1
|
Wang B, Yang J, Qiu S, Bai Y, Qin ZS. Systematic Exploration in Tissue-Pathway Associations of Complex Traits Using Comprehensive eQTLs Catalog. Front Big Data 2021; 4:719737. [PMID: 34805976 PMCID: PMC8595594 DOI: 10.3389/fdata.2021.719737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
The collection of expression quantitative trait loci (eQTLs) is an important resource to study complex traits through understanding where and how transcriptional regulations are controlled by genetic variations in the non-coding regions of the genome. Previous studies have focused on associating eQTLs with traits to identify the roles of trait-related eQTLs and their corresponding target genes involved in trait determination. Since most genes function as a part of pathways in a systematic manner, it is crucial to explore the pathways’ involvements in complex traits to test potentially novel hypotheses and to reveal underlying mechanisms of disease pathogenesis. In this study, we expanded and applied loci2path software to perform large-scale eQTLs enrichment [i.e., eQTLs’ target genes (eGenes) enrichment] analysis at pathway level to identify the tissue-specific enriched pathways within trait-related genomic intervals. By utilizing 13,791,909 eQTLs cataloged in the Genotype-Tissue Expression (GTEx) V8 data for 49 tissue types, 2,893 pathway sets reported from MSigDB, and query regions derived from the Phenotype-Genotype Integrator (PheGenI) catalog, we identified intriguing biological pathways that are likely to be involved in ten traits [Alzheimer’s disease (AD), body mass index, Parkinson’s disease (PD), schizophrenia, amyotrophic lateral sclerosis, non-small cell lung cancer (NSCLC), stroke, blood pressure, autism spectrum disorder, and myocardial infarction]. Furthermore, we extracted the most significant pathways for AD, such as BioCarta D4-GDI pathway and WikiPathways sulfation biotransformation reaction and viral acute myocarditis pathways, to study specific genes within pathways. Our data presented new hypotheses in AD pathogenesis supported by previous studies, like the increased level of caspase-3 in the amygdala that cleaves GDP dissociation inhibitor and binds to beta-amyloid, leading to increased apoptosis and neuronal loss. Our findings also revealed potential pathogenesis mechanisms for PD, schizophrenia, NSCLC, blood pressure, autism spectrum disorder, and myocardial infarction, which were consistent with past studies. Our results indicated that loci2path′s eQTLs enrichment test was valuable in unveiling novel biological mechanisms of complex traits. The discovered mechanisms of disease pathogenesis and traits require further in-depth analysis and experimental validation.
Collapse
Affiliation(s)
- Boqi Wang
- Emory University, Atlanta, GA, United States
| | - James Yang
- Carmel High School, Carmel, IN, United States
| | - Steven Qiu
- James Martin High School, Arlington, TX, United States
| | - Yongsheng Bai
- Next-Gen Intelligent Science Training, Ann Arbor, MI, United States
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States
| |
Collapse
|
2
|
S-Carboxymethyl Cysteine Protects against Oxidative Stress and Mitochondrial Impairment in a Parkinson's Disease In Vitro Model. Biomedicines 2021; 9:biomedicines9101467. [PMID: 34680584 PMCID: PMC8533464 DOI: 10.3390/biomedicines9101467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
The mucolytic agent S-carboxymethylcysteine is widely used as an expectorant for the treatment of numerous respiratory disorders. The metabolic fate of S-carboxymethyl-L-cysteine is complex. Several clinical studies have demonstrated that the metabolism of this agent differs within the same individual, with sulfur oxygenated metabolites generated upon night-time administration. It has been indicated that this drug behaves like a free radical scavenger and that, in this regard, the sulfide is the active species with sulphoxide metabolites (already oxidized) being inactive. Consequently, a night-time consumption of the drug should be more effective upon daytime administration. Still, this diurnal variation in biotransformation (deactivation) is dependent on the genetic polymorphism on which relies the patient population capacities of S-carboxymethyl-L-cysteine sulphoxidation. It has been reported that those cohorts who are efficient sulfur oxidizers will generate inactive oxygenated metabolites. In contrast, those who have a relative deficiency in this mechanism will be subjected to the active sulfide for a more extended period. In this regard, it is noteworthy that 38–39% of Parkinson’s disease patients belong to the poor sulphoxide cohort, being exposed to higher levels of active sulfide, the active antioxidant metabolite of S-carboxymethyl-L-cysteine. Parkinson’s disease is a neurodegenerative disorder that affects predominately dopaminergic neurons. It has been demonstrated that oxidative stress and mitochondrial dysfunction play a crucial role in the degeneration of dopaminergic neurons. Based on this evidence, in this study, we evaluated the effects of S-carboxymethyl cysteine in an in vitro model of Parkinson’s disease in protecting against oxidative stress injury. The data obtained suggested that an S-carboxymethylcysteine-enriched diet could be beneficial during aging to protect neurons from oxidative imbalance and mitochondrial dysfunction, thus preventing the progression of neurodegenerative processes.
Collapse
|
3
|
Hawari I, Eskandar MB, Alzeer S. The Role of Lead, Manganese, and Zinc in Autism Spectrum Disorders (ASDs) and Attention-Deficient Hyperactivity Disorder (ADHD): a Case-Control Study on Syrian Children Affected by the Syrian Crisis. Biol Trace Elem Res 2020; 197:107-114. [PMID: 32347445 DOI: 10.1007/s12011-020-02146-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/06/2020] [Indexed: 11/29/2022]
Abstract
Autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) are two developmental disorders that affect children worldwide, and are linked to both genetic and environmental factors. This study aims to investigate the levels of lead, manganese, and zinc in each of ASD, ADHD, and ASD with comorbid ADHD in Syrian children born or grown during the Syrian crisis. Lead and manganese were measured in the whole blood, and zinc was measured in the serum in 31 children with ASD, 29 children with ADHD, and 11 children with ASD with comorbid ADHD (ASD-C) compared with 30 healthy children, their ages ranged between 3 and 12 years. Blood lead levels were higher in the groups of ASD-C (245.42%), ASD (47.57%), and ADHD (14.19%) compared with control. Lead levels were significantly higher in children with ASD in the age of 5 or less compared with control, and they were also higher in the male ASD compared with females (P = 0.001). Blood manganese levels were lower in the groups of ASD-C (10.35%), ADHD (9.95%, P = 0.026), and ASD (9.64%, P = 0.046). However, serum zinc levels were within the reference range in all groups of study. Lead and manganese were positively correlated with each other (P = 0.01). Lead increase and manganese decrease may associate with the incidence of ASD, ADHD, or the co-occurrence of both of them together. Further studies are needed to examine the relationship between metal levels and the co-occurrence of ASD and ADHD together.
Collapse
Affiliation(s)
- Israa Hawari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Damascus, 17th April, Mazzeh, Damascus, Syria.
| | - Mohamad Bashar Eskandar
- Department of Pediatrics, Faculty of Medicine, University of Damascus, 17th April, Mazzeh, Damascus, Syria
| | - Samar Alzeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Damascus, 17th April, Mazzeh, Damascus, Syria
| |
Collapse
|
4
|
Ozkan A, Parlak H, Agar A, Özsoy Ö, Tanriover G, Dilmac S, Turgut E, Yargicoglu P. The Effect of Sodium Metabisulphite on Apoptosis in the Experimental Model of Parkinson’s Disease. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401314666180503153444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The aim of this study was to investigate the mechanisms underlying possible
toxic effects of sulphite on neurodegeneration.
Methods:
Male Wistar rats were assigned to each of the four groups: Control (Control),
Sulphite-treated (Sulphite), 6-hydroxydopamine (6-OHDA)-injected (6-OHDA), and sulphite-treated
and 6-OHDA-injected (6-OHDA+Sulphite). Sodium metabisulphite was administered orally by
gavage at a dose of 100 mg/kg/day for 45 days. Experimental PD was created stereotactically via the
unilateral infusion of 6-OHDA into the medial forebrain bundle (MFB). Rotarod performances,
plasma S-sulfonate levels, caspase-3 activities, Bax and Bcl-2 levels, tyrosine hydroxylase (TH) and
cleaved caspase-3 double staining were investigated.
Results:
The rotarod test showed that the 6-OHDA-injected animals exhibited shorter time on the rod
mile compared to the control group; however, there was no difference between 6-OHDA and
6-OHDA+Sulphite groups. Plasma levels of S-sulfonate in Sulphite and 6-OHDA+ Sulphite groups
increased in contrast to their corresponding control groups. Caspase-3 enzyme activity increased in the
6-OHDA group whereas it did not in control. However, sulphite treatment did not affect these activity
levels. Anti-apoptotic protein Bcl-2 concentration decreased, but the concentration of pro-apoptotic
protein Bax increased in the 6-OHDA group compared to the control group. The expression of
caspase-3 increased, while the number of tyrosine hydroxylase (TH)-positive neurons decreased in
6-OHDA group as compared to the control groups. However, sulphite treatment had no effect on these
parameters.
Conclusion:
Sulphite is not a potentially aggravating factor for the activity of caspase-3 in a 6-
OHDA-induced experimental model of Parkinson’s disease.
Collapse
Affiliation(s)
- Ayse Ozkan
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hande Parlak
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Aysel Agar
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Özlem Özsoy
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Gamze Tanriover
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Sayra Dilmac
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Eylem Turgut
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Piraye Yargicoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
5
|
Micarelli A, Cormano A, Caccamo D, Alessandrini M. Olfactory-Related Quality of Life in Multiple Chemical Sensitivity: A Genetic-Acquired Factors Model. Int J Mol Sci 2019; 21:ijms21010156. [PMID: 31881664 PMCID: PMC6981591 DOI: 10.3390/ijms21010156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Genetic polymorphisms as well as environmental exposures to chemical compounds, iatrogenic, psychological, and physical trauma may play a pathophysiological role in multiple chemical sensitivity (MCS) olfactory complaints, given that xenobiotic metabolism is influenced by sequence variations in genes of metabolizing enzymes. Thus, the aim of the present study was to depict-by means of multiple regression analysis-how different genetic conditions, grouped according to their function as well as clinical background and environmental exposure may interfere with those olfactory complaints referred by MCS patients. Therefore, MCS patients after gene polymorphism sequencing, the olfactory-related quality of life score-calculated by means of the Questionnaire of Olfactory Disorder in forty-six MCS patients-have been found to significantly rely on the phase I and II enzymes score and exposure to previous compounds and surgical treatments. The present work-implementing for the first time a genetic-acquired factors model on a regression analysis-further reinforces those theories, positing MCS as a complex, multifactorial, disease in which the genetic risk related to phase I and II enzymes involved in xenobiotic detoxification, olfactory, and neurodegenerative diseases play a necessary, but probably not sufficient role, along the pathophysiological route of the disease.
Collapse
Affiliation(s)
- Alessandro Micarelli
- Institute of Mountain Emergency Medicine, EURAC Research, I-39100 Bolzano, Italy
- ITER Center for Balance and Rehabilitation Research (ICBRR), 02032 Rome, Italy
- Correspondence:
| | | | - Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, 98124 Messina, Italy;
| | - Marco Alessandrini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
6
|
Abstract
1. Consistent differences in the proportion of an orally administered dose of S-carboxymethyl-l-cysteine subsequently excreted in the urine as S-oxide metabolites were reported 40 years ago. This observation suggested the existence of inter-individual variation in the ability to undertake the enzymatic S-oxygenation of this compound. Pedigree studies and investigations employing twin pairs indicated a genetically controlled phenomenon overlaid with environmental influences. It was reproducible and not related to gender or age.2. Studies undertaken in several healthy volunteer cohorts always provided similar results that were not significantly different when statistically analysed. However, when compared to these healthy populations, a preponderance of subjects exhibiting the characteristic of poor sulfoxidation of S-carboxymethyl-l-cysteine was found within groups of patients suffering from various disease conditions. The most striking of these associations were witnessed amongst subjects diagnosed with neurodegenerative disorders; although, underlying mechanisms were unknown.3. Exhaustive investigation has identified the enzyme responsible for this S-oxygenation reaction as the tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, phenylalanine 4-monooxygenase classically assigned the sole function of converting phenylalanine to tyrosine. The underlying principle is discussed that enzymes traditionally associated solely with intermediary metabolism may have as yet unrecognised alternative roles in protecting the organism from potential toxic assault.
Collapse
Affiliation(s)
- Stephen C Mitchell
- Section of Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
7
|
Rawlings L, Turton L, Mitchell SC, Steventon GB. Drug S-oxidation and phenylalanine hydroxylase: a biomarker for neurodegenerative susceptibility in Parkinson's disease and amyotrophic lateral sclerosis. Drug Metab Pers Ther 2019; 34:/j/dmdi.ahead-of-print/dmpt-2018-0038/dmpt-2018-0038.xml. [PMID: 30939113 DOI: 10.1515/dmpt-2018-0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Background The S-oxidation of S-carboxymethyl-L-cysteine has been reported previously to be a biomarker of disease susceptibility in Parkinson's disease and amyotrophic lateral sclerosis. In the present investigation, the original observations have been extended and confirmed. Methods Meta-analysis of previously published investigations into the S-oxidation polymorphism together with new subject data was evaluated. Results The incidence of the poor metaboliser phenotype (no urinary recovery of S-oxide metabolites) was found to be 3%-7% within healthy and non-neurological disease populations, whereas 38% of the Parkinson's disease subjects and 39% of the amyotrophic lateral sclerosis group were phenotyped as poor metabolisers. The consequent odds risk ratio of developing Parkinson's disease was calculated to be 33.8 [95% confidence interval (CI), 13.3-86.1] and for amyotrophic lateral sclerosis was 35.2 (95% CI, 13.0-85.1). Conclusions The possible involvement of the enzyme responsible for this S-oxidation biotransformation reaction, phenylalanine hydroxylase, should be further investigated to elucidate its potential role in the mechanism(s) of toxicity in susceptible individuals displaying these diseases. The "Janus hypothesis," possibly explaining why phenylalanine hydroxylase is a biomarker of neurodegenerative disease susceptibility, together with the general theme that this concept may apply to many other hitherto unsuspected enzyme systems, is presented.
Collapse
Affiliation(s)
| | - Laura Turton
- Syneos Health, Thames House, Maidenhead, Berkshire, UK
| | - Stephen C Mitchell
- Section of Computational and Systems Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Glyn B Steventon
- ADMET Solutions Ltd., Ivar Gardens, Lychpit, Basingstoke, Hampshire RG24 8YD, UK, Phone: +44 (0)7786907053
| |
Collapse
|
8
|
Katoh T. [Multiple Chemical Sensitivity (MCS): History, Epidemiology and Mechanism]. Nihon Eiseigaku Zasshi 2018; 73:1-8. [PMID: 29386440 DOI: 10.1265/jjh.73.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple chemical sensitivity (MCS), also known as idiopathic environmental intolerance, has been described as a chronic acquired disorder characterized by nonspecific symptoms in multiple organ systems and is associated with exposure to low-level chemicals. The name was established by Cullen, in 1987, although the name and diagnostic criteria are still under debate even now. A number of hypotheses concering the etiology and pathogenesis of MCS have been proposed, including impairmens of neurological, immunological and psychological systems. However, research on the possible mechanisms underlying MCS is far from complete. The name and diagnostic criteria of its history as well as theoretical and experimental mechanisms underlying MCS are reviewed here.
Collapse
Affiliation(s)
- Takahiko Katoh
- Department of Public Health, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
9
|
Dextran coated silver nanoparticles — Chemical sensor for selective cysteine detection. Colloids Surf B Biointerfaces 2017; 160:184-191. [DOI: 10.1016/j.colsurfb.2017.09.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
|
10
|
Kelemenova S, Ostatnikova D. Androgens Contribute to the Process of Neuronal Development: Implications in Explanation of Autism Pathogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/bf03379917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Fetal testosterone significantly influences the brain development. It affects number of neurons and conformation of dendritic spines within the sexual dimorphic preoptic area in the hypothalamus. Excessive testosterone levels in utero possibly contribute to the masculinization of the brain. Evidences of these facts are plausible in the anatomic field as well as behavioral effects both in rat models and in humans. Rats exposed to excessive testosterone doses in utero show masculinized brain anatomy and behavior, such as better spatial visualization performance typical for males. In humans, congenital adrenal hyperplasia that causes elevated androgen level possibly results in masculinized behavior observed in these individuals. There are reasons for the theory of the connection existence between testosterone influence on the brain functions and the pathogenesis of neurodevelopmental disorders. In this review, pathogenesis of autism, the most genetic neurodevelopmental disease is discussed. Autism is a disease with broad genetic heterogeneity and polygenic inheritance. Autism associated genes are localized throughout the genome, with the chromosome 7q most frequently involved. One of these genes encodes reelin protein that is crucial for neuronal migration in the developing brain. The connection between androgens, neuronal migration and neurodevelopmental disorder pathophysiology is also discussed.
Collapse
|
11
|
Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application. J Nutr Metab 2015; 2015:760689. [PMID: 26167297 PMCID: PMC4488002 DOI: 10.1155/2015/760689] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/20/2015] [Indexed: 12/16/2022] Open
Abstract
Research into human biotransformation and elimination systems continues to evolve. Various clinical and in vivo studies have been undertaken to evaluate the effects of foods and food-derived components on the activity of detoxification pathways, including phase I cytochrome P450 enzymes, phase II conjugation enzymes, Nrf2 signaling, and metallothionein. This review summarizes the research in this area to date, highlighting the potential for foods and nutrients to support and/or modulate detoxification functions. Clinical applications to alter detoxification pathway activity and improve patient outcomes are considered, drawing on the growing understanding of the relationship between detoxification functions and different disease states, genetic polymorphisms, and drug-nutrient interactions. Some caution is recommended, however, due to the limitations of current research as well as indications that many nutrients exert biphasic, dose-dependent effects and that genetic polymorphisms may alter outcomes. A whole-foods approach may, therefore, be prudent.
Collapse
|
12
|
Abstract
Autism spectrum disorder (ASD) is characterised by deficits in the ability to socialise, communicate and use imagination, and displays of stereotypical behaviour. It is widely accepted that ASD involves a disorder in brain development. However, the real causes of the neurodevelopmental disorders associated with ASD are not clear. In this respect, it has been found that a majority of children with ASD display gastrointestinal symptoms, and an increased intestinal permeability. Moreover, large differences in microbiotic composition between ASD patients and controls have been reported. Therefore, nutrition-related factors have been hypothesised to play a causal role in the aetiology of ASD and its symptoms. Through a review of the literature, it was found that abnormalities in carbohydrate digestion and absorption could explain some of the gastrointestinal problems observed in a subset of ASD patients, although their role in the neurological and behavioural problems remains uncertain. In addition, the relationship between an improved gut health and a reduction of symptoms in some patients was evaluated. Recent trials involving gluten-free diets, casein-free diets, and pre- and probiotic, and multivitamin supplementation show contradictive but promising results. It can be concluded that nutrition and other environmental influences might trigger an unstable base of genetic predisposition, which may lead to the development of autism, at least in a subset of ASD patients. Clear directions for further research to improve diagnosis and treatment for the different subsets of the disorder are provided.
Collapse
|
13
|
Alabdali A, Al-Ayadhi L, El-Ansary A. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2014; 10:14. [PMID: 24776096 PMCID: PMC4017810 DOI: 10.1186/1744-9081-10-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/15/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism Spectrum Disorders (ASD) is a syndrome with a number of etiologies and different mechanisms that lead to abnormal development. The identification of autism biomarkers in patients with different degrees of clinical presentation (i.e., mild, moderate and severe) will give greater insight into the pathogenesis of this disease and will enable effective early diagnostic strategies and treatments for this disorder. METHODS In this study, the concentration of two toxic heavy metals, lead (Pb) and mercury (Hg), were measured in red blood cells, while glutathione-s-transferase (GST) and vitamin E, as enzymatic and non-enzymatic antioxidants, respectively, were measured in the plasma of subgroups of autistic patients with different Social Responsiveness Scale (SRS) and Childhood Autism Rating Scale (CARS) scores. The results were compared to age- and gender-matched healthy controls. RESULTS The obtained data showed that the patients with autism spectrum disorder had significantly higher Pb and Hg levels and lower GST activity and vitamin E concentrations compared with the controls. The levels of heavy metals (Hg and Pb), GST and vitamin E were correlated with the severity of the social and cognitive impairment measures (SRS and CARS). Receiver Operating Characteristics (ROC) analysis and predictiveness curves indicated that the four parameters show satisfactory sensitivity, very high specificity and excellent predictiveness. Multiple regression analyses confirmed that higher levels of Hg and Pb, together with lower levels of GST and vitamin E, can be used to predict social and cognitive impairment in patients with autism spectrum disorders. CONCLUSION This study confirms earlier studies that implicate toxic metal accumulation as a consequence of impaired detoxification in autism and provides insight into the etiological mechanism of autism.
Collapse
Affiliation(s)
- Altaf Alabdali
- Biochemistry Department, Science College, King Saud University, P.O box 22452, Zip code 11495 Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Biochemistry Department, Science College, King Saud University, P.O box 22452, Zip code 11495 Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
14
|
Affiliation(s)
- Terry L Wahls
- University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA.
| |
Collapse
|
15
|
Ross KA. Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn's disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes. BMC Med 2011; 9:12. [PMID: 21291537 PMCID: PMC3048570 DOI: 10.1186/1741-7015-9-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/03/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. METHODS A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. RESULTS Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. CONCLUSIONS The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study.
Collapse
Affiliation(s)
- Kenneth Andrew Ross
- Department of Computer Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
16
|
Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Nataf R, Geier MR. Biomarkers of environmental toxicity and susceptibility in autism. J Neurol Sci 2009; 280:101-8. [DOI: 10.1016/j.jns.2008.08.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/11/2008] [Accepted: 08/15/2008] [Indexed: 12/11/2022]
|
17
|
A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res 2008; 34:386-93. [PMID: 18612812 DOI: 10.1007/s11064-008-9782-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/11/2008] [Indexed: 12/27/2022]
Abstract
The goal of this study was to evaluate transsulfuration metabolites in participants diagnosed with autism spectrum disorders (ASDs). Transsulfuration metabolites, including: plasma reduced glutathione (GSH), plasma oxidized glutathione (GSSG), plasma cysteine, plasma taurine, plasma sulfate, and plasma free sulfate among participants diagnosed with ASDs (n = 38) in comparison to age-matched neurotypical controls were prospectively evaluated. Testing was conducted using Vitamin Diagnostics, Inc. (CLIA-approved). Participants diagnosed with ASDs had significantly (P < 0.001) decreased plasma reduced GSH, plasma cysteine, plasma taurine, plasma sulfate, and plasma free sulfate relative to controls. By contrast, participants diagnosed with ASDs had significantly (P < 0.001) increased plasma GSSG relative to controls. The present observations are compatible with increased oxidative stress and a decreased detoxification capacity, particularly of mercury, in patients diagnosed with ASDs. Patients diagnosed with ASDs should be routinely tested to evaluate transsulfuration metabolites, and potential treatment protocols should be evaluated to potentially correct the transsulfuration abnormalities observed.
Collapse
|
18
|
Oxidative Stress and the Metabolic Pathology of Autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2008. [DOI: 10.1007/978-1-60327-489-0_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Wiesmüller GA, Niggemann H, Weissbach W, Riley F, Maarouf Z, Dott W, Kunert HJ, Zerres K, Eggermann T, Blömeke B. Sequence variations in subjects with self-reported multiple chemical sensitivity (sMCS): a case-control study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:786-794. [PMID: 18569577 DOI: 10.1080/15287390801985620] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polymorphisms in several genes contribute to interindividual differences in the metabolism of xenobiotics, and may lead to toxicity and disease. The balance between activation and/or detoxification processes may influence an individual's susceptibility to disease. One postulated mechanism underlying multiple chemical sensitivity (MCS) is based on increased metabolism of xenobiotics. The aim of the present study was to determine such polymorphisms in cases with self-reported MCS (sMCS) and controls. sMCS cases (14 men, 45 women, mean age: 48 yr) and controls (14 men, 26 women, mean age: 44 yr) of the same anthroposphere were characterized using the MCS-questionnaire from Huppe and coworkers (2000) and a standardized questionnaire for living conditions and living factors. Allelic frequencies of genomic variations for 5HTT, NAT1, NAT2, PON1, PON2, and SOD2 were determined. The MCS questionnaire from Huppe et al. (2000) differentiated between cases and controls with 87.5% sensitivity and 90% specificity. Compared to controls the sMCS cases had lower exposures, especially to odorous factors, and worse social conditions. No significant differences of the allelic distribution of genetic polymorphisms in the genes for 5HTT, NAT1, NAT2, PON1, PON2, and SOD2 were found between cases and controls. The results are in contrast to the study of McKeown-Eyssen and coworkers (2004) but in accordance with the German MCS multicenter study. Although the MCS questionnaire from Huppe et al. (2000) allowed us to differentiate sMCS cases and controls, it was not strong enough for a discrimination based on sequence variations in genes for enzymes involved in xenobiotic metabolism. Therefore, further research needs to focus on a unique phenomenological characterization of MCS.
Collapse
Affiliation(s)
- Gerhard A Wiesmüller
- Institute of Hygiene and Environmental Medicine, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hunter RP, Koch DE, Coke RL, Carpenter JW, Isaza R. Identification and comparison of marbofloxacin metabolites from the plasma of ball pythons (Python regius) and blue and gold macaws (Ara ararauna). J Vet Pharmacol Ther 2007; 30:257-62. [PMID: 17472658 DOI: 10.1111/j.1365-2885.2007.00845.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Marbofloxacin is a veterinary only, synthetic, broad spectrum fluoroquinolone antimicrobial agent. In mammals, approximately 40% of the oral dose of marbofloxacin is excreted unchanged in the urine; the remaining is excreted via the bile as unchanged drug in the feces. The Vd ranges from 1.1 (cattle) to 1.3 (dog, goat, swine) L/kg. Because of extra-label use of marbofloxacin in birds and reptiles, this study was designed to determine the profile of metabolites in plasma and compare the circulating metabolite profile between a reptile and an avian species. Six adult ball pythons (Python regius) and 10 blue and gold macaws (Ara ararauna) were used in this study. The macaws were dosed both i.v. and p.o. with a single 2.5 mg/kg administration where as the pythons received a single 10 mg/kg dose both i.v. and p.o. The metabolite profiles of marbofloxacin in the plasma of these species were determined using a high performance liquid chromatography system with a mass spectrometer for detection (LC/MS/MS). Mass spectra data generated from the snake and bird plasma samples were compared with previously reported LC/MS/MS mass spectral data. Evidence does not suggest differences due to route of administration (i.v. vs. p.o.) in either species. Four chromatographic peaks with resulting daughter spectrum were identified and represent 12 possible metabolite structures. All of the proposed metabolites, except for the N-oxide, appear to be unique to macaws. The potential metabolites identified in macaws appear to be very different than those reported for chickens.
Collapse
Affiliation(s)
- R P Hunter
- Department of Anatomy & Physiology, Zoological Pharmacology Laboratory, Kansas State University, Manhattan, KS, USA.
| | | | | | | | | |
Collapse
|
21
|
Kern JK, Jones AM. Evidence of toxicity, oxidative stress, and neuronal insult in autism. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2006; 9:485-99. [PMID: 17090484 DOI: 10.1080/10937400600882079] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
According to the Autism Society of America, autism is now considered to be an epidemic. The increase in the rate of autism revealed by epidemiological studies and government reports implicates the importance of external or environmental factors that may be changing. This article discusses the evidence for the case that some children with autism may become autistic from neuronal cell death or brain damage sometime after birth as result of insult; and addresses the hypotheses that toxicity and oxidative stress may be a cause of neuronal insult in autism. The article first describes the Purkinje cell loss found in autism, Purkinje cell physiology and vulnerability, and the evidence for postnatal cell loss. Second, the article describes the increased brain volume in autism and how it may be related to the Purkinje cell loss. Third, the evidence for toxicity and oxidative stress is covered and the possible involvement of glutathione is discussed. Finally, the article discusses what may be happening over the course of development and the multiple factors that may interplay and make these children more vulnerable to toxicity, oxidative stress, and neuronal insult.
Collapse
Affiliation(s)
- Janet K Kern
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9119, USA.
| | | |
Collapse
|
22
|
Yi L, Dratter J, Wang C, Tunge JA, Desaire H. Identification of sulfation sites of metabolites and prediction of the compounds' biological effects. Anal Bioanal Chem 2006; 386:666-74. [PMID: 16724218 PMCID: PMC1592252 DOI: 10.1007/s00216-006-0495-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/05/2006] [Accepted: 04/18/2006] [Indexed: 11/09/2022]
Abstract
Characterizing the biological effects of metabolic transformations (or biotransformation) is one of the key steps in developing safe and effective pharmaceuticals. Sulfate conjugation, one of the major phase II biotransformations, is the focus of this study. While this biotransformation typically facilitates excretion of metabolites by making the compounds more water soluble, sulfation may also lead to bioactivation, producing carcinogenic products. The end result, excretion or bioactivation, depends on the structural features of the sulfation sites, so obtaining the structure of the sulfated metabolites is critically important. We describe herein a very simple, high-throughput procedure for using mass spectrometry to identify the structure—and thus the biological fate—of sulfated metabolites. We have chemically synthesized and analyzed libraries of compounds representing all the biologically relevant types of sulfation products, and using the mass spectral data, the structural features present in these analytes can be reliably determined, with a 97% success rate. This work represents the first example of a high-throughput analysis that can identify the structure of sulfated metabolites and predict their biological effects.
Collapse
Affiliation(s)
- Lin Yi
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045 USA
| | - Joe Dratter
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045 USA
| | - Chao Wang
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045 USA
| | - Jon A. Tunge
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045 USA
| | - Heather Desaire
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045 USA
| |
Collapse
|
23
|
Dawson PA, Gardiner B, Grimmond S, Markovich D. Transcriptional profile reveals altered hepatic lipid and cholesterol metabolism in hyposulfatemic NaS1 null mice. Physiol Genomics 2006; 26:116-24. [PMID: 16621889 DOI: 10.1152/physiolgenomics.00300.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sulfate plays an essential role in human growth and development, and its circulating levels are maintained by the renal Na+-SO42- cotransporter, NaS1. We previously generated a NaS1 knockout (Nas1-/-) mouse, an animal model for hyposulfatemia, that exhibits reduced growth and liver abnormalities including hepatomegaly. In this study, we investigated the hepatic gene expression profile of Nas1-/- mice using oligonucleotide microarrays. The mRNA expression levels of 92 genes with known functional roles in metabolism, cell signaling, cell defense, immune response, cell structure, transcription, or protein synthesis were increased (n = 51) or decreased (n = 41) in Nas1-/- mice when compared with Nas1+/+ mice. The most upregulated transcript levels in Nas1-/- mice were found for the sulfotransferase genes, Sult3a1 (approximately 500% increase) and Sult2a2 (100% increase), whereas the metallothionein-1 gene, Mt1, was among the most downregulated genes (70% decrease). Several genes involved in lipid and cholesterol metabolism, including Scd1, Acly, Gpam, Elov16, Acsl5, Mvd, Insig1, and Apoa4, were found to be upregulated (> or = 30% increase) in Nas1-/- mice. In addition, Nas1-/- mice exhibited increased levels of hepatic lipid (approximately 16% increase), serum cholesterol (approximately 20% increase), and low-density lipoprotein (approximately 100% increase) and reduced hepatic glycogen (approximately 50% decrease) levels. In conclusion, these data suggest an altered lipid and cholesterol metabolism in the hyposulfatemic Nas1-/- mouse and provide new insights into the metabolic state of the liver in Nas1-/- mice.
Collapse
Affiliation(s)
- Paul Anthony Dawson
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | | | | | | |
Collapse
|
24
|
Abstract
Adverse drug effects (ADEs) are of great importance in medicine and account for up to 5% of all hospital admissions. ADEs can arise from several mechanisms and a wide range of drugs can cause immune-mediated ADEs (IMADEs). For a drug to elicit an IMADE, it must be both immunogenic (that is, able to sensitize the immune system) and antigenic (that is, able to evoke a response from a sensitized immune system). Unlike protein therapeutics, small-molecule drugs (or xenobiotics) are usually neither immunogenic nor antigenic. IMADEs are therefore the result of complex interactions between drug-metabolizing enzymes, immune sensitization and immune effectors. The genetic aspects of this interplay are discussed in this review.
Collapse
Affiliation(s)
- Peter J Bugelski
- Director of Experimental Pathology, Department of Toxicology and Investigational Pharmacology, Centocor Inc., 200 Great Valley Parkway, Malvern, Pennsylvania 19355, USA.
| |
Collapse
|
25
|
Bingham M. Functional foods: dietary intervention strategies in autistic spectrum disorders. ACTA ACUST UNITED AC 2003. [DOI: 10.1616/1476-2137.12102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Steventon GB, Waring RH, Williams AC. An Investigation into the Inter-Relationships of Sulphur Xeno- Biotransformation Pathways in Parkinson's and Motor Neurone Diseases. ACTA ACUST UNITED AC 2003; 19:223-40. [PMID: 14768972 DOI: 10.1515/dmdi.2003.19.4.223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of defective 'sulphur xenobiotic' biotransformations in the aetiology of Parkinson's and motor neurone diseases has been in the literature for over a decade. Problems in the S-oxidation of aliphatic thioethers, sulphation of phenolic compounds and the S-methylation of aliphatic sulphydryl groups have all been reported. These reports have also been consistent in observing that only a 'significant minority' of patients express these problems in sulphur biotransformation pathways. However, no investigation has yet reported on the incidence of these three defective pathways in control invididuals and in patients with Parkinson's and motor neurone disease. This investigation has found that: 1. Forty percent of patients with Parkinson's and motor neurone disease have a defect in the S-oxidation of S-carboxymethyl-L-cysteine compared to 4% of controls. 2. 35-40% of patients with Parkinson's and motor neurone disease have a defect in the sulphation of paracetamol compared to 4% of controls. 3. 60% of patients with motor neurone disease have a high capacity for the S-methylation of 2-mercaptoethanol compared to 4% of controls. 4. 38% of patients with Parkinson's disease have a low capacity for the S-methylation of 2-mercaptoethanol compared to 4% of controls. 5. There is no correlation between the S-oxidation phenotype, low paracetamol sulphation phenotype and low or high S-methylation phenotype in controls or patients with Parkinson's or motor neurone disease. 6. The number of controls that expressed one of the aberrant phenotypes was 4% compared to 38% of the patients with Parkinson's disease and 47% of the patients with motor neurone disease. 7. The number of controls that expressed two of the aberrant phenotypes was 0% compared to 18% of the patients with Parkinson's disease and 19% of those with motor neurone disease. 8. No controls or patients with Parkinson's disease or motor neurone disease expressed all three of the aberrant phenotypes. The results indicate that the three xeno-biotransformation pathways are under separate genetic control in the three population groups studied and that patients with Parkinson's and motor neurone disease do not have a widespread defect in their sulphur xenobiochemistry capacity.
Collapse
Affiliation(s)
- Glyn B Steventon
- Department of Pharmacy, School of Health and Life Sciences, King's College London, UK.
| | | | | |
Collapse
|
27
|
Mercury Induces Cytotoxicity and Transcriptionally Activates Stress Genes in Human Liver Carcinoma (HepG2) Cells. Int J Mol Sci 2002. [DOI: 10.3390/i3090965] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Abstract
Sensitivity to chemicals is a toxicological concept, contained in the dose-response relationship. Sensitivity also includes the concept of hypersensitivity, although controversy surrounds the nature of effects from very low exposures. The term multiple chemical sensitivity has been used to describe individuals with a debilitating, multi-organ sensitivity following chemical exposures. Many aspects of this condition extend the nature of sensitivity to low levels of exposure to chemicals, and is a designation with medical, immunological, neuropsychological and toxicological perspectives. The basis of MCS is still to be identified, although a large number of hypersensitivity, immunological, psychological, neurological and toxicological mechanisms have been suggested, including: allergy; autosuggestion; cacosomia; conditioned response; immunological; impairment of biochemical pathways involved in energy production; impairment of neurochemical pathways; illness belief system; limbic kindling; olfactory threshold sensitivity; panic disorder; psychosomatic condition; malingering; neurogenic inflammation; overload of biotransformation pathways (also linked with free radical production); psychological or psychiatric illness; airway reactivity; sensitisation of the neurological system; time dependent sensitisation, toxicant induced loss of tolerance. Most of these theories tend to break down into concepts involving: (1) disruption in immunological/allergy processes; (2) alteration in nervous system function; (3) changes in biochemical or biotransformation capacity; (4) changes in psychological/neurobehavioural function. Research into the possible mechanisms of MCS is far from complete. However, a number of promising avenues of investigation indicate that the possibility of alteration of the sensitivity of nervous system cells (neurogenic inflammation, limbic kindling, cacosomia, neurogenic switching) are a possible mechanism for MCS.
Collapse
Affiliation(s)
- Chris Winder
- School of Safety Science, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
29
|
Steventon GB, Sturman S, Waring RH, Williams AC. A review of xenobiotic metabolism enzymes in Parkinson's disease and motor neuron disease. DRUG METABOLISM AND DRUG INTERACTIONS 2001; 18:79-98. [PMID: 11460878 DOI: 10.1515/dmdi.2001.18.2.79] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of xenobiotic metabolising enzymes (XMEs) in disease aetiology has been under investigation by numerous researchers around the world for the last two decades. The association of a number of defects in both phase I and phase II reactions with Parkinson's disease (PD) and motor neuron disease (MND) have been extensively studied. This review of the work of the group based initially at the University of Birmingham into the functional genomics of XMEs and neurodegenerative diseases has indicated that: 1. Sub-groups of patients with PD and MND can be identified with problems in xenobiotic metabolism by in vivo or in vitro methods. 2. 38-39% of the patients with MND/PD have a defect in the S-oxidation of the mucoactive drug, carbocysteine, by an unknown cytosolic oxidase(s). The odds risk ratio for the association of this defect with these diseases was calculated to be 10.21 for MND and 10.50 for PD. 3. Patients with PD appear to have an altered substrate specificity for monoamine oxidase B substrates in an in vitro platelet assay. 4. Patients with MND have an increased capacity to S-methylate aliphatic sulphydryl compounds in an in vivo challenge as well as an in vitro erythrocyte thiol methyltransferase assay. The results of over a decade of investigations into both PD and MND indicate that these are diseases with mutifactorial origins that encompass both genetic predisposition and environmental insult.
Collapse
Affiliation(s)
- G B Steventon
- Department of Pharmacy, School of Health and Life Sciences, King's College London, UK.
| | | | | | | |
Collapse
|
30
|
Abstract
The pathogenesis of Parkinson's disease, a neurodegenerative disorder, is multifaceted, having a variety of genetic and environmental factors. There is considerable evidence to support the role of toxins, particularly pesticides and herbicides, in at least some of those affected (presumably, mostly the genetically vulnerable). The pathogenesis of autism is no less complex, but little is known about the potential role of toxins for autism, a neurodevelopmental disorder. The incidence of autism appears to be rising, and early exposure to synthetic chemicals is one suspect for this rise. Impaired detoxification of certain chemicals may be common to autism and Parkinson's disease. Further study of environmental influences for either disorder may lead to important insights regarding causation for both, and perhaps for other neurodegenerative and neurodevelopmental disorders as well.
Collapse
Affiliation(s)
- G Woodward
- Department of Neurology, University of Kansas, Kansas City, Kansas, USA
| |
Collapse
|
31
|
Marshall KA, Reist M, Jenner P, Halliwell B. The neuronal toxicity of sulfite plus peroxynitrite is enhanced by glutathione depletion: implications for Parkinson's disease. Free Radic Biol Med 1999; 27:515-20. [PMID: 10490270 DOI: 10.1016/s0891-5849(99)00094-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In Parkinson's disease (PD) and incidental Lewy body disease glutathione levels in the substantia nigra are decreased by 40-50%. Both peroxynitrite (ONOO ) and alterations in the metabolism of sulfur-containing amino acids have been implicated in PD and we have previously shown that sulfite and ONOO- exert synergistic toxicity to a neuronal cell line. This article presents data to show that this synergistic toxicity of sulfite and ONOO- is greatly enhanced by 50% depletion of cellular glutathione levels. The toxicity of sulfite is also slightly enhanced. Neurones with decreased glutathione may be at increased risk from sulfite and especially from the synergistic damaging effects of ONOO- and sulfite. Because sulfite is present normally in the brain as a product of cysteine metabolism, and because increased ONOO- formation has been reported in PD, these events might contribute to neuronal cell death.
Collapse
Affiliation(s)
- K A Marshall
- Neurodegenerative Disease Research Centre, Pharmacology Group, King's College, London, UK
| | | | | | | |
Collapse
|
32
|
A methodological and metabolite identification study of the metabolism of S-carboxymethyl-L-cysteine in man. Chromatographia 1998. [DOI: 10.1007/bf02466650] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|