1
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
2
|
Bullert A, Li X, Chunyun Z, Lee K, Pulliam CF, Cagle BS, Doorn JA, Klingelhutz AJ, Robertson LW, Lehmler HJ. Disposition and metabolomic effects of 2,2',5,5'-tetrachlorobiphenyl in female rats following intraperitoneal exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104245. [PMID: 37572994 PMCID: PMC10562985 DOI: 10.1016/j.etap.2023.104245] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The disposition and toxicity of lower chlorinated PCBs (LC-PCBs) with less than five chlorine substituents have received little attention. This study characterizes the distribution and metabolomic effects of PCB 52, an LC-PCB found in indoor and outdoor air, three weeks after intraperitoneal exposure of female Sprague Dawley rats to 0, 1, 10, or 100 mg/kg BW. PCB 52 exposure did not affect overall body weight. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis identified PCB 52 in all tissues investigated. Hydroxylated, sulfated, and methylated PCB metabolites, identified using GC-MS/MS and nontarget liquid chromatography-high resolution mass spectrometry (Nt-LCMS), were primarily found in the serum and liver of rats exposed to 100 mg/kg BW. Metabolomic analysis revealed minor effects on L-cysteine, glycine, cytosine, sphingosine, thymine, linoleic acid, orotic acid, L-histidine, and erythrose serum levels. Thus, the metabolism of PCB 52 and its effects on the metabolome must be considered in toxicity studies.
Collapse
Affiliation(s)
- Amanda Bullert
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Zhang Chunyun
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Kendra Lee
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Casey F Pulliam
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Brianna S Cagle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Jonathan A Doorn
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Larry W Robertson
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Bullert A, Li X, Zhang C, Lee K, Pulliam CF, Cagle BS, Doorn JA, Klingelhutz AJ, Robertson LW, Lehmler HJ. Disposition and Metabolomic Effects of 2,2',5,5'-Tetrachlorobiphenyl in Female Rats Following Intraperitoneal Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.19.544952. [PMID: 37609242 PMCID: PMC10441371 DOI: 10.1101/2023.06.19.544952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The disposition and toxicity of lower chlorinated PCBs (LC-PCBs) with less than five chlorine substituents have received little attention. This study characterizes the distribution and metabolomic effects of PCB 52, an LC-PCB found in indoor and outdoor air, three weeks after intraperitoneal exposure of female Sprague Dawley rats to 0, 1, 10, or 100 mg/kg BW. PCB 52 exposure did not affect overall body weight. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis identified PCB 52 in all tissues investigated. Hydroxylated, sulfated, and methylated PCB metabolites, identified using GC-MS/MS and nontarget liquid chromatography-high resolution mass spectrometry (Nt-LCMS), were primarily found in the serum and liver of rats exposed to 100 mg/kg BW. Metabolomic analysis revealed minor effects on L-cysteine, glycine, cytosine, sphingosine, thymine, linoleic acid, orotic acid, L-histidine, and erythrose serum levels. Thus, the metabolism of PCB 52 and its effects on the metabolome must be considered in toxicity studies. Highlights PCB 52 was present in adipose, brain, liver, and serum 3 weeks after PCB exposureLiver and serum contained hydroxylated, sulfated, and methylated PCB 52 metabolitesMetabolomics analysis revealed minor changes in endogenous serum metabolitesLevels of dopamine and its metabolites in the brain were not affected by PCB 52.
Collapse
Affiliation(s)
- Amanda Bullert
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Chunyun Zhang
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Kendra Lee
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Casey F. Pulliam
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Brianna S. Cagle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Jonathan A. Doorn
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Larry W. Robertson
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Vellingiri B, Chandrasekhar M, Sri Sabari S, Gopalakrishnan AV, Narayanasamy A, Venkatesan D, Iyer M, Kesari K, Dey A. Neurotoxicity of pesticides - A link to neurodegeneration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113972. [PMID: 36029574 DOI: 10.1016/j.ecoenv.2022.113972] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 05/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder which mainly targets motor symptoms such as tremor, rigidity, bradykinesia and postural instability. The physiological changes occur due to dopamine depletion in basal ganglia region of the brain. PD aetiology is not yet elucidated clearly but genetic and environmental factors play a prominent role in disease occurrence. Despite of various environmental factors, pesticides exposure has been convicted as major candidate in PD pathogenesis. Among various pesticides 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely investigated in PD following with paraquat (PQ), maneb (MB), organochlorines (OC) and rotenone. Effect of these pesticides has been suggested to be involved in oxidative stress, alterations in dopamine transporters, mitochondrial dysfunction, α-synuclein (αSyn) fibrillation, and neuroinflammation in PD. The present review discusses the influence of pesticides in neurodegeneration and its related epidemiological studies conducted in PD. Furthermore, we have deliberated the common pesticides involved in PD and its associated genetic alterations and the probable mechanism of them behind PD pathogenesis. Hence, we conclude that pesticides play a prominent role in PD pathogenesis and advance research is needed to investigate the alterations in genetic and mechanistic aspects of PD.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Mamatha Chandrasekhar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - S Sri Sabari
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India
| | - Kavindra Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo, 00076, Finland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, West Bengal, India
| |
Collapse
|
5
|
Rajendran R, Ragavan RP, Al-Sehemi AG, Uddin MS, Aleya L, Mathew B. Current understandings and perspectives of petroleum hydrocarbons in Alzheimer's disease and Parkinson's disease: a global concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10928-10949. [PMID: 35000177 DOI: 10.1007/s11356-021-17931-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Over the last few decades, the global prevalence of neurodevelopmental and neurodegenerative illnesses has risen rapidly. Although the aetiology remains unclear, evidence is mounting that exposure to persistent hydrocarbon pollutants is a substantial risk factor, predisposing a person to neurological diseases later in life. Epidemiological studies correlate environmental hydrocarbon exposure to brain disorders including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders like autism spectrum disorder (ASD); and neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). Particulate matter, benzene, toluene, ethylbenzene, xylenes, polycyclic aromatic hydrocarbons and endocrine-disrupting chemicals have all been linked to neurodevelopmental problems in all class of people. There is mounting evidence that supports the prevalence of petroleum hydrocarbon becoming neurotoxic and being involved in the pathogenesis of AD and PD. More study is needed to fully comprehend the scope of these problems in the context of unconventional oil and natural gas. This review summarises in vitro, animal and epidemiological research on the genesis of neurodegenerative disorders, highlighting evidence that supports inexorable role of hazardous hydrocarbon exposure in the pathophysiology of AD and PD. In this review, we offer a summary of the existing evidence gathered through a Medline literature search of systematic reviews and meta-analyses of the most important epidemiological studies published so far.
Collapse
Affiliation(s)
- Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Roshni Pushpa Ragavan
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Lotfi Aleya
- Laboratoire Chrono-Environment, CNRS6249, Universite de Bourgogne Franche-Comte, Besancon, France
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| |
Collapse
|
6
|
Jacobson MH, Ghassabian A, Gore AC, Trasande L. Exposure to environmental chemicals and perinatal psychopathology. Biochem Pharmacol 2022; 195:114835. [PMID: 34774531 PMCID: PMC8712457 DOI: 10.1016/j.bcp.2021.114835] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
Women are nearly twice as likely to develop mood disorders compared with men, and incidence is greatest during reproductive transitions, including pregnancy and postpartum. Because these periods are characterized by dramatic hormonal and physiologic changes, there is heightened susceptibility to external factors, such as exposure to environmental toxicants, which may play a role in maternal psychopathology. The purpose of this scoping review was to provide an overview of studies conducted in humans and animal models on the effects of nonoccupational exposure to environmental chemicals on maternal psychopathology during the perinatal period. The largest number of studies examined exposure to environmental tobacco smoke and antenatal depression and showed consistently positive findings, although more prospective studies using biomarkers for exposure assessment are needed. The few studies examining persistent organic pollutants such as polybrominated diphenyl ethers and perinatal depression were consistent in showing associations with increased depressive symptoms. Results were mixed for exposure to heavy metals and non-persistent chemicals, but a strong literature in animal models supported an association between bisphenols and phthalates and reduced maternal behavior and care of pups after parturition. Biological mechanisms may include endocrine disruption, neurotransmitter system impairment, alterations in gene expression, and immune activation and inflammation. Additional longitudinal studies that include biospecimen collection are essential to furthering the understanding of how environmental toxicants during pregnancy may affect perinatal psychopathology and the underlying mechanisms of action. Future work should also leverage the parallels between animal and human maternal behavior, thereby highlighting the opportunity for multidisciplinary work in this avenue.
Collapse
Affiliation(s)
- Melanie H Jacobson
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; New York University Wagner School of Public Service, New York, NY, USA; New York University College of Global Public Health, New York, NY, USA
| |
Collapse
|
7
|
McCann MS, Fernandez HR, Flowers SA, Maguire-Zeiss KA. Polychlorinated biphenyls induce oxidative stress and metabolic responses in astrocytes. Neurotoxicology 2021; 86:59-68. [PMID: 34265337 PMCID: PMC8440398 DOI: 10.1016/j.neuro.2021.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Exposure to environmental toxicants is prevalent, hazardous and linked to varied detrimental health outcomes and disease. Polychlorinated biphenyls (PCBs), a class of hazardous organic chlorines once widely used for industrial purposes, are associated with neurodegenerative disease and oxidative stress in both in vitro and in vivo models. Here, we investigated the impact of Aroclor 1254, a commercially available PCB mixture, on primary murine astrocytes to determine the response to this once ubiquitously used toxicant on the most numerous cells of the central nervous system (CNS). Astrocytes are a critical component of homeostasis throughout the CNS, including at the blood-brain barrier, where they serve as the primary defense against xenobiotics entering the CNS, and at the synapse, where they are closely coupled to neurons through several metabolic pathways. We hypothesized that PCBs cause astrocytic oxidative stress and related dysfunction including altered metabolism. We exposed primary murine cortical astrocytes to PCBs and report an increased expression of antioxidant genes (Prdx1, Gsta2, Gfap, Amigo2) in response to oxidative stress. Our data show increased ATP production and spare respiratory capacity in astrocytes exposed to 10 μM (∼ 3 ppm) PCBs. This dose also causes an increase in glucose uptake that is not seen at a higher dose (50 μM) suggesting that, at a lower dose, astrocytes are able to engage compensatory mechanisms to promote survival. Together, these data suggest that exposure to PCBs impact astrocytic metabolism, which is important to consider both in the context of human health and disease and in in vitro and in vivo disease models.
Collapse
Affiliation(s)
- Mondona S McCann
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington D.C., United States
| | - Harvey R Fernandez
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States
| | - Sarah A Flowers
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States
| | - Kathleen A Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington D.C., United States.
| |
Collapse
|
8
|
McCann MS, Maguire-Zeiss KA. Environmental toxicants in the brain: A review of astrocytic metabolic dysfunction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103608. [PMID: 33556584 DOI: 10.1016/j.etap.2021.103608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Exposure to environmental toxicants is linked to long-term adverse outcomes in the brain and involves the dysfunction of glial and neuronal cells. Astrocytes, the most numerous cell type, are increasingly implicated in the pathogenesis of many diseases of the central nervous system, including neurodegenerative diseases. Astrocytes are critical for proper brain function in part due to their robust antioxidant and unique metabolic capabilities. Additionally, astrocytes are positioned both at the blood-brain barrier, where they are the primary responders to xenobiotic penetrance of the CNS, and at synapses where they are in close contact with neurons and synaptic machinery. While exposure to several classes of environmental toxicants, including chlorinated and fluorinated compounds, and trace metals, have been implicated in neurodegenerative diseases, their impact on astrocytes represents an important and growing field of research. Here, we review existing literature focused on the impact of a range of synthetic compounds on astrocytic function. We focus specifically on perturbed metabolic processes in response to these compounds and consider how perturbation of these pathways impacts disease pathogenesis.
Collapse
Affiliation(s)
- Mondona S McCann
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, United States.
| | - Kathleen A Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, United States; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, United States
| |
Collapse
|
9
|
Klocke C, Lein PJ. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int J Mol Sci 2020; 21:E1013. [PMID: 32033061 PMCID: PMC7037228 DOI: 10.3390/ijms21031013] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| |
Collapse
|
10
|
Pessah IN, Lein PJ, Seegal RF, Sagiv SK. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol 2019; 138:363-387. [PMID: 30976975 PMCID: PMC6708608 DOI: 10.1007/s00401-019-01978-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023]
Abstract
Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants (POPs), many "legacy" compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is developmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxicity common to those ascribed to PCBs.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Richard F Seegal
- Professor Emeritus, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
11
|
Colter BT, Garber HF, Fleming SM, Fowler JP, Harding GD, Hooven MK, Howes AA, Infante SK, Lang AL, MacDougall MC, Stegman M, Taylor KR, Curran CP. Ahr and Cyp1a2 genotypes both affect susceptibility to motor deficits following gestational and lactational exposure to polychlorinated biphenyls. Neurotoxicology 2019; 65:125-134. [PMID: 29409959 DOI: 10.1016/j.neuro.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 02/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants known to cause adverse health effects and linked to neurological deficits in both human and animal studies. Children born to exposed mothers are at highest risk of learning and memory and motor deficits. We developed a mouse model that mimics human variation in the aryl hydrocarbon receptor and cytochrome P450 1A2 (CYP1A2) to determine if genetic variation increases susceptibility to developmental PCB exposure. In our previous studies, we found that high-affinity AhrbCyp1a2(-/-) and poor-affinity AhrdCyp1a2(-/-) knockout mice were most susceptible to learning and memory deficits following developmental PCB exposure compared with AhrbCyp1a2(+/+) wild type mice (C57BL/6J strain). Our follow-up studies focused on motor deficits, because human studies have identified PCBs as a potential risk factor for Parkinson's disease. Dams were treated with an environmentally relevant PCB mixture at gestational day 10 and postnatal day 5. We used a motor battery that included tests of nigrostriatal function as well as cerebellar function, because PCBs deplete thyroid hormone, which is essential to normal cerebellar development. There was a significant effect of PCB treatment in the rotarod test with impaired performance in all three genotypes, but decreased motor learning as well in the two Cyp1a2(-/-) knockout lines. Interestingly, we found a main effect of genotype with corn oil-treated control Cyp1a2(-/-) mice performing significantly worse than Cyp1a2(+/+) wild type mice. In contrast, we found that PCB-treated high-affinity Ahrb mice were most susceptible to disruption of nigrostriatal function with the greatest deficits in AhrbCyp1a2(-/-) mice. We conclude that differences in AHR affinity combined with the absence of CYP1A2 protein affect susceptibility to motor deficits following developmental PCB exposure.
Collapse
Affiliation(s)
- Breann T Colter
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Helen Frances Garber
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Sheila M Fleming
- Department of Psychology and Neurology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jocelyn Phillips Fowler
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Gregory D Harding
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Molly Kromme Hooven
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Amy Ashworth Howes
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Smitha Krishnan Infante
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Anna L Lang
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | | | - Melinda Stegman
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Kelsey Rae Taylor
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41076, USA.
| |
Collapse
|
12
|
Lombardo JP, Peck JA. Effects of exposure to polychlorinated biphenyls during different periods of development on ethanol consumption by male and female rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:334-342. [PMID: 29414356 DOI: 10.1016/j.envpol.2018.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 05/06/2023]
Abstract
In two experiments, male and female Sprague-Dawley rats were exposed to Polychlorinated Biphenyls (PCBs) to assess the effect PCBs, an estrogenic endocrine disrupting chemical (EEDC), would have on the voluntary consumption of alcohol. There are several EEDCs in our food that are known to increase estrogen in adolescent females. Our objective was to assess the effect that increasing estrogen, by adding the EEDC PCBs would have on volitional intake of alcohol. In Experiment 1, pregnant dams were exposed from gestational days 5-19 to a 1:1 mixture of Aroclor 1254/1260. In Experiment 2, lactating females were exposed to the same dose of 1254:1260 from postnatal days 1-21. In both experiments, a fade-in procedure was used to gradually introduce the rats to the taste of alcohol. At the end of the fade-in series all animals were given limited access (1 h/day) to a water/alcohol solution. We found that females exposed to PCBs, at two developmental periods, consumed significantly more alcohol than unexposed females and exposed and unexposed males. Results of the experiments are discussed in terms of how PCB exposure can disrupt endocrine processes (e.g., estrogenic endocrine disrupting chemicals, EEDC) that increase estrogen in females, thereby leading to increased alcohol consumption. Thus, the present findings suggest that EEDCs, such as PCBs, could contribute to the increase abuse of alcohol in adolescent females.
Collapse
Affiliation(s)
| | - Joshua A Peck
- State University of New York College at Cortland, USA
| |
Collapse
|
13
|
Klinefelter K, Hooven MK, Bates C, Colter BT, Dailey A, Infante SK, Kania-Korwel I, Lehmler HJ, López-Juárez A, Ludwig CP, Curran CP. Genetic differences in the aryl hydrocarbon receptor and CYP1A2 affect sensitivity to developmental polychlorinated biphenyl exposure in mice: relevance to studies of human neurological disorders. Mamm Genome 2017; 29:112-127. [PMID: 29197979 DOI: 10.1007/s00335-017-9728-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that remain a human health concern with newly discovered sources of contamination and ongoing bioaccumulation and biomagnification. Children exposed during early brain development are at highest risk of neurological deficits, but highly exposed adults reportedly have an increased risk of Parkinson's disease. Our previous studies found allelic differences in the aryl hydrocarbon receptor and cytochrome P450 1A2 (CYP1A2) affect sensitivity to developmental PCB exposure, resulting in cognitive deficits and motor dysfunction. High-affinity Ahr b Cyp1a2(-/-) mice were most sensitive compared with poor-affinity Ahr d Cyp1a2(-/-) and wild-type Ahr b Cyp1a2(+/+) mice. Our follow-up studies assessed biochemical, histological, and gene expression changes to identify the brain regions and pathways affected. We also measured PCB and metabolite levels in tissues to determine if genotype altered toxicokinetics. We found evidence of AHR-mediated toxicity with reduced thymus and spleen weights and significantly reduced thyroxine at P14 in PCB-exposed pups. In the brain, the greatest changes were seen in the cerebellum where a foliation defect was over-represented in Cyp1a2(-/-) mice. In contrast, we found no difference in tyrosine hydroxylase immunostaining in the striatum. Gene expression patterns varied across the three genotypes, but there was clear evidence of AHR activation. Distribution of parent PCB congeners also varied by genotype with strikingly high levels of PCB 77 in poor-affinity Ahr d Cyp1a2(-/-) while Ahr b Cyp1a2(+/+) mice effectively sequestered coplanar PCBs in the liver. Together, our data suggest that the AHR pathway plays a role in developmental PCB neurotoxicity, but we found little evidence that developmental exposure is a risk factor for Parkinson's disease.
Collapse
Affiliation(s)
- Kelsey Klinefelter
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Molly Kromme Hooven
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Chloe Bates
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Breann T Colter
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Alexandra Dailey
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Smitha Krishnan Infante
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Izabela Kania-Korwel
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Alejandro López-Juárez
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Clare Pickering Ludwig
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, SC344 Nunn Drive, Highland Heights, KY, 41076, USA.
| |
Collapse
|
14
|
Gaum PM, Gube M, Schettgen T, Putschögl FM, Kraus T, Fimm B, Lang J. Polychlorinated biphenyls and depression: cross-sectional and longitudinal investigation of a dopamine-related Neurochemical path in the German HELPcB surveillance program. Environ Health 2017; 16:106. [PMID: 29017568 PMCID: PMC5635510 DOI: 10.1186/s12940-017-0316-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/02/2017] [Indexed: 05/30/2023]
Abstract
BACKGROUND Exposure to polychlorinated biphenyls (PCBs) is associated with depressive symptomatology. A cause of depressive symptoms is a disturbance in the neurotransmitter system of dopamine (DA). Animal as well as human studies report that PCBs can influence the DA system. This study examined whether PCB-related depressive symptoms are affected by DA metabolites in humans with high PCB body burden. METHODS This study is part of the German HELPcB surveillance program (Health Effects in high Level exposure to PCB) for occupationally exposed workers and their relatives. Data was collected from 178 participants on two measurement time points (t1 and t2) with a one-year time lag in between the two time points. PCBs were analyzed in plasma via human biomonitoring and a validated questionnaire was used to identify existence and severity of depressive symptoms. As a surrogate for DA, we measured its metabolites homovanillic acid (HVA) and vanillylmandelic acid (VMA) in urine. Mediation analyses were performed to test whether the association between PCB exposure and severity of depressive symptoms is mediated by urinary concentration of DA metabolites HVA and VMA. The mediation was tested with the SPSS macro MEDIATE. RESULTS We found a significant mediation over time for lower-chlorinated, higher-chlorinated and dioxin-like PCBs. The positive association between PCB exposure with severity of depressive symptoms was mediated by the main DA metabolite HVA. At t1 a higher exposure with PCBs was associated with lower concentration in urinary HVA. A reduced HVA concentration at t1 was correlated with increased depressive symptoms severity at t2. No meditations were found for VMA. CONCLUSIONS This work indicates that the association of PCB exposure and an increase of depressive symptoms after one year is mediated by the DA metabolite HVA as a surrogate for DA. These are first steps towards finding an explanation for an underlying neurochemical pathomechanism of PCB-related depressive symptomatology.
Collapse
Affiliation(s)
- Petra Maria Gaum
- Institute for Occupational Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Monika Gube
- Institute for Occupational Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Health Office of the city and area of Aachen, Trierer Straße 1, 52070 Aachen, Germany
| | - Thomas Schettgen
- Institute for Occupational Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Franziska Maria Putschögl
- Institute for Occupational Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J 5, 68159 Mannheim, Germany
| | - Thomas Kraus
- Institute for Occupational Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Bruno Fimm
- Clinic for Neurology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jessica Lang
- Institute for Occupational Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
15
|
Miller MM, Sprowles JLN, Voeller JN, Meyer AE, Sable HJK. Cocaine sensitization in adult Long-Evans rats perinatally exposed to polychlorinated biphenyls. Neurotoxicol Teratol 2017; 62:34-41. [PMID: 28465083 DOI: 10.1016/j.ntt.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 11/15/2022]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental toxicants known to adversely affect the nervous system and more specifically the dopamine system. Developmental PCB exposure in rats has been shown to produce alterations in dopaminergic signaling that persist into adulthood. The reinforcing properties of psychostimulants are typically modulated via the dopaminergic system, so this project used a behavioral sensitization paradigm to evaluate whether perinatal PCB exposure altered sensitization to the psychostimulant cocaine. Long-Evans rats were perinatally exposed to 0, 3 or 6mg/kg/day of PCBs throughout gestation and lactation. One male and female pup from each litter was retained for behavioral testing. Both horizontal and vertical activity were used to measure cocaine sensitization following repeated injections of 10mg/kg cocaine (IP) on post-natal day (PND) 91-96 and again after a week in the home cage on PND 103. A final locomotor activity session following a challenge injection of 20mg/kg was given on PND 110 to further evaluate the availability of presynaptic dopamine stores. The PCB-exposed rats appeared to be pre-sensitized to cocaine as they exhibited a greater degree of cocaine-induced locomotor activation to the initial injections of cocaine and therefore demonstrated a more rapid onset of cocaine behavioral sensitization compared to non-exposed controls. These results add to the literature detailing how perinatal exposure to dopamine-disrupting contaminants can change the developing brain, thereby producing permanent changes in the neurobehavioral response to psychostimulants later in life.
Collapse
Affiliation(s)
- Mellessa M Miller
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA
| | - Jenna L N Sprowles
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jason N Voeller
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA
| | - Abby E Meyer
- Department of Psychological Science, University of North, Georgia, Dahlonega, GA 30597
| | - Helen J K Sable
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
16
|
Nandipati S, Litvan I. Environmental Exposures and Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090881. [PMID: 27598189 PMCID: PMC5036714 DOI: 10.3390/ijerph13090881] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD) affects millions around the world. The Braak hypothesis proposes that in PD a pathologic agent may penetrate the nervous system via the olfactory bulb, gut, or both and spreads throughout the nervous system. The agent is unknown, but several environmental exposures have been associated with PD. Here, we summarize and examine the evidence for such environmental exposures. We completed a comprehensive review of human epidemiologic studies of pesticides, selected industrial compounds, and metals and their association with PD in PubMed and Google Scholar until April 2016. Most studies show that rotenone and paraquat are linked to increased PD risk and PD-like neuropathology. Organochlorines have also been linked to PD in human and laboratory studies. Organophosphates and pyrethroids have limited but suggestive human and animal data linked to PD. Iron has been found to be elevated in PD brain tissue but the pathophysiological link is unclear. PD due to manganese has not been demonstrated, though a parkinsonian syndrome associated with manganese is well-documented. Overall, the evidence linking paraquat, rotenone, and organochlorines with PD appears strong; however, organophosphates, pyrethroids, and polychlorinated biphenyls require further study. The studies related to metals do not support an association with PD.
Collapse
Affiliation(s)
- Sirisha Nandipati
- Department of Neurosciences Movement Disorders Center, University of California, San Diego, CA 92093, USA.
| | - Irene Litvan
- Department of Neurosciences Movement Disorders Center, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
17
|
Sumathi T, Asha D, Nagarajan G, Sreenivas A, Nivedha R. L-Theanine alleviates the neuropathological changes induced by PCB (Aroclor 1254) via inhibiting upregulation of inflammatory cytokines and oxidative stress in rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:99-117. [PMID: 26826962 DOI: 10.1016/j.etap.2016.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
The present study is aimed at evaluating the protective role of L-theanine on aroclor 1254-induced oxidative stress in rat brain. Intraperitoneal administration of Aroclor 1254 (2 mg/kg b.wt. for 30 days) caused oxidative stress in rat brain and also caused neurobehavioral changes. Oxidative stress was assessed by determining the levels of lipid peroxide (LPO), protein carbonyl content, and changes in activities of creatine kinase (CK), acetylcholinesterase (AchE), and ATPases in the hippocampus, cerebellum and cerebral cortex of control and experimental rats. Histopathological results showed that PCB caused neuronal loss in all three regions. PCB upregulated the mRNA expressions of inflammatory cytokines. Oral administration of L-theanine (200 mg/kg b.wt.) increased the status of antioxidants, decreased the levels of LPO, nitric oxide (NO) and increased the activities of CK, AchE and ATPases. L-Theanine restored normal architecture of brain regions and downregulated the expression of inflammatory cytokines. In conclusion, L-theanine shows a protective role against PCBs-induced oxidative damage in rat brain.
Collapse
Affiliation(s)
- Thangarajan Sumathi
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113, India.
| | - Deivasigamani Asha
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113, India
| | - Ganesan Nagarajan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113, India
| | - Arivazhagan Sreenivas
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113, India
| | - Rajendran Nivedha
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113, India
| |
Collapse
|
18
|
Bell MR, Hart BG, Gore AC. Two-hit exposure to polychlorinated biphenyls at gestational and juvenile life stages: 2. Sex-specific neuromolecular effects in the brain. Mol Cell Endocrinol 2016; 420:125-37. [PMID: 26620572 PMCID: PMC4703537 DOI: 10.1016/j.mce.2015.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
Abstract
Exposures to polychlorinated biphenyls (PCBs) during early development have long-lasting, sexually dimorphic consequences on adult brain and behavior. However, few studies have investigated their effects during juvenile development, a time when increases in pubertal hormones influence brain maturation. Here, male and female Sprague Dawley rats were exposed to PCBs (Aroclor 1221, 1 mg/kg/day) or vehicle prenatally, during juvenile development, or both, and their effects on serum hormone concentrations, gene expression, and DNA methylation were assessed in adulthood. Gene expression in male but not female brains was affected by 2-hits of PCBs, a result that paralleled behavioral effects of PCBs. Furthermore, the second hit often changed the effects of a first hit in complex ways. Thus, PCB exposures during critical fetal and juvenile developmental periods result in unique neuromolecular phenotypes, with males most vulnerable to the treatments.
Collapse
Affiliation(s)
- Margaret R Bell
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bethany G Hart
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Lombardo JP, Berger DF, Hunt A, Carpenter DO. Inhalation of Polychlorinated Biphenyls (PCB) Produces Hyperactivity in Rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1142-1153. [PMID: 26398098 DOI: 10.1080/15287394.2015.1060913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a serious behavioral syndrome seen in children, and more common in males than females. There is increasing evidence that prenatal and/or early life exposure to persistent organic pollutants (POP) such as polychlorinated biphenyls (PCB) is associated with increased risk of ADHD occurrence. While PCB exposure is usually attributed to ingestion of contaminated food, recent reports of elevated PCB concentrations in indoor air, especially in schools, raised concern regarding inhalation as an important route of exposure to PCB with consequent effects on neurobehavior. The effects of exposure to air contaminated with Aroclor 1248 or contaminated sediment (SED) from the St. Lawrence River were examined on operant behavior of male and female Sprague-Dawley rats. Data showed that relative to controls, vapor-phase inhalation of PCB, whether from blowing air over Aroclor 1248 or from blowing air over sediment contaminated with PCB, resulted in hyperactivity and impatience in rats, more pronounced in males than females. These results are consistent with the hypothesis that inhalation of PCB may contribute to behavioral abnormalities in children.
Collapse
Affiliation(s)
- John P Lombardo
- a Department of Psychology , SUNY College at Cortland , Cortland , New York , USA
| | - David F Berger
- a Department of Psychology , SUNY College at Cortland , Cortland , New York , USA
| | | | - David O Carpenter
- c Institute for Health and the Environment, University at Albany , Rensselaer , New York , USA
| |
Collapse
|
20
|
Genskow KR, Bradner JM, Hossain MM, Richardson JR, Caudle WM. Selective damage to dopaminergic transporters following exposure to the brominated flame retardant, HBCDD. Neurotoxicol Teratol 2015; 52:162-9. [PMID: 26073293 DOI: 10.1016/j.ntt.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 12/01/2022]
Abstract
Over the last several decades, the use of halogenated organic compounds has become the cause of environmental and human health concerns. Of particular notoriety has been the establishment of the neurotoxicity of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). The subsequent banning of PBDEs has led to greatly increased use of 1,2,5,6,9,10-hexabromocyclododecane (HBCDD, also known as HBCD) as a flame retardant in consumer products. The physiochemical similarities between HBCDD and PBDEs suggest that HBCDD may also be neurotoxic to the dopamine system, which is specifically damaged in Parkinson disease (PD). The purpose of this study was to assess the neurotoxicity of HBCDD on the nigrostriatal dopamine system using an in vitro and in vivo approach. We demonstrate that exposure to HBCDD (0-25 μM) for 24 h causes significant cell death in the SK-N-SH catecholaminergic cell line, as well as reductions in the growth and viability of TH+ primary cultured neurons at lower concentrations (0-10 μM) after 72 h of treatment. Assessment of the in vivo neurotoxicity of HBCDD (25 mg/kg for 30 days) resulted in significant reductions in the expression of the striatal dopamine transporter and vesicular monoamine transporter 2, both of which are integral in mediating dopamine homeostasis and neurotransmission in the dopamine circuit. However, no changes were seen in the expression of tyrosine hydroxylase in the dopamine terminal, or striatal levels of dopamine. To date, these are the first data to demonstrate that exposure to HBCDD disrupts the nigrostriatal dopamine system. Given these results and the ubiquitous nature of HBCDD in the environment, its possible role as an environmental risk factor for PD should be further investigated.
Collapse
Affiliation(s)
- Kelly R Genskow
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA
| | - Joshua M Bradner
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA; Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322-3090, USA
| | - Muhammad M Hossain
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School Piscataway, NJ 08854, USA
| | - Jason R Richardson
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School Piscataway, NJ 08854, USA
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA; Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322-3090, USA.
| |
Collapse
|
21
|
Putschögl FM, Gaum PM, Schettgen T, Kraus T, Gube M, Lang J. Effects of occupational exposure to polychlorinated biphenyls on urinary metabolites of neurotransmitters: A cross-sectional and longitudinal perspective. Int J Hyg Environ Health 2015; 218:452-60. [PMID: 25869187 DOI: 10.1016/j.ijheh.2015.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 03/18/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are chemicals which were used for industrial purposes and are known to induce various adverse health effects. They are also known to be neurotoxic and numerous targets within the central nervous system have been identified in previous studies. Specifically, the neurotransmitters dopamine (DA) and norepinephrine (NE) are influenced by PCBs as indicated in studies involving animals. However, limited evidence has been published documenting PCB induced changes in the neurotransmitter system in humans. OBJECTIVE In the present study, we examined the association between a higher PCB body burden following occupational exposure and possible changes in human neurotransmitter metabolites. METHODS Within a medical surveillance programme called HELPcB (Health Effects in High-Level Exposure to PCB) that monitors adverse health effects of occupational PCB exposure, urine samples were obtained (n(T1) = 166; n(T2) = 177 and n(T3) = 141). The urinary concentrations of the metabolites homovanillic acid (HVA; for DA) and vanillylmandelic acid (VMA; for NE) were analyzed. Blood samples were obtained by vena puncture in order to determine the internal exposure to PCBs with human biomonitoring. RESULTS A cross-sectional analysis indicated a significant negative effect of PCB exposure on HVA and VMA. Longitudinally, an initially higher exposure to higher chlorinated PCBs was followed by constant reduced HVA level over three consecutive years. Exploratory analyses show different long-term effects for different PCBs according to their chlorination degree. A higher exposure with lower chlorinated PCBs leads to an increase of VMA and HVA. Conversely, a higher exposure to all PCBs results in a reduction of HVA. CONCLUSION This study, to our knowledge, is the first to document changes in neurotransmitter metabolites after occupational PCB exposure in humans. This finding advances evidence obtained from past research, and identifies one potential pathomechanism in the central dopaminergic system of humans.
Collapse
Affiliation(s)
| | - Petra Maria Gaum
- Institute of Occupational Medicine, RWTH Aachen University, Germany
| | - Thomas Schettgen
- Institute of Occupational Medicine, RWTH Aachen University, Germany
| | - Thomas Kraus
- Institute of Occupational Medicine, RWTH Aachen University, Germany
| | - Monika Gube
- Institute of Occupational Medicine, RWTH Aachen University, Germany
| | - Jessica Lang
- Institute of Occupational Medicine, RWTH Aachen University, Germany
| |
Collapse
|
22
|
Abstract
In recent years, the contribution of exposure to environmental toxicants has been recognized as a significant contributor to the etiopathogenesis of parkinsonism. Of these toxicants, exposure to pesticides, metals, solvents used in manufacturing processes, as well as flame-retardant chemicals used in consumer and commercial products, has received the greatest attention as possible risk factors. Related to this, individuals who are exposed to these compounds at high concentrations or for prolonged periods of time in an occupational setting appear to be one of the more vulnerable populations to these effects. Our understanding of which compounds are involved and the potential molecular pathways that are susceptible to these chemicals and may underlie the pathogenesis has greatly improved. However, there are still hundreds of chemicals that we are exposed to in the environment for which we do not have any information on their potential neurotoxicity on the nigrostriatal dopamine system. Thus, using our past accomplishments as a blueprint, future endeavors should focus on elaborating upon these initial findings in order to identify specific and relevant chemical toxicants in our environment that can impact the risk of parkinsonism and work towards a means to attenuate or abolish their effects on the human population.
Collapse
Affiliation(s)
- W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
23
|
The disease intersection of susceptibility and exposure: Chemical exposures and neurodegenerative disease risk. Alzheimers Dement 2014; 10:S213-25. [DOI: 10.1016/j.jalz.2014.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Gaum PM, Esser A, Schettgen T, Gube M, Kraus T, Lang J. Prevalence and incidence rates of mental syndromes after occupational exposure to polychlorinated biphenyls. Int J Hyg Environ Health 2014; 217:765-74. [PMID: 24951400 DOI: 10.1016/j.ijheh.2014.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 11/30/2022]
Abstract
Mental disorders were often reported following hazardous substance exposure. The present study analyses this association in relation to a work-related exposure to PCBs (polychlorinated biphenyls). Specifically, the aim was to investigate (a) the relationship of inner PCB burden and the severity of mental symptoms and (b) the prevalence and incidence of mental syndromes. This study was initiated as part of the occupational medical surveillance program HELPcB (Health Effects in high level exposure to PCB). A total of 136 individuals were included in the analysis. The plasma PCBs were collected via biomonitoring and the psychological syndromes (i.e., somatoform, depressive, anxiety, panic) with a standardized screening instrument. The relationship of PCB and the severity of mental syndromes were analyzed via linear regression. Prevalence rates, the respective odds ratios (OR) and the incidence rates were calculated with logistic regressions. We thereby compared the higher-PCB burdened individuals with those individuals showing PCB levels comparable to the general population. We found especially a significant relationship between PCB burden and depressivity. Within the higher-PCB-exposed group prevalence rates were descriptively higher than for normal-exposed participants, except for anxiety syndrome. Similarly, the higher exposed group had a higher risk for developing a depressive syndrome. The incidence rates were always descriptively higher in higher-exposed group. To summarize, this study supports a relationship between PCB exposure and mental illness.
Collapse
Affiliation(s)
- Petra M Gaum
- Institute for Occupational Medicine, RWTH Aachen University, Germany.
| | - André Esser
- Institute for Occupational Medicine, RWTH Aachen University, Germany
| | - Thomas Schettgen
- Institute for Occupational Medicine, RWTH Aachen University, Germany
| | - Monika Gube
- Institute for Occupational Medicine, RWTH Aachen University, Germany
| | - Thomas Kraus
- Institute for Occupational Medicine, RWTH Aachen University, Germany
| | - Jessica Lang
- Institute for Occupational Medicine, RWTH Aachen University, Germany
| |
Collapse
|
25
|
Fielding JR, Rogers TD, Meyer AE, Miller MM, Nelms JL, Mittleman G, Blaha CD, Sable HJK. Stimulation-evoked dopamine release in the nucleus accumbens following cocaine administration in rats perinatally exposed to polychlorinated biphenyls. Toxicol Sci 2013; 136:144-53. [PMID: 23912914 DOI: 10.1093/toxsci/kft171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Exposure to polychlorinated biphenyls (PCBs) alters brain dopamine (DA) concentrations and DA receptor/transporter function, suggesting the reinforcing properties of drugs of abuse acting on the DA system may be affected by PCB exposure. Female Long-Evans rats were orally exposed to 0, 3, or 6 mg/kg/day PCBs from 4 weeks prior to breeding until litters were weaned on postnatal day 21. In vivo fixed potential amperometry (FPA) was used in adult anesthetized offspring to determine whether perinatal PCB exposure altered (1) presynaptic DA autoreceptor (DAR) sensitivity, (2) electrically evoked nucleus accumbens (NAc) DA efflux following administration of cocaine, and (3) the rate of depletion of presynaptic DA stores. One adult male and female littermate were tested using FPA following a single injection of cocaine (20 mg/kg ip), whereas a second adult male and female littermate were tested following the last of seven daily cocaine injections of the same dose. The carbon fiber recording microelectrode was positioned in the NAc core, and DA oxidation currents (i.e., DA release) evoked by brief stimulation of the medial forebrain bundle (MFB) were quantified before and after administration of cocaine. PCB-exposed rats exhibited enhanced stimulation-evoked DA release (relative to baseline) following a single injection of cocaine. Although nonexposed controls exhibited typical DA sensitization following repeated cocaine administration, this effect was attenuated in PCB-exposed rats. In addition, DAR sensitivity was higher (males only), and the rate of depletion of presynaptic DA stores was greater in PCB-exposed animals relative to nonexposed controls. These results indicate that perinatal PCB exposure can modify DA synaptic transmission in the NAc in a manner previously shown to alter the reinforcing properties of cocaine.
Collapse
Affiliation(s)
- Jenna R Fielding
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bradner JM, Suragh TA, Wilson WW, Lazo CR, Stout KA, Kim HM, Wang MZ, Walker DI, Pennell KD, Richardson JR, Miller GW, Caudle WM. Exposure to the polybrominated diphenyl ether mixture DE-71 damages the nigrostriatal dopamine system: role of dopamine handling in neurotoxicity. Exp Neurol 2012; 241:138-47. [PMID: 23287494 DOI: 10.1016/j.expneurol.2012.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 11/26/2022]
Abstract
In the last several decades polybrominated diphenyl ethers (PBDEs) have replaced the previously banned polychlorinated biphenyls (PCBs) in multiple flame retardant utilities. As epidemiological and laboratory studies have suggested PCBs as a risk factor for Parkinson's disease (PD), the similarities between PBDEs and PCBs suggest that PBDEs have the potential to be neurotoxic to the dopamine system. The purpose of this study was to evaluate the neurotoxic effects of the PBDE mixture, DE-71, on the nigrostriatal dopamine system and address the role of altered dopamine handling in mediating this neurotoxicity. Using an in vitro model system we found DE-71 effectively caused cell death in a dopaminergic cell line as well as reducing the number of TH+ neurons isolated from VMAT2 WT and LO animals. Assessment of DE-71 neurotoxicity in vivo demonstrated significant deposition of PBDE congeners in the brains of mice, leading to reductions in striatal dopamine and dopamine handling, as well as reductions in the striatal dopamine transporter (DAT) and VMAT2. Additionally, DE-71 elicited a significant locomotor deficit in the VMAT2 WT and LO mice. However, no change was seen in TH expression in dopamine terminal or in the number of dopamine neurons in the substantia nigra pars compacta (SNpc). To date, these are the first data to demonstrate that exposure to PBDEs disrupts the nigrostriatal dopamine system. Given their similarities to PCBs, additional laboratory and epidemiological research should be considered to assess PBDEs as a potential risk factor for PD and other neurological disorders.
Collapse
Affiliation(s)
- Joshua M Bradner
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Industrial toxicants and Parkinson's disease. Neurotoxicology 2012; 33:178-88. [PMID: 22309908 DOI: 10.1016/j.neuro.2012.01.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/19/2012] [Accepted: 01/23/2012] [Indexed: 11/22/2022]
Abstract
The exposure of the human population to environmental contaminants is recognized as a significant contributing factor for the development of Parkinson's disease (PD) and other forms of parkinsonism. While pesticides have repeatedly been identified as risk factors for PD, these compounds represent only a subset of environmental toxicants that we are exposed to on a regular basis. Thus, non-pesticide contaminants, such as metals, solvents, and other organohalogen compounds have also been implicated in the clinical and pathological manifestations of these movement disorders and it is these non-pesticide compounds that are the subject of this review. As toxic exposures to these classes of compounds can result in a spectrum of PD or PD-related disorders, it is imperative to appreciate shared clinico-pathological characteristics or mechanisms of action of these compounds in order to further delineate the resultant disorders as well as identify improved preventive strategies or therapeutic interventions.
Collapse
|
28
|
Lee DW, Notter SA, Thiruchelvam M, Dever DP, Fitzpatrick R, Kostyniak PJ, Cory-Slechta DA, Opanashuk LA. Subchronic polychlorinated biphenyl (Aroclor 1254) exposure produces oxidative damage and neuronal death of ventral midbrain dopaminergic systems. Toxicol Sci 2011; 125:496-508. [PMID: 22094459 DOI: 10.1093/toxsci/kfr313] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent epidemiologic studies have demonstrated a link between organochlorine and pesticide exposure to an enhanced risk for neurodegenerative disorders such as Parkinson's disease (PD). A common biological phenomenon underlying cell injury associated with both polychlorinated biphenyl (PCB) exposure and dopaminergic neurodegeneration during aging is oxidative stress (OS). In this study, we tested the hypothesis that oral PCB exposure, via food ingestion, impairs dopamine systems in the adult murine brain. We determined whether PCB exposure was associated with OS in dopaminergic neurons, a population of cells that selectively degenerate in PD. After 4 weeks of oral exposure to the PCB mixture Aroclor 1254, several congeners, mostly ortho substituted, accumulated throughout the brain. Significant increases in locomotor activity were observed within 2 weeks, which persisted after cessation of PCB exposure. Stereologic analyses revealed a significant loss of dopaminergic neurons within the substantia nigra and ventral tegmental area. However, striatal dopamine levels were elevated, suggesting that compensatory mechanisms exist to maintain dopamine homeostasis, which could contribute to the observed increases in locomotor activity following PCB exposure. Biochemical experiments revealed alterations in OS markers, including increases in SOD and HO-1 levels and the presence of oxidatively modified lipids and proteins. These findings were accompanied by elevated iron levels within the striatal and midbrain regions, perhaps due to the observed dysregulation of transferrin receptors and ferritin levels following PCB exposure. In this study, we suggest that both OS and the uncoupling of iron regulation contribute to dopamine neuron degeneration and hyperactivity following PCB exposure.
Collapse
Affiliation(s)
- Donna W Lee
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Discriminative stimulus effects of cocaine and amphetamine in rats following developmental exposure to polychlorinated biphenyls (PCBs). Neurotoxicol Teratol 2010; 33:255-62. [PMID: 20933596 DOI: 10.1016/j.ntt.2010.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/31/2010] [Accepted: 10/02/2010] [Indexed: 01/16/2023]
Abstract
Polychlorinated biphenyls (PCBs) are environmental neurotoxicants known to affect the brain dopaminergic (DA) system. This project investigated whether developmental exposure to PCBs would alter the discriminative stimulus effects of psychostimulant drugs known to act on the DA system. Female Long-Evans rats were orally exposed to 0, 3, or 6 mg/kg/day of an environmentally relevant PCB mixture from four weeks prior to breeding through weaning of their litters on PND 21. When they reached adulthood one male and female/litter were trained to discriminate cocaine (10.0 mg/kg, IP) from saline by repeatedly pairing cocaine injections with reinforcement on one operant response lever, and saline injections with reinforcement on the other lever. After response training, generalization tests to four lower doses of cocaine (7.5, 5.0, 2.5, and 1.25 mg/kg, IP) and to amphetamine (1.0, 0.5, 0.25, and 0.125 mg/kg, IP) were given two days/week, with additional training dose days in-between. Percent responding of the PCB-exposed rats on the cocaine-paired lever was significantly higher than that of controls for the highest generalization dose of cocaine, and lower than that of controls for the highest dose of amphetamine. Response rate and percent responding on the cocaine lever did not differ among the exposure groups on the days when the training dose of cocaine was given, suggesting that the generalization test results were not due to pre-existing differences in discrimination ability or rate of responding. These findings suggest that developmental PCB exposure can alter the interoceptive cues of psychostimulants.
Collapse
|
30
|
Seegal RF, Marek KL, Seibyl JP, Jennings DL, Molho ES, Higgins DS, Factor SA, Fitzgerald EF, Hills EA, Korrick SA, Wolff MS, Haase RF, Todd AC, Parsons P, McCaffrey RJ. Occupational exposure to PCBs reduces striatal dopamine transporter densities only in women: a beta-CIT imaging study. Neurobiol Dis 2010; 38:219-25. [PMID: 20096358 DOI: 10.1016/j.nbd.2010.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 11/18/2022] Open
Abstract
We hypothesize that occupational exposure to PCBs is associated with a reduction in central dopamine (DA) similar to changes previously seen in PCB exposed adult non-human primates. To test that hypothesis, we used [(123)I]beta-CIT SPECT imaging to estimate basal ganglia DA transporter density in former capacitor workers. Women, but not men, showed an inverse relationship between lipid-adjusted total serum PCB concentrations and DA transporter densities in the absence of differences in serum PCB concentrations. These sex differences may reflect age-related reductions in the levels of gonadal hormones since these hormones have been shown experimentally to alter response to DA neurotoxicants. These findings may aid in better understanding the roles that sex and age play in modifying central DA function following exposure, not only to PCBs, but also to other DA neurotoxicants as well as further elucidating the role of gonadal hormones in influencing the initiation and/or progression of neurodegenerative disorders.
Collapse
Affiliation(s)
- Richard F Seegal
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Satoh K, Nonaka R, Nakae D, Ogata A. Increase in in Utero Exposure to a Migrant, 4,4'-Butylidenebis(6-t-butyl-m-cresol), from Nitrile-Butadiene Rubber Gloves on Brain Aromatase Activity in Male Rats. Biol Pharm Bull 2010; 33:6-10. [DOI: 10.1248/bpb.33.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kanako Satoh
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health
| | - Ryouichi Nonaka
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health
| | - Dai Nakae
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health
| | - Akio Ogata
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health
| |
Collapse
|
32
|
Rayne S, Forest K. Quantitative structure-activity relationship (QSAR) studies for predicting activation of the ryanodine receptor type 1 channel complex (RyR1) by polychlorinated biphenyl (PCB) congeners. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:355-362. [PMID: 20390877 DOI: 10.1080/10934520903467980] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A quantitative structure-activity relationship (QSAR) was developed to predict the congener specific ryanodine receptor type RyR1 activity of all 209 polychlorinated biphenyl (PCB) congeners. A three-variable QSAR equation was obtained via stepwise forward linear regression on an unsupervised forward selection reduced data set from an initial database. Application of the QSAR towards predicting EC(2x) values for all 209 PCB congeners indicated good agreement in substitution pattern trends between the experimental and estimated data sets. The QSAR model predicts a less than two-fold increase in maximal potency among all congeners outside the experimental database, and it appears that no high-potency PCB congeners with EC(2x) values much less than 0.2 microM exist. Increasing RyR1-neuro toxicity equivalents with increasing homologue number and Aroclor chlorination likely reflect indirect molecular controls on toxicity, since congeners with multiple ortho substituents-the primary structural feature controlling a lack of coplanarity and resulting neurotoxicity-are more likely to be found in higher homologues.
Collapse
Affiliation(s)
- Sierra Rayne
- Ecologica Research, Penticton, British Columbia, Canada
| | | |
Collapse
|
33
|
Cummings J, Clemens L, Nunez A. Exposure to PCB 77 affects partner preference but not sexual behavior in the female rat. Physiol Behav 2008; 95:471-5. [DOI: 10.1016/j.physbeh.2008.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/09/2008] [Accepted: 07/09/2008] [Indexed: 12/01/2022]
|
34
|
Petersen MS, Halling J, Bech S, Wermuth L, Weihe P, Nielsen F, Jørgensen PJ, Budtz-Jørgensen E, Grandjean P. Impact of dietary exposure to food contaminants on the risk of Parkinson's disease. Neurotoxicology 2008; 29:584-90. [DOI: 10.1016/j.neuro.2008.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 02/29/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
|
35
|
Caudle WM, Richardson JR, Delea KC, Guillot TS, Wang M, Pennell KD, Miller GW. Polychlorinated biphenyl-induced reduction of dopamine transporter expression as a precursor to Parkinson's disease-associated dopamine toxicity. Toxicol Sci 2006; 92:490-9. [PMID: 16702228 DOI: 10.1093/toxsci/kfl018] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Epidemiological and laboratory studies have suggested that exposure to polychlorinated biphenyls (PCBs) may be a risk factor for Parkinson's disease. The purpose of this study was to examine the potential mechanisms by which PCBs may disrupt normal functioning of the nigrostriatal dopamine (DA) system. We utilized an environmentally relevant exposure of PCBs (7.5 or 15 mg/kg/day Aroclor 1,254:1,260 for 30 days by oral gavage) to identify early signs of damage to the DA system. This dosing regimen, which resulted in PCB levels similar to those found in human brain samples, did not cause overt degeneration to the DA system as shown by a lack of change in striatal DA levels or tyrosine hydroxylase levels. However, we did observe a dramatic dose-dependent decrease in striatal dopamine transporter (DAT) levels. The observed reductions appear to be specific to the DAT populations located in the striatum, as no change was observed in other dopaminergic brain regions or to other neurotransmitter transporters present in the striatum. These data demonstrate that PCB tissue concentrations similar to those found in postmortem human brain specifically disrupt DA transport, which acts as a precursor to subsequent damage to the DA system. Furthermore, DAT imaging may be useful in evaluating alterations in brain function in human populations exposed to PCBs.
Collapse
Affiliation(s)
- W Michael Caudle
- Department of Environmental and Occupational Health, Rollins School of Public Health and Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, Georgia 30322-3090, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Steenland K, Hein MJ, Cassinelli RT, Prince MM, Nilsen NB, Whelan EA, Waters MA, Ruder AM, Schnorr TM. Polychlorinated biphenyls and neurodegenerative disease mortality in an occupational cohort. Epidemiology 2006; 17:8-13. [PMID: 16357589 DOI: 10.1097/01.ede.0000190707.51536.2b] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Production of polychlorinated biphenyls (PCBs) ended in the United States in the 1970s, but PCBs persist in the environment and are detectable in the blood of approximately 80% of Americans over age 50. PCBs decrease dopamine levels in rats and monkeys. Loss of dopamine is the hallmark of Parkinson disease, a neurodegenerative disease. There are no epidemiologic studies of PCBs and neurodegenerative disease. METHODS We conducted a retrospective mortality study of 17,321 PCB-exposed workers to determine whether mortality from Parkinson disease, dementia, and amyotrophic lateral sclerosis was elevated compared with the U.S. population. All workers had a least 90 days employment in 1 of 3 electrical capacitor plants using PCBs from the 1940s to the 1970s. PCB serum levels from a sample of these workers in the 1970s were approximately 10 times the level of community controls. RESULTS We found no overall excess of Parkinson disease, amyotrophic lateral sclerosis, or dementia in the PCB-exposed cohort (standardized mortality ratios [SMRs]-1.40, 1.11, and 1.26, respectively, and number of deaths-14, 10, and 28 respectively). However, sex-specific analyses revealed that women had an excess of amyotrophic lateral sclerosis (SMR-2.26; 95% confidence interval [CI] = 1.08-4.15; 10 deaths). Furthermore, among highly exposed women (defined by a job-exposure matrix), we found an excess of Parkinson disease (SMR-2.95; 95% CI = 1.08-6.42; 6 deaths) and dementia (SMR-2.04; 95% CI = 1.12-3.43; 14 deaths). CONCLUSIONS Our data are limited due to small numbers and reliance on mortality rather than incidence data, but are suggestive of an effect of PCBs on neurodegenerative disease for women. The literature does not offer an explanation for why women would be more affected than men by PCB exposure for these outcomes.
Collapse
Affiliation(s)
- Kyle Steenland
- Rollins School of Public Health, Emory University, 1518 Clifton Rd., Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Malkiewicz K, Mohammed R, Folkesson R, Winblad B, Szutowski M, Benedikz E. Polychlorinated biphenyls alter expression of α-synuclein, synaptophysin and parkin in the rat brain. Toxicol Lett 2006; 161:152-8. [PMID: 16174552 DOI: 10.1016/j.toxlet.2005.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 08/17/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
Polychlorinated Biphenyls (PCBs)-induced changes in synaptic transmission are one of the effects of their neurotoxicity but the mechanism remains unknown. We assessed the in vivo effects of the PCBs mixture, Aroclor 1254 on the expression of neuronal proteins that are involved in the synaptic function and/or are associated with neurodegeneration. Wistar rats were treated orally with repeated doses of Aroclor 1254 and the levels of soluble alpha-synuclein, parkin, synaptophysin and amyloid precursor protein (APP) in the brain were determined by Western blotting. The results showed that Aroclor did not cause changes in the expression and processing of APP but at a dose 100 microg/g/day repeated for 6 days caused a decrease in the expression of alpha-synuclein in the cerebellum, cortex, hippocampus and hypothalamus of the animals sacrificed 2 days after treatment. The decrease in alpha-synuclein was accompanied by a transient increase in parkin and synaptophysin levels. Interestingly, in the hypothalamus the levels of alpha-synuclein remained decreased after 21 days post treatment perhaps due to regional differences in the PCBs elimination or perhaps a more specific interaction with the dopaminergic cells that are present in the hypothalamus that needs to be investigated further.
Collapse
Affiliation(s)
- Katarzyna Malkiewicz
- Karolinska Institutet, Neurotec, Section of Experimental Geriatrics, KFC, Novum, 141 86 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Lee JY, Kim JW, Lim HS, Joo WH, Cho YK, Moon JY. Changes in antioxidant defense systems by 2,2',5,5'-tetrachlorobiphenyl exposure in neuronal SK-N-MC cells. Toxicol Lett 2005; 157:139-49. [PMID: 15837001 DOI: 10.1016/j.toxlet.2005.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 01/24/2005] [Accepted: 01/24/2005] [Indexed: 01/08/2023]
Abstract
Polychlorinated biphenyls (PCBs) are known to alter the mammalian antioxidant defense system. To determine whether similar detoxification processes are activated in human neuronal cells, we investigated activities of antioxidant enzymes and the glutathione status (i.e., the levels of reduced and oxidized glutathione, GSH and GSSG) in human neuronal SK-N-MC cells exposed to 2,2',5,5'-tetrachlorobiphenyl (PCB 52). Upon PCB 52 treatment, time- and concentration-dependent inhibitions of cell viability were observed. PCB 52 did not affect GSH contents upon increasing the concentration up to 15 microg/ml, but significant depletions in GSH were observed at the concentrations of 20 and 25 microg/ml. PCB 52 exposure increased GSSG levels in the SK-N-MC cells, while GSH levels were decreased, and these changes naturally modified the GSSG/GSH ratios. Cytosolic glutathione S-transferase (GST) activity with 1-chloro-2,4-dinitrobenzene as substrate was enhanced by two-fold in neuronal cells after exposure to PCB 52 versus controls. In contrast, neuronal cells showed a sustained decrease in glutathione peroxidase activity with increasing concentrations of PCB 52, and a sustained decrease in Cu/Zn-superoxide dismutase (SOD) activity with increasing concentrations of PCB 52. Catalase activity was increased until 12 h after exposure to PCB 52, but was decreased 24 h after exposure. Overall, these results imply a major effect of PCB 52 on GSH status and upon the activities of antioxidant enzymes in human neuronal SK-N-MC cells, and upon the overall process of detoxification in human neuronal cells.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Biochemistry and Health Sciences, College of Natural Sciences, Changwon National University, Changwon, Kyungnam 641-773, South Korea
| | | | | | | | | | | |
Collapse
|
40
|
Lehmler HJ, Robertson LW, Garrison AW, Kodavanti PRS. Effects of PCB 84 enantiomers on [3H]-phorbol ester binding in rat cerebellar granule cells and 45Ca2+-uptake in rat cerebellum. Toxicol Lett 2005; 156:391-400. [PMID: 15763638 DOI: 10.1016/j.toxlet.2004.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 12/30/2004] [Accepted: 12/30/2004] [Indexed: 10/25/2022]
Abstract
There is evidence that polychlorinated biphenyl (PCB) congeners with ortho chlorine substituents have potential to cause neurotoxicity. Many PCB congeners implicated in these neurotoxic effects are chiral. It is currently unknown if the enantiomers of chiral PCB congeners have different neurotoxic effects. We herein report the effect of racemic 2,2',3,3',6-pentachlorobiphenyl (PCB 84) and its enantiomers on two neurochemical measures, protein kinase C (PKC) translocation as determined by [3H]-phorobol ester binding in cerebellar granule cells and Ca2+-sequestration as determined by 45Ca2+-uptake by microsomes isolated from adult rat cerebellum. Both (+)- and (-)-PCB 84 increased [3H]-phorobol ester binding in a concentration-dependent manner with (-)-PCB 84 being slightly more potent. Racemic PCB 84 was significantly more potent and efficacious than the pure enantiomers alone. (-)- and (+)-PCB 84 each inhibited microsomal 45Ca2+-uptake to a similar extent, whereas racemic PCB 84 was more potent and efficacious. These results indicate that PCB 84 enantiomers alone can have different potencies, and these may differ from that of the racemic mixture, observations that may have important implications for understanding the mechanisms of neurotoxicity of chiral PCB congeners.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, #124 IREH, Iowa City, IA 52242-5000, USA.
| | | | | | | |
Collapse
|
41
|
Giesy JP, Kurunthachalam K. Dioxin‐like and non‐dioxin like effects of polychlorinated biphenyls: Implications for risk assessment. ACTA ACUST UNITED AC 2002. [DOI: 10.1046/j.1440-1770.2002.00185.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kannan Kurunthachalam
- Department of Zoology, National Food Safety and Toxicology Center, Institute of Environmental Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
42
|
Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med 2002; 8:185-92. [PMID: 12006126 DOI: 10.1089/107555302317371479] [Citation(s) in RCA: 364] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The number of obese people worldwide has escalated recently, revealing a complex picture of significant variations among nations and different profiles among adults and children, regions, and occupations. The commonly held causes of obesity-overeating and inactivity-do not explain the current obesity epidemic. There is evidence of a general decrease in food consumption by humans and a significant decline in their overall levels of physical activity. There is also more evidence to indicate that the body's natural weight-control mechanisms are not functioning properly in obesity. Because the obesity epidemic occurred relatively quickly, it has been suggested that environmental causes instead of genetic factors maybe largely responsible. What has, up to now, been overlooked is that the earth's environment has changed significantly during the last few decades because of the exponential production and usage of synthetic organic and inorganic chemicals. Many of these chemicals are better known for causing weight loss at high levels of exposure but much lower concentrations of these same chemicals have powerful weight-promoting actions. This property has already been widely exploited commercially to produce growth hormones that fatten livestock and pharmaceuticals that induce weight gain in grossly underweight patients. This paper presents a hypothesis that the current level of human exposure to these chemicals may have damaged many of the body's natural weight-control mechanisms. Furthermore, it is posited here that these effects, together with a wide range of additional, possibly synergistic, factors may play a significant role in the worldwide obesity epidemic.
Collapse
Affiliation(s)
- Paula F Baillie-Hamilton
- Occupational and Environmental Health Research Group at Stirling, Stirling University, Scotland.
| |
Collapse
|
43
|
Mariussen E, Myhre O, Reistad T, Fonnum F. The polychlorinated biphenyl mixture aroclor 1254 induces death of rat cerebellar granule cells: the involvement of the N-methyl-D-aspartate receptor and reactive oxygen species. Toxicol Appl Pharmacol 2002; 179:137-44. [PMID: 11906243 DOI: 10.1006/taap.2002.9353] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polychlorinated biphenyls (PCBs) are widespread persistent environmental contaminants that display a complex spectrum of toxicological properties, including neurotoxicity. The present study investigates the effects of the PCB mixtures Aroclor 1242 (A1242) and Aroclor 1254 (A1254), and the PCB congeners 126 (3,3',4,4',5,-PeCB) and 153 (2,2',4,4',5,5'-HxCB) on formation of reactive oxygen species (ROS) and cell death in cultured rat cerebellar granule cells. The increase of ROS and induction of cell death were assayed using the fluorescent probe 2,7-dichlorofluorescin diacetate (DCFH-DA) and the trypan blue exclusion assay, respectively. A1242 and A1254 and PCB 153 induced a concentration-dependent increase in cell death and ROS formation. A1254 was selected for mechanistic studies. When the cerebellar granule cells were exposed to 15 microM A1254 for 12 h, 95% of the cells died. Both PCB-mediated cell death and the increase of the ROS formation were inhibited by MK-801, demonstrating the importance of the N-methyl-D-aspartate receptor. Inhibitors of nitric oxide synthase and phospholipase A2 led to a significant reduction of the DCF fluorescence and cell death. The mitochondrial permeability transition pore blocker cyclosporin A and the antioxidant vitamin E also increased survival and reduced ROS formation. The results show a connection between cell death and free radical formation.
Collapse
|
44
|
Kuchiiwa S, Cheng SB, Nagatomo I, Akasaki Y, Uchida M, Tominaga M, Hashiguchi W, Kuchiiwa T. In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin decreases serotonin-immunoreactive neurons in raphe nuclei of male mouse offspring. Neurosci Lett 2002; 317:73-6. [PMID: 11755243 DOI: 10.1016/s0304-3940(01)02434-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Female ddY mice were administered 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by gavage for 8 weeks prior to pregnancy. In the male breast-fed offspring born to the TCDD-exposed mice, serotonergic neurons in the brainstem were examined using an immunocytochemical method at 42 days of age. In all offspring, a marked decrease in the intensity of immunostaining occurred in all raphe nuclei compared with the control offspring. The number of serotonin-immunoreactive neurons in each raphe nucleus was measured by computer-assisted analysis. Approximately a quarter to half of immunoreactive neurons were detected in the TCDD-exposed offspring raphe nuclei compared with the control offspring. The present findings suggest that in utero and/or lactational TCDD exposure cause a long-lasting change in the serotonergic system in the raphe nuclei of offspring.
Collapse
Affiliation(s)
- Satoshi Kuchiiwa
- Department of Anatomy, Faculty of Medicine, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima 890-8520, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Aschner M, Seegal RF. Selected presentations and general discussion: session IX summary and research needs. Neurotoxicology 2001; 22:849-52. [PMID: 11829420 DOI: 10.1016/s0161-813x(01)00090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M Aschner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | |
Collapse
|
46
|
Zahalka EA, Ellis DH, Goldey ES, Stanton ME, Lau C. Perinatal exposure to polychlorinated biphenyls Aroclor 1016 or 1254 did not alter brain catecholamines nor delayed alternation performance in Long-Evans rats. Brain Res Bull 2001; 55:487-500. [PMID: 11543949 DOI: 10.1016/s0361-9230(01)00548-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several reports have indicated that polychlorinated biphenyls (PCB) altered development of biogenic amine systems in the brain, impaired behavioral performances, and disrupted maturation of the thyroid axis. The current study examines whether these developmental effects of PCB are correlated. Timed-pregnant Long-Evans rats were gavaged with the PCB mixture Aroclor 1016 (A-1016, 10 mg/kg) from gestation day (GD) 6 to parturition. Some pups continued to receive daily oral administration of PCB (10 mg/kg) until weaning at postnatal day (PD) 21. Another group of pregnant rats was given Aroclor 1254 (A-1254, 8 mg/kg) daily from GD 6 to weaning. At various age intervals, rats were sacrificed and six brain regions (prefrontal cortex, striatum, hippocampus, diencephalon, cerebellum, midbrain + brain stem) were removed and analyzed for dopamine (DA) and norepinephrine (NE) levels by high-performance liquid chromatography. In addition, transmitter turnover rates were determined after an acute treatment of alpha-methyl-p-tyrosine. Serum samples were collected and analyzed for triiodothyronine (T(3)) and thyroxine (T(4)) by radioimmunoassay. Behaviorally, rats were evaluated for spatial learning and memory by means of T-maze delayed alternation and Morris maze tasks on PD 23 and PD 70, respectively. A-1016 treatment produced only small and transient reductions in body weight gain, and generally did not alter the thyroid status of the developing rats. It did not cause any significant changes in DA or NE level, or turnover rate in any of the brain regions examined, nor did it affect behavioral measures of cognitive development. In contrast, perinatal exposure to A-1254 led to marked deficits of growth, and sharply reduced serum T(4), although T(3) remained largely unaffected. Accompanying this hormonal imbalance, brain NE contents in the A-1254-exposed pups were reduced, although brain DA was not significantly affected; no demonstrable neurobehavioral deficits were seen in the T-maze or Morris maze tests. These results indicated that development of central noradrenergic neurons was compromised by perinatal exposure to A-1254 but not A-1016, and both PCB mixtures failed to alter behavioral performances.
Collapse
Affiliation(s)
- E A Zahalka
- Toxicology Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
The neurological effects of polychlorinated biphenyls (PCBs) have been extensively investigated in humans and in animals. The main focus in human studies has been on the effects in neonates and young children, although studies of adults have also been conducted. A great deal of concern exists that even low levels of PCBs transferred to the fetus across the placenta may induce long-lasting neurological damage. Because PCBs are lipophilic substances, there is also concem that significant amounts might be transferred to nursing infants via breast milk. Studies in humans who consumed large amounts of Great Lakes fish contaminated with environmentally persistent chemicals, including PCBs. have provided evidence that PCBs are important contributors to subtle neurobehavioral alterations observed in newborn children and that some of these alterations persist during childhood. Some consistent observations at birth have been motor immaturity and hyporeflexia and lower psychomotor scores between 6 months and 2 years old. There is preliminary evidence that highly chlorinated PCB congeners, which accumulate in certain fish, are associated with neurobehavioral alterations seen in some newbom children. Subtle neurobehavioral alterations have also been observed in children bom to mothers in the general population with the highest PCB body burdens. Because of the limitations of epidemiological studies, these effects cannot be attributed entirely to PCB exposure. In one general population study, there was strong evidence that dioxins, as well as PCBs, were contributors to the neurobehavioral effects seen in exposed children. Children born to women who accidentally consumed rice oil contaminated with relatively high amounts of PCBs and chlorinated dibenzofurans (CDFs) during pregnancy also had neurodevelopmental changes. Studies in animals support the human data. Neurobehavioral alterations have been also observed in rats and monkeys following prenatal and/or postnatal exposure to commercial Aroclor mixtures, defined experimental congener mixtures, single PCB congeners, and Great Lakes contaminated fish. In addition, monkeys exposed postnatally to PCB mixtures of congeneric composition and concentration similar to that found in human breast milk showed learning deficits long after exposure had ceased. A few other generalizations can be made from the data in animals. It appears that ortho-substituted PCB congeners are more active than coplanar PCBs in modifying cognitive processes. In addition, one effect observed in both rats and monkeys--deficits on delayed spatial alternation--has been known to be induced by exposure to ortho-substituted PCBs, defined experimental mixtures, and commercial Aroclors. Both dioxin-like and non-dioxin-like PCB congeners have been shown to induce neurobehavioral alterations in animals. Changes in levels of neurotransmitters in various brain areas have also been observed in monkeys, rats, and mice. Of all the observed changes, the most consistent has been a decrease in dopamine content in basal ganglia and prefrontal cortex, but further research is needed before specific neurobehavioral deficits can be correlated with PCB-induced changes in specific neurotransmitters in specific brain areas.
Collapse
Affiliation(s)
- O Faroon
- Agency for Toxic Substances and Disease Registry (ATSDR) US Department of Health and Human Services, Atlanta, Georgia 30333, USA.
| | | | | |
Collapse
|
48
|
Mariussen E, Morch Andersen J, Fonnum F. The effect of polychlorinated biphenyls on the uptake of dopamine and other neurotransmitters into rat brain synaptic vesicles. Toxicol Appl Pharmacol 1999; 161:274-82. [PMID: 10620485 DOI: 10.1006/taap.1999.8806] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies have shown that polychlorinated biphenyls may affect cognitive functions both in human and also in experimental animals. One of the neurochemical parameters that is changed after exposure to these compounds is a reduction in the dopamine level in the brain, although the mechanism behind this reduction is not known. We have therefore investigated whether this reduction could be caused by an effect on vesicular uptake. ortho-Chlorinated biphenyls are found to be competitive inhibitors of dopamine transport into synaptic vesicles from rat brain with K(i) concentrations as low as 4 microM. In contrast, several nonortho-chlorinated biphenyls did not inhibit vesicular uptake. The inhibition was specific for dopamine, in that the uptake of glutamate and GABA was inhibited at higher PCB concentrations under identical conditions. The vesicular Mg-ATPase proton pump was also inhibited at higher concentrations of PCBs than the dopamine transport. Uptake of methylamine gave no indication of any disruption of the vesicular proton gradient. The inhibition of dopamine vesicular uptake by PCBs was competitive. Several of the ortho-PCBs also inhibited the binding of tetrabenazine, which is known to bind to a site close to the dopamine binding site, at the vesicular transporter. The results show that inhibition of vesicular uptake may contribute to the decrease of dopamine reported in nervous tissue after exposure to PCBs under different conditions.
Collapse
Affiliation(s)
- E Mariussen
- Norwegian Defence Research Establishment, Kjeller, 2027, Norway.
| | | | | |
Collapse
|
49
|
Schantz SL, Gardiner JC, Gasior DM, Sweeney AM, Humphrey HE, McCaffrey RJ. Motor function in aging Great Lakes fisheaters. ENVIRONMENTAL RESEARCH 1999; 80:S46-S56. [PMID: 10092419 DOI: 10.1006/enrs.1998.3904] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Exposure to contaminants in Great Lakes fish has been linked to impaired neuropsychological functioning in children, but neurological function of exposed adults has not been evaluated. This report describes a cross-sectional analysis of the effects of PCB/DDE exposure from contaminated fish on fine motor function in older adults. The subjects were 50-90-year-old Michigan residents who were members of a previously established study cohort. Fisheaters ate 24 lbs or more of sport-caught Lake Michigan fish/year at the time they were originally recruited in 1980-1982. Age- and sex-matched non-fisheaters ate 6 or fewer lbs/year. Outcome measures were scores on the Static Motor Steadiness Test (SMST) and Grooved Pegboard Test (GPT). PCB/DDE exposure was determined through serum analyses performed at the time of recruitment into the present study in 1993-1995. Because of the high correlation between serum PCB and DDE levels in this sample (Spearman r=0.64, P<0.0001), the effects of the two contaminants were assessed jointly using a single derived exposure variable=Low=both PCB and DDE at or below the medians of their respective distributions, intermediate=PCB and/or DDE in the third quartile, and high=PCB and/or DDE in the upper quartile. In unadjusted analyses, high exposure to PCBs/DDE was associated with significantly poorer performance on the GPT (P=0.03). However, in the multiple regression model, age and gender emerged as the most significant factors affecting GPT scores, and exposure to PCB/DDE was not significant. Performance on the SMST was not related to PCB/DDE exposure in initial unadjusted analyses, but performance with the dominant hand was marginally (P=0.052) associated with exposure in the final model. Scores on the SMST improved slightly as PCB/DDE exposure increased. A similar trend was not observed for the nondominant hand (P=0.46). These findings suggest that PCB/DDE exposure from Great Lakes fish has not significantly impaired hand steadiness or visual-motor coordination in this sample of older adults.
Collapse
Affiliation(s)
- S L Schantz
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Giesy JP, Kannan K. Dioxin-like and non-dioxin-like toxic effects of polychlorinated biphenyls (PCBs): implications for risk assessment. Crit Rev Toxicol 1998; 28:511-69. [PMID: 9861526 DOI: 10.1080/10408449891344263] [Citation(s) in RCA: 276] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent, bioaccumulative, and toxic contaminants in the environment. Individual PCB congeners exhibit different physicochemical properties and biological activities that result in different environmental distributions and toxicity profiles. The variable composition of PCB residues in environmental matrices and their different mechanisms of toxicity complicate the development of scientifically based regulations for the risk assessment. In this article various approaches for the assessment of risks of PCBs have been critically examined. Recent developments in the toxic equivalency factor (TEF) approach for the assessment of toxic effects due to dioxin-like PCBs have been examined. PCB exposure studies that describe non-dioxin-like toxic effects, particularly neurobehavioral effects and their effective doses in animals were compiled. A comparative assessment of effective doses for dioxin-like and non-dioxin-like effects by PCBs has been made to evaluate the relative significance of non-ortho-and ortho-substituted PCBs in risk assessment. Using mink as an example, relative merits and implications of using TEF and total PCB approaches for assessing the potential for toxic effects in wildlife was examined. There are several advantages and limitations associated with each method used for PCB risk assessment. Toxic effects due to coplanar PCBs occur at relatively smaller concentrations than those due to non-dioxin-like PCBs and therefore the TEF approach derives the risk assessment of PCBs, in the environment. The need for the refinement of TEF approach for more accurate assessment of risks is discussed.
Collapse
Affiliation(s)
- J P Giesy
- Department of Zoology, National Food Safety and Toxicology Center, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|