1
|
Remya C, Dileep KV, Variyar EJ, Omkumar RV, Sadasivan C. Lobeline: A multifunctional alkaloid modulates cholinergic and glutamatergic activities. IUBMB Life 2023; 75:844-855. [PMID: 37335270 DOI: 10.1002/iub.2762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Developing drugs for Alzheimer's disease (AD) is an extremely challenging task due to its devastating pathology. Previous studies have indicated that natural compounds play a crucial role as lead molecules in the development of drugs. Even though, there are remarkable technological advancements in the isolation and synthesis of natural compounds, the targets for many of them are still unknown. In the present study, lobeline, a piperidine alkaloid has been identified as a cholinesterase inhibitor through chemical similarity assisted target fishing method. The structural similarities between lobeline and donepezil, a known acetylcholinesterase (AChE) inhibitor encouraged us to hypothesize that lobeline may also exhibit AChE inhibitory properties. It was further confirmed by in silico, in vitro and biophysical studies that lobeline could inhibit cholinesterase. The binding profiles indicated that lobeline has a higher affinity for AChE than BChE. Since excitotoxicity is one of the major pathological events associated with AD progression, we also investigated the neuroprotective potential of lobeline against glutamate mediated excitotoxicity in rat primary cortical neurons. The cell based NMDA receptor (NMDAR) assay with lobeline suggested that neuroprotective potential of lobeline is mediated through the blockade of NMDAR activity.
Collapse
Affiliation(s)
- Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Kalarickal V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Elessery J Variyar
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
- Inter University Centre for Bioscience, Kannur University, Thalassery, Kerala, India
| | | | - Chittalakkottu Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
- Inter University Centre for Bioscience, Kannur University, Thalassery, Kerala, India
| |
Collapse
|
2
|
Iwanski MK, Kapitein LC. Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton. Front Cell Dev Biol 2023; 11:1052245. [PMID: 37035244 PMCID: PMC10073685 DOI: 10.3389/fcell.2023.1052245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Microtubules, one of the major components of the cytoskeleton, play a crucial role during many aspects of neuronal development and function, such as neuronal polarization and axon outgrowth. Consequently, the microtubule cytoskeleton has been implicated in many neurodevelopmental and neurodegenerative disorders. The polar nature of microtubules is quintessential for their function, allowing them to serve as tracks for long-distance, directed intracellular transport by kinesin and dynein motors. Most of these motors move exclusively towards either the plus- or minus-end of a microtubule and some have been shown to have a preference for either dynamic or stable microtubules, those bearing a particular post-translational modification or those decorated by a specific microtubule-associated protein. Thus, it becomes important to consider the interplay of these features and their combinatorial effects on transport, as well as how different types of microtubules are organized in the cell. Here, we discuss microtubule subsets in terms of tubulin isotypes, tubulin post-translational modifications, microtubule-associated proteins, microtubule stability or dynamicity, and microtubule orientation. We highlight techniques used to study these features of the microtubule cytoskeleton and, using the information from these studies, try to define the composition, role, and organization of some of these subsets in neurons.
Collapse
Affiliation(s)
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
3
|
Remya C, Dileep KV, Koti Reddy E, Mantosh K, Lakshmi K, Sarah Jacob R, Sajith AM, Jayadevi Variyar E, Anwar S, Zhang KYJ, Sadasivan C, Omkumar RV. Neuroprotective derivatives of tacrine that target NMDA receptor and acetyl cholinesterase - Design, synthesis and biological evaluation. Comput Struct Biotechnol J 2021; 19:4517-4537. [PMID: 34471497 PMCID: PMC8379669 DOI: 10.1016/j.csbj.2021.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
The complex and multifactorial nature of neuropsychiatric diseases demands multi-target drugs that can intervene with various sub-pathologies underlying disease progression. Targeting the impairments in cholinergic and glutamatergic neurotransmissions with small molecules has been suggested as one of the potential disease-modifying approaches for Alzheimer’s disease (AD). Tacrine, a potent inhibitor of acetylcholinesterase (AChE) is the first FDA approved drug for the treatment of AD. Tacrine is also a low affinity antagonist of N-methyl-D-aspartate receptor (NMDAR). However, tacrine was withdrawn from its clinical use later due to its hepatotoxicity. With an aim to develop novel high affinity multi-target directed ligands (MTDLs) against AChE and NMDAR, with reduced hepatotoxicity, we performed in silico structure-based modifications on tacrine, chemical synthesis of the derivatives and in vitro validation of their activities. Nineteen such derivatives showed inhibition with IC50 values in the range of 18.53 ± 2.09 – 184.09 ± 19.23 nM against AChE and 0.27 ± 0.05 – 38.84 ± 9.64 μM against NMDAR. Some of the selected compounds also protected rat primary cortical neurons from glutamate induced excitotoxicity. Two of the tacrine derived MTDLs, 201 and 208 exhibited in vivo efficacy in rats by protecting against behavioral impairment induced by administration of the excitotoxic agent, monosodium glutamate. Additionally, several of these synthesized compounds also exhibited promising inhibitory activitiy against butyrylcholinesterase. MTDL-201 was also devoid of hepatotoxicity in vivo. Given the therapeutic potential of MTDLs in disease-modifying therapy, our studies revealed several promising MTDLs among which 201 appears to be a potential candidate for immediate preclinical evaluations.
Collapse
Key Words
- AChE, acetylcholinesterase
- AChEIs, acetylcholinesterase inhibitors
- AChT, acetylthiocholine
- AD, Alzheimer’s disease
- ADME, absorption, distribution, metabolism and excretion
- Acetylcholinesterase
- Alzheimer’s disease
- BBB, blood brain barrier
- Ca2+, calcium
- ChE, Cholinesterases
- DMEM, Dulbecco’s modified Eagle’s medium
- DTNB, 5,5-dithiobis-(2-nitrobenzoic acid)
- ENM, elastic network modeling
- ER, endoplasmic reticulum
- FRET, fluorescence resonance energy transfer
- G6PD, glucose-6-phosphate dehydrogenase
- HBSS, Hank's balanced salt solution
- IP, intraperitoneal
- LBD, Ligand binding domain
- LC-MS, Liquid chromatography-mass spectrometry
- LiCABEDS, Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps
- MAP2, microtubule associated protein 2
- MD, Molecular dynamics
- MTDLs
- MTDLs, multi-target directed ligands
- MWM, Morris water maze
- NBM, neurobasal medium
- NMA, normal mode analysis
- NMDA receptor
- NMDAR, N-methyl-D-aspartate receptor
- Neuroprotection
- OPLS, Optimized potential for liquid simulations
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- Polypharmacology
- RMSD, root mean square deviation
- SAR, structure-activity relationships
- SD, standard deviation
- SVM, support vector machine
- Structure-based drug design
- TBI, traumatic brain injury
- TMD, transmembrane domain
- Tacrine
- h-NMDAR, human NMDAR
- hAChE, human AChE
- ppm, parts per million
Collapse
Affiliation(s)
- Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Computational and Structural Biology, Jubilee Center for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Eeda Koti Reddy
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kumar Mantosh
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Kesavan Lakshmi
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Reena Sarah Jacob
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Ayyiliyath M Sajith
- Post Graduate and Research Department of Chemistry, Kasargod Govt. College, Kannur University, Kasaragod, India
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - Shaik Anwar
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - C Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - R V Omkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
4
|
Remya C, Dileep KV, Variyar EJ, Zhang KYJ, Omkumar RV, Sadasivan C. Chemical similarity assisted search for acetylcholinesterase inhibitors: Molecular modeling and evaluation of their neuroprotective properties. Int J Biol Macromol 2021; 174:466-476. [PMID: 33497692 DOI: 10.1016/j.ijbiomac.2021.01.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is an obstinate and progressive neurodegenerative disorder, mainly characterized by cognitive decline. Increasing number of AD patients and the lack of promising treatment strategies demands novel therapeutic agents to combat various disease pathologies in AD. Recent progresses in understanding molecular mechanisms in AD helped researchers to streamline the various therapeutic approaches. Inhibiting acetylcholinesterase (AChE) activity has emerged as one of the potential treatment strategies. The present study discusses the identification of two potent AChE inhibitors (ZINC11709541 and ZINC11996936) from ZINC database through conventional in silico approaches and their in vitro validations. These inhibitors have strong preferences towards AChE than butyrylcholinesterase (BChE) and didn't evoke any significant reduction in the cell viability of HEK-293 cells and primary cortical neurons. Furthermore, promising neuroprotective properties has also been displayed against glutamate induced excitotoxicity in primary cortical neurons. The present study proposes two potential drug lead compounds for the treatment of AD, that can be used for further studies and preclinical evaluation.
Collapse
Affiliation(s)
- Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - R V Omkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud P. O., Trivandrum, Kerala 695014, India
| | - C Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India.
| |
Collapse
|
5
|
Giovanini MA, Reier PJ, Eskin TA, Anderson DK. Map2 Expression in the Developing Human Fetal Spinal Cord and following Xenotransplantation. Cell Transplant 2017; 6:339-46. [PMID: 9171166 DOI: 10.1177/096368979700600316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human fetal spinal cord (FSC) tissue was obtained from elective abortions at 6-14 wk gestational age (GA). The specimens were then either immediately processed for immunohistochemical analysis or xenotransplantation. In the latter case, donor tissue was prepared as a dissociated cell suspension and then introduced either sub-pially or intraspinally into contusion lesions of the adult rat midthoracic spinal cord. The xenografts were subsequently examined by conventional histological and immunohistochemical methods at 2-3 mo postgrafting. Immunostaining showed that MAP2 was expressed heavily in cells residing in the mantle layer of the human fetal spinal cord in situ as early as 6 wk GA. Subpial and intraparenchymal xenografts also were intensely immunoreactive for MAP2, but no staining of surrounding host neural tissue was detected. We conclude that the differential expression of MAP2 can be used to distinguish human graft tissue from the surrounding rat spinal cord in this xenograft paradigm. Under appropriate staining conditions, MAP2 can thus serve to facilitate analyses of host-graft integration, donor cell migration, and neuritic outgrowth.
Collapse
Affiliation(s)
- M A Giovanini
- Department of Neurological Surgery, Gainesville Veterans Affairs Medical Center, University of Florida College of Medicine, 32610, USA
| | | | | | | |
Collapse
|
6
|
Trigos AS, Longart M, García L, Castillo C, Forsyth P, Medina R. ProNGF derived from rat sciatic nerves downregulates neurite elongation and axon specification in PC12 cells. Front Cell Neurosci 2015; 9:364. [PMID: 26441535 PMCID: PMC4569732 DOI: 10.3389/fncel.2015.00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/02/2015] [Indexed: 01/19/2023] Open
Abstract
Several reports have shown that a sciatic nerve conditioned media (CM) causes neuronal-like differentiation in PC12 cells. This differentiation is featured by neurite outgrowth, which are exclusively dendrites, without axon or sodium current induction. In previous studies, our group reported that the CM supplemented with a generic inhibitor for tyrosine kinase receptors (k252a) enhanced the CM-induced morphological differentiation upregulating neurite outgrowth, axonal formation and sodium current elicitation. Sodium currents were also induced by depletion of endogenous precursor of nerve growth factorr (proNGF) from the CM (pNGFd-CM). Given that sodium currents, neurite outgrowth and axon specification are important features of neuronal differentiation, in the current manuscript, first we investigated if proNGF was hindering the full PC12 cell neuronal-like differentiation. Second, we studied the effects of exogenous wild type (pNGFwt) and mutated (pNGFmut) proNGF isoforms over sodium currents and whether or not their addition to the pNGFd-CM would prevent sodium current elicitation. Third, we investigated if proNGF was exerting its negative regulation through the sortilin receptor, and for this, the proNGF action was blocked with neurotensin (NT), a factor known to compete with proNGF for sortilin. Thereby, here we show that pNGFd-CM enhanced cell differentiation, cell proportion with long neurites, total neurite length, induced axonal formation and sodium current elicitation. Interestingly, treatment of PC12 cells with wild type or mutated proNGF isoforms elicited sodium currents. Supplementing pNGFd-CM with pNGFmut reduced 35% the sodium currents. On the other hand, pNGFd-CM+pNGFwt induced larger sodium currents than pNGFd-CM. Finally, treatments with CM supplemented with NT showed that sortilin was mediating proNGF negative regulation, since its blocking induced similar effects than the pNGFd-CM treatment. Altogether, our results suggest that proNGF within the CM, is one of the main inhibitors of full neuronal differentiation, acting through sortilin receptor.
Collapse
Affiliation(s)
- Anna Sofía Trigos
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA) Caracas, Venezuela ; Departamento de Biología Celular, Universidad Simón Bolívar (USB) Caracas, Venezuela
| | - Marines Longart
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA) Caracas, Venezuela
| | - Lisbeth García
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA) Caracas, Venezuela
| | - Cecilia Castillo
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA) Caracas, Venezuela
| | - Patricia Forsyth
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA) Caracas, Venezuela
| | - Rafael Medina
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA) Caracas, Venezuela
| |
Collapse
|
7
|
Affiliation(s)
- Beat Ludin
- Friedrich Miescher Institute, Basel, Switzerland
| | - Andrew Matus
- Friedrich Miescher Institute, Basel, Switzerland
| |
Collapse
|
8
|
Synchronous symmetry breaking in neurons with different neurite counts. PLoS One 2013; 8:e54905. [PMID: 23408951 PMCID: PMC3569465 DOI: 10.1371/journal.pone.0054905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
As neurons develop, several immature processes (i.e., neurites) grow out of the cell body. Over time, each neuron breaks symmetry when only one of its neurites grows much longer than the rest, becoming an axon. This symmetry breaking is an important step in neurodevelopment, and aberrant symmetry breaking is associated with several neuropsychiatric diseases, including schizophrenia and autism. However, the effects of neurite count in neuronal symmetry breaking have never been studied. Existing models for neuronal polarization disagree: some predict that neurons with more neurites polarize up to several days later than neurons with fewer neurites, while others predict that neurons with different neurite counts polarize synchronously. We experimentally find that neurons with different neurite counts polarize synchronously. We also show that despite the significant differences among the previously proposed models, they all agree with our experimental findings when the expression levels of the proteins responsible for symmetry breaking increase with neurite count. Consistent with these results, we observe that the expression levels of two of these proteins, HRas and shootin1, significantly correlate with neurite count. This coordinated symmetry breaking we observed among neurons with different neurite counts may be important for synchronized polarization of neurons in developing organisms.
Collapse
|
9
|
Xu J, Nonogaki M, Madhira R, Ma HY, Hermanson O, Kioussi C, Gross MK. Population-specific regulation of Chmp2b by Lbx1 during onset of synaptogenesis in lateral association interneurons. PLoS One 2012; 7:e48573. [PMID: 23284619 PMCID: PMC3528757 DOI: 10.1371/journal.pone.0048573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 09/27/2012] [Indexed: 12/12/2022] Open
Abstract
Chmp2b is closely related to Vps2, a key component of the yeast protein complex that creates the intralumenal vesicles of multivesicular bodies. Dominant negative mutations in Chmp2b cause autophagosome accumulation and neurodegenerative disease. Loss of Chmp2b causes failure of dendritic spine maturation in cultured neurons. The homeobox gene Lbx1 plays an essential role in specifying postmitotic dorsal interneuron populations during late pattern formation in the neural tube. We have discovered that Chmp2b is one of the most highly regulated cell-autonomous targets of Lbx1 in the embryonic mouse neural tube. Chmp2b was expressed and depended on Lbx1 in only two of the five nascent, Lbx1-expressing, postmitotic, dorsal interneuron populations. It was also expressed in neural tube cell populations that lacked Lbx1 protein. The observed population-specific expression of Chmp2b indicated that only certain population-specific combinations of sequence specific transcription factors allow Chmp2b expression. The cell populations that expressed Chmp2b corresponded, in time and location, to neurons that make the first synapses of the spinal cord. Chmp2b protein was transported into neurites within the motor- and association-neuropils, where the first synapses are known to form between E11.5 and E12.5 in mouse neural tubes. Selective, developmentally-specified gene expression of Chmp2b may therefore be used to endow particular neuronal populations with the ability to mature dendritic spines. Such a mechanism could explain how mammalian embryos reproducibly establish the disynaptic cutaneous reflex only between particular cell populations.
Collapse
Affiliation(s)
- Jun Xu
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Mariko Nonogaki
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Ravi Madhira
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Hsiao-Yen Ma
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael K. Gross
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
10
|
Yan J, Sun XB, Wang HQ, Zhao H, Zhao XY, Xu YX, Guo JC, Zhu CQ. Chronic restraint stress alters the expression and distribution of phosphorylated tau and MAP2 in cortex and hippocampus of rat brain. Brain Res 2010; 1347:132-41. [PMID: 20513368 DOI: 10.1016/j.brainres.2010.05.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 05/18/2010] [Accepted: 05/24/2010] [Indexed: 12/30/2022]
Abstract
Microtubule-associated proteins (MAPs) play a critical role in maintaining normal cytoskeletal architecture and functions. In the present study, we aim to explore the effects of the emotional stressor, chronic restraint stress, on the expression levels and localization of tau and MAP2. We found that after chronic restraint stress, soluble hyperphosphorylated tau was greatly increased, whereas MAP2 was decreased. Moreover, immunohistochemistry analysis demonstrated that phosphorylated tau and MAP2 displayed the similar subcellular distribution pattern after chronic restraint stress. Robust hyperphosphorylated tau immunolabeling was observed both in cortex and hippocampus of stressed animals and mainly located to perikaryal/dendritic elements. After stress, the MAP2 was mainly distributed in the perikaryal compartments, discontinuous dendrites and neuropil. Moreover, the distribution pattern of MAP2 in hippocampus significantly changed. Immunofluorescence double labeling indicated that hyperphosphorylated tau increased in the regions where there displayed an decrease of MAP2. These results suggest that the involvement of repeated restraint stress may not only induce phosphorylation state of tau and distribution of phosphorylated tau, but also alter the content and neuronal distribution of MAP2. Tau and MAP2 are most important MAPs for neuronal cells, the subcellular distribution change of them might be link to functional change of neurons after emotional stress.
Collapse
Affiliation(s)
- Jie Yan
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ducray AD, Schläppi JA, Qualls R, Andres RH, Seiler RW, Schlattner U, Wallimann T, Widmer HR. Creatine treatment promotes differentiation of GABA-ergic neuronal precursors in cultured fetal rat spinal cord. J Neurosci Res 2007; 85:1863-75. [PMID: 17526013 DOI: 10.1002/jnr.21337] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Creatine is a substrate of cytosolic and mitochondrial creatine kinases. Its supplementation augments cellular levels of creatine and phosphocreatine, the rate of ATP resynthesis, and improves the function of the creatine kinase energy shuttle. High cytoplasmatic total creatine levels have been reported to be neuroprotective by inhibiting apoptosis. In addition, creatine has direct antioxidant effects, which may be of importance in amyotrophic lateral sclerosis. In the present study, we investigated the effects of creatine [5 mM] on survival and differentiation of cultured GABA-immunoreactive (-ir) and choline acetyltransferase (ChAT)-ir rat spinal cord neurons. Furthermore, we addressed the neuroprotective potential of creatine supplementation against 3-nitropropionic acid (3-NP) induced toxicity. General cell survival and total neuronal cell density were not altered by chronic creatine treatment. We found, however, after chronic creatine and short-term creatine exposure a significantly higher density of GABA-ir neurons hinting to a differentiation-inducing mechanism of creatine. This notion is further supported by a significant higher content of GAD after creatine exposure. Creatine supplementation also exerted a partial, but significant neuroprotection for GABA-ir neurons against 3-NP induced toxicity. Interestingly, chronic creatine treatment did not alter cell density of ChAT-ir neurons but promoted their morphologic differentiation. Cell soma size and number of primary neurites per neuron were increased significantly after creatine supplementation. Taken together, creatine supplementation promoted the differentiation or the survival of GABAergic neurons and resulted in partial neuroprotection against 3-NP induced toxicity. The data suggest that creatine may play a critical role during development of spinal cord neurons.
Collapse
|
12
|
Stommel EW, van Hoff RM, Graber DJ, Bercury KK, Langford GM, Harris BT. Tumor necrosis factor-alpha induces changes in mitochondrial cellular distribution in motor neurons. Neuroscience 2007; 146:1013-9. [PMID: 17418957 DOI: 10.1016/j.neuroscience.2007.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Motor neuron (MN) mitochondrial abnormalities and elevation in spinal fluid levels of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). The mechanism of neuron death in ALS remains unclear, along with the contributions of mitochondrial dysfunction and inflammation in the process. Cell cultures enriched for MN derived from embryonic rat spinal cords were established and directly exposed in vitro to recombinant TNF-alpha for varying lengths of time. Although cytokine exposure for up to 4 days failed to induce MN death, mitochondrial changes were observed shortly after initiating treatment. Our results demonstrate that TNF-alpha induced mitochondrial redistribution toward the soma in MN. We postulate that inflammation may precede, and in fact cause, the mitochondrial changes observed in ALS tissue.
Collapse
Affiliation(s)
- E W Stommel
- Department of Medicine, Section of Neurology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, and Department of Biology, Dartmouth College, Hanover 03755, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Mioduszewska B, Jaworski J, Szklarczyk AW, Klejman A, Kaczmarek L. Inducible cAMP early repressor (ICER)-evoked delayed neuronal death in the organotypic hippocampal culture. J Neurosci Res 2007; 86:61-70. [PMID: 17722060 DOI: 10.1002/jnr.21469] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death involving gene regulation and de novo protein synthesis is a major component of both normal development and a number of disease conditions. Hence, knowledge of its mechanisms, especially transcription factors, that regulate expression of the genes involved in neurodegenerative disorders is of great importance. cAMP-responsive element-binding protein (CREB) has repeatedly been implicated in the neuronal survival. In the present study we showed that inducible cAMP early repressor (ICER), an endogenous CREB antagonist, is expressed during both excitotoxic and spontaneous neuronal cell death in organotypic hippocampal slice cultures in vitro. Furthermore, overexpression of ICER via an adenoviral vector evoked neuronal cell loss in such cultures. The time course of ICER-dependent cell death was hippocampal subdivision specific, with dentate gyrus neurons dying mostly 3-7 days after the adenovector infection, followed by CA3, where neuronal death peaked after 7 days, and then CA1, where most neuronal death occurred after 7-14 days. These results underscore the usefulness of the organotypic cultures for studies of neurodegeneration and point to neuronal loss having a multifaceted nature in a complex cellular environment.
Collapse
|
14
|
Garcia de Arriba S, Wegner F, Grüner K, Verdaguer E, Pallas M, Camins A, Wagner A, Wohlfahrt K, Allgaier C. Different capacities of various NMDA receptor antagonists to prevent ischemia-induced neurodegeneration in human cultured NT2 neurons. Neurochem Int 2006; 49:466-74. [PMID: 16650914 DOI: 10.1016/j.neuint.2006.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
In the present study, human NT2 neurons obtained from embryonic teratocarcinoma (NT2) cells were established as human in-vitro model to investigate the mechanisms associated with hypoxia/ischemia-induced neuronal injury. NT2 neurons express functional NMDA receptors that are of particular significance for hypoxia/ischemia-related neuronal damage. In patch-clamp recordings under normoxic conditions, NMDA (plus 10 microM glycine)-induced inward currents (EC(50)=43.7 microM) were distinctly antagonized by memantine, a blocker of the receptor channel, but only slightly by 5,7-dichlorokynurenic acid (DCKA), a glycine(B) binding site antagonist. Immunohistochemistry demonstrated that the NT2 neurons are mostly GABAergic; they predominantly express the NMDA receptor subunits NR2B and NR2C, and lower levels of NR1 and, particularly, of NR2A. Upon glucose and oxygen deprivation for 3h the loss of cell viability measured directly after 3h was higher than after application of either hypoxia or aglycemia as assessed by propidium iodide flow cytometry. Ischemic conditions significantly reduced the NMDA responses associated with a decrease in EC(50) and decreased mitochondrial membrane potential as detected by JC-1 flow cytometry. Memantine (50 microM) and CGS19755 (a competitive NMDA receptor antagonist; 10 microM) reduced ischemia-induced cell death, in contrast to DCKA (10 microM). In conclusion, in the present human in-vitro model for studying the molecular mechanisms associated with ischemic injury, neuroprotection could be achieved with NMDA receptor antagonists but not with a glycine(B) binding site antagonist. Accordingly, glycine antagonists might not represent an optimal therapeutic strategy for preventing ischemic neuronal damage in contrast to NMDA receptor antagonists like memantine.
Collapse
Affiliation(s)
- Susana Garcia de Arriba
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jaekel B, Mühlberg K, Garcia de Arriba S, Reichenbach A, Verdaguer E, Pallas M, Camins A, Nörenberg W, Allgaier C. Neuroprotection associated with alternative splicing of NMDA receptors in rat cortical neurons. Br J Pharmacol 2006; 147:622-33. [PMID: 16314856 PMCID: PMC1751340 DOI: 10.1038/sj.bjp.0706471] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Exposure of cultured cortical neurons to elevated extracellular K(+) concentrations (25 mM) induces membrane depolarization and an increase in action-potential firing. Long-term high K(+) treatment was associated with an increased neuronal cell death. In surviving neurons, multiple changes occurred in the proportion of individual NMDA receptor subunit 1 (NR1) splice variant mRNA expression, whereas the overall expression of NR1, NR2A and NR2B transcripts remained unaffected. The high K(+)-induced changes in NR1 splice variant expression were virtually abolished upon a concurrent administration of tetrodotoxin (TTX; 3 microM). In voltage-clamp recordings performed on neurons resistant to high K(+) treatment, inward currents induced by NMDA (1-1,000 microM) were reduced. In K(+)-resistant cells, the activity of calpain but not of caspase-3 was diminished compared with controls kept in regular medium. NR function as well as calpain activity was not affected in cultures concomitantly treated with high K(+) and either TTX or a NR antagonist (CGS19755 (selfotel) or memantine). In conclusion, the present data indicate adaptive changes in NR1 splice variant expression and a decrease in NR function upon a sustained increase in neurotransmission. Accordingly, alternative splicing could be an endogenous mechanism to counteract cellular damage due to overactivation of excitatory NRs and may be associated with an impairment of necrotic mechanisms.
Collapse
Affiliation(s)
- Beate Jaekel
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Katja Mühlberg
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Susana Garcia de Arriba
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
- Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Faculty of Medicine of the University of Leipzig, Germany
| | - Andreas Reichenbach
- Department of Neurophysiology, Paul-Flechsig-Institute of Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | - Ester Verdaguer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
- Humboldt-Stipendiat, Rudolf-Boehm-Institute, Germany
| | - Mercè Pallas
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | - Antoni Camins
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain
| | - Wolfgang Nörenberg
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Clemens Allgaier
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
- Author for correspondence:
| |
Collapse
|
16
|
Bonde C, Noraberg J, Noer H, Zimmer J. Ionotropic glutamate receptors and glutamate transporters are involved in necrotic neuronal cell death induced by oxygen-glucose deprivation of hippocampal slice cultures. Neuroscience 2006; 136:779-94. [PMID: 16344151 DOI: 10.1016/j.neuroscience.2005.07.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 06/27/2005] [Accepted: 07/12/2005] [Indexed: 11/18/2022]
Abstract
Organotypic hippocampal slice cultures represent a feasible model for studies of cerebral ischemia and the role of ionotropic glutamate receptors in oxygen-glucose deprivation-induced neurodegeneration. New results and a review of existing data are presented in the first part of this paper. The role of glutamate transporters, with special reference to recent results on inhibition of glutamate transporters under normal and energy-failure (ischemia-like) conditions is reviewed in the last part of the paper. The experimental work is based on hippocampal slice cultures derived from 7 day old rats and grown for about 3 weeks. In such cultures we investigated the subfield neuronal susceptibility to oxygen-glucose deprivation, the type of induced cell death and the involvement of ionotropic glutamate receptors. Hippocampal slice cultures were also used in our studies on glutamate transporters reviewed in the last part of this paper. Neurodegeneration was monitored and/or shown by cellular uptake of propidium iodide, loss of immunocytochemical staining for microtubule-associated protein 2 and staining with Fluoro-Jade B. To distinguish between necrotic vs. apoptotic neuronal cell death we used immunocytochemical staining for active caspase-3 (apoptosis indicator) and Hoechst 33342 staining of nuclear chromatin. Our experimental studies on oxygen-glucose deprivation confirmed that CA1 pyramidal cells were the most susceptible to this ischemia-like condition. Judged by propidium iodide uptake, a selective CA1 lesion, with only minor affection on CA3, occurred in cultures exposed to oxygen-glucose deprivation for 30 min. Nuclear chromatin staining by Hoechst 33342 and staining for active caspase-3 showed that oxygen-glucose deprivation induced necrotic cell death only. Addition of 10 microM of the N-methyl-D-aspartate glutamate receptor antagonist MK-801, and 20 microM of the non-N-methyl-D-aspartate glutamate receptor antagonist 2,3-dihyroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline to the culture medium confirmed that both N-methyl-D-aspartate and non-N-methyl-D-aspartate ionotropic glutamate receptors were involved in the oxygen-glucose deprivation-induced cell death. Glutamate is normally quickly removed, from the extracellular space by sodium-dependent glutamate transporters. Effects of blocking the transporters by addition of the DL-threo-beta-benzyloxyaspartate are reviewed in the last part of the paper. Under normal conditions addition of DL-threo-beta-benzyloxyaspartate in concentrations of 25 microM or more to otherwise untreated hippocampal slice cultures induced neuronal cell death, which was prevented by addition of 2,3-dihyroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline and MK-801. In energy failure situations, like cerebral ischemia and oxygen-glucose deprivation, the transporters are believed to reverse and release glutamate to the extracellular space. Blockade of the transporters by a subtoxic (10 microM) dose of DL-threo-beta-benzyloxyaspartate during oxygen-glucose deprivation (but not during the next 48 h after oxygen-glucose deprivation) significantly reduced the oxygen-glucose deprivation-induced propidium iodide uptake, suggesting a neuroprotective inhibition of reverse transporter activity by DL-threo-beta-benzyloxyaspartate during oxygen-glucose deprivation under these conditions. Adding to this, other results from our laboratory have demonstrated that pre-treatment of the slice cultures with glial cell-line derived neurotrophic factor upregulates glutamate transporters. As a logical, but in some glial cell-line derived neurotrophic factor therapy-related conditions clearly unwanted consequence the susceptibility for oxygen-glucose deprivation-induced glutamate receptor-mediated cell death is increased after glial cell-line derived neurotrophic factor treatment. In summary, we conclude that both ionotropic glutamate receptors and glutamate transporters are involved in oxygen-glucose deprivation-induced necrotic cell death in hippocampal slice cultures, which have proven to be a feasible tool in experimental studies on this topic.
Collapse
Affiliation(s)
- C Bonde
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winslowparken 21, DK-5000 Odense, Denmark
| | | | | | | |
Collapse
|
17
|
Di Stefano G, Casoli T, Fattoretti P, Balietti M, Grossi Y, Giorgetti B, Bertoni-Freddari C. Level and Distribution of Microtubule- Associated Protein-2 (MAP2) as an Index of Dendritic Structural Dynamics. Rejuvenation Res 2006; 9:94-8. [PMID: 16608403 DOI: 10.1089/rej.2006.9.94] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Optical density of MAP2 immunoreactivity (OD), the ratio between the MAP2 stained area/total test area (area fraction: AF), the total length of MAP2 labeled profiles (TL) and the ratio perimeter/area of the immunostained profiles (pleomorphism index [PI]) were measured by quantitative immunohistochemistry in the brain of rats of different ages. In old rats versus young and adult animals, OD and AF were significantly lower, whereas PI was significantly higher, in dentate gyrus molecular layer, CA1 stratum radiatum and olfactory bulb. These findings lend support to the many converging results on the higher vulnerability to aging of the CNS areas featuring higher plasticity.
Collapse
|
18
|
Cristofanilli M, Iacoangeli A, Muslimov IA, Tiedge H. Neuronal BC1 RNA: microtubule-dependent dendritic delivery. J Mol Biol 2005; 356:1118-23. [PMID: 16412460 PMCID: PMC1828538 DOI: 10.1016/j.jmb.2005.11.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 11/28/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
RNA localization is an important means of post-transcriptional regulation of gene expression in many eukaryotic cell types. In neurons, select RNAs are delivered to postsynaptic dendritic microdomains, a mechanism that is considered a key underpinning in the administration of long-term synaptic plasticity. BC1 RNA is a small untranslated RNA that interacts with translation initiation factors and functions as a translational repressor by targeting assembly of 48S initiation complexes. BC1 RNA is specifically and rapidly transported to dendrites where it is found concentrated in postsynaptic microdomains. The cytoskeletal infrastructure underlying dendritic localization of BC1 RNA has not been investigated. We now report that the dendritic delivery of BC1 RNA is dependent on intact microtubules. In two neuronal cell types, hippocampal neurons and sympathetic neurons in primary culture, disruption of microtubules abolished dendritic localization of BC1 RNA. In contrast, disruption of actin filaments had no significant effect on the somatodendritic distribution of BC1 RNA. It is concluded that the long-range dendritic delivery of BC1 RNA is supported by microtubules. At the same time, a role for actin filaments, while unlikely for long-range BC1 delivery, is not ruled out for short-range local translocation and anchoring at dendritic destination sites.
Collapse
Affiliation(s)
- Massimiliano Cristofanilli
- Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
19
|
DiProspero NA, Chen EY, Charles V, Plomann M, Kordower JH, Tagle DA. Early changes in Huntington's disease patient brains involve alterations in cytoskeletal and synaptic elements. ACTA ACUST UNITED AC 2005; 33:517-33. [PMID: 15906159 DOI: 10.1007/s11068-004-0514-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 11/08/2004] [Accepted: 11/15/2004] [Indexed: 10/25/2022]
Abstract
Huntington's disease (HD) is caused by a polyglutamine repeat expansion in the N-terminus of the huntingtin protein. Huntingtin is normally present in the cytoplasm where it may interact with structural and synaptic elements. The mechanism of HD pathogenesis remains unknown but studies indicate a toxic gain-of-function possibly through aberrant protein interactions. To investigate whether early degenerative changes in HD involve alterations of cytoskeletal and vesicular components, we examined early cellular changes in the frontal cortex of HD presymptomatic (PS), early pathological grade (grade 1) and late-stage (grade 3 and 4) patients as compared to age-matched controls. Morphologic analysis using silver impregnation revealed a progressive decrease in neuronal fiber density and organization in pyramidal cell layers beginning in presymptomatic HD cases. Immunocytochemical analyses for the cytoskeletal markers alpha -tubulin, microtubule-associated protein 2, and phosphorylated neurofilament demonstrated a concomitant loss of staining in early grade cases. Immunoblotting for synaptic proteins revealed a reduction in complexin 2, which was marked in some grade 1 HD cases and significantly reduced in all late stage cases. Interestingly, we demonstrate that two synaptic proteins, dynamin and PACSIN 1, which were unchanged by immunoblotting, showed a striking loss by immunocytochemistry beginning in early stage HD tissue suggesting abnormal distribution of these proteins. We propose that mutant huntingtin affects proteins involved in synaptic function and cytoskeletal integrity before symptoms develop which may influence early disease onset and/or progression.
Collapse
Affiliation(s)
- Nicholas A DiProspero
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Melani R, Rebaudo R, Noraberg J, Zimmer J, Balestrino M. Changes in Extracellular Action Potential Detect Kainic Acid and Trimethyltin Toxicity in Hippocampal Slice Preparations Earlier than do MAP2 Density Measurements. Altern Lab Anim 2005; 33:379-86. [PMID: 16185106 DOI: 10.1177/026119290503300409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vitro electrophysiological techniques for the assessment of neurotoxicity could have several advantages over other methods in current use, including the ability to detect damage at a very early stage, and could further assist in replacing animal experimentation in vivo. We investigated how an electrophysiological parameter, the extracellularly-recorded compound action potential (“population spike”, PS) could be used as a marker of in vitro neurotoxicity in the case of two well-known toxic compounds, kainic acid (KA) and trimethyltin (TMT). We compared the use of this electrophysiological endpoint with changes in immunoreactivity for microtubule-associated protein 2 (MAP2), a standard histological test for neurotoxicity. We found that both toxic compounds reliably caused disappearance of the PS, and that such disappearance occurred after only 1 hour of exposure to the drug. By contrast, densitometric measurements of MAP2 immunoreactivity were unaffected by both KA and TMT after such a short exposure time. We conclude that, in the case of KA and TMT, the extracellular PS was abolished at a very early time-point, when MAP2 immunoreactivity levels were still comparable to those of the untreated controls. Electrophysiology could be a reliable and early indicator of neurotoxicity, which could improve our ability to test for neurotoxicity in vitro, thus further replacing the need for in vivo experimentation.
Collapse
Affiliation(s)
- Raffaella Melani
- Department of Neuroscience, Ophthalmology and Genetics, University of Genoa, Via De Toni 5, 16132 Genoa, Italy
| | | | | | | | | |
Collapse
|
21
|
Andres RH, Ducray AD, Huber AW, Pérez-Bouza A, Krebs SH, Schlattner U, Seiler RW, Wallimann T, Widmer HR. Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue. J Neurochem 2005; 95:33-45. [PMID: 16045451 DOI: 10.1111/j.1471-4159.2005.03337.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, characterized by a prominent loss of GABA-ergic medium-sized spiny neurons in the caudate putamen. There is evidence that impaired energy metabolism contributes to neuronal death in HD. Creatine is an endogenous substrate for creatine kinases and thereby supports cellular ATP levels. This study investigated the effects of creatine supplementation (5 mm) on cell survival and neuronal differentiation in striatal cultures. Chronic creatine treatment resulted in significant increased densities of GABA-immunoreactive (-ir) neurons, although total neuronal cell number and general viability were not affected. Similar effects were seen after short-term treatment, suggesting that creatine acted as a differentiation factor. Inhibitors of transcription or translation did not abolish the creatine-mediated effects, nor did omission of extracellular calcium, whereas inhibition of mitogen-activated protein kinase and phosphatidylinositol-3-kinase significantly attenuated the creatine induced increase in GABA-ir cell densities. Creatine exhibited significant neuroprotection against toxicity instigated either by glucose- and serum deprivation or addition of 3-nitropropionic acid. In sum, the neuroprotective properties in combination with promotion of neuronal differentiation suggest that creatine has potential as a therapeutic drug in the treatment of neurodegenerative diseases, like HD.
Collapse
Affiliation(s)
- R H Andres
- Department of Neurosurgery, University Hospital, Berne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jeng CJ, Chang CC, Tang CY. Differential localization of rat Eag1 and Eag2 K+ channels in hippocampal neurons. Neuroreport 2005; 16:229-33. [PMID: 15706225 DOI: 10.1097/00001756-200502280-00005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two isoforms of rat ether-a-go-go (Eag) K channels, rEag1 and rEag2, are widely expressed in many regions of the brain. The neurophysiological roles of these channels, however, are unclear. We addressed this issue by studying their subcellular localizations in hippocampal neurons. Immunofluorescence studies using markers for different compartments of neurons demonstrated a differential expression pattern of rEag1 and rEag2 K channels in the somatodendritic region. Furthermore, rEag1 K channels were in close proximity to synaptophysin and densin-180, but not GAD65. Our data suggest that both rEag1 and rEag2 K channels may play a pivotal role in the regulation of the excitability of dendrites and somas, and that rEag1 K channels may modulate the postsynaptic signaling of glutamatergic synapses.
Collapse
Affiliation(s)
- Chung-Jiuan Jeng
- School of Medicine, Fu Jen Catholic University, Taipei County, Taiwan
| | | | | |
Collapse
|
23
|
Liu Q, Zuo J, Pierce EA. The retinitis pigmentosa 1 protein is a photoreceptor microtubule-associated protein. J Neurosci 2005; 24:6427-36. [PMID: 15269252 PMCID: PMC1904502 DOI: 10.1523/jneurosci.1335-04.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The outer segments of rod and cone photoreceptor cells are highly specialized sensory cilia made up of hundreds of membrane discs stacked into an orderly array along the photoreceptor axoneme. It is not known how the alignment of the outer segment discs is controlled, although it has been suggested that the axoneme may play a role in this process. Mutations in the retinitis pigmentosa 1 (RP1) gene are a common cause of retinitis pigmentosa (RP). Disruption of the Rp1 gene in mice causes misorientation of outer segment discs, suggesting a role for RP1 in outer segment organization. Here, we show that the RP1 protein is part of the photoreceptor axoneme. Amino acids 28-228 of RP1, which share limited homology with the microtubule-binding domains of the neuronal microtubule-associated protein (MAP) doublecortin, mediate the interaction between RP1 and microtubules, indicating that the putative doublecortin (DCX) domains in RP1 are functional. The N-terminal portion of RP1 stimulates the formation of microtubules in vitro and stabilizes cytoplasmic microtubules in heterologous cells. Evaluation of photoreceptor axonemes from mice with targeted disruptions of the Rp1 gene shows that Rp1 proteins that contain the DCX domains also help control axoneme length and stability in vivo. These results demonstrate that RP1 is a MAP. Given the specific expression of RP1 in photoreceptors, RP1 is thus the first photoreceptor-specific MAP to be identified. Furthermore, these findings indicate that the RP1 form of inherited retinal degeneration is part of the larger class of neurodegenerative diseases caused by MAP dysfunction.
Collapse
Affiliation(s)
- Qin Liu
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
24
|
Tateno M, Ukai W, Ozawa H, Yamamoto M, Toki S, Ikeda H, Saito T. Ethanol inhibition of neural stem cell differentiation is reduced by neurotrophic factors. Alcohol Clin Exp Res 2005; 28:134S-138S. [PMID: 15318100 DOI: 10.1097/01.alc.0000133538.40841.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ethanol exposure during development leads to various forms of neuronal damage. Because neural stem cells (NSCs) play a pivotal role in the development and maturation of the central nervous system, it is important to understand the effect of ethanol on NSC differentiation. In this study, we investigated the effect of ethanol on differentiation of cultured NSCs in the presence and absence of neurotrophic factors. METHODS NSCs were derived from rat embryos on embryonic day 14. Cells were exposed to ethanol with or without neurotrophic factors, insulin-like growth factor-1 (IGF-1), or brain-derived neurotrophic factor (BDNF). The effect of ethanol on differentiation was quantified by measurement of optical density of each sample following to microtubule-associated protein 2 enzyme-linked immunosorbent assay and counting of the number of microtubule-associated protein 2-positive cells microscopically. In addition, cell viability of cultured cortical neurons that were exposed to similar concentrations of ethanol was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. RESULTS Ethanol (20-100 mM) inhibited NSC differentiation induced by basic fibroblast growth factor removal, whereas those concentrations of ethanol did not affect neuronal survival. Both IGF-1 and BDNF promoted generation of neurons in the absence of ethanol. Moreover, they suppressed the inhibitory effect of ethanol on NSC differentiation. CONCLUSIONS Ethanol inhibited NSC differentiation at concentrations much lower than what compromised neuronal survival. Ethanol-induced differential inhibition was reduced by both IGF-1 and BDNF. These results suggest that ethanol inhibits stem cell differentiation through alteration of cellular pathways related to neurotrophic factor signaling.
Collapse
Affiliation(s)
- Masaru Tateno
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Tateno M, Ukai W, Ozawa H, Yamamoto M, Toki S, Ikeda H, Saito T. Ethanol Inhibition of Neural Stem Cell Differentiation Is Reduced by Neurotrophic Factors. Alcohol Clin Exp Res 2004. [DOI: 10.1111/j.1530-0277.2004.tb03231.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Sharma RK, O'Leary TE, Fields CM, Johnson DA. Development of the outer retina in the mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 145:93-105. [PMID: 14519497 DOI: 10.1016/s0165-3806(03)00217-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mice represent a valuable species for studies of development and disease. With the availability of transgenic models for retinal degeneration in this species, information regarding development and structure of mouse retina has become increasingly important. Of special interest is the differentiation and synaptogenesis of photoreceptors since these cells are predominantly involved in hereditary retinal degenerations. Thus, some of the keys to future clinical management of these retinal diseases may lie in understanding the molecular mechanisms of outer retinal development. In this study, we describe the expression of markers for photoreceptors (recoverin), horizontal cells (calbindin), bipolar cells (protein kinase C; PKC) and cytoskeletal elements pivotal to axonogenesis (beta-tubulin and actin) during perinatal development of mouse retina. Immunocytochemical localization of recoverin, calbindin, PKC and beta-tubulin was monitored in developing mouse retina (embryonic day (E) 18.5 to postnatal day (PN) 14), whereas f-actin was localized by Phalloidin binding. Recoverin immunoreactive cells, presumably the photoreceptors, were observed embryonically (E 18.5) and their number increased until PN 14. Neurite projections from the immunoreactive cells towards the outer plexiform layer (OPL) were noted at PN 0 and these processes reached the OPL at PN 7 coincident with histological evidence for the differentiation of the OPL. Outer segments, all the cell bodies in the ONL, as well as the OPL were immunoreactive to recoverin at PN 14. Calbindin immunoreactive horizontal cells were also present in E 18.5 retinas. These cells became progressively displaced proximally as the ONL developed. A calbindin immunoreactive plexus was seen in the OPL at PN 7. PKC immunoreactive bipolar cells developed postnatally, becoming distinguished at PN 7. Both beta-tubulin and actin immunoreactive cells were present in the IPL as early as E 18.5; however, appearance of processes labeled with these markers in the OPL was delayed until PN 7, concurrent with the first appearance of photoreceptor neurites, development of the horizontal cell plexus, and development of synaptophysin immunoreactivity at this location. These results provide a developmental timeframe for the expression of recoverin, calbindin, synaptophysin, beta-tubulin and actin. Our findings suggest that the time between PN 3 and PN 7 represents a critical period during which elements of the OPL are assembled.
Collapse
Affiliation(s)
- Rajesh K Sharma
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
27
|
Ramakers GJA, Raadsheer FC, Corner MA, Ramaekers FCS, Van Leeuwen FW. Development of Neurons and Glial Cells in Cerebral Cortex, Cultured in the Presence or Absence of Bioelectric Activity: Morphological Observations. Eur J Neurosci 2002; 3:140-153. [PMID: 12106212 DOI: 10.1111/j.1460-9568.1991.tb00074.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic blockade of bioelectric activity (BEA) has been shown to increase neuronal cell death in tissue culture, but the effects of this treatment on non-neuronal cells have not been investigated. To determine which cell types are affected by chronic suppression of BEA, we investigated their morphological development in primary cultures of rat cerebral cortex, grown with or without the sodium channel blocker tetrodotoxin (TTX). Morphological development was monitored by phase-contrast microscopy and by immunofluorescent staining of markers specific for neurons (NSE, MAP2, B-50, and the 200 kD neurofilament protein), astrocytes (GFAP), oligodendrocytes (galactocerebroside), macrophages (ED-1) and fibroblasts (fibronectin). Neurons in control cultures steadily increased in size and elaborated a dense network of axons and dendrites during the first 3 weeks. Astrocytes proliferated strongly and formed a 'bottom-layer' on which other cells grew. Part of the astrocytes migrated into the peripheral area of the culture, but retracted to the centre after 14 days in vitro (DIV). Oligodendrocytes and macrophages also increased in number, but oligodendrocytes were completely lost by 28 DIV. After 3 weeks, axons that had grown into the periphery of the culture gradually retracted and/or degenerated, following the retracting astrocytes. Some of the neurons died after 21 DIV, but a large part persisted until 42 DIV. Upon TTX treatment from 5/6 DIV, cultures with few macrophages showed an increase in the proportion of necrotic nuclei at 14 and 21 DIV. The retraction of peripherally located fibres was accelerated by 3 - 4 days and their degeneration was augmented. Neuronal density decreased to zero between 21 and 42 DIV. Astrocytes showed a clear decrease in density from 28 DIV. Conversely, the density of macrophages was increased about two-fold from 14 DIV. These results indicate that both neurons and glia are affected by chronic TTX treatment.
Collapse
Affiliation(s)
- G. J. A. Ramakers
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam ZO, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Oka T, Akisada M, Okabe A, Sakurai K, Shiosaka S, Kato K. Extracellular serine protease neuropsin (KLK8) modulates neurite outgrowth and fasciculation of mouse hippocampal neurons in culture. Neurosci Lett 2002; 321:141-4. [PMID: 11880192 DOI: 10.1016/s0304-3940(01)02470-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A serine protease neuropsin expressed in the hippocampus of adult brain has been implicated in synaptic plasticity. We report here that endogenous neuropsin was localized extracellularly in neuronal cell bodies and their neurites in mouse hippocampal cultures. Furthermore, we found that, in cultured mouse hippocampal neurons, recombinant neuropsin enhanced neurite projection from soma after 14 h of culture and neuronal aggregation with neurite fascicles at 48 h. This suggests that neuropsin is involved in neurite outgrowth and fasciculation during the development of the nervous system.
Collapse
Affiliation(s)
- Takuya Oka
- Division of Structural Cell Biology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Boukhelifa M, Parast MM, Valtschanoff JG, LaMantia AS, Meeker RB, Otey CA. A role for the cytoskeleton-associated protein palladin in neurite outgrowth. Mol Biol Cell 2001; 12:2721-9. [PMID: 11553711 PMCID: PMC59707 DOI: 10.1091/mbc.12.9.2721] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The outgrowth of neurites is a critical step in neuronal maturation, and it is well established that the actin cytoskeleton is involved in this process. Investigators from our laboratory recently described a novel protein named palladin, which has been shown to play an essential role in organizing the actin cytoskeleton in cultured fibroblasts. We investigated the expression of palladin in the developing rat brain by Western blot and found that the E18 brain contained a unique variant of palladin that is significantly smaller (approximately 85 kDa) than the common form found in other developing tissues (90-92 kDa). Because the expression of a tissue-specific isoform suggests the possibility of a cell type-specific function, we investigated the localization and function of palladin in cultured cortical neurons. Palladin was found preferentially targeted to the developing axon but not the dendrites and was strongly localized to the axonal growth cone. When palladin expression was attenuated by transfection with antisense constructs in both the B35 neuroblastoma cell line and in primary cortical neurons, a reduction in the expression of palladin resulted in a failure of neurite outgrowth. These results implicate palladin as a critical component of the developing nervous system, with an important role in axonal extension.
Collapse
Affiliation(s)
- M Boukhelifa
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kato K, Masa T, Tawara Y, Kobayashi K, Oka T, Okabe A, Shiosaka S. Dendritic aberrations in the hippocampal granular layer and the amygdalohippocampal area following kindled-seizures. Brain Res 2001; 901:281-95. [PMID: 11368979 DOI: 10.1016/s0006-8993(01)02299-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amygdaloid kindling is a model of human temporal lobe epilepsy, in which excitability in limbic structures is permanently enhanced by repeated stimulations. We report here dendritic aberrations occurring in mice following kindled-seizures. Adult mice received a biphasic square wave pulse [495+/-25.5 (S.E.M.) microA 60 Hz, 200 micros duration, for 2 s] unilaterally in the basolateral amygdaloid complex once a day and mice with electrophysiologically and behaviorally verified seizures were used in the experiments. The hippocampus and amygdaloid complex contralateral to the lesions were observed by immunofluorescence histochemistry with a somatodendritic marker, microtubule-associated protein 2 (MAP2), showing that kindled-seizures caused hypertrophy of proximal dendrites in the granule cells of the dentate gyrus and in neurons of the amygdalohippocampal area. To further characterize the morphological changes of the dendrites, electron micrographic analysis was performed on the contralateral side. (1) In the granular layer of the dentate gyrus and the amygdalohippocampal area, kindled-seizures generated an increase in the number of dendrites containing polymerized microtubules and width of dendritic profiles showing the increase was in the range 0.2-3.0 and 0.2-1.4 microm, respectively. (2) In the granular layer, bundles between dendrites separated by the puncta adhaerentia increased. (3) In the granular layer, the seizure-induced dendritic aberration was more severe in the rostral than the caudal region. These results suggested that growth of dendrites with enriched-stable microtubules is part of the structural plasticity in response to seizure activity in specific areas of the adult brain.
Collapse
Affiliation(s)
- K Kato
- Division of Structural Cell Biology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, 630-0101, Nara, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The expression of mRNA for Talpha1-tubulin, a cytoskeletal protein, was studied in the rat kindling model of epilepsy. The Talpha1-tubulin mRNA level increased significantly in the dentate gyrus (DG) and CA3 of hippocampus ipsilateral to stimulation from 8 h to 4 weeks after amygdaloid kindled seizures. The peak increase was observed at 1 week after the last seizures both in the DG and CA3. These results suggest that the microtubule formation contributes to synaptic remodeling and reorganization of neural networks, which may be based on the kindling-inducing epileptogenesity.
Collapse
Affiliation(s)
- K Sato
- Department of Neurology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, 700-8558, Okayama, Japan.
| | | |
Collapse
|
32
|
Blaabjerg M, Kristensen BW, Bonde C, Zimmer J. The metabotropic glutamate receptor agonist 1S,3R-ACPD stimulates and modulates NMDA receptor mediated excitotoxicity in organotypic hippocampal slice cultures. Brain Res 2001; 898:91-104. [PMID: 11292452 DOI: 10.1016/s0006-8993(01)02148-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The potential toxic effects of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and its interactions with the N-methyl-D-aspartate (NMDA) receptor were studied in hippocampal brain slice cultures, using densitometric measurements of the cellular uptake of propidium iodide (PI) to quantify neuronal degeneration. Cultures exposed to ACPD, showed a concentration (2-5 mM) and time (1-4 days) dependent increase in PI uptake in CA1, CA3 and dentate subfields after 24 h and 48 h of exposure, with CA1 pyramidal cells being most sensitive. The neurodegeneration induced by 2 mM ACPD was completely abolished by addition of 10 microM of the NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), while 20 microM of the 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainic acid receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) had no effect. Co-exposing cultures to a subtoxic dose of 300 microM ACPD together with 10 microM NMDA, which at this dose is known to induce a fairly selective degeneration of CA1 pyramidal cells, significantly increased the PI uptake in both CA1 and CA3, compared to cultures exposed to 10 microM NMDA only. Adding the 300 microM ACPD as pretreatment for 30 min followed by a 30 min wash in normal medium before the ACPD/NMDA co-exposure, eliminated the potentiation of NMDA toxicity. The potentiation was also blocked by addition of 10 or 100 microM 2-methyl-6-(phenylethynyl)pyridine (MPEP) (mGluR5 antagonist) during the co-exposure, while a corresponding addition of 10 or 100 microM 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) (mGluR1 antagonist) had no effect. We conclude that, stimulation of metabotropic glutamate receptors with ACPD at concentrations of 2 mM or higher induces a distinct subfield-related and time and concentration dependent pattern of hippocampal degeneration, and that ACPD at subtoxic concentrations modulates NMDA-induced excitotoxicity through the mGluR5 receptor in a time dependent way.
Collapse
Affiliation(s)
- M Blaabjerg
- Anatomy and Neurobiology, Institute of Medical Biology, SDU-Odense University, Winsløwparken 21, DK-5000 C, Odense, Denmark. mblaabjerg@health..sdu.dk
| | | | | | | |
Collapse
|
33
|
Kristensen BW, Noraberg J, Thiébaud P, Koudelka-Hep M, Zimmer J. Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures. Brain Res 2001; 896:1-17. [PMID: 11277967 DOI: 10.1016/s0006-8993(00)03304-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this study we examined the passive biocompatibility of a three-dimensional microelectrode array (MEA), designed to be coupled to organotypic brain slice cultures for multisite recording of electrophysiological signals. Hippocampal (and corticostriatal) brain slices from 1-week-old (and newborn) rats were grown for 4-8 weeks on the perforated silicon chips with silicon nitride surfaces and 40 microm sized holes and compared with corresponding tissue slices grown on conventional semiporous membranes. In terms of preservation of the basic cellular and connective organization, as visualized by Nissl staining, Timm sulphide silver-staining, microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP) immunostaining, the slice cultures grown on chips did not differ from conventionally grown slice cultures. Neither were there any signs of astrogliosis or neurodegeneration around the upper recording part of the 47-microm-high platinum-tip electrodes. Slice cultures grown on a separate set of chips with platinum instead of silicon nitride surfaces also displayed normal MAP2 and GFAP immunostaining. The width of the GFAP-rich zone (glia limitans) at the bottom surface of the slice cultures was the same ( approximately 20 microm) in cultures grown on chips with silicon nitride and platinum surfaces and on conventional insert membranes. The slice cultures grown on chips maintained a normal, subfield differentiated susceptibility to the glutamate receptor agonist N-methyl-D-aspartate (NMDA) and the neurotoxin trimethyltin (TMT), as demonstrated by the cellular uptake of propidium iodide (PI), which was used as a reproducible and quantifiable marker for neuronal degeneration. We conclude that organotypic brain slice cultures can grow on silicon-based three-dimensional microelectrode arrays and develop normally with display of normal subfield differentiated susceptibilities to known excito- and neurotoxins. From this it is anticipated that the set-up, designed for recording of electrophysiological parameters, can be used for long-term studies of defined neuronal networks and provide valuable information on both normal, neurotoxicological and neuropathological conditions.
Collapse
Affiliation(s)
- B W Kristensen
- Anatomy and Neurobiology, Institute of Medical Biology, SDU-Odense University, Winsløwparken 21, 5000 C, Odense, Denmark.
| | | | | | | | | |
Collapse
|
34
|
Esteban LM, Vicario-Abejón C, Fernández-Salguero P, Fernández-Medarde A, Swaminathan N, Yienger K, Lopez E, Malumbres M, McKay R, Ward JM, Pellicer A, Santos E. Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 2001; 21:1444-52. [PMID: 11238881 PMCID: PMC86690 DOI: 10.1128/mcb.21.5.1444-1452.2001] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2000] [Accepted: 10/16/2000] [Indexed: 11/20/2022] Open
Abstract
Mammalian cells harbor three highly homologous and widely expressed members of the ras family (H-ras, N-ras, and K-ras), but it remains unclear whether they play specific or overlapping cellular roles. To gain insight into such functional roles, here we generated and analyzed H-ras null mutant mice, which were then also bred with N-ras knockout animals to ascertain the viability and properties of potential double null mutations in both loci. Mating among heterozygous H-ras(+/-) mice produced H-ras(-/-) offspring with a normal Mendelian pattern of inheritance, indicating that the loss of H-ras did not interfere with embryonic and fetal viability in the uterus. Homozygous mutant H-ras(-/-) mice reached sexual maturity at the same age as their littermates, and both males and females were fertile. Characterization of lymphocyte subsets in the spleen and thymus showed no significant differences between wild-type and H-ras(-/-) mice. Analysis of neuronal markers in the brains of knockout and wild-type H-ras mice showed that disruption of this locus did not impair or alter neuronal development. Breeding between our H-ras mutant animals and previously available N-ras null mutants gave rise to viable double knockout (H-ras(-/-)/N-ras(-/-)) offspring expressing only K-ras genes which grew normally, were fertile, and did not show any obvious phenotype. Interestingly, however, lower-than-expected numbers of adult, double knockout animals were consistently obtained in Mendelian crosses between heterozygous N-ras/H-ras mice. Our results indicate that, as for N-ras, H-ras gene function is dispensable for normal mouse development, growth, fertility, and neuronal development. Additionally, of the three ras genes, K-ras appears to be not only essential but also sufficient for normal mouse development.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Brain/metabolism
- Cell Differentiation
- Cell Separation
- Cells, Cultured
- Crosses, Genetic
- Embryo, Mammalian/metabolism
- Female
- Fertility
- Flow Cytometry
- Genes, ras/genetics
- Genes, ras/physiology
- Genotype
- Heterozygote
- Hippocampus/metabolism
- Lymphocytes/metabolism
- Male
- Mice
- Mice, Knockout
- Microscopy, Fluorescence
- Models, Genetic
- Mutagenesis, Site-Directed
- Neurons/metabolism
- Phenotype
- Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Spleen/metabolism
- Stem Cells/metabolism
- Thymus Gland/metabolism
- ras Proteins/genetics
- ras Proteins/physiology
Collapse
Affiliation(s)
- L M Esteban
- Centro de Investigación del Cáncer, IBMCC, CSIC-USAL, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, Becker B, Gundelfinger ED, Ziv NE, Garner CC. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 2001; 29:131-43. [PMID: 11182086 DOI: 10.1016/s0896-6273(01)00185-4] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The active zone is a specialized region of the presynaptic plasma membrane where synaptic vesicles dock and fuse. In this study, we have investigated the cellular mechanism underlying the transport and recruitment of the active zone protein Piccolo into nascent synapses. Our results show that Piccolo is transported to nascent synapses on an approximately 80 nm dense core granulated vesicle together with other constituents of the active zone, including Bassoon, Syntaxin, SNAP-25, and N-cadherin, as well as chromogranin B. Components of synaptic vesicles, such as VAMP 2/synaptobrevin II, synaptophysin, synaptotagmin, or proteins of the perisynaptic plasma membrane such as GABA transporter 1 (GAT1), were not present. These studies demonstrate that the presynaptic active zone is formed in part by the fusion of an active zone precursor vesicle with the presynaptic plasma membrane.
Collapse
Affiliation(s)
- R G Zhai
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Mitochondria generate ATP and are involved in the regulation of cytoplasmic calcium levels. It is thought that local demand for mitochondria differs between axons and dendrites. Moreover, it has been suggested that the distribution of both energy need and calcium flux in dendrites changes with patterns of synaptic activation, whereas the distribution of these demands in axons is stable. The present study sought to determine whether there are differences in mitochondrial movements between axons and dendrites that may relate to differences in local mitochondrial demand. We labeled the mitochondria in cultured hippocampal neurons with a fluorescent dye and used time-lapse microscopy to examine their movements. In both axons and dendrites, approximately one-third of the mitochondria were in motion at any one time. In both domains, approximately 70% of the mitochondria moved in the anterograde direction, whereas the remainder moved in the retrograde direction. The velocity of the movements in each direction in each domain ranged from 0.1 microm/sec to approximately 2 microm/sec, and the means and distributions of the velocities were similar. Only one difference in the behavior of mitochondria between axons and dendrites emerged from this analysis. Mitochondria in axons were more likely to move with a consistently rapid velocity than were those in dendrites. As a result, mitochondria in axons tended to travel farther than mitochondria in dendrites. These results suggest that the transport of mitochondria in axons and dendrites is similar despite any differences in mitochondrial demand between the two domains.
Collapse
Affiliation(s)
- L A Ligon
- Department of Neuroscience and the Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
37
|
Lim RW, Halpain S. Regulated association of microtubule-associated protein 2 (MAP2) with Src and Grb2: evidence for MAP2 as a scaffolding protein. J Biol Chem 2000; 275:20578-87. [PMID: 10781592 DOI: 10.1074/jbc.m001887200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule-associated protein 2 (MAP2) and tau, which is involved in Alzheimer's disease, are major cytoskeletal proteins in neurons. These proteins are involved in microtubule assembly and stability. To further characterize MAP2, we took a strategy of identifying potential MAP2 binding partners. The low molecular weight MAP2c protein has 11 PXXP motifs that are conserved across species, and these PXXP motifs could be potential ligands for Src homology 3 (SH3) domains. We tested for MAP2 interaction with SH3 domain-containing proteins. All neuronal MAP2 isoforms bound specifically to the SH3 domains of c-Src and Grb2 in an in vitro glutathione S-transferase-SH3 pull-down assay. Interactions between endogenous proteins were confirmed by co-immunoprecipitation using brain lysate. All three proteins were also found co-expressed in neuronal cell bodies and dendrites. Surprisingly, the SH3 domain-binding site was mapped to the microtubule-binding domain that contains no PXXP motif. Src bound primarily the soluble, non-microtubule-associated MAP2c in vitro. This specific MAP2/SH3 domain interaction was inhibited by phosphorylation of MAP2c by the mitogen-activated protein kinase extracellular signal-regulated kinase 2 but not by protein kinase A. This phosphorylation-regulated association of MAP2 with proteins of intracellular signal transduction pathways suggests a possible link between cellular signaling and neuronal cytoskeleton, with MAP2 perhaps acting as a molecular scaffold upon which cytoskeleton-modifying proteins assemble and dissociate in response to neuronal activity.
Collapse
Affiliation(s)
- R W Lim
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
38
|
Zhai R, Olias G, Chung WJ, Lester RA, tom Dieck S, Langnaese K, Kreutz MR, Kindler S, Gundelfinger ED, Garner CC. Temporal appearance of the presynaptic cytomatrix protein bassoon during synaptogenesis. Mol Cell Neurosci 2000; 15:417-28. [PMID: 10833299 DOI: 10.1006/mcne.2000.0839] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bassoon is a 420-kDa presynaptic cytomatrix protein potentially involved in the structural organization of neurotransmitter release sites. In this study, we have investigated a possible role for Bassoon in synaptogenesis and in defining synaptic vesicle recycling sites. We find that it is expressed at early stages of neuronal differentiation in which it is selectively sorted into axons. As synaptogenesis begins, Bassoon clusters appear along dendritic profiles simultaneously with synaptotagmin I, sites of synaptic vesicle recycling, and the acquisition of functional excitatory and inhibitory synapses. A role for Bassoon in the assembly of excitatory and inhibitory synapses is supported by the colocalization of Bassoon clusters with clusters of GKAP and AMPA receptors as well as GABA(A) receptors. These data indicate that the recruitment of Bassoon is an early step in the formation of synaptic junctions.
Collapse
Affiliation(s)
- R Zhai
- Department of Neurobiology, University of Alabama at Birmingham, 35213-0021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vicario-Abejón C, Collin C, Tsoulfas P, McKay RD. Hippocampal stem cells differentiate into excitatory and inhibitory neurons. Eur J Neurosci 2000; 12:677-88. [PMID: 10712648 DOI: 10.1046/j.1460-9568.2000.00953.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stem cell technology promises new and rapid advances in cell therapy and drug discovery. Clearly, the value of this approach will be limited by the differentiated functions displayed by the progeny of stem cells. The foetal and adult central nervous system (CNS) harbour stem cells that can be expanded in vitro and differentiate into immature neurons and glia. Surprisingly, we do not know if neurons derived from stem cells form synapses, a definitive feature of neuronal function. Neuronal differentiation is a complex process and in this paper we establish conditions that permit extensive maturation of neurons in the presence of neurotrophins. These conditions permit the differentiation of rat hippocampal stem cells into both excitatory (glutamatergic) and inhibitory (GABAergic) neurons. The proportion of excitatory and inhibitory synapses was strongly influenced by specific neurotrophins, and these responses reflect the region of origin of the stem cells in the brain. These data show that stem cells can be used to study mechanisms of excitation and inhibition in the nervous system.
Collapse
Affiliation(s)
- C Vicario-Abejón
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4092, USA.
| | | | | | | |
Collapse
|
40
|
Astroglial differentiation of cortical precursor cells triggered by activation of the cAMP-dependent signaling pathway. J Neurosci 1999. [PMID: 10516318 DOI: 10.1523/jneurosci.19-20-09004.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the developing brain, differentiation of neural precursors into neurons or glial cells occurs in response to neurotrophic factors acting on the cell surface. Intracellular signaling mechanisms that relay information to initiate differentiative responses of neural precursor cells are poorly understood. To investigate whether stimulation of the cAMP-dependent signaling pathway participates in differentiative responses of cells in the developing CNS, we performed experiments using both conditionally immortalized neural precursor cells (RC2.E10 cells) and primary cultures of cells from developing rat cortex. Initially, we determined that RC2.E10 cells retain phenotypic features of neural precursors after inactivation of the immortalizing oncogene, a temperature-sensitive mutant of the simian virus 40 large-T antigen (SV40T). We found that, once SV40T is inactivated, RC2.E10 cells cease to divide and die. However, RC2. E10 cells can proliferate in the presence of basic fibroblast growth factor. In addition, they express nestin, a marker of neural precursor cells. Both RC2.E10 cells and primary cortical precursor cells undergo astroglial differentiation in response to cAMP stimulation by treatment with 8-bromo-cAMP. In both cases, cAMP-induced astrocyte differentiation is characterized by morphological changes, stimulation of glial fibrillary acidic protein expression, downregulation of nestin expression, and decreased proliferation. No increases in the expression of neuronal or oligodendrocytic markers were observed. Our results support the notion that the developing CNS contains neural precursor cells with the capacity of undergoing astrocyte differentiation in response to increased intracellular cAMP concentrations.
Collapse
|
41
|
Gleeson JG, Lin PT, Flanagan LA, Walsh CA. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 1999; 23:257-71. [PMID: 10399933 DOI: 10.1016/s0896-6273(00)80778-3] [Citation(s) in RCA: 1049] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Doublecortin (DCX) is required for normal migration of neurons into the cerebral cortex, since mutations in the human gene cause a disruption of cortical neuronal migration. To date, little is known about the distribution of DCX protein or its function. Here, we demonstrate that DCX is expressed in migrating neurons throughout the central and peripheral nervous system during embryonic and postnatal development. DCX protein localization overlaps with microtubules in cultured primary cortical neurons, and this overlapping expression is disrupted by microtubule depolymerization. DCX coassembles with brain microtubules, and recombinant DCX stimulates the polymerization of purified tubulin. Finally, overexpression of DCX in heterologous cells leads to a dramatic microtubule phenotype that is resistant to depolymerization. Therefore, DCX likely directs neuronal migration by regulating the organization and stability of microtubules.
Collapse
Affiliation(s)
- J G Gleeson
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
42
|
Jahnsen H, Kristensen BW, Thiébaud P, Noraberg J, Jakobsen B, Bove M, Martinoia S, Koudelka-Hep M, Grattarola M, Zimmer J. Coupling of organotypic brain slice cultures to silicon-based arrays of electrodes. Methods 1999; 18:160-72. [PMID: 10356346 DOI: 10.1006/meth.1999.0769] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fetal or early postnatal brain tissue can be cultured in viable and healthy condition for several weeks with development and preservation of the basic cellular and connective organization as so-called organotypic brain slice cultures. Here we demonstrate and describe how it is possible to establish such hippocampal rat brain slice cultures on biocompatible silicon-based chips with arrays of electrodes with a histological organization comparable to that of conventional brain slice cultures grown by the roller drum technique and on semiporous membranes. Intracellular and extracellular recordings from neurons in the slice cultures show that the electroresponsive properties of the neurons and synaptic circuitry are in accordance with those described for cells in acutely prepared slices of the adult rat hippocampus. Based on the recordings and the possibilities of stimulating the cultured cells through the electrode arrays it is anticipated that the setup eventually will allow long-term studies of defined neuronal networks and provide valuable information on both normal and neurotoxicological and neuropathological conditions.
Collapse
Affiliation(s)
- H Jahnsen
- Division of Neurophysiology, Department of Medical Physiology, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Noraberg J, Kristensen BW, Zimmer J. Markers for neuronal degeneration in organotypic slice cultures. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1999; 3:278-90. [PMID: 9974143 DOI: 10.1016/s1385-299x(98)00050-6] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This protocol describes ways of monitoring spontaneous or induced neuronal degeneration in organotypic brain slice cultures. Hippocampal cultures (4-week-old) are grown in normal serum-free control medium, or exposed to the neurotoxin trimethyltin (TMT) (0.5-100 microM) for 24 h or the excitotoxic glutamate agonist kainic acid (KA) (5-25 microM) for 48 h followed by 24 h or 48 h, respectively, in normal medium. Corticostriatal slice cultures (also 4-week-old) are exposed to KA (6-24 microM) for 48 h and normal medium for control. The resulting neurodegeneration is estimated by (a) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux to the culture medium, (c) ordinary Nissl cell staining, (d) staining by the neurodegenerative marker Fluoro-Jade (FJ), (e) neuronal microtubule degeneration by immunohistochemical staining for microtubule-associated protein 2 (MAP2), and (f) Timm sulphide silver staining for heavy metal alterations. Both hippocampal and corticostriatal slice cultures show a dose- and time-dependent increase in PI uptake and LDH efflux after exposure to TMT and KA. The mean PI uptake and the LDH efflux into the medium correlate well for both types of cultures. Both TMT and KA exposed hippocampal cultures display in vivo patterns of differential neuronal vulnerability as evidenced by PI uptake, FJ staining and MAP2 immunostaining. Corticostriatal slice cultures exposed to a high dose of KA display extensive striatal and cortical degeneration in FJ staining as suggested by a high PI uptake. A change in Timm sulphide silver staining in deep central parts of some control cultures, corresponds to areas with loss of cells in cell staining, loss of MAP2 staining, PI uptake, and FJ staining. We conclude that organotypic brain slice cultures, in combination with appropriate markers in standardized protocols, represent feasible means for studies of excitotoxic and neurotoxic compounds.
Collapse
Affiliation(s)
- J Noraberg
- Department of Anatomy and Cell Biology, University of Odense, Denmark.
| | | | | |
Collapse
|
44
|
Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J Neurosci 1998. [PMID: 9736647 DOI: 10.1523/jneurosci.18-18-07256.1998] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell cultures were used to analyze the role of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in the development of synaptic transmission. Neurons obtained from embryonic day 18 (E18) rat hippocampus and cultured for 2 weeks exhibited extensive spontaneous synaptic activity. By comparison, neurons obtained from E16 hippocampus expressed very low levels of spontaneous or evoked synaptic activity. Neurotrophin treatment produced a sevenfold increase in the number of functional synaptic connections in the E16 cultures. BDNF induced formation of both excitatory and inhibitory synapses, whereas NT-3 induced formation of only excitatory synapses. These effects were independent of serum or the age of the glia bed used for the culture. They were not accompanied by significant changes in synaptic-vesicle-associated proteins or glutamate receptors. Treatment of the cultures with the neurotrophins for 3 d was sufficient to establish the maximal level of functional synapses. During this period, neurotrophins did not affect the viability or the morphology of the excitatory neurons, although they did produce an increase in the number and length of dendrites of the GABAergic neurons. Remarkably, only BDNF caused an increase in the number of axonal branches and in the total length of the axons of the GABAergic neurons. These results support a unique and differential role for neurotrophins in the formation of excitatory and inhibitory synapses in the developing hippocampus.
Collapse
|
45
|
Okabe S, Vicario-Abejón C, Segal M, McKay RD. Survival and synaptogenesis of hippocampal neurons without NMDA receptor function in culture. Eur J Neurosci 1998; 10:2192-8. [PMID: 9753105 DOI: 10.1046/j.1460-9568.1998.00233.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Physiological and morphological properties of cultured hippocampal neurons were measured to investigate whether NMDA receptors play a role in survival and differentiation. Neurons dissociated from mouse embryos with different NMDAR1 genotypes were grown in culture. Electrophysiological analysis verified the absence of NMDA receptor-mediated currents in neurons taken from homozygous mutant (NR1-/-) embryos. The number of surviving hippocampal neurons was 2.5-fold higher in cultures from the NR1-/- embryos compared with wild type (NR1 +/+) and heterozygous (NR1+/-) controls. Despite the lack of NMDA receptor function, NR1-/- neurons formed synapsin I-positive presynaptic boutons associated with MAP2ab-positive dendrites in culture. Confocal microscopic analysis of Dil labelled neurons confirmed the presence of dendritic spines on NR1-/- neurons with 80% of the density found in NR1 +/+ neurons. These results suggest that the NMDA receptor has little effect on general features of neuronal differentiation. In contrast, there is clear effect on neuronal survival. This finding establishes neuron number in standard culture conditions as a measure of NMDA receptor activity.
Collapse
Affiliation(s)
- S Okabe
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
It is proposed that altered dendrite length and de novo formation of new dendrite branches in cholinoceptive cells are responsible for long-term memory storage, a process enabled by the degradation of microtubule-associated protein-2. These memories are encoded as modality-specific associable representations. Accordingly, associable representations are confined to cytoarchitectonic modules of the cerebral cortex, hippocampus, and amygdala. The proposed sequence of events leading to long-term storage in cholinoceptive dendrites begins with changes in neuronal activity, then in neurotrophin release, followed by enhanced acetylcholine release, muscarinic response, calcium influx, degradation of microtubule-associated protein-2, and finally new dendrite structure. Hypothetically, each associable representation consists of altered dendrite segments from approximately 5000-15,000 cholinoceptive cells contained within one or a few module(s). Simultaneous restructuring during consolidation of long-term memory is hypothesized to result in a similar infrastructure among dendrite sets, facilitating co-activation of those dendrite sets by neurotransmitters such as acetylcholine, and conceivably enabling high energy interactions between those dendrites by phenomena such as quantum optical coherence. Based on the specific architecture proposed, it is estimated that the human telecephalon contains enough dendrites to encode 50 million associable representations in a lifetime, or put another way, to encode one new associable representation each minute. The implications that this proposal has regarding treatments for Alzheimer's disease are also discussed.
Collapse
Affiliation(s)
- N J Woolf
- Laboratory of Chemical Neuroanatomy, University of California, Los Angeles 90095-1563, USA. ,
| |
Collapse
|
47
|
Weclewicz K, Ekström M, Kristensson K, Garoff H. Specific interactions between retrovirus Env and Gag proteins in rat neurons. J Virol 1998; 72:2832-45. [PMID: 9525603 PMCID: PMC109728 DOI: 10.1128/jvi.72.4.2832-2845.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this work we have studied the intracellular localization properties of the Gag and Env proteins of Moloney murine leukemia virus (MLV) and human immunodeficiency virus (HIV) in dorsal root ganglion (DRG) neurons of rat. These neurons form thick bundles of axons, which facilitates protein localization studies by immunofluorescence analyses. When such neuron cultures were infected with recombinant Semliki Forest virus particles carrying the gag genes of either retrovirus, the expressed Gag proteins were localized to both the somatic and the axonal regions of the DRG neurons. In contrast, the Env proteins were confined only to the somatic region. When the Gag and Env proteins were coexpressed, the Gag proteins were also excluded from the axons. This effect of the Env proteins was shown to be dependent on the concentration of the Gag proteins in the neuron and also to be specific for homologous pairs of retrovirus proteins. Therefore, the results suggest that there are specific interactions between the Env and the Gag proteins of MLV and HIV in the DRG neurons.
Collapse
Affiliation(s)
- K Weclewicz
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
48
|
Noraberg J, Gramsbergen JB, Fonnum F, Zimmer J. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures. Brain Res 1998; 783:305-15. [PMID: 9507172 DOI: 10.1016/s0006-8993(97)01358-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model for neurotoxicological studies, including further studies of neurotoxic mechanisms of TMT. Four-week-old cultures, derived from 7-day-old donor rats and grown in serum-free medium, were exposed to TMT (0.5-100 microM) for 24 h followed by 24 h in normal medium. TMT-induced neurodegeneration was then monitored by (a) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux into the culture medium, (c) cellular cobalt uptake as an index of calcium influx, (d) ordinary Nissl cell staining, and (e) immunohistochemical staining for microtubule-associated protein 2 (MAP-2). Cellular degeneration as assessed by densitometric measurements of PI uptake displayed a dose and time-dependent increase, with the following ranking of vulnerability of the hippocampal subfields: FD>CA4>/=CA3c>CA1>CA3ab. This differential neuronal vulnerability observed by PI uptake was confirmed by MAP-2 immunostaining and corresponded to in vivo cell stain observations of rats acutely exposed to TMT. The mean PI uptake of the cultures and the LDH efflux into the medium were highly correlated. The combined results obtained by the different markers indicate that the hippocampal slice culture method is a feasible model for further studies of TMT neurotoxicity.
Collapse
Affiliation(s)
- J Noraberg
- Dept. of Anatomy and Cell Biology, Inst. of Medical Biology, University of Odense, Odense C DK-5000, Denmark.
| | | | | | | |
Collapse
|
49
|
Rösner H, Vacun G. Organotypic spinal cord culture in serum-free fibrin gel: a new approach to study three-dimensional neurite outgrowth and of neurotoxicity testing: Effects of modulating the actin and tubulin dynamics and protein kinase activities. J Neurosci Methods 1997; 78:93-103. [PMID: 9497005 DOI: 10.1016/s0165-0270(97)00132-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinal cord explants from embryonic day seven (E7) chicken embryos were cultured without serum and in the presence of aprotinine, in a three-dimensional fibrin matrix. These conditions promote a robust, radial, unfasciculated outgrowth of neurites that are tipped by elaborate growth cones. Routinely after 5 days, the neurite outgrowth intensity (NOI) was determined by measuring the optical density of the immunostained neurites (image analysis program OPTIMAS version 5.2) within defined areas, extending radially for up to 3 mm from the explant border. A dose-dependent inhibition of NOI was determined for the cytoskeleton-affecting drugs nocodazole (half maximal inhibition ([I50]), 0.02 microM), taxol ([I50], 0.016 microM), cytochalasin D ([I50], 0.006 microM), and tetramethyl lead ([I50], 0.05 microM). Likewise, NOI was decreased in a dose-dependent fashion by ML-9 and RO-31-8220, inhibitors of myosin-light chain kinase and protein kinase C (PKC), respectively. The addition of 1,2-dioctanoyl-s,n-glycerol, a potent activator of PKC, led, at 5 microM, to an increase and at 30 and 60 microM to a decrease in NOI. The described system provides a rapid, reproducible, and quantitative assay for the effects of exogenous factors on the mode and intensity of neurite outgrowth.
Collapse
Affiliation(s)
- H Rösner
- Institute of Zoology, University of Hohenheim-Stuttgart, Stuttgart, Germany.
| | | |
Collapse
|
50
|
Audesirk G, Cabell L, Kern M. Modulation of neurite branching by protein phosphorylation in cultured rat hippocampal neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 102:247-60. [PMID: 9352107 DOI: 10.1016/s0165-3806(97)00100-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The control of branching of axons and dendrites is poorly understood. It has been hypothesized that branching may be produced by changes in the cytoskeleton [F.J. Diez-Guerra, J. Avila, MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture, NeuroReport 4 (1993) 412-419; P. Friedrich, A. Aszodi, MAP2: a sensitive cross-linker and adjustable spacer in dendritic architecture, FEBS Lett. 295 (1991) 5-9]. The assembly and stability of microtubules, which are prominent cytoskeletal elements in both axons and dendrites, are regulated by microtubule-associated proteins, including tau (predominantly found in axons) and MAP2 (predominantly found in dendrites). The phosphorylation state of tau and MAP2 modulates their interactions with microtubules. In their low-phosphorylation states, tau and MAP2 bind to microtubules and increase microtubule assembly and/or stability. Increased phosphorylation decreases these effects. Diez-Guerra and Avila [F.J. Diez-Guerra, J. Avila, MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture, NeuroReport 4 (1993) 412-419] found that protein phosphorylation correlates with neurite branching in cultured rat hippocampal neurons, and hypothesized that increased protein phosphorylation stimulates neurite branching. To test this hypothesis, we cultured rat hippocampal neurons in the presence of specific modulators of serine-threonine protein kinases and phosphatases. Inhibitors of several protein kinases, which would be expected to decrease protein phosphorylation, reduced branching. KT5720, an inhibitor of cyclic AMP-dependent protein kinase, and KN62, an inhibitor of Ca(2+)-calmodulin-dependent protein kinases, inhibited branching of both axons and dendrites. Calphostin C and chelerythrine, inhibitors of protein kinase C, inhibited branching of axons but not dendrites. Treatments that would be expected to increase protein phosphorylation, including inhibitors of protein phosphatases (okadaic acid, cyclosporin A and FK506) and stimulators of PKA (SP-cAMPS) or PKC (phorbol 12-myristate 13-acetate), increased dendrite branching. Only FK506 and phorbol 12-myristate 13-acetate stimulated axon branching. A subset of these agents was tested to confirm their effects on protein phosphorylation in this preparation. Okadaic acid, FK506 and SP-cAMPS all increased protein phosphorylation; KT5720 and KN62 decreased protein phosphorylation. On Western blots, the position of MAP2c extracted from cultures exposed to okadaic acid was slightly shifted toward higher molecular weight, suggesting greater phosphorylation, while the position of MAP2c from cultures exposed to KT5720 and KN62 was slightly shifted toward lower molecular weight, suggesting less phosphorylation. We conclude that protein phosphorylation modulates both dendrite branching and axon branching, but with differences in sensitivity to phosphorylation and/or dephosphorylation by specific kinases and phosphatases.
Collapse
Affiliation(s)
- G Audesirk
- Biology Department, University of Colorado, Denver 80217-3364, USA
| | | | | |
Collapse
|