1
|
Joudaki R, Setorki M. The protective effect of Satureja bachtiarica hydroalcoholic extract on streptozotocin-induced diabetes through modulating glucose transporter 2 and 4 expression and inhibiting oxidative stress. PHARMACEUTICAL BIOLOGY 2019; 57:318-327. [PMID: 31060468 PMCID: PMC6507820 DOI: 10.1080/13880209.2019.1597131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 05/04/2023]
Abstract
CONTEXT Oxidative stress plays an important role in development of diabetes mellitus. Satureja bachtiarica Bunge (Lamiaceae) is a rich source of bioactive compounds with antioxidant properties. OBJECTIVE This study investigates the antidiabetic effect of hydroalcoholic extract of aerial parts of S. bachtiarica. METHODS AND MATERIALS Male Wistar rats were randomly divided into six groups (n = 8) including control (normal saline), diabetic [Streptozotocin (STZ)], intervention (STZ plus hydroalcoholic extract of S. bachtiarica at doses of 75, 150 and 250 mg/kg/d) and positive control (STZ plus captopril 50 mg/kg/d) groups. A single intraperitoneal (IP) injection of STZ (60 mg/kg) was used to induce diabetes and IP therapy with drugs was performed for four weeks. RESULTS In diabetic rats, serum total antioxidant capacity (TAC) decreased significantly, but glucose, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT) and malondialdehyde (MDA) increased significantly as compared to the control (p < 0.05). Treatment with extract (250 mg/kg) caused a significant decline in serum glucose, GGT, ALT, AST and MDA as well as a significant increase in serum TAC (p < 0.05). During the intervention period, diabetic rats showed significant weight loss, but extract (250 mg/kg) treated rats did not show any weight loss. Extract (250 mg/kg) up-regulated GLUT2 expression and down-regulated GLUT4 expression in the liver (p < 0.05). S. bachtiarica extract at all dosage levels prevented STZ-induced histological damage of liver, kidney and pancreas. DISCUSSION AND CONCLUSIONS S. bachtiarica extract exhibits antidiabetic effects through modulation of oxidative stress and expression of GLUT2 and GLUT4.
Collapse
Affiliation(s)
- Reyhaneh Joudaki
- Department of Biology, Izeh Branch, Islamic Azad University, Izeh, Iran
| | - Mahbubeh Setorki
- Department of Biology, Izeh Branch, Islamic Azad University, Izeh, Iran
| |
Collapse
|
2
|
Rana D, Kumar A. Is there a Role for Sodium Orthovanadate in the Treatment of Diabetes? Curr Diabetes Rev 2019; 15:284-287. [PMID: 30179137 DOI: 10.2174/1573399814666180903162556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Diabetes is a metabolic disorder, whose incidences are increasing day by day. Various classes of anti-diabetic drugs are clinically approved by the Food and Drug Administration (FDA) for the treatment of diabetes mellitus, but unfortunately, none of them is able to treat this condition. Thus, the exploration of novel mechanistic pathways of existing molecules may help to develop more safe and effective anti-diabetic agents. Sodium orthovanadate is a well known common laboratory agent used to preserve the protein tyrosyl phosphorylation state of the protein. METHODS The data related to sodium orthovanadate and diabetes mellitus has been collected from Pubmed. RESULTS Various reports have indicated the potential of sodium orthovanadate as Protein Tyrosine Phosphatase (PTP1B) inhibitors which play an important role in the pathogenesis of diabetes. However, safety of Sodium orthovanadate is still questionable. CONCLUSION The sodium orthovanadate could be developed as an anti-diabetic agent. However, further studies are required to confirm its safety profile in the treatment of diabetes mellitus before starting a clinical trial.
Collapse
Affiliation(s)
- Divya Rana
- Department of Pharmacology, Indo-Soviet Friendship Pharmacy College (ISFCP), Moga, Punjab, India
| | - Anoop Kumar
- Department of Pharmacology, Indo-Soviet Friendship Pharmacy College (ISFCP), Moga, Punjab, India
| |
Collapse
|
3
|
Abstract
Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.
Collapse
Affiliation(s)
| | - Veena Mani
- National Dairy Research Institute, Karnal, Haryana, India
| | | |
Collapse
|
4
|
Bortoli S, Collinet M, Desbuquois B. Vanadate inhibits transcription of the rat insulin receptor gene via a proximal sequence of the 5'flanking region. BIOCHIMIE OPEN 2018; 7:26-32. [PMID: 30416963 PMCID: PMC6205930 DOI: 10.1016/j.biopen.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/30/2018] [Indexed: 11/16/2022]
Abstract
Vanadate, a protein tyrosine phosphatase inhibitor which elicits insulin-like effects, has previously been shown to inhibit expression of the insulin receptor gene at the transcriptional level in rat hepatoma cells. In an attempt to identify the DNA sequence and transcription factors potentially involved in this effect, a fragment of the proximal 5'flanking region of the IR gene (-1143/-252 upstream the ATG codon) has been cloned and functionally characterized. RNase protection allowed the identification of several transcription start sites in the conserved region of the gene, among which two major sites at -455 and -396. Upon fusion to the luciferase gene and transient transfection into hepatoma cells, the -1143/-252 fragment showed promoter activity. This was unaffected by deletion of the -1143/-761 sequence, but markedly decreased (90%) by additional deletion of the -760/-465 sequence. Treatment of hepatoma cells with vanadate led to a dose-dependent decrease in promoter activity of the 1143/-252, -760/-252 and -464/-252 constructs (change relative to untreated cells, 40, 55 and 23% at 125 μM, and 70, 85 and 62% at 250 μM, respectively). These data suggest that although the entire DNA sequence upstream the transcription start sites is probably involved in vanadate-induced inhibition, the short sequence downstream of position -464 and is sufficient for inhibition. Potential targets of vanadate are the transcription factors FoxO1 and HMGA1, two downstream targets of the insulin signaling pathway which have been shown to mediate the inhibitory effect of insulin on IR gene expression.
Collapse
Key Words
- C/EBPβ, C/CAAT/enhancer binding protein β
- FoxO1, Forkhead box protein O1
- Gene transcription
- HMGA1, high mobility group A1 protein
- HNF4, hepatocyte nuclear factor 4
- Hepatoma cells
- IGFBP-1, insulin-like growth factor binding protein 1
- IR, insulin receptor
- Insulin receptor
- Liver
- PEPCK, phosphoenolpyruvate carboxykinase
- PI3K, phosphatidyl inositol 3-kinase
- Rat
- SINE, short interspersed nuclear element
- STZ, streptozotocin
- Sp1, specificity protein 1
- TCF7L2, T-cell specific transcription factor 7-like 2
- Vanadate
Collapse
Affiliation(s)
- Sylvie Bortoli
- INSERM UMR 1124, UFR des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Martine Collinet
- INSERM UMR 1124, UFR des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bernard Desbuquois
- INSERM U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
5
|
Patel R, Singh YP, Singh Y, Butcher RJ, Jasinski JP. New di-μ-oxidovanadium(V) complexes with NNO donor Schiff bases: Synthesis, crystal structures and electrochemical studies. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Jiang P, Ni Z, Wang B, Ma B, Duan H, Li X, Ma X, Wei Q, Ji X, Liu Q, Xing S, Li M. Acute toxicity, twenty-eight days repeated dose toxicity and genotoxicity of vanadyl trehalose in kunming mice. Regul Toxicol Pharmacol 2017; 85:86-97. [DOI: 10.1016/j.yrtph.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 11/29/2022]
|
7
|
Domingo JL, Gómez M. Vanadium compounds for the treatment of human diabetes mellitus: A scientific curiosity? A review of thirty years of research. Food Chem Toxicol 2016; 95:137-41. [PMID: 27417449 DOI: 10.1016/j.fct.2016.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
In the second part of the 1980s, and in the 1990s, a number of investigators demonstrated -mainly in streptozotocin-induced (STZ) diabetic rats-that the vanadate and vanadyl forms of vanadium possessed a number of insulin-like effects in various cells. It was hypothesized that oral vanadium could be an alternative treatment to parenteral insulin in the therapy of diabetes mellitus. However, the long-term and/or chronic administration of vanadium compounds should also mean tissue vanadium accumulation and risks of toxicity. The purpose of this review was to revise the current-state-of-the-art on the use of vanadium in the treatment of human diabetes. It has been conducted more than three decades after the first report on the beneficial insulin-mimetic effects of oral vanadium administration in STZ-diabetic rats. Although the antidiabetic effects of vanadium in STZ-diabetic rodents are well supported, in the few studies on human patients with positive results, that are available in the literature, vanadium compounds were administered during very short periods. We conclude that vanadium administration for the treatment of human diabetes is misplaced.
Collapse
Affiliation(s)
- José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Mercedes Gómez
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
8
|
Franssens L, Lesuisse J, Wang Y, Willems E, Willemsen H, Koppenol A, Guo X, Buyse J, Decuypere E, Everaert N. The effect of insulin on plasma glucose concentrations, expression of hepatic glucose transporters and key gluconeogenic enzymes during the perinatal period in broiler chickens. Gen Comp Endocrinol 2016; 232:67-75. [PMID: 26723190 DOI: 10.1016/j.ygcen.2015.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 12/27/2022]
Abstract
Chickens have blood glucose concentrations that are twofold higher than those observed in mammals. Moreover, the insulin sensitivity seems to decrease with postnatal age in both broiler and layer chickens. However, little is known about the response of insulin on plasma glucose concentrations and mRNA abundance of hepatic glucose transporters 1, 2, 3, 8, 9 and 12 (GLUT1, 2, 3, 8, 9 and 12) and three regulatory enzymes of the gluconeogenesis, phosphoenolpyruvate carboxykinase 1 and 2 (PCK1 and 2) or fructose-1,6-biphosphatase 1 (FBP1) in chicks during the perinatal period. In the present study, broiler embryos on embryonic day (ED)16, ED18 or newly-hatched broiler chicks were injected intravenously with bovine insulin (1μg/g body weight (BW)) to examine plasma glucose response and changes in hepatic mRNA abundance of the GLUTs, PCK1 and 2 and FBP1. Results were compared with a non-treated control group and a saline-injected sham group. Plasma glucose levels of insulin-treated ED18 embryos recovered faster from their minimum level than those of insulin-treated ED16 embryos or newly-hatched chicks. In addition, at the minimum plasma glucose level seven hours post-injection (PI), hepatic GLUT2, FBP1 and PCK2 mRNA abundance was decreased in insulin-injected embryos, compared to sham and control groups, being most pronounced when insulin injection occurred on ED16.
Collapse
Affiliation(s)
- Lies Franssens
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium
| | - Jens Lesuisse
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium
| | - Yufeng Wang
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium
| | - Els Willems
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium
| | - Hilke Willemsen
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium
| | - Astrid Koppenol
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium; ILVO Animal Sciences Unit, Scheldeweg 68, 9090 Melle, Belgium
| | - Xiaoquan Guo
- College of Animal Science and Technology, Jiangxi Agricultural University, 330045 Jiangxi, China
| | - Johan Buyse
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium.
| | - Eddy Decuypere
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium
| | - Nadia Everaert
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium; University of Liège, Gembloux Agro-Bio Tech, Animal Science Unit, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
9
|
Fedorova EV, Buriakina AV, Vorob'eva NM, Baranova NI. [The vanadium compounds: chemistry, synthesis, insulinomimetic properties]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2014; 60:416-29. [PMID: 25249525 DOI: 10.18097/pbmc20146004416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review considers the biological role of vanadium, its participation in various processes in humans and other mammals, and the anti-diabetic effect of its compounds. Vanadium salts have persistent hypoglycemic and antihyperlipidemic effects and reduce the probability of secondary complications in animals with experimental diabetes. The review contains a detailed description of all major synthesized vanadium complexes having antidiabetic activity. Currently, vanadium complexes with organic ligands are more effective and safer than the inorganic salts. Despite the proven efficacy of these compounds as the anti-diabetic agents in animal models, only one organic complex of vanadium is currently under the second phase of clinical trials. All of the considered data suggest that vanadium compound are a new promising class of drugs in modern pharmacotherapy of diabetes.
Collapse
|
10
|
Fedorova EV, Buryakina AV, Vorobieva NM, Baranova NI. The vanadium compounds: Chemistry, synthesis, insulinomimetic properties. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2013. [DOI: 10.1134/s1990750813040021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Refat MS, El-Shazly SA. Identification of a new anti-diabetic agent by combining VOSO4 and vitamin E in a single molecule: studies on its spectral, thermal and pharmacological properties. Eur J Med Chem 2010; 45:3070-9. [PMID: 20413189 DOI: 10.1016/j.ejmech.2010.03.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/19/2022]
Abstract
Vanadium(IV) complex of vitamin E (Vit E) ligand was reported. In this complex, binuclear ligand acts as a monodentate via oxygen of phenolic group. The vanadyl(II) ion is surrounded by two molecules of Vit E and two water molecules. The [VO(Vit E)(2)(H(2)O)(2)]2H(2)O complex was isolated by the reaction between VOSO(4) and vitamin E in ethanol/water solvent (50/50 w/w) at pH=8. The solid vanadyl(II) complex has been characterized by elemental analyses (CHN), photometric titrations, infrared spectra, molar conductivity, electronic spectra, TGA/DSC, SEM and XRD studies. Electronic and magnetic measurements are confirmed that the speculated geometry of vanadyl(II) complex is square pyramidal geometry. The microbial test was performed for the vanadyl complex against some kinds of bacteria and fungi. The [VO(Vit E)(2)(H(2)O)(2)]2H(2)O complex was proved effective in addressing diabetic of type I in case of experimental animal than other compounds were prepared in the literature.
Collapse
Affiliation(s)
- Moamen S Refat
- Department of Chemistry, Faculty of Science, Port Said 42111, Suez Canal University, Egypt.
| | | |
Collapse
|
12
|
Gupta BL, Preet A, Baquer NZ. Protective effects of sodium orthovanadate in diabetic reticulocytes and ageing red blood cells of Wistar rats. J Biosci 2009; 29:73-9. [PMID: 15286406 DOI: 10.1007/bf02702564] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The reticulocytes and the ageing red blood cells (RBCs) namely young (Y), middle-aged (M) and old RBCs (O) of female Wistar rats from different groups such as control animals (C), controls treated with vanadate (C + V), alloxan-induced diabetic (D), diabetic-treated with insulin (D + I) and vanadate (D + V), were fractionated on a percoll/BSA gradient. The following enzymes were measured - hexokinase (HK), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), glutathione-s-transferase (GST), alanine aminotransferase (AlaAT), aspartate aminotransferase (AsAT) and arginase in the hemolysates of all the RBCs fractions. Decreases in the activity of HK and AsAT by about 70%, arginase and GSH-Px by 30% in old RBCs were observed in comparison to reticulocytes of control animals. Increases in the activity of GSSG-R by 86%, AlaAT by more than 400% and GST by 70% were observed in old RBCs in comparison to reticulocytes of control animals. Alloxan diabetic animals showed a further decrease in the activities of HK in Y RBCs by 37%, M RBCs by 39% and O RBCs by 32%, GSH-Px activity in Y RBCs by 13%, M RBCs by 20% and O RBCs by 33% and GST activity in Y RBCs by 14%, M RBCs by 42% and O RBCs by 60% in comparison to their corresponding cells of control animals. An increase in the activity of all the enzymes studied was also observed in reticulocytes of diabetic animals in comparison to reticulocytes of controls. The GSSG-R activity was found to be increased in Y RBCs by 49%, M RBCs by 67% and O RBCs by 64% as compared to the corresponding age-matched cells of control animals. The activity of arginase also decreased in Y RBCs by about10%, M RBCs by 20% and O RBCs by 30% in comparison to the age-matched cells of control animals. A decrease in the activity of AsAT in Y and M RBCs by 30%, and O RBCs by 25% was observed in diabetic animals in comparison to the age-matched cells of control animals. The activity of AlaAT was found to be decreased by more than 10% in Y and M RBCs and 25% in O RBCs of diabetic animals in comparison to the age-matched cells of control animals. Insulin administration to diabetic animals reversed the altered enzyme activity to control values. Vanadate treatment also reversed the enzyme levels except for that of GST in old cells.
Collapse
Affiliation(s)
- Bihari L Gupta
- Hormone and Drug Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
13
|
Freitas HS, Schaan BD, David-Silva A, Sabino-Silva R, Okamoto MM, Alves-Wagner AB, Mori RC, Machado UF. SLC2A2 gene expression in kidney of diabetic rats is regulated by HNF-1alpha and HNF-3beta. Mol Cell Endocrinol 2009; 305:63-70. [PMID: 19433262 DOI: 10.1016/j.mce.2009.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 11/26/2022]
Abstract
We hypothesize that, in kidney of diabetic rats, hepatocyte nuclear factors (HNF-1alpha and HNF-3beta) play a critical role in the overexpression of solute carrier 2A2 (SLC2A2) gene. Diabetic rats submitted or not to rapid (up to 12h) and short-term (1, 4 and 6 days) insulin treatment were investigated. Twofold increase in GLUT2 mRNA was observed in diabetic, accompanied by significant increases in HNF-1alpha and HNF-3beta expression and binding activity. Additional 2-fold increase in GLUT2 mRNA and HNF-3beta expression/activity was observed in 12-h insulin-treated rats. Six-day insulin treatment decreased GLUT2 mRNA and HNF-1alpha expression and activity to levels of non-diabetic rats, whereas HNF-3beta decreased to levels of non-insulin-treated diabetic rats. Our results provide evidence for a link between the overexpression of SLC2A2 gene and the transcriptional activity of HNF-1alpha and HNF-3beta in kidney of diabetic rats. Furthermore, recovery of SLC2A2 gene after 6-day insulin treatment also involves HNF-1alpha and HNF-3beta activity.
Collapse
Affiliation(s)
- H S Freitas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524, 05505-900 Sao Paulo (SP), Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Li M, Ding W, Baruah B, Crans DC, Wang R. Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV). J Inorg Biochem 2008; 102:1846-53. [PMID: 18728000 DOI: 10.1016/j.jinorgbio.2008.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 06/01/2008] [Accepted: 06/05/2008] [Indexed: 11/25/2022]
Abstract
Vanadate has been recognized as a specific and potent phosphatase inhibitor since its structure is similar to that of phosphate. In this study, we measured the inhibition of glutathione S-transferase-tagged protein tyrosine phosphatase 1B (GST-PTP1B) and alkaline phosphatase (ALP) by the insulin enhancing compounds, bis(maltolato)oxovanadium(IV) (BMOV). The results showed that the activity of GST-PTP1B was reversibly inhibited by solutions of BMOV with an IC(50) value of 0.86+/-0.02 microM. Steady state kinetic studies showed that inhibition of GST-PTP1B by BMOV was of a mixed competitive and noncompetitive type. In addition, incubation of GST-PTP1B with BMOV showed a time-dependent biphasic inactivation of the protein. On the other hand, the inhibitory behavior of BMOV on ALP activity was reversible and competitive with an IC(50) value of 32.1+/-0.6 microM. Incubation with BMOV did not show biphasic inactivation of ALP. The reversible inhibition of GST-PTP1B by BMOV is more potent than that of ALP, but solutions of BMOV inhibited both enzymes. This data support the suggestion that mechanisms for the inhibitory effects of BMOV on GST-PTP1B and ALP are very different.
Collapse
Affiliation(s)
- Ming Li
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | |
Collapse
|
15
|
Srivastava AK. Section Review—Oncologic, Endocrine & Metabolic: Potential Use of Vanadium Compounds in the Treatment of Diabetes Mellitus. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.6.525] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Zheng HT, Deng HC, Huang CJ, Lan NZ, Fang F, Jian R. Co-transfection of GK and mhPINS genes into HepG2 cells confers glucose-stimulated insulin secretion. Cytotherapy 2007; 9:580-6. [PMID: 17852199 DOI: 10.1080/14653240701411350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND The purpose of this study was to construct an 'artificial beta cell' that can exhibit physiologic glucose-stimulated insulin secretion for the treatment of type 1 diabetes. METHODS Retroviral vector containing the glucokinase (GK) gene and mutated human proinsulin (mhPINS) gene was constructed. HepG2 cells were first infected with recombinant retrovirus carrying the GK and mhPINS genes, then selectively cultured with G418 to obtain the positive clones. GK and mhPINS gene transcription and expression were identified by radioimmunity, Western blot and RT-PCR techniques. Finally, the dose-response effect of glucose on insulin secretion from those HepG2 cells that expressed both GK and mhPINS genes was tested with HepG2 cells that only expressed the mhPINS gene as a control. RESULTS HepG2 cells with transferred GK and mhPINS genes were selectively cultured with G418 and the positive clones were obtained in 3 weeks. Four clones with GK and mhPINS gene expression were selected from 20 positive clones by radioimmunity and Western blot. We picked up one clone with a strong GK and mhPINS gene expression and named it clone Beta. In clone Beta, differences in insulin secretion at 0.5 and 0.75 mmol/L glucose concentrations were not significant (P>0.05) and differences in insulin secretion at 2.0, 3.0, 4.0, 5.0 and 6.0 mmol/L glucose concentrations were not significant (P>0.05), while there were significant differences in insulin secretion at other glucose concentrations(P<0.05). The artificial beta cell, clone Beta, obtained a glucose-stimulated insulin secretion with maximal insulin secretion at 1.75-2.00 mmol/L glucose concentrations. DISCUSSION An artificial beta cell that exhibits glucose-stimulated insulin secretion can be constructed successfully.
Collapse
Affiliation(s)
- H T Zheng
- Department of Endocrinology, First Affiliated HospitalChongqing University of Medical Sciences, Chongqing, PR China
| | | | | | | | | | | |
Collapse
|
17
|
Wei D, Li M, Ding W. Effect of vanadate on gene expression of the insulin signaling pathway in skeletal muscle of streptozotocin-induced diabetic rats. J Biol Inorg Chem 2007; 12:1265-73. [PMID: 17874149 DOI: 10.1007/s00775-007-0294-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 08/20/2007] [Indexed: 11/30/2022]
Abstract
An insulin signaling pathway microarray was used to evaluate the gene expression profiling of the insulin signaling pathway in the skeletal muscle of streptozotocin-induced diabetic, NaVO(3)-treated diabetic and insulin-treated diabetic rats for the investigation of the effect of vanadium and insulin on the insulin signaling pathway. Of 96 genes surveyed, transcriptional patterns of 19 genes (20%) showed alterations in diabetic rats compared with controls. Although most of these changed gene expressions were improved after treatment with NaVO(3) (14, 74%) and insulin (16, 84%), NaVO(3) and insulin treatment resulted in the alteration of 20 and 12 additional gene transcripts compared no treatment. We found that both NaVO(3) and insulin treatment achieved a desirable glucose level and most of the alterative gene transcripts in diabetic rats were normalized with NaVO(3) and insulin treatment. Comparison of the gene expression profiling indicates that there is a significant difference between the NaVO(3)-treated group and the insulin-treated group. The present study demonstrated for the first time that several candidate genes of the insulin signaling pathway are involved in the effect of vanadium treatment on hyperglycemia. This study opens the way for more focused investigations that may identify the genes responsible for diabetes and vanadium treatment in the global insulin signaling pathway.
Collapse
Affiliation(s)
- Dan Wei
- Department of Biology, Graduate University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, People's Republic of China
| | | | | |
Collapse
|
18
|
Shukla R, Padhye S, Modak M, Ghaskadbi SS, Bhonde RR. Bis(quercetinato)oxovanadium IV Reverses Metabolic Changes in Streptozotocin-Induced Diabetic Mice. Rev Diabet Stud 2007; 4:33-43. [PMID: 17565414 PMCID: PMC1892525 DOI: 10.1900/rds.2007.4.33] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Organic vanadium compounds offer several advantages in the treatment of diabetes, yet they are impractical to use because of known side effects. In order to ameliorate the side effects of vanadium, we conjugated it with quercetin to form bis(quercetinato)oxovanadium IV (BQOV). This study evaluates the effect of BQOV treatment on carbohydrate metabolism and overall oxidative stress in streptozotocin-induced (STZ) diabetic mice. Administration of BQOV orally to diabetic mice for 3 weeks led to a reduction of blood glucose levels and the animals exhibited normal glucose tolerance at the end of the study period. The increase in glucose uptake by skeletal muscle and liver as well as the normalization of mRNA levels of G-6-Pase and glucokinase in the liver after BQOV treatment pointed to improvements in carbohydrate metabolism. The analysis of the antioxidant status of serum, liver and pancreas revealed reduced oxidative stress in BQOV-treated animals compared to untreated diabetic controls. Serum analyses for kidney and liver function showed that BQOV treatment provoked total protection of the kidney and partial protection of the liver from diabetogenic insults. The number of insulin-positive cells and the amount of pancreatic insulin in treated mice (1.2038 +/- 0.34 ng/mg tissue) did not account for pancreatic regeneration but suggested an insulin-mimetic action on the part of BQOV. Moreover, administration of BQOV for 3 weeks did not show any visible side-effects. This data indicate that BQOV is a safe and potent agent for diabetes treatment, because it is able to improve carbohydrate metabolism and to reduce overall oxidative stress.
Collapse
Affiliation(s)
- Ruchi Shukla
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Pune University Campus, Ganeshkind, Pune 411007, India
| | - Subhash Padhye
- Department of Chemistry, University of Pune, Pune, India
| | - Manisha Modak
- Department of Zoology, University of Pune, Pune, India
| | | | - Ramesh R. Bhonde
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Pune University Campus, Ganeshkind, Pune 411007, India
- Address correspondence to: Ramesh R. Bhonde, e-mail:
| |
Collapse
|
19
|
Hirotani Y, Ikeda T, Yamamoto K, Kurokawa N. Effects of Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) on Hyperglycemia in Streptozotocin-Induced Diabetic Rats. Biol Pharm Bull 2007; 30:1015-20. [PMID: 17473455 DOI: 10.1248/bpb.30.1015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the effects of Hachimi-jio-gan (HJ) on diabetic hyperglycemia in streptozotocin (STZ)-induced diabetic rats. After STZ administration, rats had free access to pellets containing 1% HJ extract powder for four weeks. HJ markedly suppressed hyperglycemia in STZ-induced diabetic rats at three and four weeks after the start of administration. There were also significant increases in serum and pancreatic immunoreactive insulin levels in STZ and HJ co-administering rats. However, in the present study, the number of beta cells in the pancreatic Langerhans' islets did not increase. Next, in order to investigate the action mechanism besides the glycemic control action of insulin, the expression of glucose transporter 2 (GLUT2) protein, which is involved in glucose uptake and release in the liver, was investigated. GLUT2 protein expression was increased by STZ administration but was normalized after four weeks of HJ administration. Therefore, irrespective of the structural changes in pancreatic beta-cells due to STZ, HJ increased insulin production and secretion by the pancreas and significantly suppressed GLUT2 synthesis in the liver. Amylase secretion from the pancreas was measured to assess pancreatic secretion. Amylase activity was decreased by STZ but was increased by HJ. Therefore, the effects of HJ on STZ-induced hyperglycemia in rats could be summarized as follows: besides increasing insulin synthesis and release, HJ normalizes GLUT2 protein expression in the liver to suppress hyperglycemia. Hence, the results of the present study suggest for the first time that HJ affects not only the production and secretion of insulin, but also the release of glucose from the liver.
Collapse
Affiliation(s)
- Yoshihiko Hirotani
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohatani University,
| | | | | | | |
Collapse
|
20
|
Jelikić-Stankov M, Uskoković-Marković S, Holclajtner-Antunović I, Todorović M, Djurdjević P. Compounds of Mo, V and W in biochemistry and their biomedical activity. J Trace Elem Med Biol 2007; 21:8-16. [PMID: 17317520 DOI: 10.1016/j.jtemb.2006.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Molybdenum, vanadium and tungsten compounds are widely applied as analytical reagents for determination of numerous pharmacologically active substances and different biochemical parameters. Recent data from the available literature pointed to a very potent biomedical activity of compounds containing these trace elements. The present paper represents a survey on the structure and chemical properties of these compounds, as well as on their biological activity, mostly based on their interaction with cations of biomolecules, such as phospholipids and proteins. Besides, their potent inhibitory effects on cellular targets, bacterial and viral DNA and RNA polymerases will be discussed, as well. Numerous authors clearly demonstrated the antiviral (especially anti-HIV), anticoagulant and antineoplastic properties of the compounds containing the above trace elements. It has been also shown that these compounds act on some cellular enzymatic systems leading to the normalisation of blood pressure, blood glucose and serum lipid levels. Also, compounds of these trace elements represent potent antiobesity agents and express hepatoprotective and antioxidative stress activity.
Collapse
|
21
|
Abstract
Compounds of the trace element vanadium exert various insulin-like effects in in vitro and in vivo systems. These include their ability to improve glucose homeostasis and insulin resistance in animal models of Type 1 and Type 2 diabetes mellitus. In addition to animal studies, several reports have documented improvements in liver and muscle insulin sensitivity in a limited number of patients with Type 2 diabetes. These effects are, however, not as dramatic as those observed in animal experiments, probably because lower doses of vanadium were used and the duration of therapy was short in human studies as compared with animal work. The ability of these compounds to stimulate glucose uptake, glycogen and lipid synthesis in muscle, adipose and hepatic tissues and to inhibit gluconeogenesis, and the activities of the gluconeogenic enzymes: phosphoenol pyruvate carboxykinase and glucose-6-phosphatase in the liver and kidney as well as lipolysis in fat cells contributes as potential mechanisms to their anti-diabetic insulin-like effects. At the cellular level, vanadium activates several key elements of the insulin signal transduction pathway, such as the tyrosine phosphorylation of insulin receptor substrate-1, and extracellular signal-regulated kinase 1 and 2, phosphatidylinositol 3-kinase and protein kinase B activation. These pathways are believed to mediate the metabolic actions of insulin. Because protein tyrosine phosphatases (PTPases) are considered to be negative regulators of the insulin-signalling pathway, it is suggested that vanadium can enhance insulin signalling and action by virtue of its capacity to inhibit PTPase activity and increase tyrosine phosphorylation of substrate proteins. There are some concerns about the potential toxicity of available inorganic vanadium salts at higher doses and during long-term therapy. Therefore, new organo-vanadium compounds with higher potency and less toxicity need to be evaluated for their efficacy as potential treatment of human diabetes.
Collapse
Affiliation(s)
- A K Srivastava
- Laboratory of Cell Signalling, Research Centre, Centre hospitalier de l'Université de Montréal, Hôtel-Dieu and Department of Medicine, Quebec, Canada.
| | | |
Collapse
|
22
|
Cheta D, Orasanu G, Nicolaie T, Iordachescu D, Buligescu S, Constantin C, Hassanain M, Coman A, Enache M, Negru R, Tica V, Timofte D, Gutu D, Panaite C. The influence of sodium metavanadate on the process of diabetogenesis in BB rats. J Cell Mol Med 2004; 7:447-54. [PMID: 14754513 PMCID: PMC6740263 DOI: 10.1111/j.1582-4934.2003.tb00247.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Vanadium has been shown to be beneficial in the oral treatment of animal models of type 1 and type 2 diabetes. The aim of the study was to evaluate the short-term effects of sodium metavanadate in prediabetic BB-DP rats. To do this, 96 rats were divided into 4 equal groups. Groups V1, V2, V3 were treated with sodium metavanadate (0.1, 0.2 and 0.3 mg/ml respectively) and sodium chloride (0.5 mg/ml) in drinking water for 7 days. Group C received only sodium chloride (0.5 mg/ml). Blood glucose (BG), glycosuria, ketonuria, body weight and insulinemia were determined. The age of onset of diabetes was significantly higher for groups V2, V3 compared to group C, (p<0.05) and depends on the metavanadate concentration (V3 vs. V1, p=0.006). The incidence of diabetes was lower in the rats treated with metavanadate than in the control group, but this difference was not statistically significant. In diabetic rats, the BG at the onset was higher in group C than in groups V, p<0.05. Insulinemia, at the onset of the treatment as well as immediately after its cessation showed a drop in the treatment groups, proportionally to the dosage of vanadium, but later increased slowly and continuously until the end of the experiment. In conclusion, metavanadate delays the development of diabetes in BB-DP rats, but does not prevent its onset. A milder form of diabetes occurs in diabetic rats treated with metavanadate. The effects depend on the metavanadate concentration and 0.2 mg/ml is preferable.
Collapse
Affiliation(s)
- D Cheta
- "N Paulescu" Institute, 2nd Clinic of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Marzban L, McNeill JH. Insulin-like actions of vanadium: Potential as a therapeutic agent. ACTA ACUST UNITED AC 2003. [DOI: 10.1002/jtra.10034] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 2002; 277:34933-40. [PMID: 12118006 DOI: 10.1074/jbc.m204672200] [Citation(s) in RCA: 296] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herbs have been used for medicinal purposes, including the treatment of diabetes, for centuries. Plants containing flavonoids are used to treat diabetes in Indian medicine and the green tea flavonoid, epigallocatechin gallate (EGCG), is reported to have glucose-lowering effects in animals. We show here that the regulation of hepatic glucose production is decreased by EGCG. Furthermore, like insulin, EGCG increases tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1), and it reduces phosphoenolpyruvate carboxykinase gene expression in a phosphoinositide 3-kinase-dependent manner. EGCG also mimics insulin by increasing phosphoinositide 3-kinase, mitogen-activated protein kinase, and p70(s6k) activity. EGCG differs from insulin, however, in that it affects several insulin-activated kinases with slower kinetics. Furthermore, EGCG regulates genes that encode gluconeogenic enzymes and protein-tyrosine phosphorylation by modulating the redox state of the cell. These results demonstrate that changes in the redox state may have beneficial effects for the treatment of diabetes and suggest a potential role for EGCG, or derivatives, as an antidiabetic agent.
Collapse
Affiliation(s)
- Mary E Waltner-Law
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | | | |
Collapse
|
25
|
Genet S, Kale RK, Baquer NZ. Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonellafoenum graecum). Mol Cell Biochem 2002; 236:7-12. [PMID: 12190123 DOI: 10.1023/a:1016103131408] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
With the premise that oxygen free radicals may be responsible for the severity and complications of diabetes, the level of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) as well as the oxidative damage were examined in the tissues of control, diabetic and treated rats. After 3 weeks of diabetes, the activity of CAT was significantly increased in heart in diabetes (about 6-fold) but decreased in liver. The SOD activity decreased significantly in liver but increased in brain. The activity of GPx decreased significantly in liver and increased in kidney. A significant increase was observed in oxidative damage in heart and kidney and a small increase in brain with decrease in liver and muscle. Vanadate and fenugreek (Trigonella foenum graecum) administration to diabetic animals showed a reversal of the disturbed antioxidant levels and peroxidative damage. Results suggest that oxidative stress play a key role in the complications of diabetes. Vanadate and fenugreek seeds showed an encouraging antioxidant property and can be valuable candidates in the treatment of the reversal of the complications of diabetes.
Collapse
Affiliation(s)
- Solomon Genet
- Hormone and Drug Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
26
|
Kiersztan A, Modzelewska A, Jarzyna R, Jagielska E, Bryła J. Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbits. Biochem Pharmacol 2002; 63:1371-82. [PMID: 11960614 DOI: 10.1016/s0006-2952(02)00861-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effect of vanadyl acetylacetonate (VAc) and metformin on gluconeogenesis has been studied in isolated hepatocytes and kidney-cortex tubules of rabbit. Glucose formation from alanine+glycerol+octanoate, pyruvate or dihydroxyacetone was inhibited by 50-80% by 100 microM VAc or 500 microM metformin in renal tubules of control and alloxan-diabetic animals, while the inhibitory action of these compounds in hepatocytes was less pronounced (by about 20-30%). In contrast to VAc, metformin increased the rate of lactate formation by about 2-fold in renal tubules incubated with alanine+glycerol+octanoate. In view of VAc-induced changes in intracellular gluconeogenic intermediates and gluconeogenic enzyme activities, it is likely that this compound may decrease fluxes through pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase and glucose-6-phosphatase. In contrast to VAc, metformin-induced decrease in renal gluconeogenesis may result from a decline of cytosolic oxaloacetate level and consequently PEPCK activity. Following 6 days of VAc administration (1.275 mg Vkg(-1) body weight daily) the blood glucose level in alloxan-diabetic rabbits was normalised while blood glucose changes in control animals were not observed. On the contrary, in diabetic animals treated for 6 days with metformin (200 mg kg(-1) body weight day(-1)) a high blood glucose level was maintained. Unfortunately, VAc-treated control and diabetic rabbits exhibited elevated serum urea and creatinine levels. In VAc-treated animals vanadium was accumulated in kidney-cortex up to 7.6+/-0.6 microg Vg(-1) dry weight. In view of a potential vanadium nephrotoxicity a therapeutic application of vanadium compounds needs a critical re-evaluation.
Collapse
Affiliation(s)
- Anna Kiersztan
- Department of Metabolism Regulation, Institute of Biochemistry, Warsaw University, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | | | |
Collapse
|
27
|
Takeshita S, Kawamura I, Yasuno T, Kimura C, Yamamoto T, Seki J, Tamura A, Sakurai H, Goto T. Amelioration of insulin resistance in diabetic ob/ob mice by a new type of orally active insulin-mimetic vanadyl complex: bis(1-oxy-2-pyridinethiolato)oxovanadium(IV) with VO(S(2)O(2)) coordination mode. J Inorg Biochem 2001; 85:179-86. [PMID: 11410238 DOI: 10.1016/s0162-0134(01)00192-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we have shown that a newly synthesized vanadyl complex, bis(1-oxy-2-pyridinethiolato)oxovanadium(IV), VO(opt)(2), is a potent orally active insulin-mimetic in treating streptozotocin-induced diabetes in rats, with long-term action. In the present study, the anti-diabetic effect of VO(opt)(2) and its mechanism in ob/ob mice, an obese non-insulin-dependent diabetes mellitus (NIDDM) animal model, was investigated. In ob/ob mice, 15-day oral treatment with VO(opt)(2) resulted in a dose-dependent decrease in the levels of glucose, insulin and triglyceride in blood. VO(opt)(2) was also effective in ameliorating impaired glucose tolerance in ob/ob mice, when an oral glucose tolerance test was performed after treatment with VO(opt)(2). Tumor necrosis factor-alpha (TNF-alpha) is a key component of obesity-diabetes link, we therefore examined the attenuating effect of VO(opt)(2) on impaired insulin signal transduction induced by TNF-alpha. Elevated expression of TNF-alpha was observed in the epididymal and subcutaneous fat tissues of ob/ob mice. Incubation of 3T3-L1, mouse adipocytes, with TNF-alpha reduced the phosphorylation of insulin receptor substrate-1 (IRS-1), whereas VO(opt)(2) treatment resulted in an enhancement of IRS-1 phosphorylation, irrespective of the presence or absence of TNF-alpha. Overall, the present study demonstrates that VO(opt)(2) exerts an anti-diabetic effect in ob/ob mice by ameliorating impaired glucose tolerance, and furthermore, attenuates the TNF-alpha-induced decrease in IRS-1 phosphorylation in adipocytes. These results suggest that the anti-diabetic action of VO(opt)(2) is derived from an attenuation of a TNF-alpha induced impaired insulin signal transduction via inhibition of protein tyrosine phosphatase, providing a potential clinical utility for VO(opt)(2) in the treatment of NIDDM.
Collapse
Affiliation(s)
- S Takeshita
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6, Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cam MC, Brownsey RW, McNeill JH. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol 2001. [PMID: 11077984 DOI: 10.1139/y00-053] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The demonstration that the trace element vanadium has insulin-like properties in isolated cells and tissues and in vivo has generated considerable enthusiasm for its potential therapeutic value in human diabetes. However, the mechanisms by which vanadium induces its metabolic effects in vivo remain poorly understood, and whether vanadium directly mimics or rather enhances insulin effects is considered in this review. It is clear that vanadium treatment results in the correction of several diabetes-related abnormalities in carbohydrate and lipid metabolism, and in gene expression. However, many of these in vivo insulin-like effects can be ascribed to the reversal of defects that are secondary to hyperglycemia. The observations that the glucose-lowering effect of vanadium depends on the presence of endogenous insulin whereas metabolic homeostasis in control animals appears not to be affected, suggest that vanadium does not act completely independently in vivo, but augments tissue sensitivity to low levels of plasma insulin. Another crucial consideration is one of dose-dependency in that insulin-like effects of vanadium in isolated cells are often demonstrated at high concentrations that are not normally achieved by chronic treatment in vivo and may induce toxic side effects. In addition, vanadium appears to be selective for specific actions of insulin in some tissues while failing to influence others. As the intracellular active forms of vanadium are not precisely defined, the site(s) of action of vanadium in metabolic and signal transduction pathways is still unknown. In this review, we therefore examine the evidence for and against the concept that vanadium is truly an insulin-mimetic agent at low concentrations in vivo. In considering the effects of vanadium on carbohydrate and lipid metabolism, we conclude that vanadium acts not globally, but selectively and by enhancing, rather than by mimicking the effects of insulin in vivo.
Collapse
Affiliation(s)
- M C Cam
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia,Vancouver, Canada
| | | | | |
Collapse
|
29
|
Shafrir E, Spielman S, Nachliel I, Khamaisi M, Bar-On H, Ziv E. Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes Metab Res Rev 2001; 17:55-66. [PMID: 11241892 DOI: 10.1002/1520-7560(2000)9999:9999<::aid-dmrr165>3.0.co;2-j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Numerous investigations have demonstrated the beneficial effect of vanadium salts on diabetes in streptozotocin (STZ)-diabetic rats, in rodents with genetically determined diabetes and in human subjects. The amelioration of diabetes included the abolition of hyperglycemia, preservation of insulin secretion, reduction in hepatic glucose production, enhanced glycolysis and lipogenesis and improved muscle glucose uptake through GLUT4 elevation and translocation. The molecular basis of vanadium salt action is not yet fully elucidated. Although evidence has been provided that the insulin receptor is activated, the possibility exists that cytosolic non-receptor tyrosine kinase, direct phosphorylation of IRS-1 and activation of PI3-K, leading to GLUT4 translocation, are involved. The raised phosphorylation of proteins in the insulin signaling pathway appears to be related to the inhibition of protein tyrosine phosphatase (PTPase) activity by vanadium salts. NOVEL EXPERIMENTS The model utilized in our study was Psammomys obesus (sand rat), a desert gerbil which becomes hyperglycemic and hyperinsulinemic on an ad libitum high energy (HE) diet. In contrast to the previously investigated insulin deficient models, vanadyl sulphate was used to correct insulin resistance and hyperinsulinemia, which led to beta-cell loss. Administration of 5 mg/kg vanadyl sulfate for 5 days resulted in prolonged restoration of normoglycemia and normoinsulinemia in most animals, return of glucose tolerance to normal, and a reduction of hepatic phosphoenolpyruvate carboxykinase activity. There was no change in food consumption and in regular growth during or after the vanadyl treatment. Pretreatment with vanadyl sulfate, followed by transfer to a HE diet, significantly delayed the onset of hyperglycemia. Hyperinsulinemic-euglycemic clamp of vanadyl sulfate treated Psammomys demonstrated an improvement in glucose utilization. However, vanadyl sulfate was ineffective when administered to animals which lost their insulin secretion capacity on protracted HE diet, but substantially reduced the hyperglycemia when given together with exogenous insulin. The in vitro insulin activation of liver and muscle insulin receptors isolated from vanadyl treated Psammomys was ineffective. The in vivo vanadyl treatment restored muscle GLUT4 total protein and mRNA contents in addition to membrane GLUT4 protein, in accordance with the increased glucose utilization during the clamp study. These results indicate that short-term vanadyl sulfate treatment corrects the nutritionally induced, insulin resistant diabetes. This action requires the presence of insulin for its beneficial effect. Thus, vanadyl action in P. obesus appears to be the result of insulin potentiation rather than mimicking, with activation of the signaling pathway proteins leading to GLUT4 translocation, probably distal to the insulin receptor.
Collapse
Affiliation(s)
- E Shafrir
- Department of Biochemistry and Diabetes Research Unit, Hadassah University Hospital and Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | | | | | |
Collapse
|
30
|
Sarangarajan R, Cacini W. Normalization of hyperglycaemia by oral vanadyl sulfate does not reverse diabetes-induced protection against cisplatin nephrotoxicity in streptozotocin-diabetic rats. PHARMACOLOGY & TOXICOLOGY 1999; 85:169-73. [PMID: 10563515 DOI: 10.1111/j.1600-0773.1999.tb00087.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Streptozotocin- and galactose-induced diabetic rats are protected against nephrotoxic effects of cisplatin. While the mechanism remains to be defined, protection is associated with a decrease in the accumulation of platinum in renal cortical tissues of streptozotocin-diabetic versus non-diabetic rats. A physiological abnormality common to streptozotocin and galactosemic models of diabetes is hyperglycaemia, suggesting that elevated sugars are involved in mediating protection of diabetic kidney against cisplatin nephrotoxicity. The current study focused on the effect of normalization of hyperglycaemia by vanadyl sulfate trihydrate on the initiation of protection and accumulation of platinum in kidneys of streptozotocin-diabetic rats. Streptozotocin-diabetic rats were treated with 0.75 mg/ml of vanadyl sulfate trihydrate in drinking water to normalize streptozotocin-induced hyperglycaemia. Vanadyl sulfate treatment normalized plasma glucose and glycosylated haemoglobin levels in streptozotocin-diabetic rats to values observed for non-diabetic rats. Intraperitoneal administration of cisplatin (5 mg/kg body weight) increased blood urea nitrogen by a factor >2.5 over baseline in both untreated and vanadyl-treated non-diabetic groups. Cisplatin-induced increases in blood urea nitrogen were 1.6 times baseline in both untreated and vanadyl-treated streptozotocin-diabetic rats. Renal platinum accumulation was significantly lower in streptozotocin-diabetic versus non-diabetic rats regardless of vanadyl sulfate treatment. Renal vanadium levels in all groups of diabetic rats were not significantly different from each other. These results indicate that normalization of plasma glucose levels with vanadyl sulfate in streptozotocin-diabetic rats did not reverse protection of streptozotocin-diabetic kidney against cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- R Sarangarajan
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, University of Cincinnati Medical Center, OH 45267-0004, USA.
| | | |
Collapse
|
31
|
Badmaev V, Prakash S, Majeed M. Vanadium: a review of its potential role in the fight against diabetes. J Altern Complement Med 1999; 5:273-91. [PMID: 10381252 DOI: 10.1089/acm.1999.5.273] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The potential role of vanadium in human health is described as a building material of bones and teeth. However, another very interesting and promising application for vanadium in human health emerges from recent studies that evaluated the role of vanadium in the management of diabetes. Vanadium is present in a variety of foods that we commonly eat. Skim milk, lobster, vegetable oils, many vegetables, grains and cereals are rich source of vanadium (>1 ppm). Fruits, meats, fish, butter, cheese, and beverages are relatively poor sources of vanadium. The daily dietary intake in humans has been estimated to vary from 10 microg to 2 mg of elemental vanadium, depending on the environmental sources of this mineral in the air, water, and food of the particular region tested. In animals, vanadium has been shown essential (1-10 microg vanadium per gram of diet). There is only circumstantial evidence that vanadium is essential for humans. However, in doses ranging from 0.083 mmol/d to 0.42 mmol/d, vanadium has shown therapeutic potential in clinical studies with patients of both insulin-dependent diabetes mellitus (IDDM) and noninsulin-dependent diabetes mellitus (NIDDM) type. Although vanadium has a significant biological potential, it has a poor therapeutic index, and attempts have been made to reduce the dose of vanadium required for therapeutic effectiveness. Organic forms of vanadium, as opposed to the inorganic sulfate salt of vanadium, are recognized as safer, more absorbable, and able to deliver a therapeutic effect up to 50% greater than the inorganic forms. The goal is to provide vanadium with better gastrointestinal absorption, and in a form that is best able to produce the desired biological effects. As a result, numerous organic complexes of vanadium have been developed including bis(maltolato)oxovanadium (BMOV), bis(cysteinamide N-octyl)oxovanadium known as Naglivan, bis(pyrrolidine-N-carbodithioato)oxovanadium, vanadyl-cysteine methyl ester, and bis-glycinato oxovanadium (BGOV). The health benefits of vanadium and the safety and efficacy of the available vanadium supplements are discussed in this review.
Collapse
Affiliation(s)
- V Badmaev
- Sabinsa Corporation, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
32
|
Abstract
Vanadium is an ultratrace element, widely distributed in nature, yet with no presently known specific physiological function in mammals. The apparent role of vanadium in regulation of intracellular signaling, as a cofactor of enzymes essential in energy metabolism, and as a possible therapeutic agent in diabetes is of increasing interest as more and more research reports present evidence of vanadium's potentially unique biological function. In this mini-review, the author summarizes current knowledge of the bioinorganic chemistry of vanadium, the basic features of diabetes mellitus and its metabolic sequelae, and the in vitro and in vivo effects of both inorganic and organically-chelated vanadium compounds. Results of clinical trials to date, as well as kinetic studies of tissue uptake are covered. Examples of ways to enhance the positive effects of vanadium as an oral therapeutic adjunct in diabetic control, while minimizing potential toxicity, are compared with regard to desirable features and possible drawbacks.
Collapse
Affiliation(s)
- K H Thompson
- Medicinal Inorganic Chemistry Group, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
33
|
Foster JD, Young SE, Brandt TD, Nordlie RC. Tungstate: a potent inhibitor of multifunctional glucose-6-phosphatase. Arch Biochem Biophys 1998; 354:125-32. [PMID: 9633606 DOI: 10.1006/abbi.1998.0695] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulin-like action of tungstate in diabetic rats (A. Barberà et al., 1994, J. Biol. Chem. 269, 20047-20053) prompted us to examine the effects of tungstate on the glucose-6-phosphatase system. Our results indicate that tungstate is a potent inhibitor of glucose-6-phosphatase, with a Ki in the 10-25 microM range determined with native microsomes and in the 1-7 microM range determined with detergent-treated microsomes. With both preparations, simple linear competitive inhibition was observed versus glucose 6-phosphate (glucose-6-P) as substrate with the glucose-6-P phosphohydrolase activity of the enzyme. Tungstate was a simple linear competitive inhibitor versus carbamyl phosphate (carbamyl-P) and a linear noncompetitive inhibitor versus glucose with the carbamyl-P:glucose phosphotransferase activity of the glucose-6-phosphatase system. These findings, in addition to the observation that tungstate protected the enzyme against thermal inactivation, indicate that tungstate binds with high affinity and competes at the active site of the enzyme where the substrates glucose-6-P and carbamyl-P bind prior to catalysis. Our results suggest that potent inhibition of glucose-6-P hydrolysis by tungstate is likely responsible, at least in part, for the normalization of glycemia and the rebound in hepatic glucose-6-P levels observed in earlier studies in which tungstate exhibited insulin-like action in diabetic rats.
Collapse
Affiliation(s)
- J D Foster
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks 58203, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Verma S, Cam MC, McNeill JH. Nutritional factors that can favorably influence the glucose/insulin system: vanadium. J Am Coll Nutr 1998; 17:11-8. [PMID: 9477384 DOI: 10.1080/07315724.1998.10718730] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing body of experimental and clinical research indicates that the trace element, vanadium, exerts potent insulin-mimetic effects in vitro and in vivo when used in pharmacological doses. Since our first demonstration of the anti-diabetic and cardioprotective effects of vanadium in vivo, impressive advances have been made in our understanding of its mechanism of action, pharmacokinetics and pharmacodynamics. A major advance in the use of vanadium as an insulin-mimetic has been the development of organic vanadium complexes which are 2 to 3 times as potent as inorganic vanadium and have been extensively studied in our laboratory. There is an emerging role for the use of vanadium in human diabetes and the recently conducted clinical trials support this contention. The present review summarizes some of the key aspects of vanadium biology which exemplify the potent insulin-mimetic, anti-diabetic and antihypertensive effects of this intriguing trace element.
Collapse
Affiliation(s)
- S Verma
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
36
|
Yuen VG, Orvig C, McNeill JH. Effects of bis(maltolato)oxovanadium(IV) are distinct from food restriction in STZ-diabetic rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:E30-5. [PMID: 9038848 DOI: 10.1152/ajpendo.1997.272.1.e30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In association with the insulin-mimetic properties, vanadium and related compounds have been shown to normalize hyperphagia associated with diabetes mellitus. The objective of this study was to clarify the effects of an organic vanadium compound, bis(maltolato)oxovanadium(IV) (BMOV), vs. food restriction on the metabolic abnormalities that occur in diabetes. BMOV was administered daily in drinking water to streptozotocin (STZ)-diabetic rats for 6 wk. Pair-fed groups were fed based on the intake for their respective counterparts from the previous day. Plasma parameters were measured weekly after a carefully controlled 5-h fasting period. BMOV reduced plasma glucose (diabetic = 31.2 +/- 1.9, diabetic treated = 10.2 +/- 1.8, and diabetic pair fed = 34.2 +/- 1.1 mM), triglyceride, and cholesterol levels to normal without a concomitant increase in plasma insulin levels. There was no body weight gain in the diabetic pair-fed group compared with all other groups. BMOV but not pair feeding was effective in preventing the decreased cardiac function observed in STZ-diabetic rats. These data suggest that the glucose-lowering properties of BMOV are independent of the effects of dietary restriction and reinforce the efficacy of BMOV as an effective antihyperglycemic agent.
Collapse
Affiliation(s)
- V G Yuen
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
37
|
Girard J, Ferré P, Foufelle F. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr 1997; 17:325-52. [PMID: 9240931 DOI: 10.1146/annurev.nutr.17.1.325] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regulation of gene expression by nutrients is an important mechanism in the adaptation of mammals to their nutritional environment. This is especially true for enzymes involved in the storage of energy, such as the lipogenic and glycolytic enzymes in liver and adipose tissue. Transcription of the genes for lipogenic and glycolytic enzymes is stimulated by glucose in adipose tissue, liver, and pancreatic beta-cells. Several lines of evidence suggest that glucose must be metabolized to glucose-6-phosphate to stimulate gene transcription. In adipose tissue, insulin increases the expression of lipogenic enzymes indirectly by stimulating glucose uptake. In the liver, insulin also acts indirectly by stimulating the expression of glucokinase and, hence, by increasing glucose metabolism. Glucose response elements have been characterized for the L-pyruvate kinase and S14 genes. They have in common the presence of a sequence 5'-CACGTG-3', which binds a transcription factor called USF (upstream stimulatory factor). Another glucose response element, which uses a transcription factor named Sp1, has been characterized in the gene for the acetyl-coenzyme A carboxylase. The mechanisms linking glucose-6-phosphate to the glucose-responsive transcription complex are largely unknown.
Collapse
Affiliation(s)
- J Girard
- Centre de Recherches sur l'Endocrinologie Moléculaire et le Dévelopement, UPR 1511 CNRS, Meudon, France
| | | | | |
Collapse
|
38
|
Sekar N, Li J, Shechter Y. Vanadium salts as insulin substitutes: mechanisms of action, a scientific and therapeutic tool in diabetes mellitus research. Crit Rev Biochem Mol Biol 1996; 31:339-59. [PMID: 8994801 DOI: 10.3109/10409239609108721] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vanadium and its compounds exhibit a wide variety of insulin-like effects. In this review, these effects are discussed with respect to the treatment of type I and type II diabetes in animal models, in vitro actions, antineoplastic role, treatment of IDDM and NIDDM patients, toxicity, and the possible mechanism(s) involved. Newly established CytPTK plays a major role in the bioresponses of vanadium. It has a molecular weight of approximately 53 kDa and is active in the presence of Co2+ rather than Mn2+. Among the protein-tyrosine kinase blockers, staurosporine is found to be a potent inhibitor of CytPTK but a poor inhibitor of InsRTK. Vanadium inhibits PTPase activity, and this in turn enhances the activity of protein tyrosine kinases. Our data show that inhibition of PTPase and protein tyrosine kinase activation has a major role in the therapeutic efficacy of vanadium in treating diabetes mellitus.
Collapse
Affiliation(s)
- N Sekar
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
39
|
Rencurel F, Waeber G, Antoine B, Rocchiccioli F, Maulard P, Girard J, Leturque A. Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. Biochem J 1996; 314 ( Pt 3):903-9. [PMID: 8615787 PMCID: PMC1217142 DOI: 10.1042/bj3140903] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have shown that glucose increases the glucose transporter (GLUT2) mRNA expression in the liver in vivo and in vitro. Here we report an analysis of the effects of glucose metabolism on GLUT2 gene expression. GLUT2 mRNA accumulation by glucose was not due to stabilization of its transcript but rather was a direct effect on gene transcription. A proximal fragment of the 5' regulatory region of the mouse GLUT2 gene linked to a reporter gene was transiently transfected into liver GLUT2-expressing cells. Glucose stimulated reporter gene expression in these cells, suggesting that glucose-responsive elements were included within the proximal region of the promoter. A dose-dependent effect of glucose on GLUT2 expression was observed over 10 mM glucose irrespective of the hexokinase isozyme (glucokinase K(m) 16 mM; hexokinase I K(m) 0.01 mM) present in the cell type used. This suggests that the correlation between extracellular glucose and GLUT2 mRNA concentrations is simply a reflection of an activation of glucose metabolism. The mediators and the mechanism responsible for this response remain to be determined. In conclusion, glucose metabolism is required for the proper induction of the GLUT2 gene in the liver and this effect is transcriptionally regulated.
Collapse
Affiliation(s)
- F Rencurel
- Centre de Recherche sur l'Endocrinologie Moléculaire et le Développement, Meudon, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Ozcelikay AT, Becker DJ, Ongemba LN, Pottier AM, Henquin JC, Brichard SM. Improvement of glucose and lipid metabolism in diabetic rats treated with molybdate. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:E344-52. [PMID: 8779958 DOI: 10.1152/ajpendo.1996.270.2.e344] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Molybdenum mimics certain insulin actions in vitro. We have investigated the effects of oral administration of Na2MoO4 (Mo) for 8 wk on carbohydrate and lipid metabolism in streptozotocin-diabetic rats. Mo decreased hyperglycemia and glucosuria by 75% and corrected the elevation of plasma nonesterified fatty acids. Tolerance to glucose loads was improved, and glycogen stores were replenished. These effects were not due to a rise of insulinemia. In liver, Mo restored the blunted mRNA and activity of glucokinase and pyruvate kinase and decreased to normal phosphoenolpyruvate carboxykinase values. Finally, Mo totally reversed the low expression and activity of acetyl-CoA carboxylase and fatty acid synthase in liver, but not in white adipose tissue. In conclusion, Mo exerts a marked blood glucose-lowering effect in diabetic rats by an insulin-like action. This effect results in part from a restoration of hepatic glucose metabolism and is associated with a tissue-specific correction of lipogenic enzyme gene expression, both processes being essentially mediated by reversal of impaired pretranslational regulatory mechanisms. These observations raise new therapeutic perspectives in diabetes, particularly in the insulin-resistant condition.
Collapse
Affiliation(s)
- A T Ozcelikay
- Endocrinology and Metabolism Unit, Faculty of Medicine, University of Louvain, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
41
|
Becker DJ, Reul B, Ozcelikay AT, Buchet JP, Henquin JC, Brichard SM. Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycolytic and gluconeogenic enzymes in diabetic rats. Diabetologia 1996; 39:3-11. [PMID: 8720597 DOI: 10.1007/bf00400407] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Selenium is a trace element that exerts certain insulin-like actions in vitro. In this study, we evaluated its in vivo effects on the glucose homeostasis of rats made diabetic and insulin-deficient by streptozotocin. Na2SeO4 was administered ad libitum in drinking water and/or food for 10 weeks. The elevated plasma glucose levels (approximately 25 mmol/l) and glucosuria (approximately 85 mmol/day) of untreated rats were decreased by 50 and 80%, respectively, by selenate treatment. The beneficial effect of selenate was also evident during oral and intravenous glucose tolerance tests: the integrated glucose responses were decreased by 40-50% as compared to those in untreated rats. These effects were not due to an increase in plasma insulin levels. Compared to non-diabetic rats, pancreatic insulin reserves were reduced by more than 90% in treated and untreated diabetic rats. The hepatic activities and mRNA levels of two key glycolytic enzymes, glucokinase and L-type pyruvate kinase were blunted in diabetic rats. They increased approximately two- to threefold after selenate treatment, to reach 40-75% of the values in non-diabetic rats. In contrast, elevated activity and mRNA levels of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, were reduced by 40-65% after selenate administration. Since selenate induced a moderate decrease in body weight due to an anorexigenic effect, we checked that there was no improvement of glucose homeostasis or hepatic glucose metabolism in an additional group of calorie-restricted diabetic rats, which was weight-matched with the selenate group. In addition, no obvious toxic side-effects on the kidney or liver were observed in the rats receiving selenate. In conclusion, selenate induces a sustained improvement of glucose homeostasis in streptozotocin-diabetic rats by an insulin-like action, which involves partial correction of altered pretranslational regulatory mechanisms in liver metabolism.
Collapse
Affiliation(s)
- D J Becker
- Endocrinology and Metabolism Unit, University of Louvain, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
42
|
Baquer NZ, Saxena AK, Srivastava P. Regulation and control of glucose overutilization in erythrocytes by vanadate. Mol Cell Biochem 1995; 153:157-60. [PMID: 8927032 DOI: 10.1007/bf01075932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The insulin mimetic effect of vanadate in in vitro incubation of erythrocytes with high glucose concentrations showed an increase in sorbitol accumulation and glucose utilization using U-14C-glucose. Aldose reductase inhibitors and vanadate addition reversed the sorbitol accumulation, whereas insulin could not reverse it. Increased glucose utilization was also normalized with vanadium compounds. Increased activity of aldose reductase and sorbitol levels in diabetic animals were also normalized with vanadate treatment.
Collapse
Affiliation(s)
- N Z Baquer
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
43
|
Pandey SK, Chiasson JL, Srivastava AK. Vanadium salts stimulate mitogen-activated protein (MAP) kinases and ribosomal S6 kinases. Mol Cell Biochem 1995; 153:69-78. [PMID: 8927050 DOI: 10.1007/bf01075920] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Effect of several vanadium salts, sodium orthovanadate, vanadyl sulfate and sodium metavanadate on protein tyrosine phosphorylation and serine/threonine kinases in chinese hamster ovary (CHO) cells overexpressing a normal human insulin receptor was examined. All the compounds stimulated protein tyrosine phosphorylation of two major proteins with molecular masses of 42 kDa (p42) and 44 kDa (p44). The phosphorylation of p42 and p44 was associated with an activation of mitogen activated protein (MAP) kinase as well as increased protein tyrosine phosphorylation of p42mapk and p44mapk. Vanadium salts also activated the 90 kDa ribosomal s6 kinase (p90rsk) and 70 kDa ribosomal s6 kinase (p70s6k). Among the three vanadium salts tested, vanadyl sulfate appeared to be slightly more potent than others in stimulating MAP kinases and p70s6k activity. It is suggested that vanadium-induced activation of MAP kinases and ribosomal s6 kinases may be one of the mechanisms by which insulin like effects of this trace element are mediated.
Collapse
Affiliation(s)
- S K Pandey
- Centre de Recherche/Hotel-Dieu de Montreal Hospital, Quebec, Canada
| | | | | |
Collapse
|
44
|
Brichard SM. Effects of vanadate on the expression of genes involved in fuel homeostasis in animal models of Type I and Type II diabetes. Mol Cell Biochem 1995; 153:121-4. [PMID: 8927026 DOI: 10.1007/bf01075926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vanadium is a trace element that has raised increasing interest in diabetology since the discovery of its insulin-like properties in vitro and in vivo. This brief article reviews the most recent data concerning the beneficial effects of vanadium compounds on fuel homeostasis in animal models of insulinopenic (Type I) or insulin-resistant (Type II) diabetes. These studies open obvious therapeutic possibilities in diabetes, and more particularly, in states of insulin resistance.
Collapse
Affiliation(s)
- S M Brichard
- Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
45
|
Zheng Q, Levitsky LL, Mink K, Rhoads DB. Glucose regulation of glucose transporters in cultured adult and fetal hepatocytes. Metabolism 1995; 44:1553-8. [PMID: 8786723 DOI: 10.1016/0026-0495(95)90074-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
GLUT2 is the major glucose transporter of adult hepatocytes. In vivo, membrane GLUT1 is localized to a ring of perivenous cells and increases slightly after fasting or insulin deprivation. GLUT1 also increases in vitro after prolonged culture of isolated adult hepatocytes. We have previously shown that GLUT1 mRNA, protein, and activity are present in the rat fetal hepatocyte, and that both GLUT1 and GLUT2 are important for the pattern of glucose transport in the fetal hepatocyte. We tested the hypothesis that the hypothesis that the postnatal increase in circulating glucose is one of the regulators of the changed pattern of GLUT1 and GLUT2 in the hepatocyte after the fetal to neonatal transition. Fetal and adult rat hepatocytes were cultured for 45 hours in supplemented Dulbecco's modified Eagle's medium at glucose concentrations of 1, 8.3, or 30 mmol/L. Culture at 8.3 and 30 mmol/L glucose diminished GLUT1 mRNA levels were lower in adult versus fetal hepatocyte cultures at 8.3 and 30 mmol/L (P < .05). Similarly, GLUT1 protein levels were significantly diminished in hepatocytes cultured at higher medium glucose (P < .05 for fetal cells at 30 v 1 mmol/L; P < .05 for adult cells at 8.3 and 30 v 1 mmol/L). GLUT2 mRNA abundance was enhanced by medium glucose in adult hepatocytes (P < .05 at 8.3 and 30 v 1 mmol/L) and was unchanged by medium glucose in fetal hepatocytes. In contrast, GLUT2 protein level was unchanged by medium glucose in adult hepatocytes, and was diminished at 30 mmol/L as compared with mmol/L glucose in fetal hepatocytes (P < .05). In confirmation of these findings, uptake of 2-deoxyglucose (2-DOG) by fetal hepatocytes was significantly diminished after culture in 8.3 or 30 mmol/L glucose versus 1 mmol/L glucose (P < .05 and < .01, respectively). These studies confirm that the fetal hepatocyte glucose transporter pattern could be maintained in part by low fetal portal glucose levels. However, the resistance of the fetal hepatocyte glucose transporter pattern as compared with that of the adult hepatocyte to the effects of hyperglycemia suggests additional undefined control mechanisms.
Collapse
Affiliation(s)
- Q Zheng
- Pediatric Endocrine Unit, Massachusetts General Hospital
| | | | | | | |
Collapse
|
46
|
Abstract
Diabetes mellitus results from an absolute or relative deficiency in insulin secretion and a resistance of target tissues to the action of insulin, in proportions that vary with the type of the disease. The shortage of insulin can be corrected by administration of exogenous insulin or stimulation of pancreatic beta-cells with sulphonylureas. However, insulin resistance remains a major therapeutic problem. Here, Sonia Brichard and Jean-Claude Henquin review the recent discoveries that indicate a possible role for vanadium in management of the disease. In vitro, vanadium salts mimic most effects of insulin on the main target tissues of the hormone, and in vivo they induce a sustained fall in blood glucose levels in insulin-deficient diabetic rats, and improve glucose homeostasis in obese, insulin-resistant diabetic rodents. Recent short-term clinical trials with vanadium salts also seem promising in type II (non-insulin-dependent) diabetic patients in whom liver and peripheral insulin resistance was attenuated, indicating the therapeutic potential of vanadium salts, pending demonstration of their long-term innocuity.
Collapse
Affiliation(s)
- S M Brichard
- Unité d'Endocrinologie et Métabolism, University of Louvain Faculty of Medicine, Brussels, Belgium
| | | |
Collapse
|
47
|
Holden RJ. The estrogen connection: the etiological relationship between diabetes, cancer, rheumatoid arthritis and psychiatric disorders. Med Hypotheses 1995; 45:169-89. [PMID: 8531840 DOI: 10.1016/0306-9877(95)90066-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
For some considerable time, there has been a growing awareness that defective essential fatty acid metabolism plays a causal role in the pathogenesis of both schizophrenia and non-insulin-dependent diabetes mellitus (NIDDM) but the influence of defective essential fatty acid metabolism in the pathogenesis of rheumatoid arthritis and cancer is less well appreciated. An EFA deficiency, or defective EFA metabolism, negatively influences prostaglandin synthesis and glucose regulation and transport. Moreover, defective EFA metabolism negatively influences estrogen availability which contributes to the observed gender bias some of these illnesses manifest. While fluctuations of estrogen are known to contribute to the pathogenesis of these conditions, so also do fluctuations of IGF-II and there is some suggestion that IGF-II and insulin may well be inversely regulated. In addition, insulin-dependent diabetes mellitus (IDDM), rheumatoid arthritis, and schizophrenia are thought to be autoimmune disorders, while cancer is associated with immune system failure. Consequently, this paper aims to examine the pathophysiological similarities and differences between mental illness, diabetes, rheumatoid arthritis and cancer in respect of which the causal relationship that obtains between essential fatty acids, estrogen, IGF-II, glucose regulation and autoimmunity will be addressed.
Collapse
Affiliation(s)
- R J Holden
- Medical Research Unit, University of Wollongong, NSW, Australia
| |
Collapse
|
48
|
Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1995; 95:2501-9. [PMID: 7769096 PMCID: PMC295932 DOI: 10.1172/jci117951] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We examined the in vivo metabolic effects of vanadyl sulfate (VS) in non-insulin-dependent diabetes mellitus (NIDDM). Six NIDDM subjects treated with diet and/or sulfonylureas were examined at the end of three consecutive periods: placebo for 2 wk, VS (100 mg/d) for 3 wk, and placebo for 2 wk. Euglycemic hyperinsulinemic (30 mU/m2.min) clamps and oral glucose tolerance tests were performed at the end of each study period. Glycemic control at baseline was poor (fasting plasma glucose 210 +/- 19 mg/dl; HbA1c 9.6 +/- 0.6%) and improved after treatment (181 +/- 14 mg/dl [P < 0.05], 8.8 +/- 0.6%, [P < 0.002]); fasting and post-glucose tolerance test plasma insulin concentrations were unchanged. After VS, the glucose infusion rate during the clamp was increased (by approximately 88%, from 1.80 to 3.38 mg/kg.min, P < 0.0001). This improvement was due to both enhanced insulin-mediated stimulation of glucose uptake (rate of glucose disposal [Rd], +0.89 mg/kg.min) and increased inhibition of HGP (-0.74 mg/kg.min) (P < 0.0001 for both). Increased insulin-stimulated glycogen synthesis (+0.74 mg/kg.min, P < 0.0003) accounted for > 80% of the increased Rd after VS, and the improvement in insulin sensitivity was maintained after the second placebo period. The Km of skeletal muscle glycogen synthase was lowered by approximately 30% after VS treatment (P < 0.05). These results indicate that 3 wk of treatment with VS improves hepatic and peripheral insulin sensitivity in insulin-resistant NIDDM humans. These effects were sustained for up to 2 wk after discontinuation of VS.
Collapse
Affiliation(s)
- N Cohen
- Department of Medicine, Albert Einstein College of Medicine, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
49
|
Chapter 17. Recent Advancements in the Discovery and Development of Agents for the Treatment of Diabetes. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1995. [DOI: 10.1016/s0065-7743(08)60930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
50
|
Brichard SM, Ongemba LN, Girard J, Henquin JC. Tissue-specific correction of lipogenic enzyme gene expression in diabetic rats given vanadate. Diabetologia 1994; 37:1065-72. [PMID: 7867878 DOI: 10.1007/bf00418369] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vanadium is a potent insulinomimetic agent. In vivo, its blood glucose lowering action in insulin-deficient diabetic rats is associated with corrected expression of genes involved in hepatic glucose metabolism. In this study, we investigated whether vanadate treatment also reverses the impaired expression of genes coding for key enzymes of lipogenesis in diabetic liver and white adipose tissue. Oral administration of vanadate to streptozotocin-rats caused a 55% fall in plasma glucose levels after feeding without modifying low insulinaemia. It also partially corrected the low thyroid hormone concentrations. In untreated diabetic animals, hepatic mRNA levels of acetyl-CoA carboxylase and fatty acid synthase were reduced by more than 80 and 90%, respectively, in close correlation with changes in enzyme activities. Three weeks of vanadate treatment totally restored acetyl-CoA carboxylase mRNA and partially restored fatty acid synthase mRNA (71% of control levels). The activities of both lipogenic enzymes were increased 3.5 to 4-fold, to reach 45 to 65% of control values. By contrast, in white adipose tissue, vanadate modified neither expression nor activity of both lipogenic enzymes, which remained blunted (< 10% of control levels). In conclusion, vanadate treatment partially restores the activities of two key lipogenic enzymes in liver, but not in white adipose tissue, of diabetic rats. This correction results from a reversal of impaired pre-translational regulatory mechanisms possibly mediated by an improvement of thyroid function and a selective restoration of liver glycolytic flux.
Collapse
Affiliation(s)
- S M Brichard
- Unité d'Endocrinologie et Métabolisme, University of Louvain, Faculty of Medicine, Brussels, Belgium
| | | | | | | |
Collapse
|