1
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
2
|
Korte JA, Weakley A, Donjuan Fernandez K, Joiner WM, Fan AP. Neural Underpinnings of Learning in Dementia Populations: A Review of Motor Learning Studies Combined with Neuroimaging. J Cogn Neurosci 2024; 36:734-755. [PMID: 38285732 DOI: 10.1162/jocn_a_02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The intent of this review article is to serve as an overview of current research regarding the neural characteristics of motor learning in Alzheimer disease (AD) as well as prodromal phases of AD: at-risk populations, and mild cognitive impairment. This review seeks to provide a cognitive framework to compare various motor tasks. We will highlight the neural characteristics related to cognitive domains that, through imaging, display functional or structural changes because of AD progression. In turn, this motivates the use of motor learning paradigms as possible screening techniques for AD and will build upon our current understanding of learning abilities in AD populations.
Collapse
|
3
|
Das-Earl P, Schreihofer DA, Sumien N, Schreihofer AM. Temporal and region-specific tau hyperphosphorylation in the medulla and forebrain coincides with development of functional changes in male obese Zucker rats. J Neurophysiol 2024; 131:689-708. [PMID: 38416718 PMCID: PMC11305650 DOI: 10.1152/jn.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024] Open
Abstract
Metabolic syndrome (MetS) is associated with development of tauopathies that contribute to cognitive decline. Without functional leptin receptors, male obese Zucker rats (OZRs) develop MetS, and they have increased phosphorylated tau (ptau) with impaired cognitive function. In addition to regulating energy balance, leptin enhances activation of the hippocampus, which is essential for spatial learning and memory. Whether spatial learning and memory are always impaired in OZRs or develop with MetS is unknown. We hypothesized that male OZRs develop MetS traits that promote regional increases in ptau and functional deficits associated with those brain regions. In the medulla and cortex, tau-pSer199,202 and tau-pSer396 were comparable in juvenile (7-8 wk old) lean Zucker rats (LZRs) and OZRs but increased in 18- to 19-wk-old OZRs. Elevated tau-pSer396 was concentrated in the dorsal vagal complex of the medulla, and by this age OZRs had hypertension with increased arterial pressure variability. In the hippocampus, tau-pSer199,202 and tau-pSer396 were still comparable in 18- to 19-wk-old OZRs and LZRs but elevated in 28- to 29-wk-old OZRs, with emergence of deficits in Morris water maze performance. Comparable escape latencies observed during acquisition in 18- to 19-wk-old OZRs and LZRs were increased in 28- to 29-wk-old OZRs, with greater use of nonspatial search strategies. Increased ptau developed with changes in the insulin/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the hippocampus and cortex but not medulla, suggesting different underlying mechanisms. These data demonstrate that leptin is not required for spatial learning and memory in male OZRs. Furthermore, early development of MetS-associated autonomic dysfunction by the medulla may be predictive of later hippocampal dysfunction and cognitive impairment.NEW & NOTEWORTHY Male obese Zucker rats (OZRs) lack functional leptin receptors and develop metabolic syndrome (MetS). At 16-19 wk, OZRs are insulin resistant, with increased ptau in dorsal medulla and impaired autonomic regulation of AP. At 28-29 wk OZRs develop increased ptau in hippocampus with deficits in spatial learning and memory. Juvenile OZRs lack elevated ptau and these deficits, demonstrating that leptin is not essential for normal function. Elevated ptau and deficits emerge before the onset of diabetes in insulin-resistant OZRs.
Collapse
Affiliation(s)
- Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ann M Schreihofer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
4
|
Kim HE, Kim JJ, Seok JH, Park JY, Oh J. Resting-state functional connectivity and cognitive performance in aging adults with cognitive decline: A data-driven multivariate pattern analysis. Compr Psychiatry 2024; 129:152445. [PMID: 38154288 DOI: 10.1016/j.comppsych.2023.152445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Cognitive impairments occur on a continuous spectrum in multiple cognitive domains showing individual variability of the deteriorating patterns; however, often, cognitive domains are studied separately. METHODS The present study investigated aging individual variations of cognitive abilities and related resting-state functional connectivity (rsFC) using data-driven approach. Cognitive and neuroimaging data were obtained from 62 elderly outpatients with cognitive decline. Principal component analysis (PCA) was conducted on the cognitive data to determine patterns of cognitive performance, then data-driven whole-brain connectome multivariate pattern analysis (MVPA) was applied on the neuroimaging data to discover neural regions associated with the cognitive characteristic. RESULTS The first component (PC1) delineated an overall decline in all domains of cognition, and the second component (PC2) represented a compensatory relationship within basic cognitive functions. MVPA indicated rsFC of the cerebellum lobule VIII and insula with the default-mode network, frontoparietal network, and salience network inversely correlated with PC1 scores. Additionally, PC2 score was related to rsFC patterns with temporal pole and occipital cortex. CONCLUSIONS The featured primary cognitive characteristic depicted the importance of the cerebellum and insula connectivity patterns in of the general cognitive decline. The findings also discovered a secondary characteristic that communicated impaired interactions within the basic cognitive function, which was independent from the impairment severity.
Collapse
Affiliation(s)
- Hesun Erin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Ho Seok
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Park
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea
| | - Jooyoung Oh
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Carello-Collar G, Bellaver B, Ferreira PCL, Ferrari-Souza JP, Ramos VG, Therriault J, Tissot C, De Bastiani MA, Soares C, Pascoal TA, Rosa-Neto P, Souza DO, Zimmer ER. The GABAergic system in Alzheimer's disease: a systematic review with meta-analysis. Mol Psychiatry 2023; 28:5025-5036. [PMID: 37419974 DOI: 10.1038/s41380-023-02140-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
The γ-aminobutyric acid (GABA)ergic system is the primary inhibitory neurotransmission system in the mammalian brain. Its dysregulation has been shown in multiple brain conditions, but in Alzheimer's disease (AD) studies have provided contradictory results. Here, we conducted a systematic review with meta-analysis to investigate whether the GABAergic system is altered in AD patients compared to healthy controls (HC), following the PRISMA 2020 Statement. We searched PubMed and Web of Science from database inception to March 18th, 2023 for studies reporting GABA, glutamate decarboxylase (GAD) 65/67, GABAA, GABAB, and GABAC receptors, GABA transporters (GAT) 1-3 and vesicular GAT in the brain, and GABA levels in the cerebrospinal fluid (CSF) and blood. Heterogeneity was estimated using the I2 index, and the risk of bias was assessed with an adapted questionnaire from the Joanna Briggs Institute Critical Appraisal Tools. The search identified 3631 articles, and 48 met the final inclusion criteria (518 HC, mean age 72.2, and 603 AD patients, mean age 75.6). Random-effects meta-analysis [standardized mean difference (SMD)] revealed that AD patients presented lower GABA levels in the brain (SMD = -0.48 [95% CI = -0.7, -0.27], adjusted p value (adj. p) < 0.001) and in the CSF (-0.41 [-0.72, -0.09], adj. p = 0.042), but not in the blood (-0.63 [-1.35, 0.1], adj. p = 0.176). In addition, GAD65/67 (-0.67 [-1.15, -0.2], adj. p = 0.006), GABAA receptor (-0.51 [-0.7, -0.33], adj. p < 0.001), and GABA transporters (-0.51 [-0.92, -0.09], adj. p = 0.016) were lower in the AD brain. Here, we showed a global reduction of GABAergic system components in the brain and lower GABA levels in the CSF of AD patients. Our findings suggest the GABAergic system is vulnerable to AD pathology and should be considered a potential target for developing pharmacological strategies and novel AD biomarkers.
Collapse
Affiliation(s)
- Giovanna Carello-Collar
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Pamela C L Ferreira
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - João Pedro Ferrari-Souza
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Vanessa G Ramos
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Joseph Therriault
- McGill Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Cécile Tissot
- McGill Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Marco A De Bastiani
- Department of Pharmacology, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Carolina Soares
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
- McGill Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada.
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada.
- Department of Pharmacology, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Department of Pharmacology, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
- Brain Institute of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
6
|
Moya M, Escudero B, Gómez-Blázquez E, Rebolledo-Poves AB, López-Gallardo M, Guerrero C, Marco EM, Orio L. Upregulation of TLR4/MyD88 pathway in alcohol-induced Wernicke’s encephalopathy: Findings in preclinical models and in a postmortem human case. Front Pharmacol 2022; 13:866574. [PMID: 36225571 PMCID: PMC9549119 DOI: 10.3389/fphar.2022.866574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Wernicke’s encephalopathy (WE) is a neurologic disease caused by vitamin B1 or thiamine deficiency (TD), being the alcohol use disorder its main risk factor. WE patients present limiting motor, cognitive, and emotional alterations related to a selective cerebral vulnerability. Neuroinflammation has been proposed to be one of the phenomena that contribute to brain damage. Our previous studies provide evidence for the involvement of the innate immune receptor Toll-like (TLR)4 in the inflammatory response induced in the frontal cortex and cerebellum in TD animal models (animals fed with TD diet [TDD] and receiving pyrithiamine). Nevertheless, the effects of the combination of chronic alcohol consumption and TD on TLR4 and their specific contribution to the pathogenesis of WE are currently unknown. In addition, no studies on TLR4 have been conducted on WE patients since brains from these patients are difficult to achieve. Here, we used rat models of chronic alcohol (CA; 9 months of forced consumption of 20% (w/v) alcohol), TD hit (TDD + daily 0.25 mg/kg i.p. pyrithiamine during 12 days), or combined treatment (CA + TDD) to check the activation of the proinflammatory TLR4/MyD88 pathway and related markers in the frontal cortex and the cerebellum. In addition, we characterized for the first time the TLR4 and its coreceptor MyD88 signature, along with other markers of this proinflammatory signaling such as phospo-NFκB p65 and IκBα, in the postmortem human frontal cortex and cerebellum (gray and white matter) of an alcohol-induced WE patient, comparing it with negative (no disease) and positive (aged brain with Alzheimer’s disease) control subjects for neuroinflammation. We found an increase in the cortical TLR4 and its adaptor molecule MyD88, together with an upregulation of the proinflammatory signaling molecules p-NF-ĸB and IĸBα in the CA + TDD animal model. In the patient diagnosed with alcohol-induced WE, we observed cortical and cerebellar upregulation of the TLR4/MyD88 pathway. Hence, our findings provide evidence, both in the animal model and the human postmortem brain, of the upregulation of the TLR4/MyD88 proinflammatory pathway in alcohol consumption–related WE.
Collapse
Affiliation(s)
- Marta Moya
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Berta Escudero
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | | | | | | | - Carmen Guerrero
- Biobanco of Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Eva M. Marco
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
- Research Network in Primary Care in Addictions (Red de Investigación en Atención Primaria en Adicciones), Riapad, Spain
- *Correspondence: Laura Orio,
| |
Collapse
|
7
|
Lin M, Stewart MT, Zefi S, Mateti KV, Gauthier A, Sharma B, Martinez LR, Ashby CR, Mantell LL. Dual effects of supplemental oxygen on pulmonary infection, inflammatory lung injury, and neuromodulation in aging and COVID-19. Free Radic Biol Med 2022; 190:247-263. [PMID: 35964839 PMCID: PMC9367207 DOI: 10.1016/j.freeradbiomed.2022.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
Abstract
Clinical studies have shown a significant positive correlation between age and the likelihood of being infected with SARS-CoV-2. This increased susceptibility is positively correlated with chronic inflammation and compromised neurocognitive functions. Postmortem analyses suggest that acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), with systemic and lung hyperinflammation, can cause significant morbidity and mortality in COVID-19 patients. Supraphysiological supplemental oxygen, also known as hyperoxia, is commonly used to treat decreased blood oxygen saturation in COVID-19 patients. However, prolonged exposure to hyperoxia alone can cause oxygen toxicity, due to an excessive increase in the levels of reactive oxygen species (ROS), which can overwhelm the cellular antioxidant capacity. Subsequently, this causes oxidative cellular damage and increased levels of aging biomarkers, such as telomere shortening and inflammaging. The oxidative stress in the lungs and brain can compromise innate immunity, resulting in an increased susceptibility to secondary lung infections, impaired neurocognitive functions, and dysregulated hyperinflammation, which can lead to ALI/ARDS, and even death. Studies indicate that lung inflammation is regulated by the central nervous system, notably, the cholinergic anti-inflammatory pathway (CAIP), which is innervated by the vagus nerve and α7 nicotinic acetylcholine receptors (α7nAChRs) on lung cells, particularly lung macrophages. The activation of α7nAChRs attenuates oxygen toxicity in the lungs and improves clinical outcomes by restoring hyperoxia-compromised innate immunity. Mechanistically, α7nAChR agonist (e.g., GAT 107 and GTS-21) can regulate redox signaling by 1) activating Nrf2, a master regulator of the antioxidant response and a cytoprotective defense system, which can decrease cellular damage caused by ROS and 2) inhibiting the activation of the NF-κB-mediated inflammatory response. Notably, GTS-21 has been shown to be safe and it improves neurocognitive functions in humans. Therefore, targeting the α7nAChR may represent a viable therapeutic approach for attenuating dysregulated hyperinflammation-mediated ARDS and sepsis in COVID-19 patients receiving prolonged oxygen therapy.
Collapse
Affiliation(s)
- Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Maleka T Stewart
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Sidorela Zefi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Kranthi Venkat Mateti
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Bharti Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Lauren R Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
8
|
Vis G, Nilsson M, Westin CF, Szczepankiewicz F. Accuracy and precision in super-resolution MRI: Enabling spherical tensor diffusion encoding at ultra-high b-values and high resolution. Neuroimage 2021; 245:118673. [PMID: 34688898 PMCID: PMC9272945 DOI: 10.1016/j.neuroimage.2021.118673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022] Open
Abstract
Diffusion MRI (dMRI) can probe the tissue microstructure but suffers from low signal-to-noise ratio (SNR) whenever high resolution is combined with high diffusion encoding strengths. Low SNR leads to poor precision as well as poor accuracy of the diffusion-weighted signal; the latter is caused by the rectified noise floor and can be observed as a positive bias in magnitude signal. Super-resolution techniques may facilitate a beneficial tradeoff between bias and resolution by allowing acquisition at low spatial resolution and high SNR, whereafter high spatial resolution is recovered by image reconstruction. In this work, we describe a super-resolution reconstruction framework for dMRI and investigate its performance with respect to signal accuracy and precision. Using phantom experiments and numerical simulations, we show that the super-resolution approach improves accuracy by facilitating a more beneficial trade-off between spatial resolution and diffusion encoding strength before the noise floor affects the signal. By contrast, precision is shown to have a less straightforward dependency on acquisition, reconstruction, and intrinsic tissue parameters. Indeed, we find a gain in precision from super-resolution reconstruction is substantial only when some spatial resolution is sacrificed. Finally, we deployed super-resolution reconstruction in a healthy brain for the challenging combination of spherical b-tensor encoding at ultra-high b-values and high spatial resolution—a configuration that produces a unique contrast that emphasizes tissue in which diffusion is restricted in all directions. This demonstration showcased that super-resolution reconstruction enables a vastly superior image contrast compared to conventional imaging, facilitating investigations that would otherwise have prohibitively low SNR, resolution or require non-conventional MRI hardware.
Collapse
Affiliation(s)
- Geraline Vis
- Department of Diagnostic Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Markus Nilsson
- Department of Diagnostic Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Filip Szczepankiewicz
- Department of Diagnostic Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
9
|
Miguel JC, Perez SE, Malek-Ahmadi M, Mufson EJ. Cerebellar Calcium-Binding Protein and Neurotrophin Receptor Defects in Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:645334. [PMID: 33776745 PMCID: PMC7994928 DOI: 10.3389/fnagi.2021.645334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebellar hypoplasia is a major characteristic of the Down syndrome (DS) brain. However, the consequences of trisomy upon cerebellar Purkinje cells (PC) and interneurons in DS are unclear. The present study performed a quantitative and qualitative analysis of cerebellar neurons immunostained with antibodies against calbindin D-28k (Calb), parvalbumin (Parv), and calretinin (Calr), phosphorylated and non-phosphorylated intermediate neurofilaments (SMI-34 and SMI-32), and high (TrkA) and low (p75NTR) affinity nerve growth factor (NGF) receptors as well as tau and amyloid in DS (n = 12), Alzheimer's disease (AD) (n = 10), and healthy non-dementia control (HC) (n = 8) cases. Our findings revealed higher Aβ42 plaque load in DS compared to AD and HC but no differences in APP/Aβ plaque load between HC, AD, and DS. The cerebellar cortex neither displayed Aβ40 containing plaques nor pathologic phosphorylated tau in any of the cases examined. The number and optical density (OD) measurements of Calb immunoreactive (-ir) PC soma and dendrites were similar between groups, while the number of PCs positive for Parv and SMI-32 were significantly reduced in AD and DS compared to HC. By contrast, the number of SMI-34-ir PC dystrophic axonal swellings, termed torpedoes, was significantly greater in AD compared to DS. No differences in SMI-32- and Parv-ir PC OD measurements were observed between groups. Conversely, total number of Parv- (stellate/basket) and Calr (Lugaro, brush, and Golgi)-positive interneurons were significantly reduced in DS compared to AD and HC. A strong negative correlation was found between counts for Parv-ir interneurons, Calr-ir Golgi and brush cells, and Aβ42 plaque load. Number of TrkA and p75NTR positive PCs were reduced in AD compared to HC. These findings suggest that disturbances in calcium binding proteins play a critical role in cerebellar neuronal dysfunction in adults with DS.
Collapse
Affiliation(s)
- Jennifer C. Miguel
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Sylvia E. Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Michael Malek-Ahmadi
- Department of Biomedical Informatics, Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
10
|
Chaudhari K, Wang L, Kruse J, Winters A, Sumien N, Shetty R, Prah J, Liu R, Shi J, Forster M, Yang SH. Early loss of cerebellar Purkinje cells in human and a transgenic mouse model of Alzheimer's disease. Neurol Res 2021; 43:570-581. [PMID: 33688799 DOI: 10.1080/01616412.2021.1893566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The cerebellum's involvement in AD has been under-appreciated by historically labeling as a normal control in AD research. METHODS We determined the involvement of the cerebellum in AD progression. Postmortem human and APPswe/PSEN1dE9 mice cerebellums were used to assess the cerebellar Purkinje cells (PC) by immunohistochemistry. The locomotor and spatial cognitive functions were assessed in 4- to 5-month-old APPswe/PSEN1dE9 mice. Aβ plaque and APP processing were determined in APPswe/PSEN1dE9 mice at different age groups by immunohistochemistry and Western blot. RESULTS We observed loss of cerebellar PC in mild cognitive impairment and AD patients compared with cognitively normal controls. A strong trend towards PC loss was found in AD mice as early as 5 months. Impairment of balance beam and rotorod performance, but no spatial learning and memory dysfunction was observed in AD mice at 4-5 months. Aβ plaque in the cerebral cortex was evidenced in AD mice at 2 months and dramatically increased at 6 months. Less and smaller Aβ plaques were observed in the cerebellum than in the cerebrum of AD mice. Similar intracellular APP staining was observed in the cerebellum and cerebrum of AD mice at 2 to 10 months. Similar expression of full-length APP and C-terminal fragments were indicated in the cerebrum and cerebellum of AD mice during aging. DISCUSSION Our study in post-mortem human brains and transgenic AD mice provided neuropathological and functional evidence that cerebellar dysfunction may occur at the early stage of AD and likely independent of Aβ plaque.
Collapse
Affiliation(s)
- Kiran Chaudhari
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Linshu Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Jonas Kruse
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Ali Winters
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Ritu Shetty
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Jude Prah
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Jiong Shi
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, 888 W Bonneville Avenue, Las Vegas, NV USA
| | - Michael Forster
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| |
Collapse
|
11
|
Cerebellar Volume Is Associated with Cognitive Decline in Mild Cognitive Impairment: Results from ADNI. THE CEREBELLUM 2020; 19:217-225. [PMID: 31900856 DOI: 10.1007/s12311-019-01099-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a disease with dysfunctional brain network. Previous studies found the cerebellar volume changes over the course of AD disease progression; however, whether cerebellar volume change contributes to the cognitive decline in AD, or its earlier disease stage (i.e., mild cognitive impairment [MCI]) remains unclear. In ADNI, cognitive function was assessed using Alzheimer's Disease Assessment Scale-Cognitive Behavior section (ADAS-Cog). We used linear regression and linear mixed effects models to examine whether cerebellar volume is associated with either baseline cognition or with cognitive changes over time in MCI or in AD. We used logistic regression to assess the relationship between cerebellar volume and disease progression to MCI and AD. We found that cerebellar volume is associated with cognition in patients with MCI, after adjusting for age, gender, education, hippocampal volume, and APOE4 status. Consistently, cerebellar volume is associated with increased odds of the disease stages of MCI and AD when compared to controls. However, cerebellar volume is not associated with cognitive changes over time in either MCI or AD. In summary, cerebellar volume may contribute to cognition level in MCI, but not in AD, indicating that the cerebellar network might modulate the cognitive function in the early stage of the disease. The cerebellum may be a potential target for neuromodulation in treating MCI.
Collapse
|
12
|
Neuroglial patterns are shared by cerebella from prion and prion-like disorder affected patients. Mech Ageing Dev 2019; 184:111176. [PMID: 31689427 DOI: 10.1016/j.mad.2019.111176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 11/19/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's and Parkinson's, are considered prion-like disorders because they are all proteinopathies in which aberrant proteins spread throughout the brain during disease progression. The overall aim of this study is to determine how glial cells are commonly involved in the neurodegeneration progress observed in all these pathologies. The suggestion that they are cell types in which prion and prion-like disorders have common behaviour is the hypothesis on which this study is based. Morphological and distribution differences in astroglial and microglial cells in the cerebellum from prion and prion-like disease-affected patients were assessed here by histopathological and immunochemical tools. To our knowledge, this is the first study to focus on the comparative assessment of glial profiles in these human brains. Activated microglial population was demonstrated in both, prion and prion-like disorders, although in higher extent in the first. In astroglial activation, specific patterns of alterations suggesting both degenerative and potentially neuroprotective or restorative stem cell response, were shown to be alternatively shared by cerebella from all disorders studied. Neuro-protective strategies for these disabling disorders are particularly desirable.
Collapse
|
13
|
Mavroudis I, Petridis F, Kazis D, Njau SN, Costa V, Baloyannis SJ. Purkinje Cells Pathology in Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2019; 34:439-449. [PMID: 31256608 PMCID: PMC10653362 DOI: 10.1177/1533317519859200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Alzheimer's disease (AD) is one of the main causes of dementia in senium and presenium. It is clinically characterized by memory impairment, deterioration of intellectual faculties, and loss of professional skills. The cerebellum is a critical part in the distributed neural circuits participating not only in motor function but also in autonomic, limbic, and cognitive behaviors. In present study, we aim to investigate the morphological changes in the Purkinje cells in different cerebellar regions in AD and to correlate them with the underlying AD pathology. Purkinje cells exhibit significant morphometric alterations in AD and prominently in the anterior lobe which is related to higher cognitive functions. The present study gives new insights into the cerebellar pathology in AD and confirms that Purkinje cells pathology is a key finding in AD brains and that AD is characterized by regional-specific atrophy picked in the anterior cerebellar lobe.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust Leeds, Leeds, United Kingdom
- Laboratory of Neuropathology and Electron Microscopy Thessaloniki, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Foivos Petridis
- Laboratory of Neuropathology and Electron Microscopy Thessaloniki, School of Medicine, Aristotle University of Thessaloniki, Greece
- 3rd Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Dimitrios Kazis
- 3rd Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Samuel N. Njau
- Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Costa
- Laboratory of Neuropathology and Electron Microscopy Thessaloniki, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Stavros J. Baloyannis
- Laboratory of Neuropathology and Electron Microscopy Thessaloniki, School of Medicine, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
14
|
Altered microglia and neurovasculature in the Alzheimer's disease cerebellum. Neurobiol Dis 2019; 132:104589. [PMID: 31454549 DOI: 10.1016/j.nbd.2019.104589] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally regarded to coordinate movement, the cerebellum also exerts non-motor functions including the regulation of cognitive and behavioral processing, suggesting a potential role in neurodegenerative conditions affecting cognition, such as Alzheimer's disease (AD). This study aims to investigate neuropathology and AD-related molecular changes within the neocerebellum using post-mortem human brain tissue microarrays (TMAs). Immunohistochemistry was conducted on neocerebellar paraffin-embedded TMAs from 24 AD and 24 matched control cases, and free-floating neocerebellar sections from 6 AD and 6 controls. Immunoreactivity was compared between control and AD groups for neuropathological hallmarks (amyloid-β, tau, ubiquitin), Purkinje cells (calbindin), microglia (IBA1, HLA-DR), astrocytes (GFAP) basement-membrane associated molecules (fibronectin, collagen IV), endothelial cells (CD31/PECAM-1) and mural cells (PDGFRβ, αSMA). Amyloid-β expression (total immunolabel intensity) and load (area of immunolabel) was increased by >4-fold within the AD cerebellum. Purkinje cell counts, ubiquitin and tau immunoreactivity were unchanged in AD. IBA1 expression and load was increased by 91% and 69%, respectively, in AD, with no change in IBA1-positive cell number. IBA1-positive cell process length and branching was reduced by 22% and 41%, respectively, in AD. HLA-DR and GFAP immunoreactivity was unchanged in AD. HLA-DR-positive cell process length and branching was reduced by 33% and 49%, respectively, in AD. Fibronectin expression was increased by 27% in AD. Collagen IV, PDGFRβ and αSMA immunoreactivity was unchanged in AD. The number of CD31-positive vessels was increased by 98% in AD, suggesting the increase in CD31 expression and load in AD is due to greater vessel number. The PDGFRβ/CD31 load ratio was reduced by 59% in AD. These findings provide evidence of molecular changes affecting microglia and the neurovasculature within the AD neocerebellum. These changes, occurring without overt neuropathology, support the hypothesis of microglial and neurovascular dysfunction as drivers of AD, which has implications on the neocerebellar contribution to AD symptomatology and pathophysiology.
Collapse
|
15
|
Hoxha E, Lippiello P, Zurlo F, Balbo I, Santamaria R, Tempia F, Miniaci MC. The Emerging Role of Altered Cerebellar Synaptic Processing in Alzheimer's Disease. Front Aging Neurosci 2018; 10:396. [PMID: 30542279 PMCID: PMC6278174 DOI: 10.3389/fnagi.2018.00396] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
The role of the cerebellum in Alzheimer's disease (AD) has been neglected for a long time. Recent studies carried out using transgenic mouse models have demonstrated that amyloid-β (Aβ) is deposited in the cerebellum and affects synaptic transmission and plasticity, sometimes before plaque formation. A wide variability of motor phenotype has been observed in the different murine models of AD, without a consistent correlation with the extent of cerebellar histopathological changes or with cognitive deficits. The loss of noradrenergic drive may contribute to the impairment of cerebellar synaptic function and motor learning observed in these mice. Furthermore, cerebellar neurons, particularly granule cells, have been used as in vitro model of Aβ-induced neuronal damage. An unexpected conclusion is that the cerebellum, for a long time thought to be somehow protected from AD pathology, is actually considered as a region vulnerable to Aβ toxic damage, even at the early stage of the disease, with consequences on motor performance.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Pellegrino Lippiello
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Fabio Zurlo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ilaria Balbo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Rita Santamaria
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy.,National Institute of Neuroscience (INN), Turin, Italy
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Russo R, Cattaneo F, Lippiello P, Cristiano C, Zurlo F, Castaldo M, Irace C, Borsello T, Santamaria R, Ammendola R, Calignano A, Miniaci MC. Motor coordination and synaptic plasticity deficits are associated with increased cerebellar activity of NADPH oxidase, CAMKII, and PKC at preplaque stage in the TgCRND8 mouse model of Alzheimer's disease. Neurobiol Aging 2018; 68:123-133. [DOI: 10.1016/j.neurobiolaging.2018.02.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/14/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
|
17
|
Tiedt HO, Benjamin B, Niedeggen M, Lueschow A. Phenotypic Variability in Autosomal Dominant Familial Alzheimer Disease due to the S170F Mutation of Presenilin-1. NEURODEGENER DIS 2018; 18:57-68. [PMID: 29466804 DOI: 10.1159/000485899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/29/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND In rare cases, patients with Alzheimer disease (AD) present at an early age and with a family history suggestive of an autosomal dominant mode of inheritance. Mutations of the presenilin-1 (PSEN1) gene are the most common causes of dementia in these patients. Early-onset and particularly familial AD patients frequently present with variable non-amnestic cognitive symptoms such as visual, language or behavioural changes as well as non-cognitive, e.g. motor, symptoms. OBJECTIVE To investigate the phenotypic variability in carriers of the PSEN1 S170F mutation. METHODS We report a family with 4 patients carrying the S170F mutation of whom 2 underwent detailed clinical examinations. We discuss our current findings in the context of previously reported S170F cases. RESULTS The clinical phenotype was consistent regarding initial memory impairment and early onset in the late twenties found in all S170F patients. There were frequent non-amnestic cognitive changes and, at early stages of the disease, indications of a more pronounced disturbance of visuospatial abilities as compared to face and object recognition. Non-cognitive symptoms most often included myoclonus and cerebellar ataxia. A review of the available case reports indicates some phenotypic variability associated with the S170F mutation including different constellations of symptoms such as parkinsonism and delusions. CONCLUSION The variable clinical findings associated with the S170F mutation highlight the relevance of atypical phenotypes in the context of research and under a clinical perspective. CSF sampling and detection of Aβ species may be essential to indicate AD pathology in unclear cases presenting with cognitive and motor symptoms at a younger age.
Collapse
Affiliation(s)
- Hannes O Tiedt
- Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
| | | | | | | |
Collapse
|
18
|
Ordoñez-Gutierrez L, Fernandez-Perez I, Herrera JL, Anton M, Benito-Cuesta I, Wandosell F. AβPP/PS1 Transgenic Mice Show Sex Differences in the Cerebellum Associated with Aging. J Alzheimers Dis 2018; 54:645-56. [PMID: 27567877 DOI: 10.3233/jad-160572] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cerebellar pathology has been related to presenilin 1 mutations in certain pedigrees of familial Alzheimer's disease. However, cerebellum tissue has not been intensively analyzed in transgenic models of mutant presenilins. Furthermore, the effect of the sex of the mice was not systematically analyzed, despite the fact that important gender differences in the evolution of the disease in the human population have been described. We analyzed whether the progression of amyloidosis in a double transgenic mouse, AβPP/PS1, is susceptible to aging and differentially affects males and females. The accumulation of amyloid in the cerebellum differentially affects males and females of the AβPP/PS1 transgenic line, which was found to be ten-fold higher in 15-month-old females. Amyloid-β accumulation was more evident in the molecular layer of the cerebellum, but glia reaction was only observed in the granular layer of the older mice. The sex divergence was also observed in other neuronal, survival, and autophagic markers. The cerebellum plays an important role in the evolution of the pathology in this transgenic mouse model. Sex differences could be crucial for a complete understanding of this disease. We propose that the human population could be studied in this way. Sex-specific treatment strategies in human populations could show a differential response to the therapeutic approach.
Collapse
Affiliation(s)
- Lara Ordoñez-Gutierrez
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Madrid, Spain.,Centro de Investigacion Neurologica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Jose Luis Herrera
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
| | - Marta Anton
- Centro de Investigacion Neurologica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Francisco Wandosell
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Madrid, Spain.,Centro de Investigacion Neurologica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
19
|
Atlante A, de Bari L, Bobba A, Amadoro G. A disease with a sweet tooth: exploring the Warburg effect in Alzheimer's disease. Biogerontology 2017; 18:301-319. [PMID: 28314935 DOI: 10.1007/s10522-017-9692-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
After more than 80 years from the revolutionary discoveries of Otto Warburg, who observed high glucose dependency, with increased glycolysis and lactate production regardless of oxygen availability in most cancer cells, the 'Warburg effect' returns to the fore in neuronal cells affected by Alzheimer's disease (AD). Indeed, it seems that, in the mild phase of AD, neuronal cells "prefer" to use the energetically inefficient method of burning glucose by glycolysis, as in cancer, proving to become resistant to β-amyloid (Aβ)-dependent apoptosis. However, in the late phase, while most AD brain cells die in response to Aβ toxicity, only small populations of neurons, exhibiting increased glucose uptake and glycolytic flux, are able to survive as they are resistant to Aβ. Here we draw an overview on the metabolic shift for glucose utilization from oxidative phosphorylation to glycolysis, focusing on the hypothesis that, as extreme attempt to oppose the impending death, mitochondria-whose dysfunction and central role in Aβ toxicity is an AD hallmark-are sent into quiescence, this likely contributing to activate mechanisms of resistance to Aβ-dependent apoptosis. Finally, the attempt turns out fruitless since the loss of the adaptive advantage afforded by elevated aerobic glycolysis exacerbates the pathophysiological processes associated with AD, making the brain susceptible to Aβ-induced neurotoxicity and leading to cell death and dementia. The understanding of how certain nerve cells become resistant to Aβ toxicity, while the majority dies, is an attractive challenge toward the identification of novel possible targets for AD therapy.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council (CNR), Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Lidia de Bari
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council (CNR), Via G. Amendola 165/A, 70126, Bari, Italy
| | - Antonella Bobba
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council (CNR), Via G. Amendola 165/A, 70126, Bari, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| |
Collapse
|
20
|
Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, Mariën P, Nowak DA, Schmahmann JD, Serrao M, Steiner KM, Strupp M, Tilikete C, Timmann D, van Dun K. Consensus Paper: Revisiting the Symptoms and Signs of Cerebellar Syndrome. CEREBELLUM (LONDON, ENGLAND) 2016; 15:369-91. [PMID: 26105056 PMCID: PMC5565264 DOI: 10.1007/s12311-015-0687-3] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is involved in sensorimotor operations, cognitive tasks and affective processes. Here, we revisit the concept of the cerebellar syndrome in the light of recent advances in our understanding of cerebellar operations. The key symptoms and signs of cerebellar dysfunction, often grouped under the generic term of ataxia, are discussed. Vertigo, dizziness, and imbalance are associated with lesions of the vestibulo-cerebellar, vestibulo-spinal, or cerebellar ocular motor systems. The cerebellum plays a major role in the online to long-term control of eye movements (control of calibration, reduction of eye instability, maintenance of ocular alignment). Ocular instability, nystagmus, saccadic intrusions, impaired smooth pursuit, impaired vestibulo-ocular reflex (VOR), and ocular misalignment are at the core of oculomotor cerebellar deficits. As a motor speech disorder, ataxic dysarthria is highly suggestive of cerebellar pathology. Regarding motor control of limbs, hypotonia, a- or dysdiadochokinesia, dysmetria, grasping deficits and various tremor phenomenologies are observed in cerebellar disorders to varying degrees. There is clear evidence that the cerebellum participates in force perception and proprioceptive sense during active movements. Gait is staggering with a wide base, and tandem gait is very often impaired in cerebellar disorders. In terms of cognitive and affective operations, impairments are found in executive functions, visual-spatial processing, linguistic function, and affective regulation (Schmahmann's syndrome). Nonmotor linguistic deficits including disruption of articulatory and graphomotor planning, language dynamics, verbal fluency, phonological, and semantic word retrieval, expressive and receptive syntax, and various aspects of reading and writing may be impaired after cerebellar damage. The cerebellum is organized into (a) a primary sensorimotor region in the anterior lobe and adjacent part of lobule VI, (b) a second sensorimotor region in lobule VIII, and (c) cognitive and limbic regions located in the posterior lobe (lobule VI, lobule VIIA which includes crus I and crus II, and lobule VIIB). The limbic cerebellum is mainly represented in the posterior vermis. The cortico-ponto-cerebellar and cerebello-thalamo-cortical loops establish close functional connections between the cerebellum and the supratentorial motor, paralimbic and association cortices, and cerebellar symptoms are associated with a disruption of these loops.
Collapse
Affiliation(s)
- Florian Bodranghien
- FNRS ULB-Erasme, Unité d'Etude du Mouvement, 808 Route de Lennik, 1070, Brussels, Belgium
| | - Amy Bastian
- Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, 21205, USA
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Rome Sapienza University, Rome, Italy
| | - Mark Hallett
- Human Motor Control Section, NINDS, Bethesda, MD, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mario Manto
- FNRS ULB-Erasme, Unité d'Etude du Mouvement, 808 Route de Lennik, 1070, Brussels, Belgium.
| | - Peter Mariën
- Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Department of Neurology and Memory Clinic, ZNA Middelheim General Hospital, Antwerp, Belgium
| | - Dennis A Nowak
- Helios Klinik Kipfenberg, Kindingerstrasse 13, D-85110, Kipfenberg, Germany
- Neurologische Universitätsklinik, Philipps-Universität Marburg, Baldingerstraße, D-35043, Marburg, Germany
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioural Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, Rome Sapienza University, Rome, Italy
- Rehabilitation Centre, Movement Analysis LAB, Policlinico Italia, Rome, Italy
| | - Katharina Marie Steiner
- Department of Neurology, University Clinic Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | | | - Caroline Tilikete
- CRNL INSERM U1028 CNRS UMR5292, Team ImpAct, Bron, F-69676, France
- Lyon I University, Lyon, F-69373, France
- Hospices Civils de Lyon, Neuro-Ophthalmology and Neurology D, Hôpital Neurologique Pierre Wertheimer, Bron, F-69677, France
| | - Dagmar Timmann
- Department of Neurology, University Clinic Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Kim van Dun
- Department of Neurology and Memory Clinic, ZNA Middelheim General Hospital, Antwerp, Belgium
| |
Collapse
|
21
|
Guo CC, Tan R, Hodges JR, Hu X, Sami S, Hornberger M. Network-selective vulnerability of the human cerebellum to Alzheimer's disease and frontotemporal dementia. Brain 2016; 139:1527-38. [PMID: 26912642 DOI: 10.1093/brain/aww003] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/06/2015] [Indexed: 12/12/2022] Open
Abstract
SEE SCHMAHMANN DOI101093/BRAIN/AWW064 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Neurodegenerative diseases are associated with distinct and distributed patterns of atrophy in the cerebral cortex. Emerging evidence suggests that these atrophy patterns resemble intrinsic connectivity networks in the healthy brain, supporting the network-based degeneration framework where neuropathology spreads across connectivity networks. An intriguing yet untested possibility is that the cerebellar circuits, which share extensive connections with the cerebral cortex, could be selectively targeted by major neurodegenerative diseases. Here we examined the structural atrophy in the cerebellum across common types of neurodegenerative diseases, and characterized the functional connectivity patterns of these cerebellar atrophy regions. Our results showed that Alzheimer's disease and frontotemporal dementia are associated with distinct and circumscribed atrophy in the cerebellum. These cerebellar atrophied regions share robust and selective intrinsic connectivity with the atrophied regions in the cerebral cortex. These findings for the first time demonstrated the selective vulnerability of the cerebellum to common neurodegenerative disease, extending the network-based degeneration framework to the cerebellum. Our work also has direct implications on the cerebellar contribution to the cognitive and affective processes that are compromised in neurodegeneration as well as the practice of using the cerebellum as reference region for ligand neuroimaging studies.
Collapse
Affiliation(s)
- Christine C Guo
- 1 QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Rachel Tan
- 2 Neuroscience Research Australia, Sydney, Australia 3 School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - John R Hodges
- 2 Neuroscience Research Australia, Sydney, Australia 3 School of Medical Sciences, University of New South Wales, Sydney, Australia 4 ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia
| | - Xintao Hu
- 5 School of Automation, Northwestern Polytechnical University, Xian, China
| | - Saber Sami
- 6 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michael Hornberger
- 2 Neuroscience Research Australia, Sydney, Australia 4 ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia 7 Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
22
|
Lardenoije R, van den Hove DL, Vaessen TS, Iatrou A, Meuwissen KP, van Hagen BT, Kenis G, Steinbusch HW, Schmitz C, Rutten BP. Epigenetic modifications in mouse cerebellar Purkinje cells: effects of aging, caloric restriction, and overexpression of superoxide dismutase 1 on 5-methylcytosine and 5-hydroxymethylcytosine. Neurobiol Aging 2015; 36:3079-3089. [DOI: 10.1016/j.neurobiolaging.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 12/20/2022]
|
23
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
24
|
|
25
|
Álvarez MI, Rivas L, Lacruz C, Toledano A. Astroglial cell subtypes in the cerebella of normal adults, elderly adults, and patients with Alzheimer's disease: A histological and immunohistochemical comparison. Glia 2014; 63:287-312. [DOI: 10.1002/glia.22751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 08/27/2014] [Indexed: 12/28/2022]
Affiliation(s)
| | - Luís Rivas
- Department of Ophthalmology; Hospital Ramón y Cajal; Madrid Spain
| | - César Lacruz
- Department of Pathology; Hospital General Universitario Gregorio Marañón; Madrid Spain
| | | |
Collapse
|
26
|
Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:568587. [PMID: 25101288 PMCID: PMC4101966 DOI: 10.1155/2014/568587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/09/2023]
Abstract
Deep brain stimulation (DBS) has been found to have therapeutic effects in patients with dementia, but DBS mechanisms remain elusive. To provide evidence for the effectiveness of DBS as a treatment for dementia, we performed DBS in a rat model of dementia with intracerebroventricular administration of 192 IgG-saporins. We utilized four groups of rats, group 1, unlesioned control; group 2, cholinergic lesion; group 3, cholinergic lesion plus medial septum (MS) electrode implantation (sham stimulation); group 4, cholinergic lesions plus MS electrode implantation and stimulation. During the probe test in the water maze, performance of the lesion group decreased for measures of time spent and the number of swim crossings over the previous platform location. Interestingly, the stimulation group showed an equivalent performance to the normal group on all measures. And these are partially reversed by the electrode implantation. Acetylcholinesterase activity in the hippocampus was decreased in lesion and implantation groups, whereas activity in the stimulation group was not different from the normal group. Hippocampal neurogenesis was increased in the stimulation group. Our results revealed that DBS of MS restores spatial memory after damage to cholinergic neurons. This effect is associated with an increase in hippocampal cholinergic activity and neurogenesis.
Collapse
|
27
|
Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates. Neuroimage 2014; 95:217-31. [DOI: 10.1016/j.neuroimage.2014.03.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/25/2014] [Accepted: 03/12/2014] [Indexed: 01/18/2023] Open
|
28
|
Daulatzai MA. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res 2014; 39:624-44. [PMID: 24590859 DOI: 10.1007/s11064-014-1266-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/10/2014] [Accepted: 02/25/2014] [Indexed: 12/15/2022]
Abstract
The irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder world wide that lasts for decades. The human gut harbors a diverse population of microbial organisms which is symbiotic and important for well being. However, studies on conventional, germ-free, and obese animals have shown that alteration in normal commensal gut microbiota and an increase in pathogenic microbiota-termed "dysbiosis", impact gut function, homeostasis, and health. Diarrhea, constipation, visceral hypersensitivity, and abdominal pain arise in IBS from the gut-induced dysfunctional metabolic, immune, and neuro-immune communication. Dysbiosis in IBS is associated with gut inflammation. Gut-related inflammation is pivotal in promoting endotoxemia, systemic inflammation, and neuroinflammation. A significant proportion of IBS patients chronically consume alcohol, non-steroidal anti-inflammatories, and fatty diet; they may also suffer from co-morbid respiratory, neuromuscular, psychological, sleep, and neurological disorders. The above pathophysiological substrate is underpinned by dysbiosis, and dysfunctional bidirectional "Gut-Brain Axis" pathways. Pathogenic gut microbiota-related systemic inflammation (due to increased lipopolysaccharide and pro-inflammatory cytokines, and barrier dysfunction), may trigger neuroinflammation enhancing dysfunctional brain regions including hippocampus and cerebellum. These as well as dysfunctional vago-vagal gut-brain axis may promote cognitive impairment. Indeed, inflammation is characteristic of a broad spectrum of neurodegenerative diseases that manifest demntia. It is argued that an awareness of pathophysiological impact of IBS and implementation of appropriate therapeutic measures may prevent cognitive impairment and minimize vulnerability to dementia.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Department, Melbourne School of Engineering, The University of Melbourne, Grattan Street, 3rd Floor, Room No. 344, Parkville, VIC, 3010, Australia,
| |
Collapse
|
29
|
Yun HS, Park MS, Ji ES, Kim TW, Ko IG, Kim HB, Kim H. Treadmill exercise ameliorates symptoms of attention deficit/hyperactivity disorder through reducing Purkinje cell loss and astrocytic reaction in spontaneous hypertensive rats. J Exerc Rehabil 2014; 10:22-30. [PMID: 24678501 PMCID: PMC3952832 DOI: 10.12965/jer.140092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/12/2014] [Accepted: 02/19/2014] [Indexed: 01/21/2023] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder of cognition. We investigated the effects of treadmill exercise on Purkinje cell and astrocytic reaction in the cerebellum of the ADHD rat. Adult male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKYR) weighing 210± 10 g were used. The animals were randomly divided into four groups (n= 15): control group, ADHD group, ADHD and methylphenidate (MPH)-treated group, ADHD and treadmill exercise group. The rats in the MPH-treated group as a positive control received 1 mg/kg MPH orally once a day for 28 consecutive days. The rats in the treadmill exercise group were made to run on a treadmill for 30 min once a day for 28 days. Motor coordination and balance were determined by vertical pole test. Immunohistochemistry for the expression of calbindinD-28 and glial fibrillary acidic protein (GFAP) in the cerebellar vermis and Western blot for GFAP, Bax, and Bcl-2 were conducted. In the present results, ADHD significantly decreased balance and the number of calbindin-positive cells, while GFAP expression and Bax/Bcl-2 ratio in the cerebellum were significantly increased in the ADHD group compared to the control group (P< 0.05, respectively). In contrast, treadmill exercise and MPH alleviated the ADHD-induced the decrease of balance and the number of calbindine-positive cells, and the increase of GFAP expression and Bax/Bcl-2 ratio in the cerebellum (P< 0.05, respectively). Therefore, the present results suggested that treadmill exercise might exert ameliorating effect on ADHD through reduction of Purkinje cell loss and astrocytic reaction in the cerebellum.
Collapse
Affiliation(s)
| | - Mi-Sook Park
- Department of Health and Welfare for the Elderly, Graduate School, Daegu Haany University, Gyeongsan, Korea
| | - Eun-Sang Ji
- Department of Sport & Health Science, College of Natural Science, Sangmyung University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Bae Kim
- Department of Taekwondo, College of Physical Education, Kyung Hee University, Seoul, Korea
| | - Hong Kim
- Department of Oriental Sports Medicine, College of Biomedical Science, Daegu Haany University, Gyeongsan, Korea
| |
Collapse
|
30
|
Skefos J, Cummings C, Enzer K, Holiday J, Weed K, Levy E, Yuce T, Kemper T, Bauman M. Regional alterations in purkinje cell density in patients with autism. PLoS One 2014; 9:e81255. [PMID: 24586223 PMCID: PMC3933333 DOI: 10.1371/journal.pone.0081255] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022] Open
Abstract
Neuropathological studies, using a variety of techniques, have reported a decrease in Purkinje cell (PC) density in the cerebellum in autism. We have used a systematic sampling technique that significantly reduces experimenter bias and variance to estimate PC densities in the postmortem brains of eight clinically well-documented individuals with autism, and eight age- and gender-matched controls. Four cerebellar regions were analyzed: a sensorimotor area comprised of hemispheric lobules IV-VI, crus I & II of the posterior lobe, and lobule X of the flocculonodular lobe. Overall PC density was thus estimated using data from all three cerebellar lobes and was found to be lower in the cases with autism as compared to controls, an effect that was most prominent in crus I and II (p<0.05). Lobule X demonstrated a trend towards lower PC density in only the males with autism (p = 0.05). Brain weight, a correlate of tissue volume, was found to significantly contribute to the lower lobule X PC density observed in males with autism, but not to the finding of lower PC density in crus I & II. Therefore, lower crus I & II PC density in autism is more likely due to a lower number of PCs. The PC density in lobule X was found to correlate with the ADI-R measure of the patient's use of social eye contact (R² = -0.75, p = 0.012). These findings support the hypothesis that abnormal PC density may contribute to selected clinical features of the autism phenotype.
Collapse
Affiliation(s)
- Jerry Skefos
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| | - Christopher Cummings
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Katelyn Enzer
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jarrod Holiday
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Katrina Weed
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ezra Levy
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Tarik Yuce
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Thomas Kemper
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Margaret Bauman
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
31
|
Corbett NJ, Gabbott PL, Klementiev B, Davies HA, Colyer FM, Novikova T, Stewart MG. Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide. PLoS One 2013; 8:e71479. [PMID: 23951173 PMCID: PMC3739720 DOI: 10.1371/journal.pone.0071479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/29/2013] [Indexed: 12/24/2022] Open
Abstract
Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL), a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35) injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25-35) injection. NeuN, a neuronal marker (for nuclear staining) was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β) and to determine the effects of amyloid-beta(25-35) and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions.
Collapse
Affiliation(s)
- Nicola J Corbett
- Open University, Department of Life, Health and Chemical Sciences, Milton Keynes, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
32
|
Jeong DU, Chang WS, Hwang YS, Lee D, Chang JW. Decrease of GABAergic markers and arc protein expression in the frontal cortex by intraventricular 192 IgG-saporin. Dement Geriatr Cogn Disord 2012; 32:70-8. [PMID: 21876356 DOI: 10.1159/000330741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Previous studies used 192 IgG-saporin to study cholinergic function because of its facility for selective lesioning; however, results varied due to differences in the methods of administration and behavioral tests used. We examined an animal model of dementia using 192 IgG-saporin to confirm its features before applying this model to research of therapeutic drugs or electrical stimulation techniques. METHODS Features were verified by the Morris water maze test, immunochemistry, and Western blotting. Animals were examined after intraventricular injection of 192 IgG-saporin (0.63 μg/μl; 6, 8, and 10 μl) or phosphate-buffered saline. RESULTS In the acquisition phase of the Morris water maze test, the latencies of the injection groups were significantly delayed, but recovered within 1 week. In the probe test, 2 of 4 indices (time in the platform zone and the number of crossings) were significantly different in the 8-μl injection group. Immunohistochemistry revealed the extent of cholinergic destruction. Activity-regulated cytoskeleton-associated protein and glutamate decarboxylase expression significantly decreased in the frontal cortex (8- and 10-μl groups), but not in the hippocampus. CONCLUSION Spatial memory impairment was associated with cholinergic basal forebrain injury as well as frontocortical GABAergic hypofunction and synaptic plasticity deceleration.
Collapse
Affiliation(s)
- Da Un Jeong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
33
|
Chen J, Cohen ML, Lerner AJ, Yang Y, Herrup K. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer's disease. Mol Neurodegener 2010; 5:60. [PMID: 21172027 PMCID: PMC3018387 DOI: 10.1186/1750-1326-5-60] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/20/2010] [Indexed: 01/11/2023] Open
Abstract
Background Although the cerebellum is considered to be predominantly involved in fine motor control, emerging evidence documents its participation in language, impulsive behavior and higher cognitive functions. While the specific connections of the cerebellar deep nuclei (CDN) that are responsible for these functions are still being worked out, their deficiency has been termed "cerebellar cognitive affective syndrome" - a syndrome that bears a striking similarity to many of the symptoms of Alzheimer's disease (AD). Using ectopic cell cycle events and DNA damage markers as indexes of cellular distress, we have explored the neuropathological involvement of the CDN in human AD. Results We examined the human cerebellar dentate nucleus in 22 AD cases and 19 controls for the presence of neuronal cell cycle events and DNA damage using immunohistochemistry and fluorescence in situ hybridization. Both techniques revealed several instances of highly significant correlations. By contrast, neither amyloid plaque nor neurofibrillary tangle pathology was detected in this region, consistent with previous reports of human cerebellar pathology. Five cases of early stage AD were examined and while cell cycle and DNA damage markers were well advanced in the hippocampus of all five, few indicators of either cell cycle events (1 case) or a DNA damage response (1 case) were found in CDN. This implies that CDN neurons are most likely affected later in the course of AD. Clinical-pathological correlations revealed that cases with moderate to high levels of cell cycle activity in their CDN are highly likely to show deficits in unorthodox cerebellar functions including speech, language and motor planning. Conclusion Our results reveal that the CDN neurons are under cellular stress in AD and suggest that some of the non-motor symptoms found in patients with AD may be partly cerebellar in origin.
Collapse
Affiliation(s)
- Jianmin Chen
- Dept, of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
34
|
Mavroudis IA, Fotiou DF, Adipepe LF, Manani MG, Njau SD, Psaroulis D, Costa VG, Baloyannis SJ. Morphological changes of the human purkinje cells and deposition of neuritic plaques and neurofibrillary tangles on the cerebellar cortex of Alzheimer's disease. Am J Alzheimers Dis Other Demen 2010; 25:585-91. [PMID: 20870670 PMCID: PMC10845446 DOI: 10.1177/1533317510382892] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder, characterized by progressive decline in memory and in social performance. The morphological hallmarks of the disease are neuronal loss, loss of dendritic spines, neurofibrillary degeneration and neuritic plaques mainly in the hippocampus and the cortex of the cerebral hemispheres. This study is based on the morphological analysis of the cerebellar cortices of eight brains, 4 patients suffered from Alzheimer's disease and 4 normal controls, by Golgi method, as well as Nissl, Gallyas', Bielschowsky's, Methenamine Silver staining and Congo red methods. Although typical neuritic plaques were not seen in the cerebellar cortex and the diffuse plaques found in the cerebellum in far smaller proportion than plaques in the prefrontal and parietal cortices of the same cases, Golgi impregnation technique revealed a loss of Purkinje cells and a marked decrease in the density of dendritic arborization.
Collapse
Affiliation(s)
- Ioannis A Mavroudis
- First Department of Neurology, Aristotelian University of Thessaloniki, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Louis ED, Faust PL, Vonsattel JPG, Honig LS, Rajput A, Rajput A, Pahwa R, Lyons KE, Ross WG, Elble RJ, Erickson-Davis C, Moskowitz CB, Lawton A. Torpedoes in Parkinson's disease, Alzheimer's disease, essential tremor, and control brains. Mov Disord 2009; 24:1600-5. [PMID: 19526585 PMCID: PMC2736313 DOI: 10.1002/mds.22567] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Purkinje cell axonal swellings ("torpedoes"), described in several cerebellar disorders as well as essential tremor (ET), have not been quantified in common neurodegenerative conditions. The aim of this study was to quantify torpedoes Parkinson's disease (PD) and Alzheimer's disease (AD) compared with ET and control brains. Brains included 40 ET cases (34 cerebellar ET, 6 Lewy body variant of ET) and age-matched comparison brains (21 AD, 14 PD/diffuse Lewy body disease, 25 controls). Torpedoes were counted in 20 x 25 mm cerebellar cortical sections stained with Luxol Fast Blue/Hematoxylin and Eosin. The median number of torpedoes in cerebellar ET (12) was 12x higher than that of controls (1) and nearly 2.5x higher than in AD (5) or PD/DLBD (5) (all P < or = 0.005). Furthermore, in a logistic regression model that adjusted for age and Alzheimer's-type changes, each torpedo more than doubled the odds of having cerebellar ET (Odds ratio(cerebellar ET vs. control) = 2.57, P = 0.006), indicating that the association between increased torpedoes and cerebellar ET was independent of these Alzheimer's-type changes. Although torpedoes are increased in AD and PD, as well as cerebellar ET, the magnitude of increase in cerebellar ET is greater, and cannot be accounted for by concomitant AD or PD pathology.
Collapse
Affiliation(s)
- Elan D Louis
- GH Sergievsky Center, Columbia University, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Takeda T. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 2009; 34:639-59. [PMID: 19199030 DOI: 10.1007/s11064-009-9922-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2008] [Indexed: 12/16/2022]
Abstract
The SAM strains, a group of related inbred strains consisting of senescence-prone inbred strains (SAMP) and senescence-resistant inbred strains (SAMR), have been successfully developed by selective inbreeding of the AKR/J strain of mice donated by the Jackson laboratory in 1968. The characteristic feature of aging common to the SAMP and SAMR is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains of mice manifest various pathobiological phenotypes spontaneously. Among SAMP strains, SAMP8 and SAMP10 mice show age-related behavioral deterioration such as deficits in learning and memory, emotional disorders (reduced anxiety-like behavior and depressive behavior) and altered circadian rhythm associated with certain pathological, biochemical and pharmacological changes. Here, the previous and recent literature on SAM mice are reviewed with an emphasis on SAMP8 and SAMP10 mice. A spontaneous model like SAM with distinct advantages over the gene-modified model is hoped by investigators to be used more widely as a biogerontological resource to explore the etiopathogenesis of accelerated senescence and neurodegenerative disorders.
Collapse
Affiliation(s)
- Toshio Takeda
- The Council for SAM Research, 24 Nishi-ohtake-cho Mibu, Nakagyo-ku, Kyoto, 604-8856, Japan.
| |
Collapse
|
37
|
Thomann PA, Schläfer C, Seidl U, Santos VD, Essig M, Schröder J. The cerebellum in mild cognitive impairment and Alzheimer's disease - a structural MRI study. J Psychiatr Res 2008; 42:1198-202. [PMID: 18215400 DOI: 10.1016/j.jpsychires.2007.12.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 11/20/2007] [Accepted: 12/05/2007] [Indexed: 01/11/2023]
Abstract
Neuropathological research consistently revealed the cerebellum to undergo degenerative changes in Alzheimer's disease (AD). Whether these alterations affect cerebellar morphology in vivo has not yet been investigated in a comprehensive way. Magnetic resonance imaging was performed in 20 patients with AD, 20 with mild cognitive impairment (MCI), and 20 healthy controls. By manual tracing the cerebellum was divided in four substructures (anterior lobe, superior posterior lobe, inferior posterior lobe and corpus medullare, respectively) on each hemisphere. Posterior cerebellar lobes were significantly smaller in AD patients when compared to healthy controls. In the AD group, atrophy of the posterior cerebellar regions was associated with poorer cognitive performance. Our findings lend further support for cerebellar involvement in AD.
Collapse
Affiliation(s)
- Philipp A Thomann
- Section of Geriatric Psychiatry, University of Heidelberg, Vossstr. 4, 69115 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Axelrad JE, Louis ED, Honig LS, Flores I, Ross GW, Pahwa R, Lyons KE, Faust PL, Vonsattel JPG. Reduced Purkinje cell number in essential tremor: a postmortem study. ACTA ACUST UNITED AC 2008; 65:101-7. [PMID: 18195146 DOI: 10.1001/archneurol.2007.8] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Clinical and functional imaging evidence suggests that cerebellar dysfunction occurs in essential tremor (ET). In recent postmortem studies, we documented increased numbers of torpedoes (Purkinje cell axonal swellings) in ET patients without Lewy bodies. Purkinje cell loss, however, has never been rigorously assessed. OBJECTIVE To quantitatively assess the number of Purkinje cells in brains of ET patients and similarly aged controls. METHODS Postmortem cerebellar tissue was available in 14 ET cases (6 with Lewy bodies and 8 without Lewy bodies) and 11 controls. Calbindin immunohistochemistry was performed on paraffin sections of the cerebellum. Images were digitally recorded and blinded measurements of the number of Purkinje cells per millimeter of cell layer (linear density) were made. RESULTS Purkinje cell linear density was inversely correlated with age (r= - 0.53, P= .006) and number of torpedoes (r= - 0.42, P= .04). Purkinje cell linear density differed by diagnosis (mean [SD], controls, 3.46 [1.27] cells/mm; ET cases with Lewy bodies, 3.33 [1.06] cells/mm; and ET cases without Lewy bodies, 2.14 [0.82] cells/mm; P= .04), with the most significant difference between ET cases without Lewy bodies and controls, where the reduction was 38.2% (P= .04). In an adjusted linear regression analysis that compared ET cases without Lewy bodies with controls, decreased linear density (outcome variable) was associated with ET (beta= .56, P= .03). CONCLUSIONS We demonstrated a reduction in Purkinje cell number in the brains of patients with ET who do not have Lewy bodies. These data further support the view that the cerebellum is anatomically, as well as functionally, abnormal in these ET cases.
Collapse
Affiliation(s)
- Jordan E Axelrad
- Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pugliese M, Gangitano C, Ceccariglia S, Carrasco JL, Del Fà A, Rodríguez MJ, Michetti F, Mascort J, Mahy N. Canine cognitive dysfunction and the cerebellum: acetylcholinesterase reduction, neuronal and glial changes. Brain Res 2007; 1139:85-94. [PMID: 17292335 DOI: 10.1016/j.brainres.2006.12.090] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 12/13/2006] [Accepted: 12/24/2006] [Indexed: 11/16/2022]
Abstract
The specific functional and pathological alterations observed in Alzheimer's disease are less severe in the cerebellum than in other brain areas, particularly the entorhinal cortex and hippocampus. Since dense core amyloid-beta plaque formation has been associated with an acetylcholinesterase heterogeneous nucleator action, we examined if an acetylcholinesterase imbalance was involved in cerebellum plaque deposition. By using the canine counterpart of senile dementia of the Alzheimer's type, a promising model of human brain aging and early phases of Alzheimer's disease, we investigated how cerebellar pathology and acetylcholinesterase density could be related with cognitive dysfunction. As in Alzheimer's disease, the late affectation of the cerebellum was evidenced by its lack of amyloid-beta plaque and the presence of diffuse deposition throughout all cortical grey matter layers. The highest acetylcholinesterase optic density corresponded to cerebellar islands of the granular layer and was predominantly associated with synaptic glomeruli and the somata of Golgi cells. Its reduction correlated with aging and loss of granule cells, whereas cognitive deficit only correlated with loss of Purkinje cells. The observed Bergmann glia alterations may correspond to a reactive response to the loss and damage of the Purkinje cells, their specific neuronal partner. Regarding the role of acetylcholinesterase mediation in amyloid-beta deposition, our data argue against an interaction between these two proteins because acetylcholinesterase reduction correlates with aging but not with cognitive deficit. Finally, our data support the use of companion dogs of all breeds to study aging and early phases of Alzheimer's disease.
Collapse
Affiliation(s)
- Marco Pugliese
- Unitat de Bioquímica, IDIBAPS, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sudo S, Shiozawa M, Cairns NJ, Wada Y. Aberrant accentuation of neurofibrillary degeneration in the hippocampus of Alzheimer's disease with amyloid precursor protein 717 and presenilin-1 gene mutations. J Neurol Sci 2005; 234:55-65. [PMID: 15946688 DOI: 10.1016/j.jns.2005.03.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 02/24/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
This study reports correlation of the hippocampal neurofibrillary tangles (NFT) density with beta-amyloid (Abeta) precursor protein (APP) 717 mutation, presenilin (PS)-1 mutation and apolipoprotein E (Apo-E) e4 alleles (E4), being graded as 3 forms (no-E4, one-E4 and two-E4) in autopsied brains from patients with familial and non-familial Alzheimer's disease (AD). We studied the density of NFT-free neurons, intracellular NFT (I-NFT), extracellular NFT (E-NFT) and total NFT (I-NFT plus E-NFT) in the six hippocampal subdivisions: cornu ammonis (CA) 1-CA4, subiculum and entorhinal cortex. The APP mutation cases showed significantly higher total NFT density in the CA1-CA2 region, and the PS-1 mutation cases also showed higher density of total NFT in the CA1-CA3 than non-familial cases. Moreover, high densities of the E-NFT contributed to these high total NFT densities. Non-familial AD cases showed a stereotypical NFT distribution with entorhinal accentuation in the hippocampus irrespective of E4 frequency. Thus, APP and PS-1 mutations predominantly affect the CA regions with profound neurodegeneration, which contributes early and severe clinical features of familial AD.
Collapse
Affiliation(s)
- Satoru Sudo
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka-cho, Fukui 910-1193, Japan.
| | | | | | | |
Collapse
|
41
|
Abstract
The object of this review is to assemble much of the literature concerning Purkinje cell death in cerebellar pathology and to relate this to what is now known about the complex topography of the cerebellar cortex. A brief introduction to Purkinje cells, and their regionalization is provided, and then the data on Purkinje cell death in mouse models and, where appropriate, their human counterparts, have been arranged according to several broad categories--naturally-occurring and targeted mutations leading to Purkinje cell death, Purkinje cell death due to toxins, Purkinje cell death in ischemia, Purkinje cell death in infection and in inherited disorders, etc. The data reveal that cerebellar Purkinje cell death is much more topographically complex than is usually appreciated.
Collapse
Affiliation(s)
- Justyna R Sarna
- Genes Development Research Group, Department of Cell Biology & Anatomy, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | | |
Collapse
|
42
|
Hess BH, Krewet JA, Tolbert DL. Olivocerebellar projections are necessary for exogenous trophic factors to delay heredo-Purkinje cell degeneration. Brain Res 2003; 986:54-62. [PMID: 12965229 DOI: 10.1016/s0006-8993(03)03169-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The temporally protracted heredodegeneration of cerebellar Purkinje cells in shaker mutant rats can be modified: ablation of the inferior olive accelerates their degeneration whereas chronic intraventricular infusion of trophic factors extends their survival. The present study sought to determine if chronic trophic factor infusion could block the accelerated degeneration of Purkinje cells due to inferior olivary chemoablation thereby focusing on possible mechanisms for the amelioration of heredo-Purkinje cell death. When the inferior olive was chemically ablated with 3-acetylpyridine at the midpoint of 2 weeks of conjoint intraventricular infusion of glial cell line-derived trophic factor (GDNF) and insulin like growth factor type I (IGF-1) Purkinje cells were not protected by the exogenous trophic factors, but rather degenerated prematurely consistent with chemoablation alone. These findings support the conclusion that when the inferior olive is ablated, Purkinje cell heredodegeneration progresses through a mechanism not significantly affected by the action of these trophic factors.
Collapse
Affiliation(s)
- Brian H Hess
- Francis Doris Murphy Neuroanatomy Research Laboratory, Department of Anatomy and Neurobiology, School of Medicine, Saint Louis University, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | | | | |
Collapse
|
43
|
Wang HY, D'Andrea MR, Nagele RG. Cerebellar diffuse amyloid plaques are derived from dendritic Abeta42 accumulations in Purkinje cells. Neurobiol Aging 2002; 23:213-23. [PMID: 11804705 DOI: 10.1016/s0197-4580(01)00279-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
beta-amyloid(1-42) (Abeta42)-rich amyloid plaques (APs) may be derived from destroyed neurons that were burdened with extensive intracellular Abeta42 accumulations. Since most cells that accumulate Abeta42 express the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), we examined the relationship between the intracellular accumulation of Abeta42 and the expression of the alpha7nAChR in cells from the cerebellum of sporadic Alzheimer's disease (AD) patients. Abeta42, but not Abeta40 or Abeta43, accumulates intracellularly in Purkinje, Golgi II, stellate and basket cells in the AD cerebellum, all of which express the alpha7nAChR. Abeta42 deposits were also prominent within dendrites of Purkinje cells, especially at points of their bifurcation that were often occluded with this material. Diffuse APs appeared to represent the remnants of destroyed Abeta42-laden segments of Purkinje cell dendritic trees. Similarly, the accumulation of Abeta42 and early loss of Golgi II cells in AD cerebella correlated directly to their high level of alpha7nAChR expression. Furthermore, the presence and relative abundance of neuron-derived Abeta42/alpha7nAChR-positive materials within Bergman glia may be indicative of the stage of AD. These data are consistent with a role for the alpha7nAChR in mediating intracellular Abeta42 accumulation and also support the notion that the intracellular and intradendritic accumulation of Abeta42 may eventually result in cell lysis and the formation of APs.
Collapse
Affiliation(s)
- Hoau Yan Wang
- Department of Physiology and Pharmacology, The City University of New York Medical School, New York, New York 10031, USA
| | | | | |
Collapse
|
44
|
Gandhi CC, Kelly1 RM, Wiley RG, Walsh TJ. Impaired acquisition of a Morris water maze task following selective destruction of cerebellar purkinje cells with OX7-saporin. Behav Brain Res 2000; 109:37-47. [PMID: 10699656 DOI: 10.1016/s0166-4328(99)00160-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spatial learning in the Morris water maze task is believed to be dependent on an intact hippocampal system. However, evidence from human studies and animal experiments suggests a potential cerebellar involvement in spatial processing, place learning, and other types of 'higher-order' cognition. In order to investigate this possibility, intraventricular injections (ICV) of the anti-neuronal immunotoxin OX7-saporin were used to selectively destroy cerebellar Purkinje cells, without affecting other brain areas believed to be critically involved in spatial learning and memory. Bilateral ICV injections of 2 microg OX7-saporin (4 microg total) in adult male rats produced substantial loss of Purkinje cells (56%) throughout the cerebellum without affecting hippocampal morphology or biochemical indices of cholinergic, serotonergic, or catecholaminergic function in the hippocampus, frontal cortex, or striatum. ICV OX7-saporin significantly impaired acquisition and performance of the standard Morris water maze task (though the impairment was less severe than reported in earlier studies that used alternate lesion methods or mutant mice species), but did not alter performance on the cued version of the task, or locomotor activity. In addition, lesioned animals spent significantly less time in the target quadrant on probe trial days 4 and 7 and the average distance to target scores (ADT) were significantly greater than controls on those days. Swim speed was not affected. Based on the specificity of the behavioral and neurobiological alterations, these data support the hypothesis that the cerebellum is involved in spatial processing and place learning.
Collapse
Affiliation(s)
- C C Gandhi
- Department of Psychology, Rutgers University, New Brunswick, NJ 08903, USA
| | | | | | | |
Collapse
|
45
|
Fakla I, Kovacs I, Yamaguchi H, Geula C, Kasa P. Expressions of amyloid precursor protein, synaptophysin and presenilin-1 in the different areas of the developing cerebellum of rat. Neurochem Int 2000; 36:143-51. [PMID: 10676878 DOI: 10.1016/s0197-0186(99)00108-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study reveals the expressions of Alzheimer's disease-related amyloid precursor protein, presenilin-1, and a presynaptic marker protein, synaptophysin, in the archi-, paleo- and neocerebellum during the postnatal development of the rat. The Western blot results demonstrate a gradual increase in the soluble amyloid precursor protein level in the archicerebellum during the first 3 weeks, while in the neo- and paleocerebellum the levels reach a plateau as early as the 1st week. Immunohistochemically, the protein is present in the deep part of the external granule cell layer and the internal granule cell layer in the newborn animal, while in 3-week-old animals the staining appears mainly in the perikarya and dendrites of the Purkinje cells. The level of synaptophysin increases progressively from postnatal day 7 up to 3 weeks in the archi- and paleocerebellum, and up to 6 weeks in the neocerebellum. Immunohistochemically, the amyloid precursor protein staining appears first in the inner part of the molecular layer and in the internal granule cell layer. In a 3-week-old animal, synaptophysin staining is present in all areas of the cerebellar molecular layer and in the internal granule cell layer. The presenilin-1 immunohistochemical reaction appeared equally in the archi-, paleo- and neocerebellum. Much of the staining is present in the glial cells and Purkinje cells. Less immunoreactivity is observed in the Golgi cells and granule cells. It is concluded that the postnatal expressions of soluble and membrane-bound amyloid precursor protein, synaptophysin and presenilin-1 are regulated differently during the ontogenetical development of the archi-, paleo- and neocerebellum of rat. Further, the amyloid precursor protein and presenilin-1 may be present in cells which do not degenerate in Alzheimer's disease.
Collapse
Affiliation(s)
- I Fakla
- Alzheimer's Disease Research Centre, Albert Szent-Györgyi Medical University, Szeged, Hungary
| | | | | | | | | |
Collapse
|
46
|
Sims B, Powers RE, Sabina RL, Theibert AB. Elevated adenosine monophosphate deaminase activity in Alzheimer's disease brain. Neurobiol Aging 1998; 19:385-91. [PMID: 9880040 DOI: 10.1016/s0197-4580(98)00083-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abnormal elevations in ammonia have been implicated in the pathogenesis of Alzheimer's disease. However, the biochemical mechanism(s) leading to increased ammonia in Alzheimer's disease have not yet been identified. A potential source of increased ammonia production is adenosine monophosphate (AMP) deaminase, an important enzyme in the regulation of the purine nucleotide cycle and adenylate energy charge. AMP deaminase activity is expressed in human brain and converts AMP to inosine monophosphate with the release of ammonia. We have investigated AMP deaminase activity in postmortem brain tissue from Alzheimer's disease subjects and age-matched controls. Compared to control brain, Alzheimer's disease brain AMP deaminase activity is 1.6- to 2.4-fold greater in the regions examined--the cerebellum, occipital cortex, and temporal cortex. Similar increases in AMP deaminase protein and mRNA levels are observed in Alzheimer's disease brain. These results suggest that increased AMP deaminase activity may augment ammonia levels in the brain in Alzheimer's disease.
Collapse
Affiliation(s)
- B Sims
- Department of Neurobiology and Cell Biology, University of Alabama at Birmingham, 35294, USA
| | | | | | | |
Collapse
|
47
|
Sasaki K, Fukutani Y, Mukai M, Cairns NJ, Isaki K. Neurons and neurofibrillary tangles in the hippocampal cortex in familial and sporadic Alzheimer's disease. Neuropathology 1997. [DOI: 10.1111/j.1440-1789.1997.tb00057.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|