1
|
Springer E, Heimsch KC, Rahlfs S, Becker K, Przyborski JM. Real-time measurements of ATP dynamics via ATeams in Plasmodium falciparum reveal drug-class-specific response patterns. Antimicrob Agents Chemother 2024; 68:e0169023. [PMID: 38501806 PMCID: PMC11064498 DOI: 10.1128/aac.01690-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Malaria tropica, caused by the parasite Plasmodium falciparum (P. falciparum), remains one of the greatest public health burdens for humankind. Due to its pivotal role in parasite survival, the energy metabolism of P. falciparum is an interesting target for drug design. To this end, analysis of the central metabolite adenosine triphosphate (ATP) is of great interest. So far, only cell-disruptive or intensiometric ATP assays have been available in this system, with various drawbacks for mechanistic interpretation and partly inconsistent results. To address this, we have established fluorescent probes, based on Förster resonance energy transfer (FRET) and known as ATeam, for use in blood-stage parasites. ATeams are capable of measuring MgATP2- levels in a ratiometric manner, thereby facilitating in cellulo measurements of ATP dynamics in real-time using fluorescence microscopy and plate reader detection and overcoming many of the obstacles of established ATP analysis methods. Additionally, we established a superfolder variant of the ratiometric pH sensor pHluorin (sfpHluorin) in P. falciparum to monitor pH homeostasis and control for pH fluctuations, which may affect ATeam measurements. We characterized recombinant ATeam and sfpHluorin protein in vitro and stably integrated the sensors into the genome of the P. falciparum NF54attB cell line. Using these new tools, we found distinct sensor response patterns caused by several different drug classes. Arylamino alcohols increased and redox cyclers decreased ATP; doxycycline caused first-cycle cytosol alkalization; and 4-aminoquinolines caused aberrant proteolysis. Our results open up a completely new perspective on drugs' mode of action, with possible implications for target identification and drug development.
Collapse
Affiliation(s)
- Eric Springer
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Jude M. Przyborski
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| |
Collapse
|
2
|
Espino-Sanchez T, Wienkers H, Marvin R, Nalder SA, García-Guerrero A, VanNatta P, Jami-Alahmadi Y, Mixon Blackwell A, Whitby F, Wohlschlegel J, Kieber-Emmons M, Hill C, A. Sigala P. Direct tests of cytochrome c and c1 functions in the electron transport chain of malaria parasites. Proc Natl Acad Sci U S A 2023; 120:e2301047120. [PMID: 37126705 PMCID: PMC10175771 DOI: 10.1073/pnas.2301047120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
The mitochondrial electron transport chain (ETC) of Plasmodium malaria parasites is a major antimalarial drug target, but critical cytochrome (cyt) functions remain unstudied and enigmatic. Parasites express two distinct cyt c homologs (c and c-2) with unusually sparse sequence identity and uncertain fitness contributions. P. falciparum cyt c-2 is the most divergent eukaryotic cyt c homolog currently known and has sequence features predicted to be incompatible with canonical ETC function. We tagged both cyt c homologs and the related cyt c1 for inducible knockdown. Translational repression of cyt c and cyt c1 was lethal to parasites, which died from ETC dysfunction and impaired ubiquinone recycling. In contrast, cyt c-2 knockdown or knockout had little impact on blood-stage growth, indicating that parasites rely fully on the more conserved cyt c for ETC function. Biochemical and structural studies revealed that both cyt c and c-2 are hemylated by holocytochrome c synthase, but UV-vis absorbance and EPR spectra strongly suggest that cyt c-2 has an unusually open active site in which heme is stably coordinated by only a single axial amino acid ligand and can bind exogenous small molecules. These studies provide a direct dissection of cytochrome functions in the ETC of malaria parasites and identify a highly divergent Plasmodium cytochrome c with molecular adaptations that defy a conserved role in eukaryotic evolution.
Collapse
Affiliation(s)
| | - Henry Wienkers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Shai-anne Nalder
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | | | - Peter E. VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, UT84112
| | | | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Frank G. Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | | | | | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| |
Collapse
|
3
|
Espino-Sanchez TJ, Wienkers H, Marvin RG, Nalder SA, García-Guerrero AE, VanNatta PE, Jami-Alahmadi Y, Blackwell AM, Whitby FG, Wohlschlegel JA, Kieber-Emmons MT, Hill CP, Sigala PA. Direct Tests of Cytochrome Function in the Electron Transport Chain of Malaria Parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525242. [PMID: 36747727 PMCID: PMC9900762 DOI: 10.1101/2023.01.23.525242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mitochondrial electron transport chain (ETC) of Plasmodium malaria parasites is a major antimalarial drug target, but critical cytochrome functions remain unstudied and enigmatic. Parasites express two distinct cyt c homologs ( c and c -2) with unusually sparse sequence identity and uncertain fitness contributions. P. falciparum cyt c -2 is the most divergent eukaryotic cyt c homolog currently known and has sequence features predicted to be incompatible with canonical ETC function. We tagged both cyt c homologs and the related cyt c 1 for inducible knockdown. Translational repression of cyt c and cyt c 1 was lethal to parasites, which died from ETC dysfunction and impaired ubiquinone recycling. In contrast, cyt c -2 knockdown or knock-out had little impact on blood-stage growth, indicating that parasites rely fully on the more conserved cyt c for ETC function. Biochemical and structural studies revealed that both cyt c and c -2 are hemylated by holocytochrome c synthase, but UV-vis absorbance and EPR spectra strongly suggest that cyt c -2 has an unusually open active site in which heme is stably coordinated by only a single axial amino-acid ligand and can bind exogenous small molecules. These studies provide a direct dissection of cytochrome functions in the ETC of malaria parasites and identify a highly divergent Plasmodium cytochrome c with molecular adaptations that defy a conserved role in eukaryotic evolution. SIGNIFICANCE STATEMENT Mitochondria are critical organelles in eukaryotic cells that drive oxidative metabolism. The mitochondrion of Plasmodium malaria parasites is a major drug target that has many differences from human cells and remains poorly studied. One key difference from humans is that malaria parasites express two cytochrome c proteins that differ significantly from each other and play untested and uncertain roles in the mitochondrial electron transport chain (ETC). Our study revealed that one cyt c is essential for ETC function and parasite viability while the second, more divergent protein has unusual structural and biochemical properties and is not required for growth of blood-stage parasites. This work elucidates key biochemical properties and evolutionary differences in the mitochondrial ETC of malaria parasites.
Collapse
Affiliation(s)
- Tanya J. Espino-Sanchez
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Henry Wienkers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Shai-anne Nalder
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Aldo E. García-Guerrero
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Peter E. VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, CA, United States
| | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Frank G. Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, United States
| | | | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States,Corresponding author: Paul Sigala
| |
Collapse
|
4
|
Aguiar AC, de Sousa LR, Garcia CR, Oliva G, Guido RV. New Molecular Targets and Strategies for Antimalarial Discovery. Curr Med Chem 2019; 26:4380-4402. [DOI: 10.2174/0929867324666170830103003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
Abstract
Malaria remains a major health problem, especially because of the emergence
of resistant P. falciparum strains to artemisinin derivatives. In this context, safe and affordable
antimalarial drugs are desperately needed. New proteins have been investigated
as molecular targets for research and development of innovative compounds with welldefined
mechanism of action. In this review, we highlight genetically and clinically validated
plasmodial proteins as drug targets for the next generation of therapeutics. The enzymes
described herein are involved in hemoglobin hydrolysis, the invasion process,
elongation factors for protein synthesis, pyrimidine biosynthesis, post-translational modifications
such as prenylation, phosphorylation and histone acetylation, generation of ATP
in mitochondrial metabolism and aminoacylation of RNAs. Significant advances on proteomics,
genetics, structural biology, computational and biophysical methods provided
invaluable molecular and structural information about these drug targets. Based on this,
several strategies and models have been applied to identify and improve lead compounds.
This review presents the recent progresses in the discovery of antimalarial drug candidates,
highlighting the approaches, challenges, and perspectives to deliver affordable, safe
and low single-dose medicines to treat malaria.
Collapse
Affiliation(s)
- Anna Caroline Aguiar
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Lorena R.F. de Sousa
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Celia R.S. Garcia
- Physiology Department, Bioscience Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Rafael V.C. Guido
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| |
Collapse
|
5
|
Ferreira CM, Oliveira MP, Paes MC, Oliveira MF. Modulation of mitochondrial metabolism as a biochemical trait in blood feeding organisms: the redox vampire hypothesis redux. Cell Biol Int 2018; 42:683-700. [PMID: 29384241 DOI: 10.1002/cbin.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/31/2022]
Abstract
Hematophagous organisms undergo remarkable metabolic changes during the blood digestion process, increasing fermentative glucose metabolism, and reducing respiratory rates, both consequence of functional mitochondrial remodeling. Here, we review the pathways involved in energy metabolism and mitochondrial functionality in a comparative framework across different hematophagous species, and consider how these processes regulate redox homeostasis during blood digestion. The trend across distinct species indicate that a switch in energy metabolism might represent an important defensive mechanism to avoid the potential harmful interaction of oxidants generated from aerobic energy metabolism with products derived from blood digestion. Indeed, in insect vectors, blood feeding transiently reduces respiratory rates and oxidant production, irrespective of tissue and insect model. On the other hand, a different scenario is observed in several unrelated parasite species when exposed to blood digestion products, as respiratory rates reduce and mitochondrial oxidant production increase. The emerging picture indicates that re-wiring of energy metabolism, through reduced mitochondrial function, culminates in improved tolerance to redox insults and seems to represent a key step for hematophagous organisms to cope with the overwhelming and potentially toxic blood meal.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| | - Matheus P Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Marcia C Paes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
6
|
Mohring F, Rahbari M, Zechmann B, Rahlfs S, Przyborski JM, Meyer AJ, Becker K. Determination of glutathione redox potential and pH value in subcellular compartments of malaria parasites. Free Radic Biol Med 2017; 104:104-117. [PMID: 28062360 DOI: 10.1016/j.freeradbiomed.2017.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/16/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022]
Abstract
The malaria parasite Plasmodium falciparum is exposed to multiple sources of oxidative challenge during its complex life cycle in the Anopheles vector and its human host. In order to further elucidate redox-based parasite host cell interactions and mechanisms of drug action, we targeted the genetically encoded glutathione redox sensor roGFP2 coupled to human glutaredoxin 1 (roGFP2-hGrx1) as well as the ratiometric pH sensor pHluorin to the apicoplast and the mitochondrion of P. falciparum. Using live cell imaging, this allowed for the first time the determination of the pH values of the apicoplast (7.12±0.40) and mitochondrion (7.37±0.09) in the intraerythrocytic asexual stages of the parasite. Based on the roGFP2-hGrx1 signals, glutathione-dependent redox potentials of -267mV and -328mV, respectively, were obtained. Employing these novel tools, initial studies on the effects of redox-active agents and clinically employed antimalarial drugs were carried out on both organelles.
Collapse
Affiliation(s)
- Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, 101 Bagby Ave., Waco, TX 76706, USA
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Jude M Przyborski
- Parasitology, Philipps University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
7
|
Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan Energy Metabolism: Carbon Source Promiscuity and the Quiescence Hyperbole. Trends Parasitol 2015; 32:56-70. [PMID: 26472327 DOI: 10.1016/j.pt.2015.09.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022]
Abstract
The nature of energy metabolism in apicomplexan parasites has been closely investigated in the recent years. Studies in Plasmodium spp. and Toxoplasma gondii in particular have revealed that these parasites are able to employ enzymes in non-traditional ways, while utilizing multiple anaplerotic routes into a canonical tricarboxylic acid (TCA) cycle to satisfy their energy requirements. Importantly, some life stages of these parasites previously considered to be metabolically quiescent are, in fact, active and able to adapt their carbon source utilization to survive. We compare energy metabolism across the life cycle of malaria parasites and consider how this varies in other apicomplexans and related organisms, while discussing how this can be exploited for therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - James I MacRae
- The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
8
|
Penkler G, du Toit F, Adams W, Rautenbach M, Palm DC, van Niekerk DD, Snoep JL. Construction and validation of a detailed kinetic model of glycolysis in Plasmodium falciparum. FEBS J 2015; 282:1481-511. [PMID: 25693925 DOI: 10.1111/febs.13237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/07/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED The enzymes in the Embden-Meyerhof-Parnas pathway of Plasmodium falciparum trophozoites were kinetically characterized and their integrated activities analyzed in a mathematical model. For validation of the model, we compared model predictions for steady-state fluxes and metabolite concentrations of the hexose phosphates with experimental values for intact parasites. The model, which is completely based on kinetic parameters that were measured for the individual enzymes, gives an accurate prediction of the steady-state fluxes and intermediate concentrations. This is the first detailed kinetic model for glucose metabolism in P. falciparum, one of the most prolific malaria-causing protozoa, and the high predictive power of the model makes it a strong tool for future drug target identification studies. The modelling workflow is transparent and reproducible, and completely documented in the SEEK platform, where all experimental data and model files are available for download. DATABASE The mathematical models described in the present study have been submitted to the JWS Online Cellular Systems Modelling Database (http://jjj.bio.vu.nl/database/penkler). The investigation and complete experimental data set is available on SEEK (10.15490/seek.1. INVESTIGATION 56).
Collapse
Affiliation(s)
- Gerald Penkler
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa; Molecular Cell Physiology, Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Paul A. Sigala
- Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110; ,
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110; ,
| |
Collapse
|
10
|
Jain P, Chakma B, Patra S, Goswami P. Potential biomarkers and their applications for rapid and reliable detection of malaria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:852645. [PMID: 24804253 PMCID: PMC3996934 DOI: 10.1155/2014/852645] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
Malaria has been responsible for the highest mortality in most malaria endemic countries. Even after decades of malaria control campaigns, it still persists as a disease of high mortality due to improper diagnosis and rapidly evolving drug resistant malarial parasites. For efficient and economical malaria management, WHO recommends that all malaria suspected patients should receive proper diagnosis before administering drugs. It is thus imperative to develop fast, economical, and accurate techniques for diagnosis of malaria. In this regard an in-depth knowledge on malaria biomarkers is important to identify an appropriate biorecognition element and utilize it prudently to develop a reliable detection technique for diagnosis of the disease. Among the various biomarkers, plasmodial lactate dehydrogenase and histidine-rich protein II (HRP II) have received increasing attention for developing rapid and reliable detection techniques for malaria. The widely used rapid detection tests (RDTs) for malaria succumb to many drawbacks which promotes exploration of more efficient economical detection techniques. This paper provides an overview on the current status of malaria biomarkers, along with their potential utilization for developing different malaria diagnostic techniques and advanced biosensors.
Collapse
Affiliation(s)
- Priyamvada Jain
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Babina Chakma
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sanjukta Patra
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pranab Goswami
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
11
|
Targeting the mitochondrial electron transport chain of Plasmodium falciparum: new strategies towards the development of improved antimalarials for the elimination era. Future Med Chem 2014; 5:1573-91. [PMID: 24024949 DOI: 10.4155/fmc.13.121] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite intense efforts, there has not been a truly new antimalarial, possessing a novel mechanism of action, registered for over 10 years. By virtue of a novel mode of action, it is hoped that the global challenge of multidrug-resistant parasites can be overcome, as well as developing drugs that possess prophylaxis and/or transmission-blocking properties, towards an elimination agenda. Many target-based and whole-cell screening drug development programs have been undertaken in recent years and here an overview of specific projects that have focused on targeting the parasite's mitochondrial electron transport chain is presented. Medicinal chemistry activity has largely focused on inhibitors of the parasite cytochrome bc1 Complex (Complex III) including acridinediones, pyridones and quinolone aryl esters, as well as inhibitors of dihydroorotate dehydrogenase that includes triazolopyrimidines and benzimidazoles. Common barriers to progress and opportunities for novel chemistry and potential additional electron transport chain targets are discussed in the context of the target candidate profiles for uncomplicated malaria.
Collapse
|
12
|
Sheiner L, Vaidya AB, McFadden GI. The metabolic roles of the endosymbiotic organelles of Toxoplasma and Plasmodium spp. Curr Opin Microbiol 2013; 16:452-8. [PMID: 23927894 DOI: 10.1016/j.mib.2013.07.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 11/29/2022]
Abstract
The apicoplast and the mitochondrion of Apicomplexa cooperate in providing essential metabolites. Their co-evolution during the ancestral acquisition of a plastid and subsequent loss of photosynthesis resulted in divergent metabolic pathways compared with mammals and plants. This is most evident in their chimerical haem synthesis pathway. Toxoplasma and Plasmodium mitochondria operate canonical tricarboxylic acid (TCA) cycles and electron transport chains, although the roles differ between Toxoplasma tachyzoites and Plasmodium erythrocytic stages. Glutamine catabolism provides TCA intermediates in both parasites. Isoprenoid precursor synthesis is the only essential role of the apicoplast in Plasmodium erythrocytic stages. An apicoplast-located fatty acid synthesis is dispensable in these stages, which instead predominantly salvage fatty acids, while in Plasmodium liver stages and in Toxoplasma tachyzoites fatty acid synthesis is an essential role of the plastid.
Collapse
Affiliation(s)
- Lilach Sheiner
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA.
| | | | | |
Collapse
|
13
|
Tarr SJ, Nisbet RER, Howe CJ. Transcript level responses of Plasmodium falciparum to antimycin A. Protist 2012; 163:755-66. [PMID: 22503086 PMCID: PMC3657180 DOI: 10.1016/j.protis.2012.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/23/2011] [Accepted: 01/28/2012] [Indexed: 01/06/2023]
Abstract
The mitochondrial electron transport chain is essential to Plasmodium and is the target of the antimalarial drug atovaquone. The mitochondrial genomes of Plasmodium sp. are the most reduced known, and the majority of mitochondrial proteins are encoded in the nucleus and imported into the mitochondrion post-translationally. Many organisms have signalling pathways between the mitochondria and the nucleus to regulate the expression of nuclear-encoded mitochondrially-targeted proteins, for example in response to mitochondrial dysfunction. We have studied the transcript profiles of synchronous Plasmodium falciparum treated with an LD50 concentration of the complex III inhibitor antimycin A, to investigate whether such pathways exist in the parasite. There was a broad perturbation of gene expression. The differentially expressed genes were enriched for transcripts encoding proteins involved in invasion, stress response, nucleotide biosynthesis and respiration. Some effects were attributable to a delay in the gene expression phase of drug-treated parasites. However, our data indicated regulation of mitochondrial stress response genes and genes involved in pyrimidine biosynthesis, implying the existence of a signalling pathway from the mitochondrion to the nucleus.
Collapse
Affiliation(s)
- Sarah J Tarr
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, Cambridgeshire, CB2 1QW, United Kingdom
| | | | | |
Collapse
|
14
|
Torrentino-Madamet M, Almeras L, Travaillé C, Sinou V, Pophillat M, Belghazi M, Fourquet P, Jammes Y, Parzy D. Proteomic analysis revealed alterations of the Plasmodium falciparum metabolism following salicylhydroxamic acid exposure. Res Rep Trop Med 2011; 2:109-119. [PMID: 30881184 DOI: 10.2147/rrtm.s23127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Although human respiratory metabolism is characterized by the mitochondrial electron transport chain, some organisms present a "branched respiratory chain." This branched pathway includes both a classical and an alternative respiratory chain. The latter involves an alternative oxidase. Though the Plasmodium falciparum alternative oxidase is not yet identified, a specific inhibitor of this enzyme, salicylhydroxamic acid (SHAM), showed a drug effect on P. falciparum respiratory function using oxygen consumption measurements. The present study aimed to highlight the metabolic pathways that are affected in P. falciparum following SHAM exposure. DESIGN A proteomic approach was used to analyze the P. falciparum proteome and determine the metabolic pathways altered following SHAM treatment. To evaluate the SHAM effect on parasite growth, the phenotypic alterations of P. falciparum after SHAM or/and hyperoxia exposure were observed. RESULTS After SHAM exposure, 26 proteins were significantly deregulated using a fluorescent two dimensional-differential gel electrophoresis. Among these deregulated proteins, some were particularly involved in energetic metabolism. And the combinatory effect of SHAM/hyperoxia seems deleterious for the growth of P. falciparum. CONCLUSION Our results indicated that SHAM appears to activate glycolysis and decrease stress defense systems. These data provide a better understanding of parasite biology.
Collapse
Affiliation(s)
| | - Lionel Almeras
- Unité de Recherche en Biologie et Epidémiologie Parasitaires, Antenne IRBA de Marseille (IMTSSA, Le Pharo)
| | - Christelle Travaillé
- UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo),
| | - Véronique Sinou
- UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo),
| | - Matthieu Pophillat
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée
| | - Maya Belghazi
- Centre d'Analyse Protéomique de Marseille, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord
| | - Patrick Fourquet
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée
| | - Yves Jammes
- UMR-MD2, Physiologie et Physiopathologie en Conditions d'Oxygénations Extrêmes, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord, Marseille, France
| | - Daniel Parzy
- UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo),
| |
Collapse
|
15
|
Martins VDP, Dinamarco TM, Curti C, Uyemura SA. Classical and alternative components of the mitochondrial respiratory chain in pathogenic fungi as potential therapeutic targets. J Bioenerg Biomembr 2011; 43:81-8. [PMID: 21271279 DOI: 10.1007/s10863-011-9331-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.
Collapse
Affiliation(s)
- Vicente de Paulo Martins
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
16
|
Olszewski KL, Llinás M. Central carbon metabolism of Plasmodium parasites. Mol Biochem Parasitol 2010; 175:95-103. [PMID: 20849882 DOI: 10.1016/j.molbiopara.2010.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 12/22/2022]
Abstract
The central role of metabolic perturbation to the pathology of malaria, the promise of antimetabolites as antimalarial drugs and a basic scientific interest in understanding this fascinating example of highly divergent microbial metabolism has spurred a major and concerted research effort towards elucidating the metabolic network of the Plasmodium parasites. Central carbon metabolism, broadly comprising the flow of carbon from nutrients into biomass, has been a particular focus due to clear and early indications that it plays an essential role in this network. Decades of painstaking efforts have significantly clarified our understanding of these pathways of carbon flux, and this foundational knowledge, coupled with the advent of advanced analytical technologies, have set the stage for the development of a holistic, network-level model of plasmodial carbon metabolism. In this review we summarize the current state of knowledge regarding central carbon metabolism and suggest future avenues of research. We focus primarily on the blood stages of Plasmodium falciparum, the most lethal of the human malaria parasites, but also integrate results from simian, avian and rodent models of malaria that were a major focus of early investigations into plasmodial metabolism.
Collapse
Affiliation(s)
- Kellen L Olszewski
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
17
|
Affiliation(s)
- Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129;
| | - Michael W. Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129;
| |
Collapse
|
18
|
Mogi T, Kita K. Identification of mitochondrial Complex II subunits SDH3 and SDH4 and ATP synthase subunits a and b in Plasmodium spp. Mitochondrion 2009; 9:443-53. [PMID: 19682605 DOI: 10.1016/j.mito.2009.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 08/03/2009] [Accepted: 08/06/2009] [Indexed: 01/06/2023]
Abstract
While most protist mitochondrial enzymes could be identified in database, the membrane anchor subunits of Complex II and F(o)F(1)-ATP synthase of malaria parasites are not annotated. Based on the presence of structural fingerprints or proteomics data from other protists, here we present their candidates. In contrast to canonical subunits, Plasmodium Complex II anchors have two transmembrane helices and may coordinate heme b via Tyr in place of His. Transmembrane helix IV of ATP synthase subunit a lacks an essential Arg residue. Membrane anchors of Plasmodium Complex II and ATP synthase are divergent from orthologs and promising targets for new chemotherapeutics.
Collapse
Affiliation(s)
- Tatsushi Mogi
- Department of Biomedical Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Japan.
| | | |
Collapse
|
19
|
Teng R, Junankar PR, Bubb WA, Rae C, Mercier P, Kirk K. Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by (1)H NMR spectroscopy. NMR IN BIOMEDICINE 2009; 22:292-302. [PMID: 19021153 DOI: 10.1002/nbm.1323] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
NMR spectroscopy was used to identify and quantify compounds in extracts prepared from mature trophozoite-stage Plasmodium falciparum parasites isolated by saponin-permeabilisation of the host erythrocyte. One-dimensional (1)H NMR spectroscopy and four two-dimensional NMR techniques were used to identify more than 50 metabolites. The intracellular concentrations of over 40 metabolites were estimated from the (1)H NMR spectra of extracts prepared by four extraction methods: perchloric acid, methanol/water, methanol/chloroform/water, and methanol alone. The metabolites quantified included: the majority of the biological alpha-amino acids; 4-aminobutyric acid; mono-, di- and tri-carboxylic acids; nucleotides; polyamines; myo-inositol; and phosphocholine and phosphoethanolamine. The parasites also contained a significant concentration (up to 12 mM) of the exogenous buffering agent, HEPES. Although the metabolite profiles obtained with each extraction method were broadly similar, perchloric acid was found to have significant advantages over the other extraction media.
Collapse
Affiliation(s)
- Rongwei Teng
- Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Maeda-Sano K, Sato S, Ueda T, Yui R, Ito K, Hata M, Nakano A, Kita K, Murakami-Murofushi K, Sasaki N. Visualization of Mitochondrial and Apicoplast Nucleoids in the Human Malaria Parasite Plasmodium falciparum by SYBR Green I and PicoGreen Staining. CYTOLOGIA 2009. [DOI: 10.1508/cytologia.74.449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Shigeharu Sato
- Division of Parasitology, MRC National Institute for Medical Research
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Ryoko Yui
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Kie Ito
- Division of Biology, Faculty of Science, Ochanomizu University
- Division of Biological Science, Graduate School of Science, Nagoya University
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Masayuki Hata
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
- RIKEN Advanced Science Institute
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | | | - Narie Sasaki
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
21
|
Kawahara K, Mogi T, Tanaka TQ, Hata M, Miyoshi H, Kita K. Mitochondrial dehydrogenases in the aerobic respiratory chain of the rodent malaria parasite Plasmodium yoelii yoelii. J Biochem 2008; 145:229-37. [PMID: 19060309 DOI: 10.1093/jb/mvn161] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the intraerythrocytic stages of malaria parasites, mitochondria lack obvious cristae and are assumed to derive energy through glycolysis. For understanding of parasite energy metabolism in mammalian hosts, we isolated rodent malaria mitochondria from Plasmodium yoelii yoelii grown in mice. As potential targets for antiplasmodial agents, we characterized two respiratory dehydrogenases, succinate:ubiquinone reductase (complex II) and alternative NADH dehydrogenase (NDH-II), which is absent in mammalian mitochondria. We found that P. y. yoelii complex II was a four-subunit enzyme and that kinetic properties were similar to those of mammalian enzymes, indicating that the Plasmodium complex II is favourable in catalysing the forward reaction of tricarboxylic acid cycle. Notably, Plasmodium complex II showed IC(50) value for atpenin A5 three-order of magnitudes higher than those of mammalian enzymes. Divergence of protist membrane anchor subunits from eukaryotic orthologs likely affects the inhibitor resistance. Kinetic properties and sensitivity to 2-heptyl-4-hydroxyquinoline-N-oxide and aurachin C of NADH: ubiquinone reductase activity of Plasmodium NDH-II were similar to those of plant and fungus enzymes but it can oxidize NADPH and deamino-NADH. Our findings are consistent with the notion that rodent malaria mitochondria are fully capable of oxidative phosphorylation and that these mitochondrial enzymes are potential targets for new antiplasmodials.
Collapse
Affiliation(s)
- Kenji Kawahara
- Department of Biomedical Chemistry, Graduate School of Medicine, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Host cell egress and invasion induce marked relocations of glycolytic enzymes in Toxoplasma gondii tachyzoites. PLoS Pathog 2008; 4:e1000188. [PMID: 18949028 PMCID: PMC2563030 DOI: 10.1371/journal.ppat.1000188] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 09/24/2008] [Indexed: 12/29/2022] Open
Abstract
Apicomplexan parasites are dependent on an F-actin and myosin-based motility system for their invasion into and escape from animal host cells, as well as for their general motility. In Toxoplasma gondii and Plasmodium species, the actin filaments and myosin motor required for this process are located in a narrow space between the parasite plasma membrane and the underlying inner membrane complex, a set of flattened cisternae that covers most the cytoplasmic face of the plasma membrane. Here we show that the energy required for Toxoplasma motility is derived mostly, if not entirely, from glycolysis and lactic acid production. We also demonstrate that the glycolytic enzymes of Toxoplasma tachyzoites undergo a striking relocation from the parasites' cytoplasm to their pellicles upon Toxoplasma egress from host cells. Specifically, it appears that the glycolytic enzymes are translocated to the cytoplasmic face of the inner membrane complex as well as to the space between the plasma membrane and inner membrane complex. The glycolytic enzymes remain pellicle-associated during extended incubations of parasites in the extracellular milieu and do not revert to a cytoplasmic location until well after parasites have completed invasion of new host cells. Translocation of glycolytic enzymes to and from the Toxoplasma pellicle appears to occur in response to changes in extracellular [K(+)] experienced during egress and invasion, a signal that requires changes of [Ca(2+)](c) in the parasite during egress. Enzyme translocation is, however, not dependent on either F-actin or intact microtubules. Our observations indicate that Toxoplasma gondii is capable of relocating its main source of energy between its cytoplasm and pellicle in response to exit from or entry into host cells. We propose that this ability allows Toxoplasma to optimize ATP delivery to those cellular processes that are most critical for survival outside host cells and those required for growth and replication of intracellular parasites.
Collapse
|
23
|
Fisher N, Bray PG, Ward SA, Biagini GA. The malaria parasite type II NADH:quinone oxidoreductase: an alternative enzyme for an alternative lifestyle. Trends Parasitol 2007; 23:305-10. [PMID: 17499024 DOI: 10.1016/j.pt.2007.04.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 03/27/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
The operation of a type II NADH:quinone oxidoreductase (PfNDH2), also known as alternative Complex I, in the mitochondrion of the human malaria parasite, Plasmodium falciparum, has recently been described. Unlike the Complex I of typical mitochondria, type II NADH:quinone oxidoreductases do not have transmembrane domains and are not involved directly in proton (H(+)) pumping. Here, we present a predictive model of PfNDH2, describing putative NADH-, flavin- and quinone-binding sites, as well as a possible membrane 'anchoring' region. In addition, we hypothesize that the alternative Complex I is an evolutionary adaptation to a microaerophilic lifestyle enabling (proton) uncoupled oxidation of NADH. This adaptive feature has several advantages, including: (i) a reduction of proton 'back-pressure' in the absence of extensive ATP synthesis; (ii) a reduction of mitochondrial superoxide generation; and (iii) a mechanism for the deregulated oxidation of cytosolic NADH.
Collapse
Affiliation(s)
- Nicholas Fisher
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | | |
Collapse
|
24
|
Wang P, Wang Q, Sims PF, Hyde JE. Characterisation of exogenous folate transport in Plasmodium falciparum. Mol Biochem Parasitol 2007; 154:40-51. [PMID: 17509698 PMCID: PMC1906846 DOI: 10.1016/j.molbiopara.2007.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 12/02/2022]
Abstract
Folate salvage by Plasmodium falciparum is an important source of key cofactors, but little is known about the underlying mechanism. Using synchronised parasite cultures, we observed that uptake of this dianionic species against the negative-inward electrochemical gradient is highly dependent upon cell-cycle stage, temperature and pH, but not on mono- or divalent metal ions. Energy dependence was tested with different sugars; glucose was necessary for folate import, although fructose was also able to function in this role, unlike sugars that cannot be processed through the glycolytic pathway. Import into both infected erythrocytes and free parasites was strongly inhibited by the anion-channel blockers probenecid and furosemide, which are likely to be acting predominantly on specific folate transporters in both cases. Import was not affected by high concentrations of the antifolate drugs pyrimethamine and sulfadoxine, but was inhibited by the close folate analogue methotrexate. The pH optimum for folate uptake into infected erythrocytes was 6.5–7.0. Dinitrophenol and nigericin, which strongly facilitate the equilibration of H+ ions across biological membranes and thus abolish or substantially reduce the proton gradient, inhibited folate uptake profoundly. The ATPase inhibitor concanamycin A also greatly reduced folate uptake, further demonstrating a link to ATP-powered proton transport. These data strongly suggest that the principal folate uptake pathway in P. falciparum is specific, highly regulated, dependent upon the proton gradient across the parasite plasma membrane, and is likely to be mediated by one or more proton symporters.
Collapse
Affiliation(s)
| | | | | | - John E. Hyde
- Corresponding author. Tel.: +44 161 306 4185; fax: +44 161 306 5201.
| |
Collapse
|
25
|
Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 2007; 446:88-91. [PMID: 17330044 DOI: 10.1038/nature05572] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 01/05/2007] [Indexed: 11/08/2022]
Abstract
The origin of all mitochondria can be traced to the symbiotic arrangement that resulted in the emergence of eukaryotes in a world that was exclusively populated by prokaryotes. This arrangement, however, has been in continuous genetic flux: the varying degrees of gene loss and transfer from the mitochondrial genome in different eukaryotic lineages seem to signify an ongoing 'conflict' between the host and the symbiont. Eukaryotic parasites belonging to the phylum Apicomplexa provide an excellent example to support this view. These organisms contain the smallest mitochondrial genomes known, with an organization that differs among various genera; one genus, Cryptosporidium, seems to have lost the entire mitochondrial genome. Here we show that erythrocytic stages of the human malaria parasite Plasmodium falciparum seem to maintain an active mitochondrial electron transport chain to serve just one metabolic function: regeneration of ubiquinone required as the electron acceptor for dihydroorotate dehydrogenase, an essential enzyme for pyrimidine biosynthesis. Transgenic P. falciparum parasites expressing Saccharomyces cerevisiae dihydroorotate dehydrogenase, which does not require ubiquinone as an electron acceptor, were completely resistant to inhibitors of mitochondrial electron transport. Maintenance of mitochondrial membrane potential, however, was essential in these parasites, as indicated by their hypersensitivity to proguanil, a drug that collapsed the membrane potential in the presence of electron transport inhibitors. Thus, acquisition of just one enzyme can render mitochondrial electron transport nonessential in erythrocytic stages of P. falciparum.
Collapse
Affiliation(s)
- Heather J Painter
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | |
Collapse
|
26
|
van Dooren GG, Stimmler LM, McFadden GI. Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev 2006; 30:596-630. [PMID: 16774588 DOI: 10.1111/j.1574-6976.2006.00027.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The mitochondrion of Plasmodium species is a validated drug target. However, very little is known about the functions of this organelle. In this review, we utilize data available from the Plasmodium falciparum genome sequencing project to piece together putative metabolic pathways that occur in the parasite, comparing this with the existing biochemical and cell biological knowledge. The Plasmodium mitochondrion contains both conserved and unusual features, including an active electron transport chain and many of the necessary enzymes for coenzyme Q and iron-sulphur cluster biosynthesis. It also plays an important role in pyrimidine metabolism. The mitochondrion participates in an unusual hybrid haem biosynthesis pathway, with enzymes localizing in both the mitochondrion and plastid organelles. The function of the tricarboxylic acid cycle in the mitochondrion is unclear. We discuss directions for future research into this fascinating, yet enigmatic, organelle.
Collapse
Affiliation(s)
- Giel G van Dooren
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
27
|
Biagini GA, Viriyavejakul P, O'neill PM, Bray PG, Ward SA. Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria. Antimicrob Agents Chemother 2006; 50:1841-51. [PMID: 16641458 PMCID: PMC1472221 DOI: 10.1128/aac.50.5.1841-1851.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 02/03/2006] [Indexed: 11/20/2022] Open
Abstract
This study reports on the first characterization of the alternative NADH:dehydrogenase (also known as alternative complex I or type II NADH:dehydrogenase) of the human malaria parasite Plasmodium falciparum, known as PfNDH2. PfNDH2 was shown to actively oxidize NADH in the presence of quinone electron acceptors CoQ(1) and decylubiquinone with an apparent K(m) for NADH of approximately 17 and 5 muM, respectively. The inhibitory profile of PfNDH2 revealed that the enzyme activity was insensitive to rotenone, consistent with recent genomic data indicating the absence of the canonical NADH:dehydrogenase enzyme. PfNDH2 activity was sensitive to diphenylene iodonium chloride and diphenyl iodonium chloride, known inhibitors of alternative NADH:dehydrogenases. Spatiotemporal confocal imaging of parasite mitochondria revealed that loss of PfNDH2 function provoked a collapse of mitochondrial transmembrane potential (Psi(m)), leading to parasite death. As with other alternative NADH:dehydrogenases, PfNDH2 lacks transmembrane domains in its protein structure, and therefore, it is proposed that this enzyme is not directly involved in mitochondrial transmembrane proton pumping. Rather, the enzyme provides reducing equivalents for downstream proton-pumping enzyme complexes. As inhibition of PfNDH2 leads to a depolarization of mitochondrial Psi(m), this enzyme is likely to be a critical component of the electron transport chain (ETC). This notion is further supported by proof-of-concept experiments revealing that targeting the ETC's Q-cycle by inhibition of both PfNDH2 and the bc(1) complex is highly synergistic. The potential of targeting PfNDH2 as a chemotherapeutic strategy for drug development is discussed.
Collapse
Affiliation(s)
- Giancarlo A Biagini
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, United Kingdom.
| | | | | | | | | |
Collapse
|
28
|
Hout S, Azas N, Darque A, Robin M, Di Giorgio C, Gasquet M, Galy J, Timon-David P. Activity of benzothiazoles and chemical derivatives on Plasmodium falciparum. Parasitology 2005; 129:525-35. [PMID: 15552398 DOI: 10.1017/s0031182004006031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Malaria is a major health concern particularly in Africa which has about 90% of the worldwide annual clinical cases. The increasing number of drug-resistant Plasmodium falciparum justifies the search for new drugs in this field. Antimalarial activity of 2-substituted 6-nitro- and 6-amino-benzothiazoles and their anthranilic acids has been tested. An in vitro study has been performed on W2 and 3D7 strains of P. falciparum and on clinical isolates from malaria-infected patients. Toxicity has been assessed on THP1 human monocytic cells. For the most active drug candidates, the in vitro study was followed by in vivo assays on P. berghei-infected mice and by in vitro assays in order to determine the stage-dependency and the mechanism of action. Of 39 derivatives tested in vitro, 2 had specific antimalarial properties. Each compound was active on all stages of the parasite, but one was markedly active on mature schizonts, while the other was more active on young schizont forms. Both drugs were also active on mitochondrial membrane potential. In vivo data confirmed efficiency with a sustained decrease of parasitaemia. Products A12 and C7 may be considered as potential antimalarial worthy of further chemical and biological research.
Collapse
Affiliation(s)
- S Hout
- Laboratoire de Parasitologie, Hygiène et Zoologie, Faculté de Pharmacie, Marseille cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Biagini GA, O'Neill PM, Nzila A, Ward SA, Bray PG. Antimalarial chemotherapy: young guns or back to the future? Trends Parasitol 2003; 19:479-87. [PMID: 14580958 DOI: 10.1016/j.pt.2003.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Giancarlo A Biagini
- Division of Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | | | | | | | | |
Collapse
|
30
|
Srivastava IK, Vaidya AB. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob Agents Chemother 1999; 43:1334-9. [PMID: 10348748 PMCID: PMC89274 DOI: 10.1128/aac.43.6.1334] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A combination of atovaquone and proguanil has been found to be quite effective in treating malaria, with little evidence of the emergence of resistance when atovaquone was used as a single agent. We have examined possible mechanisms for the synergy between these two drugs. While proguanil by itself had no effect on electron transport or mitochondrial membrane potential (DeltaPsim), it significantly enhanced the ability of atovaquone to collapse DeltaPsim when used in combination. This enhancement was observed at pharmacologically achievable doses. Proguanil acted as a biguanide rather than as its metabolite cycloguanil (a parasite dihydrofolate reductase [DHFR] inhibitor) to enhance the atovaquone effect; another DHFR inhibitor, pyrimethamine, also had no enhancing effect. Proguanil-mediated enhancement was specific for atovaquone, since the effects of other mitochondrial electron transport inhibitors, such as myxothiazole and antimycin, were not altered by inclusion of proguanil. Surprisingly, proguanil did not enhance the ability of atovaquone to inhibit mitochondrial electron transport in malaria parasites. These results suggest that proguanil in its prodrug form acts in synergy with atovaquone by lowering the effective concentration at which atovaquone collapses DeltaPsim in malaria parasites. This could explain the paradoxical success of the atovaquone-proguanil combination even in regions where proguanil alone is ineffective due to resistance. The results also suggest that the atovaquone-proguanil combination may act as a site-specific uncoupler of parasite mitochondria in a selective manner.
Collapse
Affiliation(s)
- I K Srivastava
- Department of Microbiology and Immunology, MCP Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
31
|
Abstract
The need for new antimalarials comes from the widespread resistance to those in current use. New antimalarial targets are required to allow the discovery of chemically diverse, effective drugs. The search for such new targets and new drug chemotypes will likely be helped by the advent of functional genomics and structure-based drug design. After validation of the putative targets as those capable of providing effective and safe drugs, targets can be used as the basis for screening compounds in order to identify new leads, which, in turn, will qualify for lead optimization work. The combined use of combinatorial chemistry--to generate large numbers of structurally diverse compounds--and of high throughput screening systems--to speed up the testing of compounds--hopefully will help to optimize the process. Potential chemotherapeutic targets in the malaria parasite can be broadly classified into three categories: those involved in processes occurring in the digestive vacuole, enzymes involved in macromolecular and metabolite synthesis, and those responsible for membrane processes and signalling. The processes occurring in the digestive vacuole include haemoglobin digestion, redox processes and free radical formation, and reactions accompanying haem release followed by its polymerization into haemozoin. Many enzymes in macromolecular and metabolite synthesis are promising potential targets, some of which have been established in other microorganisms, although not yet validated for Plasmodium, with very few exceptions (such as dihydrofolate reductase). Proteins responsible for membrane processes, including trafficking and drug transport and signalling, are potentially important also to identify compounds to be used in combination with antimalarial drugs to combat resistance.
Collapse
Affiliation(s)
- P L Olliaro
- UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, Geneva, Switzerland
| | | |
Collapse
|
32
|
Lang-Unnasch N, Murphy AD. Metabolic changes of the malaria parasite during the transition from the human to the mosquito host. Annu Rev Microbiol 1999; 52:561-90. [PMID: 9891808 DOI: 10.1146/annurev.micro.52.1.561] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium falciparum is an obligate human parasite that is the causative agent of the most lethal form of human malaria. Transmission of P. falciparum to a new human host requires a mosquito vector within which sexual replication occurs. P. falciparum replicates as an intracellular parasite in man and as an extracellular parasite in the mosquito, and it undergoes multiple developmental changes in both hosts. Changes in the environment and the activities of parasites in these various life-cycle stages are likely to be reflected in changes in the metabolic needs and capabilities of the parasite. Most of our knowledge of the metabolic capabilities of P. falciparum is derived from studies of the asexual erythrocytic cycle of the parasite, the portion of the parasite life cycle found in infected humans that is responsible for malarial symptoms. Efforts to control transmission and to understand the sometimes unique biology of this parasite have led to information about the metabolic capabilities of sexual and/or sporogonic stages of these parasites. This review focuses on comparing and contrasting the carbohydrate, nucleic acid, and protein synthetic capabilities of asexual erythrocytic stages and sexual stages of P. falciparum.
Collapse
Affiliation(s)
- N Lang-Unnasch
- Department of Medicine, University of Alabama at Birmingham 35294-2170, USA.
| | | |
Collapse
|
33
|
Srivastava IK, Rottenberg H, Vaidya AB. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem 1997; 272:3961-6. [PMID: 9020100 DOI: 10.1074/jbc.272.7.3961] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
At present, approaches to studying mitochondrial functions in malarial parasites are quite limited because of the technical difficulties in isolating functional mitochondria in sufficient quantity and purity. We have developed a flow cytometric assay as an alternate means to study mitochondrial functions in intact erythrocytes infected with Plasmodium yoelii, a rodent malaria parasite. By using a very low concentration (2 nM) of a lipophilic cationic fluorescent probe, 3,3'dihexyloxacarbocyanine iodide, we were able to measure mitochondrial membrane potential(DeltaPsim) in live intact parasitized erythrocytes through flow cytometry. The accumulation of the probe into parasite mitochondria was dependent on the presence of a membrane potential since inclusion of carbonyl cyanide m-chlorophenylhydrazone, a protonophore, dissipated the membrane potential and abolished the probe accumulation. We tested the effect of standard mitochondrial inhibitors such as myxothiazole, antimycin, cyanide and rotenone. All of them except rotenone collapsed the DeltaPsim and inhibited respiration. The assay was validated by comparing the EC50 of these compounds for inhibiting DeltaPsim and respiration. This assay was used to investigate the effect of various antimalarial drugs such as chloroquine, tetracycline and a broad spectrum antiparasitic drug atovaquone. We observed that only atovaquone collapsed DeltaPsim and inhibited parasite respiration within minutes after drug treatment. Furthermore, atovaquone had no effect on mammalian DeltaPsim. This suggests that atovaquone, shown to inhibit mitochondrial electron transport, also depolarizes malarial mitochondria with consequent cellular damage and death.
Collapse
Affiliation(s)
- I K Srivastava
- Department of Microbiology and Immunology, MCP Hahnemann School of Medicine, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19102-1192, USA
| | | | | |
Collapse
|
34
|
Vaidya AB, Lashgari MS, Pologe LG, Morrisey J. Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Mol Biochem Parasitol 1993; 58:33-42. [PMID: 8459834 DOI: 10.1016/0166-6851(93)90088-f] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Appropriate functioning of mitochondria is critical for survival and growth of erythrocytic stages of malarial parasites, making it an attractive target for antimalarial drugs which may take advantage of unique features of parasite mitochondrial metabolism. We have sequenced the presumptive mitochondrial DNA, the 6-kb element, of Plasmodium falciparum, permitting an analysis of the predicted structure of parasite electron transport proteins. Although the overall structures of the 3 polypeptides, cytochrome c oxidase subunit 1, cytochrome c oxidase subunit 3, and cytochrome b (cyt b), were similar to those from other species, some striking differences were observed, especially for the cyt b. Analysis of the cyt b structure showed that the critical quinone binding sites of the protein are quite divergent from those of other species. Comparative analysis suggests that these changes are the likely cause for the resistance of parasite cytochrome bc1 complex to antimycin and related inhibitors. We suggest that the same features are responsible for increased affinity of the parasite cyt b for antimalarial compounds of class 8-aminoquinolines and hydroxynaphthoquinones, explaining the therapeutic value of these drugs.
Collapse
Affiliation(s)
- A B Vaidya
- Department of Microbiology and Immunology, Hahnemann University, Philadelphia, PA 19102-1192
| | | | | | | |
Collapse
|
35
|
Kanaani J, Ginsburg H. Effects of cinnamic acid derivatives on in vitro growth of Plasmodium falciparum and on the permeability of the membrane of malaria-infected erythrocytes. Antimicrob Agents Chemother 1992; 36:1102-8. [PMID: 1510401 PMCID: PMC188843 DOI: 10.1128/aac.36.5.1102] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cinnamic acid derivatives (CADs) are known inhibitors of monocarboxylate transport across plasma and mitochondrial membranes. All derivatives were found to inhibit the growth of intraerythrocytic Plasmodium falciparum in culture, which is in correlation with their hydrophobic character. Parasites at the ring and trophozoite stages were equally susceptible to the different derivatives. This result could be attributed to their inhibition of the transport of lactate, the major product of parasite energy metabolism. However, unexpectedly, it was found that all derivatives also inhibit the translocation of carbohydrates and amino acids across the new permeability pathways induced in the host cell membrane by the parasite. This impediment correlated strictly with CADs' effect on parasite growth. Parasites residing in cells permeabilized by means of Sendai virus were less susceptible to the different drugs, a result which implies that in addition to the direct effect on parasite viability, the drugs may have inhibited some process in the host cell whose function may be vital for parasite growth. The effect of CADs on the ATP levels in infected cells, in virus-treated cells, and in the two cellular compartments of the infected cell revealed that the drugs caused a significant decline in ATP level in the parasite compartment, while they provoked only a small effect on ATP level in the intact cells and the host cell compartment. These observations suggest that CADs inhibit ATP production in the parasite and its utilization by the host cell.
Collapse
Affiliation(s)
- J Kanaani
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|