: 7936058 DOI: 10.1016/0197-4580(94)90029-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sympathetic sprouting in the hippocampus following septal denervation is thought to involve nerve growth factor (NGF). This sprouting response is dramatically reduced in aged rats, but immunological assays reveal no age-related decline in hippocampal NGF levels. In the present study, both a bioassay and an immunoassay were used to examine the effect of a medial septal lesion on hippocampal NGF levels in young adult (2-5 months) and aged (24 months) Fischer 344 rats. No significant differences were detected between normal young and aged rats, in agreement with earlier results. Following medial septal lesions, however, only young rats demonstrated significant increases in hippocampal NGF-like activity. These results support the hypothesis that the age-related deficit in sympathetic sprouting results from an attenuated neurotrophic response to hippocampal denervation.
Collapse
Affiliation(s)
- S A Scott
- Department of Neurosurgery, University of Cincinnati College of Medicine, OH 45267-0515
| | | | | | | |
Collapse
|
48
|
Piovesan P, Pacifici L, Taglialatela G, Ramacci MT, Angelucci L. Acetyl-L-carnitine treatment increases choline acetyltransferase activity and NGF levels in the CNS of adult rats following total fimbria-fornix transection. Brain Res 1994; 633:77-82. [PMID: 8137174 DOI: 10.1016/0006-8993(94)91524-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transection of the fimbria-fornix in adult rats is a useful model for producing impairments of cholinergic activity in the hippocampus (HIPP) and atrophy of the medial septum cholinergic perikarya, similar to those observed during senescence, that are possibly due to the lack of nerve growth factor (NGF) retrogradely transported from the hippocampus. In our investigation we used choline acetyltransferase (ChAT) as an index of cholinergic activity in HIPP, frontal cortex (FCX), septum and nucleus basalis magnocellularis (NBM) along with measurements of NGF levels in the HIPP. Three-month-old rats with unilateral total fimbria transection received acetyl-L-carnitine (ALCAR) (150 mg/kg/day) in drinking water for 1 week before and 4 weeks after the lesion). ALCAR is a substance known to ameliorate some morphological and functional disturbances in the aging central nervous system (CNS). ChAT activity in septum and FCX, and NGF levels in HIPP were significantly increased in the treated group, compared with untreated control groups, while no changes were found in the NBM. On the other hand, a similar ALCAR treatment in unoperated animals induced an increase in ChAT activity in FCX but not in septum nor in NBM. These data are suggestive of a neurotrophic property of ALCAR exerted on those central cholinergic pathways typically damaged by aging.
Collapse
Affiliation(s)
- P Piovesan
- Institute for Research on Senescence Sigma-Tau, Pomezia, Italy
| | | | | | | | | |
Collapse
|
49
|
Gavazzi I, Cowen T. NGF can induce a 'young' pattern of reinnervation in transplanted cerebral blood vessels from ageing rats. J Comp Neurol 1993; 334:489-96. [PMID: 8376629 DOI: 10.1002/cne.903340312] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Peripheral target tissues can determine age-related changes in their density and pattern of innervation. We have shown previously that middle cerebral arteries from young and old rats transplanted in oculo in young hosts become reinnervated with a density and pattern of innervation that is typical of the age of the donor, i.e., the density of reinnervation on old transplants is 50% lower than on young transplants. The alterations in the target tissues responsible for their decreased innervation in old age are still unknown. We have investigated the possibility that increasing the availability of nerve growth factor (NGF) might restore the pattern and density of perivascular nerves on old blood vessels to levels of innervation typical of young tissues. Old middle cerebral transplants were therefore treated with NGF or vehicle by three weekly transscleral injections. NGF treatment markedly increased the reinnervation of old transplants, restoring the density and pattern of innervation to one characteristic of young animals. NGF produced an equivalent increase in nerve growth on young and old transplants, thus confirming that the receptivity of old blood vessels to reinnervation is not impaired. Control experiments were performed by treating transplants with saline, bovine serum albumin, or cytochrome c. Unexpectedly, bovine serum albumin was shown to promote axonal growth, although to a lesser extent and with a different pattern than NGF.
Collapse
Affiliation(s)
- I Gavazzi
- Department of Anatomy and Developmental Biology, Royal Free Hospital School of Medicine, London, United Kingdom
| | | |
Collapse
|
50
|
|