1
|
Schaudien D, Hansen T, Tillmann T, Pohlmann G, Kock H, Creutzenberg O. Comparative toxicity study of three surface-modified titanium dioxide nanoparticles following subacute inhalation. Part Fibre Toxicol 2025; 22:5. [PMID: 39994642 PMCID: PMC11849269 DOI: 10.1186/s12989-025-00620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND This study aimed to compare the toxic effects of three different titanium dioxide nanoparticles encoded in the European nanomaterial repository as NM-103 (rutile, hydrophobic), NM-104 (rutile, hydrophilic), and NM-105 (anatase/rutile, hydrophilic), suggesting different toxic potentials after uptake in the lungs. Wistar rats were exposed by nose-only inhalation to aerosol concentrations of 3, 12 and 48 mg/m3 for 4 weeks. This dosing scheme should induce non, partial and complete lung overload. The 4-week inhalation period was followed by 3-, 45- and 94-day exposure-free periods. Investigations according to the OECD 412 guideline were performed. Additional examinations, such as transmission electron microscopy and image analysis of tissue slides and cytospots, were performed to reveal possible differences among the three particle types. RESULTS Bronchoalveolar lavage fluid from the groups exposed to low concentrations of NM-103 or NM-104 presented slight inflammation. In the mid- and high-exposure groups, this was also present for the NM-105 group, however, weaker than those of NM-103 and NM-104. Histologically, all three groups presented similar distributions of particles in the respiratory tract. Although marginal differences in the degree of some changes exist, no obvious differences in the degree or characteristics of the induced lesions were observable. In general, compared with the higher exposure groups, all the middle exposure groups presented a greater accumulation and aggregation of macrophages at the terminal bronchi. Using transmission electron microscopy, particles were detected mainly in intraalveolar macrophages, followed by type 1 pneumocytes in the low- and mid-concentration groups and intraalveolar free particles in the high-concentration groups. Compared with the other groups, the NM-103 group presented greater numbers of free particles in the alveoli and fewer in the macrophages. With image analysis, the movement of particles to the bronchus-associated lymphoid tissue and lymph nodes could be detected comparably for the three different particle types. CONCLUSIONS The no observed adverse effect concentration was 3 mg/m3 for all three different TiO2 particles. Despite minimal differences, a ranking mainly based on granulocyte influx into the lung was NM-104 > NM-103 > NM-105.
Collapse
Affiliation(s)
- Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany.
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Thomas Tillmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Gerd Pohlmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Heiko Kock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| |
Collapse
|
2
|
Sree BK, Kumar N, Singh S. Reproductive toxicity perspectives of nanoparticles: an update. Toxicol Res (Camb) 2024; 13:tfae077. [PMID: 38939724 PMCID: PMC11200103 DOI: 10.1093/toxres/tfae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION The rapid development of nanotechnologies with their widespread prosperities has advanced concerns regarding potential health hazards of the Nanoparticles. RESULTS Nanoparticles are currently present in several consumer products, including medications, food, textiles, sports equipment, and electrical components. Despite the advantages of Nanoparticles, their potential toxicity has negative impact on human health, particularly on reproductive health. CONCLUSIONS The impact of various NPs on reproductive system function is yet to be determined. Additional research is required to study the potential toxicity of various Nanoparticles on reproductive health. The primary objective of this review is to unravel the toxic effects of different Nanoparticles on the human reproductive functions and recent investigations on the reproductive toxicity of Nanoparticles both in vitro and in vivo.
Collapse
Affiliation(s)
- B Kavya Sree
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, Hajipur, Bihar 844102, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, Hajipur, Bihar 844102, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, Hajipur, Bihar 844102, India
| |
Collapse
|
3
|
Morimoto T, Izumi H, Tomonaga T, Nishida C, Kawai N, Higashi Y, Wang KY, Ono R, Sumiya K, Sakurai K, Moriyama A, Takeshita JI, Yamasaki K, Yatera K, Morimoto Y. The Effects of Endoplasmic Reticulum Stress via Intratracheal Instillation of Water-Soluble Acrylic Acid Polymer on the Lungs of Rats. Int J Mol Sci 2024; 25:3573. [PMID: 38612383 PMCID: PMC11011863 DOI: 10.3390/ijms25073573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Polyacrylic acid (PAA), an organic chemical, has been used as an intermediate in the manufacture of pharmaceuticals and cosmetics. It has been suggested recently that PAA has a high pulmonary inflammatory and fibrotic potential. Although endoplasmic reticulum stress is induced by various external and intracellular stimuli, there have been no reports examining the relationship between PAA-induced lung injury and endoplasmic reticulum stress. F344 rats were intratracheally instilled with dispersed PAA (molecular weight: 269,000) at low (0.5 mg/mL) and high (2.5 mg/mL) doses, and they were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure. PAA caused extensive inflammation and fibrotic changes in the lungs' histopathology over a month following instillation. Compared to the control group, the mRNA levels of endoplasmic reticulum stress markers Bip and Chop in BALF were significantly increased in the exposure group. In fluorescent immunostaining, both Bip and Chop exhibited co-localization with macrophages. Intratracheal instillation of PAA induced neutrophil inflammation and fibrosis in the rat lung, suggesting that PAA with molecular weight 269,000 may lead to pulmonary disorder. Furthermore, the presence of endoplasmic reticulum stress in macrophages was suggested to be involved in PAA-induced lung injury.
Collapse
Affiliation(s)
- Toshiki Morimoto
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (T.M.); (K.Y.); (K.Y.)
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (T.T.); (N.K.)
| | - Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (T.T.); (N.K.)
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan;
| | - Naoki Kawai
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (T.T.); (N.K.)
| | - Yasuyuki Higashi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (T.M.); (K.Y.); (K.Y.)
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan;
| | - Ryohei Ono
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan; (R.O.); (K.S.); (K.S.)
| | - Kazuki Sumiya
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan; (R.O.); (K.S.); (K.S.)
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan; (R.O.); (K.S.); (K.S.)
| | - Akihiro Moriyama
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; (A.M.); (J.-i.T.)
| | - Jun-ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; (A.M.); (J.-i.T.)
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (T.M.); (K.Y.); (K.Y.)
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (T.M.); (K.Y.); (K.Y.)
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (T.T.); (N.K.)
| |
Collapse
|
4
|
Bonetta S, Macrì M, Acito M, Villarini M, Moretti M, Bonetta S, Bosio D, Mariella G, Bellisario V, Bergamaschi E, Carraro E. DNA damage in workers exposed to pigment grade titanium dioxide (TiO 2) and association with biomarkers of oxidative stress and inflammation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104328. [PMID: 38013010 DOI: 10.1016/j.etap.2023.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
The present study was aimed at investigating DNA damage, micronuclei frequency and meta-nuclear alterations in buccal cells of workers involved in pigment-grade TiO2 production (15 exposed and 20 not-exposed). We also assessed associations of genotoxicity biomarkers with oxidative stress/inflammatory biomarkers in urine and exhaled breath condensate (EBC), as well as possible associations between biomarkers and reported respiratory symptoms. In spite of compliance with TiO2 Occupational Exposure Limits, results showed increased direct/oxidative DNA damage and micronuclei frequency in exposed workers. Genotoxicity parameters were associated with oxidative stress/inflammation biomarkers in urine and EBC, thus confirming that TiO2 exposure can affect the oxidative balance. Workers with higher genotoxic/oxidative stress biomarkers levels reported early respiratory symptoms suggesting that molecular alterations can be predictive of early health dysfunctions. These findings suggest the need to assess early health impairment in health surveillance programs and to address properly safety issues in workplaces where TiO2 is handled.
Collapse
Affiliation(s)
- Sa Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126 Torino, Italy.
| | - M Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | - M Acito
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - M Villarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - M Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Si Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | - D Bosio
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126 Torino, Italy
| | - G Mariella
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126 Torino, Italy
| | - V Bellisario
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126 Torino, Italy
| | - E Bergamaschi
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126 Torino, Italy
| | - E Carraro
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126 Torino, Italy
| |
Collapse
|
5
|
Effect of Different Molecular Weights of Polyacrylic Acid on Rat Lung Following Intratracheal Instillation. Int J Mol Sci 2022; 23:ijms231810345. [PMID: 36142256 PMCID: PMC9499135 DOI: 10.3390/ijms231810345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background: We conducted intratracheal instillations of different molecular weights of polyacrylic acid (PAA) into rats in order to examine what kinds of physicochemical characteristics of acrylic acid-based polymer affect responses in the lung. Methods: F344 rats were intratracheally exposed to a high molecular weight (HMW) of 598 thousand g/mol or a low molecular weight (LMW) of 30.9 thousand g/mol PAA at low and high doses. Rats were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months post exposure. Results: HMW PAA caused persistent increases in neutrophil influx, cytokine-induced neutrophil chemoattractants (CINC) in the bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in the lung tissue from 3 days to 3 months and 6 months following instillation. On the other hand, LMW PAA caused only transient increases in neutrophil influx, CINC in BALF, and HO-1 in the lung tissue from 3 days to up to 1 week or 1 month following instillation. Histopathological findings of the lungs demonstrated that the extensive inflammation and fibrotic changes caused by the HMW PAA was greater than that in exposure to the LMW PAA during the observation period. Conclusion: HMW PAA induced persistence of lung disorder, suggesting that molecular weight is a physicochemical characteristic of PAA-induced lung disorder.
Collapse
|
6
|
Yamano S, Takeda T, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, Kasai T, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, Umeda Y. No evidence for carcinogenicity of titanium dioxide nanoparticles in 26-week inhalation study in rasH2 mouse model. Sci Rep 2022; 12:14969. [PMID: 36056156 PMCID: PMC9440215 DOI: 10.1038/s41598-022-19139-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
With the rapid development of alternative methods based on the spirit of animal welfare, the publications of animal studies evaluating endpoints such as cancer have been extremely reduced. We performed a 26-week inhalation exposure studies of titanium dioxide nanoparticles (TiO2 NPs) using CByB6F1-Tg(HRAS)2Jic (rasH2) mice model for detecting carcinogenicity. Male and female rasH2 mice were exposed to 2, 8 or 32 mg/m3 of TiO2 NPs for 6 h/day, 5 days/week for 26 weeks. All tissues and blood were collected and subjected to biological and histopathological analyses. TiO2 NPs exposure induced deposition of particles in lungs in a dose-dependent manner in each exposure group. Exposure to TiO2 NPs, as well as other organs, did not increase the incidence of lung tumors in any group, and pulmonary fibrosis and pre-neoplastic lesions were not observed in all groups. Finally, the cell proliferative activity of alveolar epithelial type 2 cells was examined, and it was not increased by exposure to TiO2 NPs. This is the first report showing the lack of pulmonary fibrogenicity and carcinogenicity (no evidence of carcinogenic activity) of TiO2 NPs in 26-week inhalation study in rasH2 mice exposed up to 32 mg/m3, which is considered to be a high concentration.
Collapse
Affiliation(s)
- Shotaro Yamano
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan.
| | - Tomoki Takeda
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan.
| | - Yuko Goto
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Shigeyuki Hirai
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Yusuke Furukawa
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Yoshinori Kikuchi
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Tatsuya Kasai
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Kyohei Misumi
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Masaaki Suzuki
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Kenji Takanobu
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Hideki Senoh
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Misae Saito
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Hitomi Kondo
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Yumi Umeda
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| |
Collapse
|
7
|
Burzlaff A, Creutzenberg O, Schaudien D, Viegas V, Danzeisen R, Warheit D. A tiered approach to investigate the inhalation toxicity of cobalt substances. Tier 4: Effects from a 28-day inhalation toxicity study with tricobalt tetraoxide in rats. Regul Toxicol Pharmacol 2022; 130:105129. [PMID: 35124138 DOI: 10.1016/j.yrtph.2022.105129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 01/31/2023]
Abstract
Lung cancer following inhalation in rodents is a major concern regarding exposure to cobalt substances. However, little information is available on adverse effects and toxicity following long-term inhalation exposure to poorly soluble cobalt substances with low bioavailability. Thus, the present study focused on pulmonary effects of the poorly soluble tricobalt tetraoxide (5, 20, 80 mg/m³) in a 28-day inhalation exposure study. Lung weights increased with increasing exposures. Bronchoalveolar lavage fluid analysis and histopathology revealed lung tissue inflammation at the mid-dose with increasing severity in the high-dose group and post-exposure persistency. Markers for cellular damage and cell proliferation were statistically significantly increased. No increase in 8-OH-dG lesions was observed, indicating an absence of oxidative DNA lesions. The primary effect of inhaled Co3O4 particles is inflammation of the respiratory tract strongly resembling responses of inhaled "inert dust" substances, with a NOAEC of 5 mg/m³ under the conditions of this test.
Collapse
Affiliation(s)
- Arne Burzlaff
- EBRC Consulting GmbH, Raffaelstr. 4, 30177, Hannover, Germany.
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (Fh-ITEM), Nikolai Fuchs Strasse 1, 30625, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (Fh-ITEM), Nikolai Fuchs Strasse 1, 30625, Hannover, Germany
| | - Vanessa Viegas
- Cobalt Institute, 18 Jeffries Passage, Guildford, GU1 4AP, UK
| | - Ruth Danzeisen
- Cobalt Institute, 18 Jeffries Passage, Guildford, GU1 4AP, UK.
| | | |
Collapse
|
8
|
Nishida C, Tomonaga T, Izumi H, Wang KY, Higashi H, Ishidao T, Takeshita JI, Ono R, Sumiya K, Fujii S, Mochizuki S, Sakurai K, Yamasaki K, Yatera K, Morimoto Y. Inflammogenic effect of polyacrylic acid in rat lung following intratracheal instillation. Part Fibre Toxicol 2022; 19:8. [PMID: 35062982 PMCID: PMC8780717 DOI: 10.1186/s12989-022-00448-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Some organic chemicals are known to cause allergic disorders such as bronchial asthma and hypersensitivity pneumonitis, and it has been considered that they do not cause irreversible pulmonary fibrosis. It has recently been reported, however, that cross-linked acrylic acid-based polymer, an organic chemical, might cause serious interstitial lung diseases, including pulmonary fibrosis. We investigated whether or not intratracheal instillation exposure to cross-linked polyacrylic acid (CL-PAA) can cause lung disorder in rats.
Methods
Male F344 rats were intratracheally instilled with dispersed CL-PAA at low (0.2 mg/rat) and high (1.0 mg/rat) doses, and were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure to examine inflammatory and fibrotic responses and related gene expressions in the lungs. Rat lungs exposed to crystalline silica, asbestos (chrysotile), and NiO and CeO2 nanoparticles were used as comparators.
Results
Persistent increases in total cell count, neutrophil count and neutrophil percentage, and in the concentration of the cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2 and C-X-C motif chemokine 5 (CXCL5), which correlated with lung tissue gene expression, were observed in bronchoalveolar lavage fluid (BALF) from 3 days until at least 1 month following CL-PAA intratracheal instillation. Persistent increases in heme oxygenase-1 (HO-1) in the lung tissue were also observed from 3 days to 6 months after exposure. Histopathological findings of the lungs demonstrated that extensive inflammation at 3 days was greater than that in exposure to silica, NiO nanoparticles and CeO2 nanoparticles, and equal to or greater than that in asbestos (chrysotile) exposure, and the inflammation continued until 1 month. Fibrotic changes also progressed after 1 month postexposure.
Conclusion
Our results suggested that CL-PAA potentially causes strong neutrophil inflammation in the rat and human lung.
Collapse
|
9
|
Ladics GS, Price O, Kelkar S, Herkimer S, Anderson S. A Weight-of-the-Evidence Approach for Evaluating, in Lieu of Animal Studies, the Potential of a Novel Polysaccharide Polymer to Produce Lung Overload. Chem Res Toxicol 2021; 34:1430-1444. [PMID: 33881304 DOI: 10.1021/acs.chemrestox.0c00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The United States Environmental Protection Agency (EPA) is concerned about the respiratory effects caused by respirable particles of water-insoluble high molecular weight polymers. The EPA has proposed a tiered approach to evaluate polymer lung overload, a kinetic event. Kinetic polymer lung overload in itself is not necessarily adverse, however, inhalation of respirable particulate matter can have adverse effects (i.e., inflammation, fibrosis, etc.). If Tier I testing demonstrates that particles may reach the distal lung (i.e., a non-negligible amount of respirable particles/droplets ≤10 μm in diameter and lack of biosolubility), then animal inhalation testing in Tiers II-IV would be requested. In silico, in chemico, and in vitro alternatives should be considered versus in vivo testing for animal welfare purposes. An in chemico measure of biosolubility was used to demonstrate that a novel α-1,3-glucan polysaccharide, made by enzymatic polymerization of glucose from sucrose, is biosoluble and fits a simple exponential decay model with a half-life on the order of 66 days. The multiple-path particle dosimetry (MPPD) in silico model was used to predict lung burden for the novel α-1,3-glucan polysaccharide. MPPD was validated with measurements in rats exposed to a toner particulate and showed good agreement with lung burden measurements. A simulated 24 month rat exposure yielded 10-20 times less lung burden for the polysaccharide compared to the toner at equivalent exposure concentrations. The MPPD model was refined to include biosolubility data for the polysaccharide polymer. Data for amorphous silica were used to validate the clearance model, and the model incorporating dissolution predicted the amorphous silica lung burden within 20% of measured values. Human equivalent concentrations (HECs) were calculated for each toner rat exposure concentration. HECs were also determined for the polysaccharide at exposure concentrations yielding the same predicted internal doses as the toner. The in vitro, in chemico and in silico studies described here for the novel polysaccharide provide a useful weight of evidence approach in the absence of animal studies for the evaluation of polymer substances where polymer lung overload may be a concern.
Collapse
Affiliation(s)
- Gregory S Ladics
- IFF, 200 Powder Mill Road, Bldg. 353, Wilmington, Delaware 19803, United States
| | - Owen Price
- Applied Research Associates, Inc., 801 N. Quincy Street, Suite 700, Arlington, Virginia 22203, United States
| | - Shantanu Kelkar
- IFF, 200 Powder Mill Road, Bldg. 353, Wilmington, Delaware 19803, United States
| | - Scott Herkimer
- IFF, 200 Powder Mill Road, Bldg. 353, Wilmington, Delaware 19803, United States
| | - Shawn Anderson
- IFF, 200 Powder Mill Road, Bldg. 353, Wilmington, Delaware 19803, United States
| |
Collapse
|
10
|
Predictive Biomarkers for the Ranking of Pulmonary Toxicity of Nanomaterials. NANOMATERIALS 2020; 10:nano10102032. [PMID: 33076408 PMCID: PMC7602652 DOI: 10.3390/nano10102032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 01/09/2023]
Abstract
We analyzed the mRNA expression of chemokines in rat lungs following intratracheal instillation of nanomaterials in order to find useful predictive markers of the pulmonary toxicity of nanomaterials. Nickel oxide (NiO) and cerium dioxide (CeO2) as nanomaterials with high pulmonary toxicity, and titanium dioxide (TiO2) and zinc oxide (ZnO) as nanomaterials with low pulmonary toxicity, were administered into rat lungs (0.8 or 4 mg/kg BW). C-X-C motif chemokine 5 (CXCL5), C-C motif chemokine 2 (CCL2), C-C motif chemokine 7 (CCL7), C-X-C motif chemokine 10 (CXCL10), and C-X-C motif chemokine 11 (CXCL11) were selected using cDNA microarray analysis at one month after instillation of NiO in the high dose group. The mRNA expression of these five genes were evaluated while using real-time quantitative polymerase chain reaction (RT-qPCR) from three days to six months after intratracheal instillation. The receiver operating characteristic (ROC) results showed a considerable relationship between the pulmonary toxicity ranking of nanomaterials and the expression of CXCL5, CCL2, and CCL7 at one week and one month. The expression levels of these three genes also moderately or strongly correlated with inflammation in the lung tissues. Three chemokine genes can be useful as predictive biomarkers for the ranking of the pulmonary toxicity of nanomaterials.
Collapse
|
11
|
Sarwate M, Vrbenska A, Cummings K, Tazelaar HD. Unusual pneumoconiosis in two patients with heavy print toner, and paper dust exposure. Am J Ind Med 2020; 63:821-827. [PMID: 32597538 PMCID: PMC7496873 DOI: 10.1002/ajim.23147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/24/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022]
Abstract
Workers in a print shop are exposed to photocopier toner dust and paper dust over a prolonged period of time. However, there are only rare case reports of toner and paper dust induced lung damage in humans. We reviewed our consultation files for a period of 30 years from 1987 to 2018 to look for cases with a diagnosis of giant cell interstitial pneumonia (GIP), printer toner exposure and paper dust exposure resulting in lung disease. There were two cases which met our inclusion criteria. Slides, clinical histories and imaging were reviewed. Both the patients had worked in print shops, and had no history of exposure to hard metals. Patient 1 presented with shortness of breath and cough over several months, while patient 2 was asymptomatic at presentation. Both the patients underwent surgical lung biopsies. Histopathologic examination from both the cases showed a spectrum of pathology, including features of GIP, desquamative interstitial pneumonia, chronic bronchiolitis with lymphoid hyperplasia, and particulate matter consistent with toner. Energy dispersive spectroscopy was performed on one case, and it revealed no cobalt or tungsten particles. The unusual combination of findings is very suggestive that toner particles with or without paper dust exposure were responsible for the pathologic changes in the lungs of these patients. This possibility should be explored further with additional patients who work in print shops where they are exposed to paper dust and paper toner and have signs or symptoms of diffuse lung disease.
Collapse
Affiliation(s)
- Mrinal Sarwate
- Department of Laboratory Medicine and PathologyMayo ClinicScottsdale Arizona
| | - Adela Vrbenska
- Department of Pathology, National Institute for TBLung Diseases and Thoracic SurgeryVysne Tatry Slovakia
| | | | - Henry D. Tazelaar
- Department of Laboratory Medicine and PathologyMayo ClinicScottsdale Arizona
| |
Collapse
|
12
|
Tomonaga T, Izumi H, Oyabu T, Lee BW, Kubo M, Shimada M, Noguchi S, Nishida C, Yatera K, Morimoto Y. Assessment of Cytokine-Induced Neutrophil Chemoattractants as Biomarkers for Prediction of Pulmonary Toxicity of Nanomaterials. NANOMATERIALS 2020; 10:nano10081563. [PMID: 32784876 PMCID: PMC7466583 DOI: 10.3390/nano10081563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022]
Abstract
This work determines whether cytokine-induced neutrophil chemoattractants (CINC)-1, CINC-2 and CINC-3 can be markers for predicting high or low pulmonary toxicity of nanomaterials (NMs). We classified NMs of nickel oxide (NiO) and cerium dioxide (CeO2) into high toxicity and NMs of two types of titanium dioxides (TiO2 (P90 and rutile)) and zinc oxide (ZnO) into low toxicity, and we analyzed previous data of CINCs in bronchoalveolar lavage fluid (BALF) of rats from three days to six months after intratracheal instillation (0.2 and 1.0 mg) and inhalation exposure (0.32–10.4 mg/m3) of materials (NiO, CeO2, TiO2 (P90 and rutile), ZnO NMs and micron-particles of crystalline silica (SiO2)). The concentration of CINC-1 and CINC-2 in BALF had different increase tendency between high and low pulmonary toxicity of NMs and correlated with the other inflammatory markers in BALF. However, CINC-3 increased only slightly in a dose-dependent manner compared with CINC-1 and CINC-2. Analysis of receiver operating characteristics for the toxicity of NMs by CINC-1 and CINC-2 showed the most accuracy of discrimination of the toxicity at one week or one month after exposure and CINC-1 and CINC-2 in BALF following intratracheal instillation of SiO2 as a high toxicity could accurately predict the toxicity at more than one month after exposure. These data suggest that CINC-1 and CINC-2 may be useful biomarkers for the prediction of pulmonary toxicity of NMs relatively early in both intratracheal instillation and inhalation exposure.
Collapse
Affiliation(s)
- Taisuke Tomonaga
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (H.I.); (T.O.); (B.-W.L.); (Y.M.)
- Correspondence: ; Tel.: +81-93-691-7466
| | - Hiroto Izumi
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (H.I.); (T.O.); (B.-W.L.); (Y.M.)
| | - Takako Oyabu
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (H.I.); (T.O.); (B.-W.L.); (Y.M.)
| | - Byeong-Woo Lee
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (H.I.); (T.O.); (B.-W.L.); (Y.M.)
| | - Masaru Kubo
- Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 4-1 Kagamiyama 1-chome, Higashi-Hiroshima-shi, Hiroshima 739-8527, Japan; (M.K.); (M.S.)
| | - Manabu Shimada
- Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 4-1 Kagamiyama 1-chome, Higashi-Hiroshima-shi, Hiroshima 739-8527, Japan; (M.K.); (M.S.)
| | - Shingo Noguchi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (S.N.); (C.N.); (K.Y.)
| | - Chinatsu Nishida
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (S.N.); (C.N.); (K.Y.)
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (S.N.); (C.N.); (K.Y.)
| | - Yasuo Morimoto
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; (H.I.); (T.O.); (B.-W.L.); (Y.M.)
| |
Collapse
|
13
|
Carriere M, Arnal ME, Douki T. TiO 2 genotoxicity: An update of the results published over the last six years. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 854-855:503198. [PMID: 32660822 DOI: 10.1016/j.mrgentox.2020.503198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
TiO2 particles are broadly used in daily products, including cosmetics for their UV-absorbing property, food for their white colouring property, water and air purification systems, self-cleaning surfaces and photoconversion electrical devices for their photocatalytic properties. The toxicity of TiO2 nano- and microparticles has been studied for decades, and part of this investigation has been dedicated to the identification of their potential impact on DNA, i.e., their genotoxicity. This review summarizes data retrieved from their genotoxicity testing during the past 6 years, encompassing both in vitro and in vivo studies, mostly performed on lung and intestinal models. It shows that TiO2 particles, both nano- and micro-sized, produce genotoxic damage to a variety of cell types, even at low, realistic doses.
Collapse
Affiliation(s)
- Marie Carriere
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| | - Marie-Edith Arnal
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| | - Thierry Douki
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| |
Collapse
|
14
|
Nakano-Narusawa Y, Yokohira M, Yamakawa K, Saoo K, Imaida K, Matsuda Y. Single Intratracheal Quartz Instillation Induced Chronic Inflammation and Tumourigenesis in Rat Lungs. Sci Rep 2020; 10:6647. [PMID: 32313071 PMCID: PMC7170867 DOI: 10.1038/s41598-020-63667-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Crystalline silica (quartz) is known to induce silicosis and cancer in the lungs. In the present study, we investigated the relationship between quartz-induced chronic inflammation and lung carcinogenesis in rat lungs after a single exposure to quartz. F344 rats were treated with a single intratracheal instillation (i.t.) of quartz (4 mg/rat), and control rats were treated with a single i.t. of saline. After 52 or 96 weeks, the animals were sacrificed, and the lungs and other organs were used for analyses. Quartz particles were observed in the lungs of all quartz-treated rats. According to our scoring system, the lungs of rats treated with quartz had higher scores for infiltration of lymphocytes, macrophages and neutrophils, oedema, fibrosis, and granuloma than the lungs of control rats. After 96 weeks, the quartz-treated rats had higher incidences of adenoma (85.7%) and adenocarcinoma (81.0%) than control rats (20% and 20%, respectively). Quartz-treated and control rats did not show lung neoplastic lesions at 52 weeks after treatment. The number of lung neoplastic lesions per rat positively correlated with the degree of macrophage and lymphocyte infiltration, oedema, fibrosis, and lymph follicle formation around the bronchioles. In conclusion, single i.t. of quartz may induce lung cancer in rat along with chronic inflammation.
Collapse
Affiliation(s)
- Yuko Nakano-Narusawa
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Masanao Yokohira
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Keiko Yamakawa
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Kousuke Saoo
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
- Kaisei General Hospital, Kagawa, 762-0007, Japan
| | - Katsumi Imaida
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan.
| | - Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan.
| |
Collapse
|
15
|
Tomonaga T, Izumi H, Yoshiura Y, Marui T, Wang K, Nishida C, Yatera K, Morimoto Y. Long-term observation of pulmonary toxicity of toner with external additives following a single intratracheal instillation in rats. J Occup Health 2020; 62:e12146. [PMID: 32710690 PMCID: PMC7382305 DOI: 10.1002/1348-9585.12146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/11/2020] [Accepted: 06/17/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Along with technological innovations for improving the efficiency of printing, nanoparticles have been added to the surface of toners, and there is concern about the harmful effects of those components. We investigated, through a long-term observation following intratracheal instillation using rats, whether exposure to a toner with external additives can cause tumorigenesis. METHODS Female Wistar rats were intratracheally instilled with dispersed toner at low (1 mg/rat) and high (2 mg/rat) doses, and the rats were sacrificed at 24 months after exposure, after which we examined pulmonary inflammation, histopathological changes, and DNA damage in the lung. Rats that had deceased before 24 months were dissected at that time as well, to compare tumor development. RESULTS Although alveolar macrophages with pigment deposition in the alveoli were observed in the 1 and 2 mg exposure groups, no significant lung inflammation/fibrosis or tumor was observed. Since immunostaining with 8-OHdG or γ-H2AX did not show a remarkable positive reaction, it is thought that toner did not cause severe DNA damage to lung tissue. CONCLUSION These results suggest that toner with external additives may have low toxicity in the lung.
Collapse
Affiliation(s)
- Taisuke Tomonaga
- Department of Occupational PneumologyInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental HealthKitakyushuFukuokaJapan
| | - Hiroto Izumi
- Department of Occupational PneumologyInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental HealthKitakyushuFukuokaJapan
| | - Yukiko Yoshiura
- Department of Occupational PneumologyInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental HealthKitakyushuFukuokaJapan
| | - Takashi Marui
- Department of Occupational PneumologyInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental HealthKitakyushuFukuokaJapan
| | - Ke‐Yong Wang
- Shared‐Use Research CenterSchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuFukuokaJapan
| | - Chinatsu Nishida
- Department of Respiratory MedicineUniversity of Occupational and Environmental HealthKitakyushuFukuokaJapan
| | - Kazuhiro Yatera
- Department of Respiratory MedicineUniversity of Occupational and Environmental HealthKitakyushuFukuokaJapan
| | - Yasuo Morimoto
- Department of Occupational PneumologyInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental HealthKitakyushuFukuokaJapan
| |
Collapse
|
16
|
Saber AT, Poulsen SS, Hadrup N, Jacobsen NR, Vogel U. Commentary: the chronic inhalation study in rats for assessing lung cancer risk may be better than its reputation. Part Fibre Toxicol 2019; 16:44. [PMID: 31752898 PMCID: PMC6873684 DOI: 10.1186/s12989-019-0330-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 11/25/2022] Open
Abstract
Recently, Borm and Driscoll published a commentary discussing grouping of Poorly Soluble particles of Low Toxicity (PSLTs) and the use of rats as an animal model for human hazard assessment of PSLTs (Particle and Fibre Toxicology (2019) 16(1):11). The commentary was based on the scientific opinion of several international experts on these topics. The general conclusion from the authors was a cautious approach towards using chronic inhalation studies in rats for human hazard assessment of PSLTs. This was based on evidence of inhibition of particle clearance leading to overload in the rats after high dose exposure, and a suggested over reactivity of rat lung cancer responses compared to human risk. As a response to the commentary, we here discuss evidence from the scientific literature showing that a) diesel exhaust particles, carbon black nanoparticles and TiO2 nanoparticles have similar carcinogenic potential in rats, and induce lung cancer at air concentrations below the air concentrations that inhibit particle clearance in rats, and b) chronic inhalation studies of diesel exhaust particles are less sensitive than epidemiological studies, leading to higher risk estimates for lung cancer. Thus, evidence suggests that the chronic inhalation study in rats can be used for assessing lung cancer risk insoluble nanomaterials.
Collapse
Affiliation(s)
- Anne T Saber
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Sarah S Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
17
|
Abstract
The distribution of dust particles within the lungs and their excretion are highly associated with their pulmonary toxicity. Literature was reviewed to discern pulmonary translocation pathways for inhaled α-quartz compared to those for inhaled TiO2. Accordingly, it was hypothesized α-quartz particles in the alveoli were phagocytized by alveolar macrophages but silica-containing macrophages remained in the alveoli for longer time in contrast to the rapid elimination from the alveoli seen for TiO2-containing macrophages. In addition, it was presumed that free silica particles are translocated in the interstitium, possibly through the cytoplasm of Type I epithelial cells, as observed with TiO2. Free silica particles are presumed to be phagocytized by interstitial macrophages soon after the particles penetrate the interstitium; these dust cells are then translocated to the ciliated airway regions in the lumen through bronchus-associated lymphoid tissue (BALT). The pulmonary retention half-time of dust particles in rats exposed to α-quartz is several times longer than that of rats exposed to TiO2, as long as the lung dust burden is ≈ 3 mg. The reduced pulmonary particle clearance ability in rats exposed to α-quartz aerosol is presumably attributed to the long-term retention of dust cells both in the alveoli and in the interstitium; this retention may be caused by the reduced chemotactic abilities of α-quartz-containing dust cells. However, the accumulation of α-quartz-containing dust cells in the lungs is not associated with the occurrence of pulmonary inflammation.
Collapse
|
18
|
Tomonaga T, Izumi H, Yoshiura Y, Myojo T, Oyabu T, Lee BW, Okada T, Marui T, Wang KY, Kubo M, Shimada M, Noguchi S, Nishida C, Yatera K, Morimoto Y. Usefulness of myeloperoxidase as a biomarker for the ranking of pulmonary toxicity of nanomaterials. Part Fibre Toxicol 2018; 15:41. [PMID: 30352603 PMCID: PMC6199695 DOI: 10.1186/s12989-018-0277-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/10/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In order to examine whether myeloperoxidase (MPO) can be a useful marker for evaluating the pulmonary toxicity of nanomaterials, we analyzed MPO protein in bronchoalveolar lavage fluid (BALF) samples obtained from previous examinations of a rat model. In those examinations we performed intratracheal instillation exposures (dose: 0.2-1.0 mg) and inhalation exposures (exposure concentration: 0.32-10.4 mg/m3) using 9 and 4 nanomaterials with different toxicities, respectively. Based on those previous studies, we set Nickel oxide nanoparticles (NiO), cerium dioxide nanoparticles (CeO2), multi wall carbon nanotubes with short or long length (MWCNT (S) and MWCNT (L)), and single wall carbon nanotube (SWCNT) as chemicals with high toxicity; and titanium dioxide nanoparticles (TiO2 (P90) and TiO2 (Rutile)), zinc oxide nanoparticles (ZnO), and toner with external additives including nanoparticles as chemicals with low toxicity. We measured the concentration of MPO in BALF samples from rats from 3 days to 6 months following a single intratracheal instillation, and from 3 days to 3 months after the end of inhalation exposure. RESULTS Intratracheal instillation of high toxicity NiO, CeO2, MWCNT (S), MWCNT (L), and SWCNT persistently increased the concentration of MPO, and inhalation of NiO and CeO2 increased the MPO in BALF. By contrast, intratracheal instillation of low toxicity TiO2 (P90), TiO2 (Rutile), ZnO, and toner increased the concentration of MPO in BALF only transiently, and inhalation of TiO2 (Rutile) and ZnO induced almost no increase of the MPO. The concentration of MPO correlated with the number of total cells and neutrophils, the concentration of chemokines for neutrophils (cytokine-induced neutrophil chemoattractant (CINC)-1 and heme oxygenase (HO)-1), and the activity of released lactate dehydrogenase (LDH) in BALF. The results from the receiver operating characteristics (ROC) for the toxicity of chemicals by the concentration of MPO proteins in the intratracheal instillation and inhalation exposures showed that the largest areas under the curves (AUC) s in both examinations occurred at 1 month after exposure. CONCLUSION These data suggest that MPO can be a useful biomarker for the ranking of the pulmonary toxicity of nanomaterials, especially at 1 month after exposure, in both intratracheal instillation and inhalation exposure.
Collapse
Affiliation(s)
- Taisuke Tomonaga
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Hiroto Izumi
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Yukiko Yoshiura
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Toshihiko Myojo
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Takako Oyabu
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Byeong-Woo Lee
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Takami Okada
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Takashi Marui
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Masaru Kubo
- Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, 739-8528 Japan
| | - Manabu Shimada
- Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, 739-8528 Japan
| | - Shingo Noguchi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Chinatsu Nishida
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Yasuo Morimoto
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| |
Collapse
|
19
|
Schulte PA, Kuempel ED, Drew NM. Characterizing risk assessments for the development of occupational exposure limits for engineered nanomaterials. Regul Toxicol Pharmacol 2018; 95:207-219. [PMID: 29574195 PMCID: PMC6075708 DOI: 10.1016/j.yrtph.2018.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
The commercialization of engineered nanomaterials (ENMs) began in the early 2000's. Since then the number of commercial products and the number of workers potentially exposed to ENMs is growing, as is the need to evaluate and manage the potential health risks. Occupational exposure limits (OELs) have been developed for some of the first generation of ENMs. These OELs have been based on risk assessments that progressed from qualitative to quantitative as nanotoxicology data became available. In this paper, that progression is characterized. It traces OEL development through the qualitative approach of general groups of ENMs based primarily on read-across with other materials to quantitative risk assessments for nanoscale particles including titanium dioxide, carbon nanotubes and nanofibers, silver nanoparticles, and cellulose nanocrystals. These represent prototypic approaches to risk assessment and OEL development for ENMs. Such substance-by-substance efforts are not practical given the insufficient data for many ENMs that are currently being used or potentially entering commerce. Consequently, categorical approaches are emerging to group and rank ENMs by hazard and potential health risk. The strengths and limitations of these approaches are described, and future derivations and research needs are discussed. Critical needs in moving forward with understanding the health effects of the numerous EMNs include more standardized and accessible quantitative data on the toxicity and physicochemical properties of ENMs.
Collapse
Affiliation(s)
- P A Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, United States.
| | - E D Kuempel
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, United States
| | - N M Drew
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, United States
| |
Collapse
|
20
|
|
21
|
Drew NM, Kuempel ED, Pei Y, Yang F. A quantitative framework to group nanoscale and microscale particles by hazard potency to derive occupational exposure limits: Proof of concept evaluation. Regul Toxicol Pharmacol 2017; 89:253-267. [PMID: 28789940 PMCID: PMC5875420 DOI: 10.1016/j.yrtph.2017.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/18/2017] [Accepted: 08/03/2017] [Indexed: 11/28/2022]
Abstract
The large and rapidly growing number of engineered nanomaterials (ENMs) presents a challenge to assessing the potential occupational health risks. An initial database of 25 rodent studies including 1929 animals across various experimental designs and material types was constructed to identify materials that are similar with respect to their potency in eliciting neutrophilic pulmonary inflammation, a response relevant to workers. Doses were normalized across rodent species, strain, and sex as the estimated deposited particle mass dose per gram of lung. Doses associated with specific measures of pulmonary inflammation were estimated by modeling the continuous dose-response relationships using benchmark dose modeling. Hierarchical clustering was used to identify similar materials. The 18 nanoscale and microscale particles were classified into four potency groups, which varied by factors of approximately two to 100. Benchmark particles microscale TiO2 and crystalline silica were in the lowest and highest potency groups, respectively. Random forest methods were used to identify the important physicochemical predictors of pulmonary toxicity, and group assignments were correctly predicted for five of six new ENMs. Proof-of-concept was demonstrated for this framework. More comprehensive data are needed for further development and validation for use in deriving categorical occupational exposure limits.
Collapse
Affiliation(s)
- Nathan M Drew
- National Institute for Occupational Safety and Health (NIOSH), Nanotechnology Research Center (NTRC), Cincinnati, OH 45226, USA.
| | - Eileen D Kuempel
- National Institute for Occupational Safety and Health (NIOSH), Nanotechnology Research Center (NTRC), Cincinnati, OH 45226, USA
| | - Ying Pei
- West Virginia University, Department of Industrial and Management System Engineering, Morgantown, WV 26506, USA
| | - Feng Yang
- West Virginia University, Department of Industrial and Management System Engineering, Morgantown, WV 26506, USA
| |
Collapse
|
22
|
Tsang MP, Hristozov D, Zabeo A, Koivisto AJ, Jensen ACØ, Jensen KA, Pang C, Marcomini A, Sonnemann G. Probabilistic risk assessment of emerging materials: case study of titanium dioxide nanoparticles. Nanotoxicology 2017; 11:558-568. [PMID: 28494628 DOI: 10.1080/17435390.2017.1329952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development and use of emerging technologies such as nanomaterials can provide both benefits and risks to society. Emerging materials may promise to bring many technological advantages but may not be well characterized in terms of their production volumes, magnitude of emissions, behaviour in the environment and effects on living organisms. This uncertainty can present challenges to scientists developing these materials and persons responsible for defining and measuring their adverse impacts. Human health risk assessment is a method of identifying the intrinsic hazard of and quantifying the dose-response relationship and exposure to a chemical, to finally determine the estimation of risk. Commonly applied deterministic approaches may not sufficiently estimate and communicate the likelihood of risks from emerging technologies whose uncertainty is large. Probabilistic approaches allow for parameters in the risk assessment process to be defined by distributions instead of single deterministic values whose uncertainty could undermine the value of the assessment. A probabilistic approach was applied to the dose-response and exposure assessment of a case study involving the production of nanoparticles of titanium dioxide in seven different exposure scenarios. Only one exposure scenario showed a statistically significant level of risk. In the latter case, this involved dumping high volumes of nano-TiO2 powders into an open vessel with no personal protection equipment. The probabilistic approach not only provided the likelihood of but also the major contributing factors to the estimated risk (e.g. emission potential).
Collapse
Affiliation(s)
- Michael P Tsang
- a ISM, UMR 5255, University of Bordeaux , Talence , France.,b CNRS, ISM, UMR 5255 , Talence , France
| | - Danail Hristozov
- c Department of Environmental Sciences, Informatics and Statistics , University Ca' Foscari Venice , Venice , Italy
| | - Alex Zabeo
- c Department of Environmental Sciences, Informatics and Statistics , University Ca' Foscari Venice , Venice , Italy
| | | | | | - Keld Alstrup Jensen
- d National Research Centre for the Working Environment , Copenhagen , Denmark
| | - Chengfang Pang
- c Department of Environmental Sciences, Informatics and Statistics , University Ca' Foscari Venice , Venice , Italy
| | - Antonio Marcomini
- c Department of Environmental Sciences, Informatics and Statistics , University Ca' Foscari Venice , Venice , Italy
| | - Guido Sonnemann
- a ISM, UMR 5255, University of Bordeaux , Talence , France.,b CNRS, ISM, UMR 5255 , Talence , France
| |
Collapse
|
23
|
Pirela SV, Martin J, Bello D, Demokritou P. Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: state of science and future research needs. Crit Rev Toxicol 2017; 47:678-704. [PMID: 28524743 DOI: 10.1080/10408444.2017.1318354] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Toner formulations used by laser printers (LP) and photocopiers (PC), collectively called "toner-based printing equipment" (TPE), are nano-enabled products (NEP) because they contain several engineered nanomaterials (ENM) that improve toner performance. It has been shown that during consumer use (printing), these ENM are released in the air, together with other semi-volatile organic nanoparticles, and newly formed gaseous co-pollutants such as volatile organic compounds (VOC). The aim of this review is to detail and analyze physico-chemical and morphological (PCM), as well as the toxicological properties of particulate matter (PM) emissions from TPE. The review covers evolution of science since the early 2000, when this printing technology first became a subject of public interest, as well as the lagging regulatory framework around it. Important studies that have significantly changed our understanding of these exposures are also highlighted. The review continues with a critical appraisal of the most up-to-date cellular, animal and human toxicological evidence on the potential adverse human health effects of PM emitted from TPE. We highlight several limitations of existing studies, including (i) use of high and often unrealistic doses in vitro or in vivo; (ii) unrealistically high-dose rates in intratracheal instillation studies; (iii) improper use of toners as surrogate for emitted nanoparticles; (iv) lack of or inadequate PCM characterization of exposures; and (v) lack of dosimetry considerations in in vitro studies. Presently, there is compelling evidence that the PM0.1 from TPE are biologically active and capable of inducing oxidative stress in vitro and in vivo, respiratory tract inflammation in vivo (in rats) and in humans, several endpoints of cellular injury in monocultures and co-cultures, including moderate epigenetic modifications in vitro. In humans, limited epidemiological studies report typically 2-3 times higher prevalence of chronic cough, wheezing, nasal blockage, excessive sputum production, breathing difficulties, and shortness of breath, in copier operators relative to controls. Such symptoms can be exacerbated during chronic exposures, and in individuals susceptible to inhaled pollutants. Thus respiratory, immunological, cardiovascular, and other disorders may be developed following such exposures; however, further toxicological and larger scale molecular epidemiological studies must be done to fully understand the mechanism of action of these TPE emitted nanoparticles. Major research gaps have also been identified. Among them, a methodical risk assessment based on "real world" exposures rather than on the toner particles alone needs to be performed to provide the much-needed data to establish regulatory guidelines protective of individuals exposed to TPE emissions at both the occupational and consumer level. Industry-wide molecular epidemiology as well as mechanistic animal and human studies are also urgently needed.
Collapse
Affiliation(s)
- Sandra Vanessa Pirela
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| | - John Martin
- b Department of Public Health , UMass Lowell , Lowell , MA , USA
| | - Dhimiter Bello
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA.,b Department of Public Health , UMass Lowell , Lowell , MA , USA
| | - Philip Demokritou
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| |
Collapse
|
24
|
Assessment of Pulmonary Toxicity Induced by Inhaled Toner with External Additives. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4245309. [PMID: 28191462 PMCID: PMC5278518 DOI: 10.1155/2017/4245309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/22/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022]
Abstract
We investigated the harmful effects of exposure to a toner with external additives by a long-term inhalation study using rats, examining pulmonary inflammation, oxidative stress, and histopathological changes in the lung. Wistar rats were exposed to a well-dispersed toner (mean of MMAD: 2.1 μm) at three mass concentrations of 1, 4, and 16 mg/m3 for 22.5 months, and the rats were sacrificed after 6 months, 12 months, and 22.5 months of exposure. The low and medium concentrations did not induce statistically significant pulmonary inflammation, but the high concentration did, and, in addition, a histopathological examination showed fibrosis in the lung. Although lung tumor was observed in one sample of high exposure for 22.5 months, the cause was not statistically significant. On the other hand, a persistent increase in 8-OHdG was observed in the high exposure group, indicating that DNA damage by oxidative stress with persistent inflammation leads to the formation of tumorigenesis. The results of our studies show that toners with external additives lead to pulmonary inflammation, oxidative stress, and fibrosis only at lung burdens beyond overload. These data suggest that toners with external additives may have low toxicity in the lung.
Collapse
|
25
|
Development of linear and threshold no significant risk levels for inhalation exposure to titanium dioxide using systematic review and mode of action considerations. Regul Toxicol Pharmacol 2016; 80:60-70. [DOI: 10.1016/j.yrtph.2016.05.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/21/2022]
|
26
|
Abstract
Typical reprographic toners consist of a thermoplastic polymer or polymers as the major component, a colorant or colorants (carbon black or color pigments), and small quantities of additives such as charge control and/or lubricating/release agents. Another type of toner contains iron oxides and polymers) as the major components. As a complement to the recently published Xerox chronic inhalation studies of toners, we are reporting the acute toxicity studies of some typical Xerox toners. The studies include acute oral toxicity in rats, acute dermal toxicity in rabbits, acute inhalation toxicity in rats, eye irritation in rabbits, skin irritation in rabbits, skin sensitization in guinea pigs, and the repeated-insult patch test in humans. These studies represent our acute toxicity testing using different protocols with various toners carried out during the period 1969–1984. In addition, we recently carried out acute dermal toxicity testing at 5 g/kg with two representative toners, for the purpose of classification of waste toners in the State of California. The test results consistently indicate that all toners were practically nontoxic: oral LD50 from <5 to <35 g/kg; dermal LD50 from <2 to <5 g/kg; and inhalation LC50 (4 h) from <0.17 to <10.2 g/m3. They were nonirritating to the eye and nonirritating/ nonsensitizing to the skin.
Collapse
Affiliation(s)
- George H. Y. Lin
- Joseph C. Wilson Center for Technology, Xerox Corporation, Webster, New York, U.S.A
| | - Robert Mermelstein
- Joseph C. Wilson Center for Technology, Xerox Corporation, Webster, New York, U.S.A
| |
Collapse
|
27
|
Abstract
Typical Xerox reprographic toners consist of a thermoplastic polymer as the major component, a colorant (carbon black or color pigment), and low quantities of additives such as charge control and/or lubricating agents. Another type of Xerox toner contains iron oxides and a polymer as the major components. Among all toners marketed by Xerox Corporation, the original 1075 toner (being discontinued and reformulated) was a major safety concern, because it contained approximately 2% cetylpyridinium chloride (CPC) as a charge control agent. CPC by itself is very toxic and causes severe irritation to the eye and skin. Although CPC has been used in very low concentrations in consumer products such as mouthwash, it was unknown whether a 50-fold dilution of CPC in the toner formulation would represent any safety issue. Therefore, a series of toxicological testing on the original 1075 toner was conducted. The test results indicate that the original Xerox 1075 toner was practically nontoxic following acute oral, dermal, and inhalation exposures; nonirritating to the eye; nonir-ritating/nonsensitizing to the skin; nonmutagenic in a battery of short-term assays (Ames Salmnonella/microsome assay, mouse lym-phoma assay, in vitro sister chromatid exchange assay in Chinese hamster ovarian cells, and in vitro BALB/3T3 cell transformation assay); and nonteratogenic in rats when inhaling the toner dust up to 1.2 g/m3. In addition, no mutagenic responses were observed from testing the urine or feces (by Ames test) and bone marrow (by examining micronucleus formation) of rats exposed to the toner dust at 1.3 g/m3 at the end of a subchronic inhalation study. Because all Xerox toners are alike, the toxicology of the original Xerox 1075 toner was considered a “worst-case” situation, relative to health and safety. However, it did not appear to represent any health and safety issue. The results of this study, together with the fact that no evidence of carcinogenicity was found in the Xerox chronic inhalation study on toner, indicate that Xerox toners are not safety hazards, with respect to the end points indicated in this report.
Collapse
Affiliation(s)
- George H. Y. Lin
- Center for Technology, Xerox Corporation, Webster, New York, USA
| | - Joseph C. Wilson
- Center for Technology, Xerox Corporation, Webster, New York, USA
| |
Collapse
|
28
|
Morfeld P, Bruch J, Levy L, Ngiewih Y, Chaudhuri I, Muranko HJ, Myerson R, McCunney RJ. Response to the Reply on behalf of the 'Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area' (MAK Commission) by Andrea Hartwig Karlsruhe Institute of Technology (KIT). Part Fibre Toxicol 2016; 13:1. [PMID: 26746196 PMCID: PMC4706647 DOI: 10.1186/s12989-015-0112-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 11/10/2022] Open
Affiliation(s)
- Peter Morfeld
- Institute for Occupational Epidemiology and Risk Assessment of Evonik Industries, Essen, Germany. .,Institute and Policlinic for Occupational Medicine, Environmental Medicine and Preventive Research, University of Cologne, Cologne, Germany.
| | | | - Len Levy
- Cranfield University, Cranfield, UK.
| | | | | | | | - Ross Myerson
- Department of Occupational Health, MedStar Washington Hospital Center, Washington, DC, USA. .,The George Washington University School of Public Health, Washington, DC, USA.
| | - Robert J McCunney
- Massachusetts Institute of Technology, Cambridge, MA, USA. .,Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
29
|
Pirela SV, Lu X, Miousse I, Sisler JD, Qian Y, Guo N, Koturbash I, Castranova V, Thomas T, Godleski J, Demokritou P. Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: A case study of toxicological implications from nanomaterials released during consumer use. NANOIMPACT 2016; 1:1-8. [PMID: 26989787 PMCID: PMC4791579 DOI: 10.1016/j.impact.2015.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Incorporation of engineered nanomaterials (ENMs) into toners used in laser printers has led to countless quality and performance improvements. However, the release of ENMs during printing (consumer use) has raised concerns about their potential adverse health effects. The aim of this study was to use "real world" printer-emitted particles (PEPs), rather than raw toner powder, and assess the pulmonary responses following exposure by intratracheal instillation. Nine-week old male Balb/c mice were exposed to various doses of PEPs (0.5, 2.5 and 5 mg/kg body weight) by intratracheal instillation. These exposure doses are comparable to real world human inhalation exposures ranging from 13.7 to 141.9 h of printing. Toxicological parameters reflecting distinct mechanisms of action were evaluated, including lung membrane integrity, inflammation and regulation of DNA methylation patterns. Results from this in vivo toxicological analysis showed that while intratracheal instillation of PEPs caused no changes in the lung membrane integrity, there was a pulmonary immune response, indicated by an elevation in neutrophil and macrophage percentage over the vehicle control and low dose PEPs groups. Additionally, exposure to PEPs upregulated expression of the Ccl5 (Rantes), Nos1 and Ucp2 genes in the murine lung tissue and modified components of the DNA methylation machinery (Dnmt3a) and expression of transposable element (TE) LINE-1 compared to the control group. These genes are involved in both the repair process from oxidative damage and the initiation of immune responses to foreign pathogens. The results are in agreement with findings from previous in vitro cellular studies and suggest that PEPs may cause immune responses in addition to modifications in gene expression in the murine lung at doses that can be comparable to real world exposure scenarios, thereby raising concerns of deleterious health effects.
Collapse
Affiliation(s)
- Sandra V. Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Xiaoyan Lu
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Isabelle Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jennifer D. Sisler
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Nancy Guo
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vincent Castranova
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States
| | - Treye Thomas
- U.S. Consumer Product Safety Commission, Office of Hazard Identification and Reduction, Rockville, MD, United States
| | - John Godleski
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
- Corresponding author at: Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115, United States. Tel.: +1 917 432 3481. (P. Demokritou)
| |
Collapse
|
30
|
Desmond C, Verdun-Esquer C, Rinaldo M, Courtois A, Labadie M. Mise au point sur les risques toxiques lors de l’utilisation professionnelle des photocopieurs. ARCH MAL PROF ENVIRO 2015. [DOI: 10.1016/j.admp.2015.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Morfeld P, Bruch J, Levy L, Ngiewih Y, Chaudhuri I, Muranko HJ, Myerson R, McCunney RJ. Translational toxicology in setting occupational exposure limits for dusts and hazard classification - a critical evaluation of a recent approach to translate dust overload findings from rats to humans. Part Fibre Toxicol 2015; 12:3. [PMID: 25925672 PMCID: PMC4443602 DOI: 10.1186/s12989-015-0079-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND We analyze the scientific basis and methodology used by the German MAK Commission in their recommendations for exposure limits and carcinogen classification of "granular biopersistent particles without known specific toxicity" (GBS). These recommendations are under review at the European Union level. We examine the scientific assumptions in an attempt to reproduce the results. MAK's human equivalent concentrations (HECs) are based on a particle mass and on a volumetric model in which results from rat inhalation studies are translated to derive occupational exposure limits (OELs) and a carcinogen classification. METHODS We followed the methods as proposed by the MAK Commission and Pauluhn 2011. We also examined key assumptions in the metrics, such as surface area of the human lung, deposition fractions of inhaled dusts, human clearance rates; and risk of lung cancer among workers, presumed to have some potential for lung overload, the physiological condition in rats associated with an increase in lung cancer risk. RESULTS The MAK recommendations on exposure limits for GBS have numerous incorrect assumptions that adversely affect the final results. The procedures to derive the respirable occupational exposure limit (OEL) could not be reproduced, a finding raising considerable scientific uncertainty about the reliability of the recommendations. Moreover, the scientific basis of using the rat model is confounded by the fact that rats and humans show different cellular responses to inhaled particles as demonstrated by bronchoalveolar lavage (BAL) studies in both species. CONCLUSION Classifying all GBS as carcinogenic to humans based on rat inhalation studies in which lung overload leads to chronic inflammation and cancer is inappropriate. Studies of workers, who have been exposed to relevant levels of dust, have not indicated an increase in lung cancer risk. Using the methods proposed by the MAK, we were unable to reproduce the OEL for GBS recommended by the Commission, but identified substantial errors in the models. Considerable shortcomings in the use of lung surface area, clearance rates, deposition fractions; as well as using the mass and volumetric metrics as opposed to the particle surface area metric limit the scientific reliability of the proposed GBS OEL and carcinogen classification.
Collapse
Affiliation(s)
- Peter Morfeld
- Institute for Occupational Epidemiology and Risk Assessment of Evonik Industries, AG Rellinghauser Straße 1-11, Essen, 45128, Germany.
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Preventive Research, University of Cologne, Cologne, Germany.
| | - Joachim Bruch
- University Duisburg-Essen, Medical Faculty, Essen, Germany.
- IBE GmbH, Cologne, Germany.
| | - Len Levy
- Cranfield University, ᅟ, Cranfield, UK.
| | | | | | | | - Ross Myerson
- Department of Occupational Health, MedStar Washington Hospital Center, Washington, DC, USA.
- The George Washington University School of Public Health, Washington, DC, USA.
| | - Robert J McCunney
- Massachusetts Institute of Technology, Cambridge, MA, USA.
- Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
32
|
Morimoto Y, Oyabu T, Horie M, Kambara T, Izumi H, Kuroda E, Creutzenberg O, Bellmann B, Pohlmann G, Schuchardt S, Hansen T, Ernst H. Pulmonary toxicity of printer toner following inhalation and intratracheal instillation. Inhal Toxicol 2014; 25:679-90. [PMID: 24102468 DOI: 10.3109/08958378.2013.835010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The pulmonary effects of a finished toner were evaluated in intratracheal instillation and inhalation studies, using toners with external additives (titanium dioxide nanoparticles and amorphous silica nanoparticles). Rats received an intratracheal dose of 1 mg or 2 mg of toner and were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months. The toner induced pulmonary inflammation, as evidenced by a transient neutrophil response in the low-dose groups and persistent neutrophil infiltration in the high-dose groups. There were increased concentrations of heme oxygenase-1 (HO-1) as a marker of oxidative stress in the bronchoalveolar lavage fluid (BALF) and the lung. In a 90-day inhalation study, rats were exposed to well-dispersed toner (mean of MMAD: 3.76 µm). The three mass concentrations of toner were 1, 4 and 16 mg/m(3) for 13 weeks, and the rats were sacrificed at 6 days and 91 days after the end of the exposure period. The low and medium concentrations did not induce neutrophil infiltration in the lung of statistical significance, but the high concentration did, and, in addition, upon histopathological examination not only showed findings of inflammation but also of fibrosis in the lung. Taken together, the results of our studies suggest that toners with external additives lead to pulmonary inflammation and fibrosis at lung burdens suggest beyond the overload. The changes observed in the pulmonary responses in this inhalation study indicate that the high concentration (16 mg/m(3)) is an LOAEL and that the medium concentration (4 mg/m(3)) is an NOAEL.
Collapse
Affiliation(s)
- Yasuo Morimoto
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health , Kitakyushu , Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lam CW, Scully RR, Zhang Y, Renne RA, Hunter RL, McCluskey RA, Chen BT, Castranova V, Driscoll KE, Gardner DE, McClellan RO, Cooper BL, McKay DS, Marshall L, James JT. Toxicity of lunar dust assessed in inhalation-exposed rats. Inhal Toxicol 2014; 25:661-78. [PMID: 24102467 DOI: 10.3109/08958378.2013.833660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Humans will again set foot on the moon. The moon is covered by a layer of fine dust, which can pose a respiratory hazard. We investigated the pulmonary toxicity of lunar dust in rats exposed to 0, 2.1, 6.8, 20.8 and 60.6 mg/m(3) of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week); the aerosols in the nose-only exposure chambers were generated from a jet-mill ground preparation of a lunar soil collected during the Apollo 14 mission. After 4 weeks of exposure to air or lunar dust, groups of five rats were euthanized 1 day, 1 week, 4 weeks or 13 weeks after the last exposure for assessment of pulmonary toxicity. Biomarkers of toxicity assessed in bronchoalveolar fluids showed concentration-dependent changes; biomarkers that showed treatment effects were total cell and neutrophil counts, total protein concentrations and cellular enzymes (lactate dehydrogenase, glutamyl transferase and aspartate transaminase). No statistically significant differences in these biomarkers were detected between rats exposed to air and those exposed to the two low concentrations of lunar dust. Dose-dependent histopathology, including inflammation, septal thickening, fibrosis and granulomas, in the lung was observed at the two higher exposure concentrations. No lesions were detected in rats exposed to ≤6.8 mg/m(3). This 4-week exposure study in rats showed that 6.8 mg/m(3) was the highest no-observable-adverse-effect level (NOAEL). These results will be useful for assessing the health risk to humans of exposure to lunar dust, establishing human exposure limits and guiding the design of dust mitigation systems in lunar landers or habitats.
Collapse
Affiliation(s)
- Chiu-wing Lam
- Space Toxicology Office, NASA Johnson Space Center , Houston, TX , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Interspecies Comparisons of Pulmonary Responses to Fine and/or Nanoscale Particulates. Nanotoxicology 2014. [DOI: 10.1201/b16562-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Baisch BL, Corson NM, Wade-Mercer P, Gelein R, Kennell AJ, Oberdörster G, Elder A. Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation. Part Fibre Toxicol 2014; 11:5. [PMID: 24456852 PMCID: PMC3905288 DOI: 10.1186/1743-8977-11-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022] Open
Abstract
Background The increased production of nanomaterials has caused a corresponding increase in concern about human exposures in consumer and occupational settings. Studies in rodents have evaluated dose–response relationships following respiratory tract (RT) delivery of nanoparticles (NPs) in order to identify potential hazards. However, these studies often use bolus methods that deliver NPs at high dose rates that do not reflect real world exposures and do not measure the actual deposited dose of NPs. We hypothesize that the delivered dose rate is a key determinant of the inflammatory response in the RT when the deposited dose is constant. Methods F-344 rats were exposed to the same deposited doses of titanium dioxide (TiO2) NPs by single or repeated high dose rate intratracheal instillation or low dose rate whole body aerosol inhalation. Controls were exposed to saline or filtered air. Bronchoalveolar lavage fluid (BALF) neutrophils, biochemical parameters and inflammatory mediator release were quantified 4, 8, and 24 hr and 7 days after exposure. Results Although the initial lung burdens of TiO2 were the same between the two methods, instillation resulted in greater short term retention than inhalation. There was a statistically significant increase in BALF neutrophils at 4, 8 and 24 hr after the single high dose TiO2 instillation compared to saline controls and to TiO2 inhalation, whereas TiO2 inhalation resulted in a modest, yet significant, increase in BALF neutrophils 24 hr after exposure. The acute inflammatory response following instillation was driven primarily by monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, mainly within the lung. Increases in heme oxygenase-1 in the lung were also higher following instillation than inhalation. TiO2 inhalation resulted in few time dependent changes in the inflammatory mediator release. The single low dose and repeated exposure scenarios had similar BALF cellular and mediator response trends, although the responses for single exposures were more robust. Conclusions High dose rate NP delivery elicits significantly greater inflammation compared to low dose rate delivery. Although high dose rate methods can be used for quantitative ranking of NP hazards, these data caution against their use for quantitative risk assessment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alison Elder
- Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY 14642, USA.
| |
Collapse
|
36
|
Matsuda Y, Harada Y, Tanno Y. State of toner exposure of workers who handle toners. J Occup Health 2013; 55:292-300. [PMID: 23698183 DOI: 10.1539/joh.12-0249-fs] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The aim of this study was to ascertain the actual state of toner exposure of workers who handle toner. METHODS Personal exposure measurements were conducted on workers handling toner in which the respirable dust (RD) concentration by work type was determined. Targeted work types consisted of "machine recycling", "toner manufacturing", "toner research/development", "machine design/development" and "servicing." The implementation period lasted from April 2003 to March 2011, and measurements were conducted annually. The measurement method conformed to the Japanese Working Environment Measurement Standards (new standards adopted starting in 2005). RESULTS Comparing the RD concentrations for fiscal year 2003 by work, significant differences were found between machine recycling and the other four work types, as well as in toner manufacturing and the other four work types. Similarly, based on the new legislative standards applied in Japan from fiscal year 2005, significant differences were found between machine recycling and the other four work types, as well as in toner manufacturing and the other four work types. DISCUSSION It is clear that workers engaged in machine recycling and toner manufacturing are exposed to toner, and that a certain level of exposure is continuing. Although it cannot be said that workers involved in toner research/development, machine design/development and servicing have no toner exposure, the concentration is of an extremely low level. CONCLUSIONS At present, toner exposure levels by work type can be divided into two groups-one consisting of machine recycling and toner manufacturing, and the other consisting of toner research/development, machine design/development and servicing.
Collapse
Affiliation(s)
- Yuko Matsuda
- Wellness Promotion Center, Labor Relations, Corporate Human Resources, Fuji Xerox Co., Ltd
| | | | | |
Collapse
|
37
|
Kuempel ED, Castranova V, Geraci CL, Schulte PA. Development of risk-based nanomaterial groups for occupational exposure control. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2012; 14:1029. [PMID: 26504427 PMCID: PMC4618785 DOI: 10.1007/s11051-012-1029-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Given the almost limitless variety of nanomaterials, it will be virtually impossible to assess the possible occupational health hazard of each nanomaterial individually. The development of science-based hazard and risk categories for nanomaterials is needed for decision-making about exposure control practices in the workplace. A possible strategy would be to select representative (benchmark) materials from various mode of action (MOA) classes, evaluate the hazard and develop risk estimates, and then apply a systematic comparison of new nanomaterials with the benchmark materials in the same MOA class. Poorly soluble particles are used here as an example to illustrate quantitative risk assessment methods for possible benchmark particles and occupational exposure control groups, given mode of action and relative toxicity. Linking such benchmark particles to specific exposure control bands would facilitate the translation of health hazard and quantitative risk information to the development of effective exposure control practices in the workplace. A key challenge is obtaining sufficient dose-response data, based on standard testing, to systematically evaluate the nanomaterials' physical-chemical factors influencing their biological activity. Categorization processes involve both science-based analyses and default assumptions in the absence of substance-specific information. Utilizing data and information from related materials may facilitate initial determinations of exposure control systems for nanomaterials.
Collapse
Affiliation(s)
- E. D. Kuempel
- Education and Information Division, Nanotechnology Research Center (NTRC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
| | - V. Castranova
- Health Effects Laboratory Division and NTRC, NIOSH, Morgantown, WV, USA
| | - C. L. Geraci
- Education and Information Division, NTRC, NIOSH, Cincinnati, OH, USA
| | - P. A. Schulte
- Education and Information Division, NTRC, NIOSH, Cincinnati, OH, USA
| |
Collapse
|
38
|
Small difference in carcinogenic potency between GBP nanomaterials and GBP micromaterials. Arch Toxicol 2012; 86:995-1007. [DOI: 10.1007/s00204-012-0835-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 03/01/2012] [Indexed: 11/26/2022]
|
39
|
Rim KT, Kim SJ, Han JH, Kang MG, Kim JK, Yang JS. Effects of carbon black to inflammation and oxidative DNA damages in mouse macrophages. Mol Cell Toxicol 2012. [DOI: 10.1007/s13273-011-0052-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
|
41
|
Curwin B, Bertke S. Exposure characterization of metal oxide nanoparticles in the workplace. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2011; 8:580-7. [PMID: 21936697 DOI: 10.1080/15459624.2011.613348] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This study presents exposure data for various metal oxides in facilities that produce or use nanoscale metal oxides. Exposure assessment surveys were conducted at seven facilities encompassing small, medium, and large manufacturers and end users of nanoscale (particles <0.1 μm diameter) metal oxides, including the oxides of titanium, magnesium, yttrium, aluminum, calcium, and iron. Half- and full-shift sampling consisting of various direct-reading and mass-based area and personal aerosol sampling was employed to measure exposure for various tasks. Workers in large facilities performing handling tasks had the highest mass concentrations for all analytes. However, higher mass concentrations occurred in medium facilities and during production for all analytes in area samples. Medium-sized facilities had higher particle number concentrations in the air, followed by small facilities for all particle sizes measured. Production processes generally had the highest particle number concentrations, particularly for the smaller particles. Similar to particle number, the medium-sized facilities and production process had the highest particle surface area concentration. TEM analysis confirmed the presence of the specific metal oxides particles of interest, and the majority of the particles were agglomerated, with the predominant particle size being between 0.1 and 1 μm. The greatest potential for exposure to workers occurred during the handling process. However, the exposure is occurring at levels that are well below established and proposed limits.
Collapse
Affiliation(s)
- Brian Curwin
- National Institute for Occupational Safety and Health, Division of Surveillance, Hazard Evaluations, and Field Studies, Cincinnati, Ohio 45226, USA.
| | | |
Collapse
|
42
|
In vitro genotoxicity data of nanomaterials compared to carcinogenic potency of inorganic substances after inhalational exposure. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:72-85. [DOI: 10.1016/j.mrrev.2011.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 11/18/2022]
|
43
|
Pauluhn J. Subchronic inhalation toxicity of iron oxide (magnetite, Fe(3) O(4) ) in rats: pulmonary toxicity is determined by the particle kinetics typical of poorly soluble particles. J Appl Toxicol 2011; 32:488-504. [PMID: 21456093 DOI: 10.1002/jat.1668] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/05/2011] [Accepted: 01/08/2011] [Indexed: 11/09/2022]
Abstract
Wistar rats were nose-only exposed to pigment-sized iron oxide dust (Fe(3) O(4) , magnetite) in a subchronic 13-week inhalation study according to the OECD testing guidelines TG#413 and GD#39. A 4 week pilot study with a 6 month post exposure period served as basis for validating the kinetic modeling approaches utilized to design the subchronic study. Kinetic analyses made during this post exposure period demonstrated that a diminution in particle clearance and lung inflammation occurred at cumulative exposure levels exceeding the lung overload threshold. Animals were exposed 6 h per day, five days per week for 13 consecutive weeks at actual concentrations of 0, 4.7, 16.6 and 52.1 mg m(-3) (mass median aerodynamic diameter ≈1.3 μm, geometric standard deviation = 2). The exposure to iron oxide dust was tolerated without mortality, consistent changes in body weights, food and water consumption or systemic toxicity. While general clinical pathology and urinalysis were unobtrusive, hematology revealed changes of unclear toxicological significance (minimally increased differential neutrophil counts in peripheral blood). Elevations of neutrophils in bronchoalveolar lavage (BAL) appeared to be the most sensitive endpoint of study. Histopathology demonstrated responses to particle deposition in the upper respiratory tract (goblet cell hyper- and/or metaplasia, intraepithelial eosinophilic globules in the nasal passages) and the lower respiratory tract (inflammatory changes in the bronchiolo-alveolar region). Consistent changes suggestive of pulmonary inflammation were evidenced by BAL, histopathology, increased lung and lung-associated-lymph node (LALN) weights at 16.6 and 52.1 mg m(-3) . Increased septal collagenous fibers were observed at 52.1 mg m(-3) . Particle translocation into LALN occurred at exposure levels causing pulmonary inflammation. In summary, the retention kinetics iron oxide reflected that of poorly soluble particles. The empirical no-observed-adverse-effect level (NOAEL) and the lower bound 95% confidence limit on the benchmark concentration (BMCL) obtained by benchmark analysis was 4.7 and 4.4 mg m(-3) , respectively, and supports an OEL (time-adjusted chronic occupational exposure level) of 2 mg m(-3) (alveolar fraction).
Collapse
Affiliation(s)
- Jürgen Pauluhn
- Institute of Toxicology, Bayer Schering Pharma, Wuppertal, Germany.
| |
Collapse
|
44
|
Pauluhn J. Poorly soluble particulates: Searching for a unifying denominator of nanoparticles and fine particles for DNEL estimation. Toxicology 2011; 279:176-88. [DOI: 10.1016/j.tox.2010.10.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/29/2010] [Accepted: 10/22/2010] [Indexed: 11/26/2022]
|
45
|
Retrospective Mortality Study Among Employees Occupationally Exposed to Toner. J Occup Environ Med 2010; 52:1035-41. [DOI: 10.1097/jom.0b013e3181f73afc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Pulmonary responses to printer toner particles in mice after intratracheal instillation. Toxicol Lett 2010; 199:288-300. [PMID: 20883754 DOI: 10.1016/j.toxlet.2010.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/15/2010] [Accepted: 09/18/2010] [Indexed: 12/19/2022]
Abstract
The release of ultrafine particles from office equipment is currently receiving great concerns due to its potential threat to human health when inhaled. Printer toner is one of the largest consumables in daily office work, and the particles released from printers and photocopiers may pose damage to respiratory system. In this study, we found the particles can be released into the surrounding environment during the printing process and the concentrations of PM(2.5) and PM(10) particles increased obviously. To evaluate the time-course pulmonary responses caused by toner particles, the toner suspension was instilled into the lungs of the male mice through intratracheally instillation every other day for four times and the pulmonary responses of the lung were monitored at days 9, 28, 56 and 84. Indeed, mice treated with toner particles displayed a slower body weight growth rate during the recovery phase. The total cell number in bronchoalveolar lavage fluids (BALF) of toner-exposed groups was much higher than the saline-treated groups. The total protein, lactate dehydrogenase and acid phosphatase in BALF exhibited significant changes (p<0.05 or p<0.01) at different time points. The nitric oxide synthase, interleukin 1-beta, and interleukin 6 in the lung tissue of the toner-exposed groups also exhibited significant changes (p<0.05 or p<0.01). The pathological examination showed that toner particles can adhere to the alveolar septal walls, then enter into the alveoli and cause pulmonary lesion. During the experimental period, particles phagocytosed by alveolar macrophages (AMs) led to an increase of both AMs number and apoptosis. The pulmonary stress still remained over time even with a clearance period for 12 weeks. These results indicate that exposure to toner particles can inhibit the normal growth of the mice and induce significant inflammatory responses and lesion in the lung tissues. The health and safety effects from working indoors in offices with fumes and particles released from photocopiers and printers need to be paid more attention.
Collapse
|
47
|
Morimoto Y, Hirohashi M, Kasai T, Oyabu T, Ogami A, Myojo T, Murakami M, Nishi KI, Kadoya C, Todoroki M, Yamamoto M, Kawai K, Kasai H, Tanaka I. Effect of polymerized toner on rat lung in chronic inhalation study. Inhal Toxicol 2009; 21:898-905. [DOI: 10.1080/08958370802641938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Park B, Park B, Martin PA, Park B, Martin PA, Harris C, Park B, Martin PA, Harris C, Guest R, Park B, Martin PA, Harris C, Guest R, Whittingham A, Park B, Martin PA, Harris C, Guest R, Whittingham A, Jenkinson P, Park B, Martin PA, Harris C, Guest R, Whittingham A, Jenkinson P. Preliminaryin vitroinvestigation of the potential health effects of Optisol™, a nanoparticulate manganese modified titanium dioxide UV-filter used in certain sunscreen products. Nanotoxicology 2009. [DOI: 10.1080/17435390802691786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Slesinski RS, Turnbull D. Chronic inhalation exposure of rats for up to 104 weeks to a non-carbon-based magnetite photocopying toner. Int J Toxicol 2009; 27:427-39. [PMID: 19482822 DOI: 10.1080/10915810802616560] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Male and female Han Wistar rats were exposed for 6 h/day, 5 days/week for 13 or 104 weeks (whole body) to a magnetite photocopying toner. The toner contained 45% to 50% magnetite, with 45% to 50% styrene acrylic resin and less than 5% external additives, including hydrophobic amorphous silica and proprietary surface functional modifiers. Exposure levels were 1, 5, and 25 mg/m(3) for the 13-week study and 1, 4, and 16 mg/m(3) for the 104-week study. Lung toner burdens averaged 36, 288, and 604 microg per lung after 104 weeks' exposure at 1, 4, and 16 mg/m(3). The lung burdens were lower than have been reported in a similar study with a carbon-based toner. There were no significant effects on weight gain or food consumption in either study, or on clinical pathology parameters examined in the 13-week study. After 104 weeks' exposure at 16 mg/m(3), macroscopic examination revealed dark discoloration of the lungs and associated lymph nodes. Lung weights were significantly elevated by 21% and 14% for male and female rats, respectively. Microscopic findings indicative of a mild inflammatory response were similar in both studies, and included the presence of black-pigmented macrophages in the lungs and tracheobronchial and mediastinal lymph nodes; increased incidences of perivascular/peribronchiolar inflammatory cell infiltration; inflammation of the alveolar ducts (characterized by aggregations of black-pigmented alveolar macrophages and interstitial lymphocytic infiltration); increased cellularity of the bronchiole-associated lymphoid tissue; and a few instances of alveolar ciliated metaplasia. The 104-week study showed no increase in the incidence of pulmonary tumors.
Collapse
Affiliation(s)
- Ronald S Slesinski
- DABT, ENVIRON International Corporation, 4350 North Fairfax Drive, Suite 300, Arlington, VA 22203, USA
| | | |
Collapse
|
50
|
Han JH, Park JD, Sakai K, Hisanaga N, Chang HK, Lee YH, Kwon IH, Choi BS, Chung YH, Kim HY, Yang JS, Cho MH, Yu IJ. Comparison of lung asbestos fiber content in cancer subjects with healthy individuals with no known history of occupational asbestos exposure in Korea. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1292-1295. [PMID: 20077199 DOI: 10.1080/15287390903212345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To evaluate the effects of environmental asbestos exposure on the inducement of lung cancer, pulmonary asbestos and non-asbestos fiber content was determined in 36 normal Korean subjects and 38 lung cancer subjects with no known occupational history of asbestos exposure. Pulmonary asbestos fiber content was measured by transmission electron microscopy (TEM) with energy-dispersive x-ray analysis after applying a low-temperature ashing procedure. Chrysotile fibers were the major fiber type found in the lungs of the Korean subjects. The asbestos fiber concentrations found in the lungs of normal males (25) and females (11) were 0.26 x 10(6) fibers/g of dry lung tissue and 0.16 x 10(6) fibers/g of dry lung tissue, respectively. The asbestos concentrations found in the lungs of cancer subjects were 0.16 x 10(6) fibers/g of dry lung tissue for 32 males and 0.44 x 10(6) fibers/g of dry lung tissue for 6 females. No statistical difference was found in pulmonary asbestos content between the normal and lung cancer subjects, whereas a statistical difference was noted between normal and lung cancer subjects with respect to lung non-asbestos content, indicating a potential role for non-asbestos fibers being associated with lung cancer.
Collapse
Affiliation(s)
- Jeong Hee Han
- Center for Occupational Toxicology, Occupational Safety and Health Research Institute, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|