1
|
Buhidma Y, Lama J, Duty S. Insight gained from using animal models to study pain in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 174:99-118. [PMID: 38341233 DOI: 10.1016/bs.irn.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Pain is one of the key non-motor symptoms experienced by a large proportion of people living with Parkinson's disease (PD), yet the mechanisms behind this pain remain elusive and as such its treatment remains suboptimal. It is hoped that through the study of animal models of PD, we can start to unravel some of the contributory mechanisms, and perhaps identify models that prove useful as test beds for assessing the efficacy of potential new analgesics. However, just how far along this journey are we right now? Is it even possible to model pain in PD in animal models of the disease? And have we gathered any insight into pain mechanisms from the use of animal models of PD so far? In this chapter we intend to address these questions and in particular highlight the findings generated by others, and our own group, following studies in a range of rodent models of PD.
Collapse
Affiliation(s)
- Yazead Buhidma
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Sensory, Pain and Regeneration Centre, Guy's Campus, London, United Kingdom
| | - Joana Lama
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Sensory, Pain and Regeneration Centre, Guy's Campus, London, United Kingdom
| | - Susan Duty
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Sensory, Pain and Regeneration Centre, Guy's Campus, London, United Kingdom.
| |
Collapse
|
2
|
Gumbs MCR, Eggels L, Kool T, Unmehopa UA, van den Heuvel JK, Lamuadni K, Mul JD, la Fleur SE. Neuropeptide Y Signaling in the Lateral Hypothalamus Modulates Diet Component Selection and is Dysregulated in a Model of Diet-Induced Obesity. Neuroscience 2019; 447:28-40. [PMID: 31887359 DOI: 10.1016/j.neuroscience.2019.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/16/2023]
Abstract
The preclinical multicomponent free-choice high-fat high-sucrose (fcHFHS) diet has strong validity to model diet-induced obesity (DIO) and associated maladaptive molecular changes in the central nervous system. fcHFHS-induced obese rats demonstrate increased sensitivity to intracerebroventricular infusion of the orexigenic Neuropeptide Y (NPY). The brain region-specific effects of NPY signaling on fcHFHS diet component selection are not completely understood. For example, fcHFHS-fed rats have increased intake of chow and fat following intracerebroventricular NPY infusion, whereas NPY administration in the nucleus accumbens, a key hub of the reward circuitry, specifically increases fat intake. Here, we investigated whether NPY infusion in the lateral hypothalamic area (LHA), which is crucially involved in the regulation of intake, regulates fcHFHS component selection, and if LHA NPY receptor subtypes 1 or 5 (NPYR1/5) are involved. Male Wistar rats were fed a chow or fcHFHS diet for at least seven days, and received intra-LHA vehicle or NPY infusions in a cross-over design. Diet component intake was measured two hours later. Separate experimental designs were used to test the efficacy of NPY1R- or NPY5R antagonism to prevent the orexigenic effects of intra-LHA NPY. Intra-LHA NPY increased caloric intake in chow- and fcHFHS-fed rats. This effect was mediated specifically by chow intake in fcHFHS-fed rats. The orexigenic effects of intra-LHA NPY were prevented by NPY1R and NPY5R antagonism in chow-fed rats, but only by NPY5R antagonism in fcHFHS-fed rats. Thus, NPY signaling has brain region-specific effects on fcHFHS component selection and LHA NPYR sensitivity is dysregulated during consumption of a fcHFHS diet.
Collapse
Affiliation(s)
- M C R Gumbs
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - L Eggels
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - T Kool
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - U A Unmehopa
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - J K van den Heuvel
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - K Lamuadni
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - J D Mul
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - S E la Fleur
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Uribe-Mariño A, Castiblanco-Urbina MA, Falconi-Sobrinho LL, Dos Anjos-Garcia T, de Oliveira RC, Mendes-Gomes J, da Silva Soares R, Matthiesen M, Almada RC, de Oliveira R, Coimbra NC. The alpha- and beta-noradrenergic receptors blockade in the dorsal raphe nucleus impairs the panic-like response elaborated by medial hypothalamus neurons. Brain Res 2019; 1725:146468. [PMID: 31541642 DOI: 10.1016/j.brainres.2019.146468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Dorsal raphe nucleus (DRN) neurons are reciprocally connected to the locus coeruleus (LC) and send neural pathways to the medial hypothalamus (MH). The aim of this work was to investigate whether the blockade of α1-, α2- or β-noradrenergic receptors in the DRN or the inactivation of noradrenergic neurons in the LC modify defensive behaviours organised by MH neurons. For this purpose, Wistar male rats received microinjections of WB4101, RX821002, propranolol (α1-, α2- and β-noradrenergic receptor antagonists, respectively) or physiological saline in the DRN, followed 10 min later by MH GABAA receptor blockade. Other groups of animals received DSP-4 (a noradrenergic neurotoxin), physiological saline or only a needle insertion (sham group) into the LC, and 5 days later, bicuculline or physiological saline was administered in the MH. In all these cases, after MH treatment, the frequency and duration of defensive responses were recorded over 15 min. An anterograde neural tract tracer was also deposited in the DRN. DRN neurons send pathways to lateral and dorsomedial hypothalamus. Blockade of α1- and β-noradrenergic receptors in the DRN decreased escape reactions elicited by bicuculline microinjections in the MH. In addition, a significant increase in anxiety-like behaviours was observed after the blockade of α2-noradrenergic receptors in the DRN. LC pretreatment with DSP-4 decreased both anxiety- and panic attack-like behaviours evoked by GABAA receptor blockade in the MH. In summary, the present findings suggest that the norepinephrine-mediated system modulates defensive reactions organised by MH neurons at least in part via noradrenergic receptors recruitment on DRN neurons.
Collapse
Affiliation(s)
- Andrés Uribe-Mariño
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804 Munich, Germany
| | - Maria Angélica Castiblanco-Urbina
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Institute of Developmental Genetics, Helmholtz-Zentrum München-German Research Centre for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Tayllon Dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Rithiele Cristina de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Joyce Mendes-Gomes
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Raimundo da Silva Soares
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Melina Matthiesen
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Rafael Carvalho Almada
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Ricardo de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil; Health Sciences Institute, Mato Grosso Federal University Medical School (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor industrial, 78550-000 Sinop, Mato Grosso, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil.
| |
Collapse
|
4
|
Rossi HL, Raj NR, Marquez de Prado B, Kuburas A, Luu AKS, Barr GA, Recober A. Trigeminal Pain Responses in Obese ob/ob Mice Are Modality-Specific. Neuroscience 2019; 415:121-134. [PMID: 31295530 DOI: 10.1016/j.neuroscience.2019.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022]
Abstract
How obesity exacerbates migraine and other pain disorders remains unknown. Trigeminal nociceptive processing, crucial in migraine pathophysiology, is abnormal in mice with diet induced obesity. However, it is not known if this is also true in genetic models of obesity. We hypothesized that obese mice, regardless of the model, have trigeminal hyperalgesia. To test this, we first evaluated trigeminal thermal nociception in leptin deficient (ob/ob) and control mice using an operant thermal assay. Unexpectedly, we found significant hypoalgesia in ob/ob mice. Because thermal hypoalgesia also occurs in mice lacking the transient receptor potential vanilloid 1 channel (TRPV1), we tested capsaicin-evoked trigeminal nociception. Ob/ob and control mice had similar capsaicin-evoked nocifensive behaviors, but ob/ob mice were significantly less active after a facial injection of capsaicin than were diet-induced obese mice or lean controls. Conditioned place aversion in response to trigeminal stimulation with capsaicin was similar in both genotypes, indicating normal negative affect and pain avoidance. Supporting this, we found no difference in TRPV1 expression in the trigeminal ganglia of ob/ob and control mice. Finally, we assessed the possible contribution of hyperphagia, a hallmark of leptin deficiency, to the behavior observed in the operant assay. Ob/ob and lean control mice had similar reduction of intake when quinine or capsaicin was added to the sweetened milk, excluding a significant contribution of hyperphagia. In summary, ob/ob mice, unlike mice with diet-induced obesity, have trigeminal thermal hypoalgesia but normal responses to capsaicin, suggesting specificity in the mechanisms by which leptin acts in pain processing.
Collapse
Affiliation(s)
- Heather L Rossi
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Nichelle R Raj
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca Marquez de Prado
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Adisa Kuburas
- Department of Neurology, University of Iowa, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Anthony K S Luu
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Recober
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Fang X, Hong Y, Dai L, Qian Y, Zhu C, Wu B, Li S. CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis. Mol Carcinog 2017; 56:2434-2445. [PMID: 28618089 DOI: 10.1002/mc.22691] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022]
Abstract
Corticotrophin-releasing hormone (CRH) has been demonstrated to participate in various diseases. Our previous study showed that its receptor CRHR1 mediated the development of colitis-associated cancer in mouse model. However, the detailed mechanisms remain unclear. In this study, we explored the oncogenetic role of CRH/CRHR1 signaling in colon cancer cells. Cell proliferation and colony formation assays revealed that CRH contributed to cell proliferation. Moreover, tube formation assay showed that CRH-treated colon cancer cell supernatant significantly promoted tube formation of human umbilical vein endothelial cells (HUVECs). And these effects could be reversed by the CRHR1 specific antagonist Antalarmin. Further investigation showed that CRH significantly upregulated the expressions of interlukin-6 (IL-6) and vascular endothelial growth factor (VEGF) through activating nuclear factor-kappa B (NF-κB). The CRH-induced IL-6 promoted phosphorylation of janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3). STAT3 inhibition by Stattic significantly inhibited the CRH-induced cell proliferation. In addition, silence of VEGF resulted in declined tube formation induced by CRH. Taken together, CRH/CRHR1 signaling promoted human colon cancer cell proliferation via NF-κB/IL-6/JAK2/STAT3 signaling pathway and tumor angiogenesis via NF-κB/VEGF signaling pathway. Our results provide evidence to support a critical role for the CRH/CRHR1 signaling in colon cancer progression and suggest its potential utility as a new therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Xianjun Fang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yali Hong
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Li Dai
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Qian
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Biao Wu
- Department of Surgery, The first affiliated hospital, Nanchang University, Nanchang, China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Heck DH, McAfee SS, Liu Y, Babajani-Feremi A, Rezaie R, Freeman WJ, Wheless JW, Papanicolaou AC, Ruszinkó M, Sokolov Y, Kozma R. Breathing as a Fundamental Rhythm of Brain Function. Front Neural Circuits 2017; 10:115. [PMID: 28127277 PMCID: PMC5226946 DOI: 10.3389/fncir.2016.00115] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/26/2016] [Indexed: 11/17/2022] Open
Abstract
Ongoing fluctuations of neuronal activity have long been considered intrinsic noise that introduces unavoidable and unwanted variability into neuronal processing, which the brain eliminates by averaging across population activity (Georgopoulos et al., 1986; Lee et al., 1988; Shadlen and Newsome, 1994; Maynard et al., 1999). It is now understood, that the seemingly random fluctuations of cortical activity form highly structured patterns, including oscillations at various frequencies, that modulate evoked neuronal responses (Arieli et al., 1996; Poulet and Petersen, 2008; He, 2013) and affect sensory perception (Linkenkaer-Hansen et al., 2004; Boly et al., 2007; Sadaghiani et al., 2009; Vinnik et al., 2012; Palva et al., 2013). Ongoing cortical activity is driven by proprioceptive and interoceptive inputs. In addition, it is partially intrinsically generated in which case it may be related to mental processes (Fox and Raichle, 2007; Deco et al., 2011). Here we argue that respiration, via multiple sensory pathways, contributes a rhythmic component to the ongoing cortical activity. We suggest that this rhythmic activity modulates the temporal organization of cortical neurodynamics, thereby linking higher cortical functions to the process of breathing.
Collapse
Affiliation(s)
- Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Samuel S McAfee
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Yu Liu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Abbas Babajani-Feremi
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA; Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center and Le Bonheur Children's Hospital Neuroscience InstituteMemphis, TN, USA
| | - Roozbeh Rezaie
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center and Le Bonheur Children's Hospital Neuroscience Institute Memphis, TN, USA
| | - Walter J Freeman
- Department of Molecular and Cell Biology, Division of Neurobiology, University of California at Berkeley Berkeley, CA, USA
| | - James W Wheless
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center and Le Bonheur Children's Hospital Neuroscience Institute Memphis, TN, USA
| | - Andrew C Papanicolaou
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA; Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center and Le Bonheur Children's Hospital Neuroscience InstituteMemphis, TN, USA
| | - Miklós Ruszinkó
- Rényi Institute of Mathematics, Hungarian Academy of Sciences Budapest, Hungary
| | - Yury Sokolov
- Department of Mathematical Sciences, University of Memphis Memphis, TN, USA
| | - Robert Kozma
- Department of Mathematical Sciences, University of MemphisMemphis, TN, USA; Department Computer Sciences, University of Massachusetts AmherstAmherst, MA, USA
| |
Collapse
|
7
|
Yen CT, Lu PL. Thalamus and pain. ACTA ACUST UNITED AC 2013; 51:73-80. [DOI: 10.1016/j.aat.2013.06.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 02/02/2023]
|
8
|
Aparicio MA, Saldaña E. The dorsal tectal longitudinal column (TLCd): a second longitudinal column in the paramedian region of the midbrain tectum. Brain Struct Funct 2013; 219:607-30. [PMID: 23468089 PMCID: PMC3933748 DOI: 10.1007/s00429-013-0522-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/08/2013] [Indexed: 11/03/2022]
Abstract
The tectal longitudinal column (TLC) is a longitudinally oriented, long and narrow nucleus that spans the paramedian region of the midbrain tectum of a large variety of mammals (Saldaña et al. in J Neurosci 27:13108–13116, 2007). Recent analysis of the organization of this region revealed another novel nucleus located immediately dorsal, and parallel, to the TLC. Because the name “tectal longitudinal column” also seems appropriate for this novel nucleus, we suggest the TLC described in 2007 be renamed the “ventral tectal longitudinal column (TLCv)”, and the newly discovered nucleus termed the “dorsal tectal longitudinal column (TLCd)”. This work represents the first characterization of the rat TLCd. A constellation of anatomical techniques was used to demonstrate that the TLCd differs from its surrounding structures (TLCv and superior colliculus) cytoarchitecturally, myeloarchitecturally, neurochemically and hodologically. The distinct expression of vesicular amino acid transporters suggests that TLCd neurons are GABAergic. The TLCd receives major projections from various areas of the cerebral cortex (secondary visual mediomedial area, and granular and dysgranular retrosplenial cortices) and from the medial pretectal nucleus. It densely innervates the ipsilateral lateral posterior and laterodorsal nuclei of the thalamus. Thus, the TLCd is connected with vision-related neural centers. The TLCd may be unique as it constitutes the only known nucleus made of GABAergic neurons dedicated to providing massive inhibition to higher order thalamic nuclei of a specific sensory modality.
Collapse
Affiliation(s)
- M-Auxiliadora Aparicio
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, 37007, Salamanca, Spain
| | | |
Collapse
|
9
|
Ren Y, Zhang L, Lu Y, Yang H, Westlund KN. Central lateral thalamic neurons receive noxious visceral mechanical and chemical input in rats. J Neurophysiol 2009; 102:244-58. [PMID: 19369360 DOI: 10.1152/jn.90985.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thalamic intralaminar and medial nuclei participate mainly in affective and motivational aspects of pain processing. Unique to the present study were identification and characterization of spontaneously active neurons in the central lateral nucleus (CL) of the intralaminar thalamus, which were found to respond only to viscerally evoked noxious stimuli in animals under pentobarbital anesthesia. Responses to noxious colorectal distention, intrapancreatic bradykinin, intraperitoneal dilute acetic acid, and greater splanchnic nerve electrical stimulation were characterized. Electrophysiological recordings revealed activity in most CL neurons (93%) was excited (69%) or inhibited (31%) in response to noxious visceral stimulation of visceral nerves. Expression of c-Fos observed in CL nucleus after intensive visceral stimulation confirmed the activation. However, excited CL neurons did not have somatic fields, except in 3 of 43 (7%) CL neurons tested for responses to somatic stimulation (innocuous brush and noxious pinch). Intrathecal administration of morphine significantly reduced the increased responses of CL neurons to colorectal and pancreatic stimuli and was naloxone reversible. High-level thoracic midline dorsal column (DC) myelotomy also dramatically reduced responses, identifying the DC as a major route of travel from the spinal cord for CL input, in addition to input traveling ventromedially in the spinothalamic tract identified anatomically in a previous study. Spinal cord and lower brain stem cells providing input to medial thalamus were mapped after stereotaxic injections of a retrograde dye. These data combined with our previous data suggest that the CL nucleus is an important component of a medial visceral nociceptive system that may mediate attentional, affective, endocrine, motor, and autonomic responses to noxious visceral stimuli.
Collapse
Affiliation(s)
- Yong Ren
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | |
Collapse
|
10
|
Dynamics of infraslow potentials in the primary auditory cortex: Component analysis and contribution of specific thalamic-cortical and non-specific brainstem–cortical influences. Brain Res 2008; 1219:66-77. [DOI: 10.1016/j.brainres.2008.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 03/20/2008] [Accepted: 04/07/2008] [Indexed: 11/19/2022]
|
11
|
Williamson M, Viau V. Androgen receptor expressing neurons that project to the paraventricular nucleus of the hypothalamus in the male rat. J Comp Neurol 2007; 503:717-40. [PMID: 17570493 DOI: 10.1002/cne.21411] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Androgen receptors are distributed throughout the central nervous system and are contained by a variety of nuclei that are known to project to or regulate the paraventricular nucleus (PVN) of the hypothalamus, the final common pathway by which the brain regulates the hypothalamic-pituitary-adrenal (HPA) response to homeostatic threat. Here we characterized androgen receptor staining within cells identified as projecting to the PVN in male rats bearing iontophoretic or crystalline injections of the retrograde tracer FluoroGold aimed at the caudal two-thirds of the nucleus, where corticotropin-releasing hormone-expressing neurons are amassed. Androgen receptor (AR) and FluoroGold (FG) double labeling was revealed throughout the limbic forebrain, including scattered numbers of cells within the anterior and posterior subdivisions of the bed nuclei of the stria terminalis; the medial zone of the hypothalamus, including large numbers of AR-FG-positive cells within the anteroventral periventricular and medial preoptic cell groups. Strong and consistent colabeling was also revealed throughout the hindbrain, predominantly within the periaqueductal gray and the lateral parabrachial nucleus, and within various medullary cell groups identified as catecholaminergic, predominantly C1 and A1 neurons of the ventral medulla. These connectional data predict that androgens can act on a large assortment of multimodal inputs to the PVN, including those involved with the processing of various types of sensory and limbic information, and provide an anatomical framework for understanding how gonadal status could contribute to individual differences in HPA function.
Collapse
Affiliation(s)
- Martin Williamson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
12
|
Filippov IV, Williams WC, Krebs AA, Pugachev KS. Sound-induced changes of infraslow brain potential fluctuations in the medial geniculate nucleus and primary auditory cortex in anaesthetized rats. Brain Res 2006; 1133:78-86. [PMID: 17196561 DOI: 10.1016/j.brainres.2006.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 10/01/2022]
Abstract
Recent publications indicate the presence of infraslow activity (<0.5 Hz) in subcortical and cortical sites of the auditory system of the brain. It has been reported that this activity might be sensitive to acoustic stimuli. Yet the dynamics of infraslow brain potential (ISBP) fluctuations in these structures and their potential sensitivity to auditory stimuli are unknown. The present study was performed in order to test the hypothesis that extracellular ISBP activity in the medial geniculate nucleus (MGN) and the primary auditory cortex (A1) responds concurrently to acoustic stimuli. The experimental subjects were 5 adult rats with chronic stereotaxic electrodes implanted in MGN and A1. The animals were anesthetized and recordings were made in both sites during both silence and rhythmical acoustic stimulation. Our results support the hypothesis that these fluctuations are sensitive to acoustic stimuli. There were similar changes in ISBP activity in the MGN and A1 in response to rhythmic acoustic stimulation. Specifically, there were significant increases in the frequency range of seconds. Based on these findings, we suggest that sound-correlated changes in infraslow activity in the range of seconds in the MGN and A1 reflect specific mechanisms of neural processing of acoustic information in the auditory system of the brain.
Collapse
Affiliation(s)
- Igor V Filippov
- Department of Physiology and Biophysics, Yaroslavl State Medical Academy, Yaroslavl, 150000, Revolutsionnaya Street 5, Russia.
| | | | | | | |
Collapse
|
13
|
Lowe AS, Beech JS, Williams SCR. Small animal, whole brain fMRI: innocuous and nociceptive forepaw stimulation. Neuroimage 2006; 35:719-28. [PMID: 17300960 DOI: 10.1016/j.neuroimage.2006.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 12/23/2022] Open
Abstract
Supra-spinal pain processing involves a number of extensive networks. An examination of these networks using small animal functional magnetic resonance imaging (fMRI) is difficult. While prior studies have successfully delineated regions consistent with known pain processing pathways, they have been restricted to acquisitions of limited spatial extent with coarse in-plane resolution to achieve a high temporal resolution. An isotropic, whole brain fMRI protocol has been developed for the examination of the supra-spinal consequences of innocuous and nociceptive electrical stimulation of the rat forepaw. Innocuous electrical stimulation of the rat forepaw delineated BOLD contrast responses consistent with known somatosensory processing pathways (contralateral primary somatosensory cortex (S1), a region consistent with secondary somatosensory cortex, the ventral posterolateral thalamic nucleus and ipsilateral cuneate nucleus), providing face validity for the technique. The putative noxious stimulus delineated additional regions consistent with the classical lateral and medial pain systems as well as secondarily associated areas: the aversion and descending inhibition systems. These included the ipsilateral inferior colliculus, anterior pretectal nucleus, mediodorsal thalamic nucleus, with regions in the pre-frontal, cingulated, ventral orbital and infra-limbic cortices, nucleus accumbens all exhibiting negative BOLD changes. Such regions are in agreement with, and extend, those previously reported. Acquisition, post-processing and analysis methodologies undertaken in this study constitute a marked extension of previous fMRI in the rat, enabling whole brain coverage at a spatial resolution sufficient to delineate regional changes in BOLD contrast consistent with somatosensory and nociceptive networks.
Collapse
Affiliation(s)
- Andrew S Lowe
- Experimental Neuroimaging Group, University Laboratory of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK.
| | | | | |
Collapse
|
14
|
Klop EM, Mouton LJ, Kuipers R, Holstege G. Neurons in the lateral sacral cord of the cat project to periaqueductal grey, but not to thalamus. Eur J Neurosci 2005; 21:2159-66. [PMID: 15869512 DOI: 10.1111/j.1460-9568.2005.04039.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous work of our laboratory has shown that neurons in the lateral sacral cord in cat project heavily to the periaqueductal grey (PAG), in all likelihood conveying information from bladder and genital organs. In humans this information usually does not reach consciousness, which raises the question of whether the lateral sacral cell group projects to the thalamus. After wheatgerm agglutinin-horseradish peroxidase (WGA-HRP) injections into the sacral cord, anterogradely labelled fibers were found in the thalamus, specifically in the ventral anterior and ventral lateral nuclei, the medial and intralaminar nuclei, the lateral ventrobasal complex/ventroposterior lateral nucleus, and the nucleus centre median, lateral to the fasciculus retroflexus. Much denser projections were found to the central parts of the PAG, mainly to its dorsolateral and ventrolateral parts at caudal levels and lateral parts at intermediate levels. In a subsequent retrograde tracing study, injections were made in those parts of the thalamus that received sacral fibers, as found in the anterograde study. Labelled neurons were observed in the sacral cord, but not in the lateral sacral cell group. In contrast, a small control injection in the caudal PAG resulted in many labelled neurons in the lateral sacral cord. These results suggest that afferent information regarding micturition and sexual behaviour is relayed to the PAG, rather than to the thalamus.
Collapse
Affiliation(s)
- Esther Marije Klop
- Department of Anatomy and Embryology, University of Groningen Medical Center, Antonius Deusinglaan 1, bldg 3215, PO Box 196, 9700 AD Groningen, The Netherlands
| | | | | | | |
Collapse
|
15
|
Abstract
The generation of neuropathic pain is a complex phenomenon involving a process of peripheral and central sensitization producing enhanced transmission of nociceptive inputs to the brain associated with the loss of discriminatory processing of noxious and innocuous stimuli. This increased flow of abnormally processed nociceptive inputs to the brain may overcome the ability of descending modulatory pathways to produce analgesia, causing further worsening of the pain. Several crucial locations involved in the physiologic generation of pain inputs (eg, peripheral nociceptors, dorsal horns, thalamus, cortex) show evidence of functional reorganization and altered nociceptive processing in association with chronic pain. These locations present the best targets for therapeutic intervention, including systemic administration of drugs able to counteract the chemical storm induced by neural injuries in the nociceptive afferents and dorsal horns, or for more focused intervention, such as neuroablative procedures; intrathecal drug delivery; and spinal cord, deep brain, or motor cortex stimulation.
Collapse
Affiliation(s)
- Pantaleo Romanelli
- Epilepsy Surgery Unit, Department of Neurosurgery, Neuromed IRCCS, Pozzilli, Italy.
| | | |
Collapse
|
16
|
Zhu H, Brodsky M, Gorman AL, Inturrisi CE. Region-specific changes in NMDA receptor mRNA induced by chronic morphine treatment are prevented by the co-administration of the competitive NMDA receptor antagonist LY274614. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 114:154-62. [PMID: 12829326 DOI: 10.1016/s0169-328x(03)00170-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The steady-state mRNA levels of the NMDA receptor NR1 subunit were determined by a quantitative solution hybridization assay in selected CNS regions associated with antinociception in the rat. Tissues were obtained by microdissection from rats treated chronically with morphine alone or in combination with LY274614, a competitive NMDA receptor antagonist. Morphine treatment for 7 days resulted in the development of tolerance to morphine's analgesic effect and produced a significant decrease in the steady-state NR1 mRNA levels in the spinal cord dorsal horn (by 16%), and an elevation in nucleus raphe magnus and medial thalamus (by 26 and 38%, respectively). The NR1 mRNA levels were unchanged in the lateral paragigantocellular nucleus, locus coeruleus, periaqueductal grey, and sensorimotor cortex. NMDA receptor binding in the spinal cord measured with [3H]MK-801 was reduced approximately 50% by chronic morphine treatment. Co-administration of LY274614 (s.c. at 24 mg/kg/24 h via an osmotic pump) not only attenuated the development of morphine tolerance but also prevented the changes in the NR1 mRNA levels induced by chronic morphine administration. Neither a 7-day infusion of LY274614 nor an acute injection of morphine (10 mg/kg, s.c.) changed the NR1 mRNA levels. These results suggest that changes in the expression of the NR1 mRNA induced by chronic morphine in three CNS regions involved in antinociception are associated with the development of morphine tolerance and in the spinal cord, morphine tolerance is associated with the downregulation of NMDA receptors.
Collapse
Affiliation(s)
- Hongbo Zhu
- Department of Pharmacology, Weill Medical College of Cornell University, LC-524, 1300 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
The present study compares nociceptive responses of neurons in the reticular thalamic nucleus (RT) to those of the ventroposterior lateral nucleus (VPL). Extracellular single-unit activities of cells in the RT and VPL were recorded in anesthetized rats. Only units with identified tactile receptive fields in the forepaw or hindpaw were studied. In the first series of experiments, RT and VPL responses to pinching with a small artery clamp were tested with the rats under pentobarbital, urethane, ketamine, or halothane anesthesia. Under all types of anesthesia, many RT units were inhibited. Second, the specificity of the nociceptive response was tested by pinching and noxious heating of the unit's tactile receptive field. Of the 39 VPL units tested, 20 were excited by both types of noxious stimuli. In sharp contrast, of the 30 RT units tested, none were excited and 17 were inhibited. In a third series of experiments, low-intensity and beam-diffused CO(2) laser irradiation was used to activate peripheral nociceptive afferents. Wide-dynamic-range VPL units responded with short- and long-latency excitations. In contrast, RT units had short-latency excitation followed by long-latency inhibition. Nociceptive input inhibited RT units in less than 500 ms. We conclude that a significant portion of RT neurons were polysynaptically inhibited by nociceptive inputs. Since all the cells tested were excited by light tactile inputs, the somatosensory RT may serve in the role of a modality gate, which modifies (i.e. inhibits) tactile inputs while letting noxious inputs pass.
Collapse
Affiliation(s)
- Chen-Tung Yen
- Department of Zoology, National Taiwan University, #1, Sect. 4, Roosevelt Road, Taipei, 106 Taiwan, ROC.
| | | |
Collapse
|
18
|
Krout KE, Belzer RE, Loewy AD. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 2002; 448:53-101. [PMID: 12012375 DOI: 10.1002/cne.10236] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The projections from the brainstem to the midline and intralaminar thalamic nuclei were examined in the rat. Stereotaxic injections of the retrograde tracer cholera toxin beta -subunit (CTb) were made in each of the intralaminar nuclei of the dorsal thalamus: the lateral parafascicular, medial parafascicular, central lateral, paracentral, oval paracentral, and central medial nuclei; in the midline thalamic nuclei-the paraventricular, intermediodorsal, mediodorsal, paratenial, rhomboid, reuniens, and submedius nuclei; and, in the anteroventral, parvicellular part of the ventral posterior, and caudal ventral medial nuclei. The retrograde cell body labeling pattern within the brainstem nuclei was then analyzed. Nearly every thalamic site received a projection from the deep mesencephalic reticular, pedunculopontine tegmental, dorsal raphe, median raphe, laterodorsal tegmental, and locus coeruleus nuclei. Most intralaminar thalamic sites were also innervated by unique combinations of medullary and pontine reticular formation nuclei such as the subnucleus reticularis dorsalis, gigantocellular, dorsal paragigantocellular, lateral, parvicellular, caudal pontine, ventral pontine, and oral pontine reticular nuclei; the dorsomedial tegmental, subpeduncular tegmental, and ventral tegmental areas; and, the central tegmental field. In addition, most intralaminar injections resulted in retrograde cell body labeling in the substantia nigra, nucleus Darkschewitsch, interstitial nucleus of Cajal, and cuneiform nucleus. Details concerning the pathways from the spinal trigeminal, nucleus tractus solitarius, raphe magnus, raphe pallidus, and the rostral and caudal linear raphe nuclei to subsets of midline and intralaminar thalamic sites are discussed in the text. The discussion focuses on brainstem-thalamic pathways that are likely involved in arousal, somatosensory, and visceral functions.
Collapse
Affiliation(s)
- Karl E Krout
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
19
|
Bereiter DA. Sex differences in brainstem neural activation after injury to the TMJ region. Cells Tissues Organs 2001; 169:226-37. [PMID: 11455118 DOI: 10.1159/000047886] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The basis for a higher prevalence of painful temporomandibular disorders (TMD) among women than men is not known. The present study used Fos-like immunoreactivity (Fos-LI) to quantify the pattern and magnitude of neural activation within the trigeminal brainstem complex of male and female rats caused by acute inflammatory injury to the temporomandibular joint (TMJ) region. Also, Fos-LI was assessed in animals given morphine, a preferential mu opioid receptor agonist, or U50,488H, a selective kappa opioid agonist, prior to TMJ injury to determine if opioid modulation of neural activation was similar in males and females. The general pattern of Fos-LI after TMJ injury was similar in males and females. This pattern was characterized by a high density of Fos-positive neurons in the dorsal paratrigeminal nucleus (dPa5), subnucleus interpolaris/caudalis transition region (Vi/Vc-vl), and in the superficial laminae at the subnucleus caudalis/upper cervical spinal cord (Vc/C2) junction ipsilateral to TMJ injury. In contrast to other regions the number of Fos-positive neurons produced at the Vc/C2 junction was proportional to the concentration of mustard oil injected into the TMJ region. In addition, proestrus females produced higher levels of Fos-LI at the Vc/C2 junction than diestrus females or males. Morphine caused a greater dose-related reduction in Fos-LI at the dPa5 and Vc/C2 junction in males than females. By contrast, U50,488H caused a dose-related reduction in Fos-LI only at the Vc/C2 junction of proestrus females. These results support the hypothesis that the Vc/C2 junction region plays a critical role in the integration of pain signals originating from the TMJ region and may underlie sex differences in sensory processing related to TMJ pain.
Collapse
Affiliation(s)
- D A Bereiter
- Department of Neuroscience, Brown University School of Medicine, Rhode Island Hospital, Providence, RI 02903, USA.
| |
Collapse
|
20
|
Mengual E, Casanovas-Aguilar C, Pérez-Clausell J, Giménez-Amaya JM. Thalamic distribution of zinc-rich terminal fields and neurons of origin in the rat. Neuroscience 2001; 102:863-84. [PMID: 11182249 DOI: 10.1016/s0306-4522(00)00472-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several cortico-cortical and limbic-related circuits are enriched in zinc, which is considered as an important modulator of glutamatergic transmission. While heavy metals have been detected in the thalamus, the specific presence of zinc has not been examined in this region. We have used two highly sensitive variations of the Timm method to study the zinc-rich innervation in the rat thalamus, which was compared to the distribution of acetylcholinesterase activity. The origin of some of these zinc-rich projections was also investigated by means of retrograde transport after intracerebral infusions of sodium selenium (Na2SeO3). The overall zinc staining in the thalamus was much lower than in the neocortex, striatum or basal forebrain; however, densely stained terminal fields were observed in the dorsal tip of the reticular thalamic nucleus, the anterodorsal and lateral dorsal thalamic nuclei and the zona incerta. In addition, moderately stained zinc-rich terminal fields were found in the rostral intralaminar nuclei, nucleus reuniens and lateral habenula. Intracerebral infusions of Na2SeO3 in the lateral dorsal nucleus resulted in retrogradely labeled neurons that were located in the postsubiculum, and also in the pre- and parasubiculum. These results are the first to establish the existence of a zinc-rich subicular-thalamic projection. Similar infusions in either the intralaminar nuclei or the zona incerta resulted in labeling of neurons in several brainstem structures related to the reticular formation. Our results provide morphological evidence for zinc modulation of glutamatergic inputs to highly selective thalamic nuclei, arising differentially from either cortical limbic areas or from brainstem ascending activation systems.
Collapse
Affiliation(s)
- E Mengual
- Departamento de Anatomía, Facultad de Medicina, Universidad de Navarra, ES-31008 Pamplona, Navarra, Spain.
| | | | | | | |
Collapse
|
21
|
Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R. Orbitomedial prefrontal cortical projections to hypothalamus in the rat. J Comp Neurol 2001; 432:307-28. [PMID: 11246210 DOI: 10.1002/cne.1105] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A previous study in the rat revealed that distinct orbital and medial prefrontal cortical (OMPFC) areas projected to specific columns of the midbrain periaqueductal gray region (PAG). This study used anterograde tracing techniques to define projections to the hypothalamus arising from the same OMPFC regions. In addition, injections of anterograde and retrograde tracers were made into different PAG columns to examine connections between hypothalamic regions and PAG columns projected upon by the same OMPFC regions. The most extensive patterns of hypothalamic termination were seen after injection of anterograde tracer in prelimbic and infralimbic (PL/IL) and the ventral and medial orbital (VO/MO) cortices. Projections from rostral PL/IL and VO/MO targeted the rostrocaudal extent of the lateral hypothalamus, as well as lateral perifornical, and dorsal and posterior hypothalamic areas. Projections arising from caudal PL/IL terminated within the dorsal hypothalamus, including the dorsomedial nucleus and dorsal and posterior hypothalamic areas. There were also projections to medial perifornical and lateral hypothalamic areas. In contrast, it was found that anterior cingulate (AC), dorsolateral orbital (DLO), and agranular insular (AId) cortices projected to distinct and restricted hypothalamic regions. Projections arising from AC terminated within dorsal and posterior hypothalamic areas, whereas DLO and AId projected to the lateral hypothalamus. The same OMPFC regions also projected indirectly, by means of specific PAG columns, to many of the same hypothalamic fields. In the context of our previous findings, these data indicate that, in both rat and macaque, parallel but distinct circuits interconnect OMPFC areas with specific hypothalamic regions, as well as PAG columns.
Collapse
Affiliation(s)
- N S Floyd
- Department of Anatomy and Histology, The University of Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
22
|
Power BD, Mitrofanis J. Zona incerta: Substrate for contralateral interconnectivity in the thalamus of rats. J Comp Neurol 2001. [DOI: 10.1002/cne.1053] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Malick A, Strassman RM, Burstein R. Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol 2000; 84:2078-112. [PMID: 11024099 DOI: 10.1152/jn.2000.84.4.2078] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory information that arises in orofacial organs facilitates exploratory, ingestive, and defensive behaviors that are essential to overall fitness and survival. Because the hypothalamus plays an important role in the execution of these behaviors, sensory signals conveyed by the trigeminal nerve must be available to this brain structure. Recent anatomical studies have shown that a large number of neurons in the upper cervical spinal cord and caudal medulla project directly to the hypothalamus. The goal of the present study was to identify the types of information that these neurons carry to the hypothalamus and to map the route of their ascending axonal projections. Single-unit recording and antidromic microstimulation techniques were used to identify 81 hypothalamic-projecting neurons in the caudal medulla and upper cervical (C(1)) spinal cord that exhibited trigeminal receptive fields. Of the 72 neurons whose locations were identified, 54 were in laminae I-V of the dorsal horn at the level of C(1) (n = 22) or nucleus caudalis (Vc, n = 32) and were considered trigeminohypothalamic tract (THT) neurons because these regions are within the main projection territory of trigeminal primary afferent fibers. The remaining 18 neurons were in the adjacent lateral reticular formation (LRF) and were considered reticulohypothalamic tract (RHT) neurons. The receptive fields of THT neurons were restricted to the innervation territory of the trigeminal nerve and included the tongue and lips, cornea, intracranial dura, and vibrissae. Based on their responses to mechanical stimulation of cutaneous or intraoral receptive fields, the majority of THT neurons were classified as nociceptive (38% high-threshold, HT, 42% wide-dynamic-range, WDR), but in comparison to the spinohypothalamic tract (SHT), a relatively high percentage of low-threshold (LT) neurons were also found (20%). Responses to thermal stimuli were found more commonly in WDR than in HT neurons: 75% of HT and 93% of WDR neurons responded to heat, while 16% of HT and 54% of WDR neurons responded to cold. These neurons responded primarily to noxious intensities of thermal stimulation. In contrast, all LT neurons responded to innocuous and noxious intensities of both heat and cold stimuli, a phenomenon that has not been described for other populations of mechanoreceptive LT neurons at spinal or trigeminal levels. In contrast to THT neurons, RHT neurons exhibited large and complex receptive fields, which extended over both orofacial ("trigeminal") and extracephalic ("non-trigeminal") skin areas. Their responses to stimulation of trigeminal receptive fields were greater than their responses to stimulation of non-trigeminal receptive fields, and their responses to innocuous stimuli were induced only when applied to trigeminal receptive fields. As described for SHT axons, the axons of THT and RHT neurons ascended through the contralateral brain stem to the supraoptic decussation (SOD) in the lateral hypothalamus; 57% of them then crossed the midline to reach the ipsilateral hypothalamus. Collateral projections were found in the superior colliculus, substantia nigra, red nucleus, anterior pretectal nucleus, and in the lateral, perifornical, dorsomedial, suprachiasmatic, and supraoptic hypothalamic nuclei. Additional projections (which have not been described previously for SHT neurons) were found rostral to the hypothalamus in the caudate-putamen, globus pallidus, and substantia innominata. The findings that nonnociceptive signals reach the hypothalamus primarily through the direct THT route, whereas nociceptive signals reach the hypothalamus through both the direct THT and the indirect RHT routes suggest that highly prioritized painful signals are transferred in parallel channels to ensure that this critical information reaches the hypothalamus, a brain area that regulates homeostasis and other humoral responses required for the survival of the organism.
Collapse
Affiliation(s)
- A Malick
- Department of Neurobiology and the Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
24
|
Dammerman RS, Flint AC, Noctor S, Kriegstein AR. An excitatory GABAergic plexus in developing neocortical layer 1. J Neurophysiol 2000; 84:428-34. [PMID: 10899216 DOI: 10.1152/jn.2000.84.1.428] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Layer 1 of the developing rodent somatosensory cortex contains a dense, transient GABAergic fiber plexus. Axons arising from the zona incerta (ZI) of the ventral thalamus contribute to this plexus, as do axons of intrinsic GABAergic cells of layer 1. The function of this early-appearing fiber plexus is not known, but these fibers are positioned to contact the apical dendrites of most postmigratory neurons. Here we show that electrical stimulation of layer 1 results in a GABA(A)-mediated postsynaptic current (PSC) in pyramidal neurons. Gramicidin perforated patch recording demonstrates that the GABAergic layer 1 synapse is excitatory and can trigger action potentials in cortical neurons. In contrast to electrical stimulation, activation of intrinsic layer 1 neurons with a glutamate agonist fails to produce PSCs in pyramidal cells. In addition, responses can be evoked by stimulation of layer 1 at relatively large distances from the recording site. These findings are consistent with a contribution of the widely projecting incertocortical pathway, the only described GABAergic projection to neonatal cortex. Recording of identified neonatal incertocortical neurons reveals a population of active cells that exhibit high frequencies of spontaneous action potentials and are capable of robustly activating neonatal cortical neurons. Because the fiber plexus is confined to layer 1, this pathway provides a spatially restricted excitatory GABAergic innervation of the distal apical dendrites of pyramidal neurons during the peak period of cortical synaptogenesis.
Collapse
Affiliation(s)
- R S Dammerman
- Department of Neurology and the Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
25
|
|
26
|
Vale-Martínez A, Guillazo-Blanch G, Aldavert-Vera L, Segura-Torres P, Martí-Nicolovius M. Intracranial self-stimulation in the parafascicular nucleus of the rat. Brain Res Bull 1999; 48:401-6. [PMID: 10357072 DOI: 10.1016/s0361-9230(99)00017-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A behavioral analysis of intracranial self-stimulation was provided for parafascicular nucleus. To evaluate whether intracranial self-stimulation in this nucleus could be site-specific and to determine if the positive sites are the same parafascicular areas that facilitate learning when stimulated, rats were tested via monopolar electrodes situated throughout the parafascicular nucleus. Animals were trained to self-stimulate by pressing a lever in a conventional Skinner box (1-5 sessions). Twenty-two of the 42 animals included in the study, had the electrode at the parafascicular nucleus. Only two of them showed intracranial self-stimulation. Histological analyses indicated that the latter rats had the electrode implanted at the anterior area of the medial parafascicular. Other two animals also showed intracranial self-stimulation but they had the electrode in a more posterior brain region, between the Dark-schewitsch nucleus and the red nucleus. The animals implanted at the parafascicular showed higher response rates than the other two rats. These results confirm that: (a) the anterior region of the medial parafascicular is a positive site for stable and regular intracranial self-stimulation behavior, and (b) these positive sites do not coincide with the parafascicular regions related to learning improvement.
Collapse
Affiliation(s)
- A Vale-Martínez
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Facultat de Psicologia, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | |
Collapse
|
27
|
Turcotte JC, Blaustein JD. Projections of the estrogen receptor-immunoreactive ventrolateral hypothalamus to other estrogen receptor-immunoreactive sites in female guinea pig brain. Neuroendocrinology 1999; 69:63-76. [PMID: 9892852 DOI: 10.1159/000054404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ventrolateral hypothalamus in female guinea pigs includes an estrogen receptor dense region adjacent to the ventromedial hypothalamus. This region is reciprocally connected with other estrogen receptor-containing areas suggesting that steroid hormone receptor-containing cells may be directly linked. Phaseolus vulgaris leucoagglutinin, an anterograde tract tracer, was specifically placed in this region with the aim of labeling some projections from estrogen receptor-containing neurons. These projections were colocalized immunocytochemically with the distribution of estrogen receptor-containing cells. Dense ventrolateral hypothalamic innervation was observed in some regions also containing a high concentration of estrogen receptor-containing cells. These regions included the medial preoptic area, the bed nucleus of the stria terminalis, the ventrolateral hypothalamus anterior and posterior to the injection site, and the midbrain central gray. A low density of ventrolateral hypothalamic fibers and terminals was observed in two regions rich in estrogen receptors, the amygdala and the arcuate nucleus. In general, ventrolateral hypothalamic fibers and terminals were present in all regions where estrogen receptors were found except the medial thalamus and habenular region. Labeled terminal boutons and perineuronal baskets were found around estrogen receptor-containing cells in most regions which contained estrogen receptor-containing cells. These close appositions were suggestive of synaptic contacts, suggesting that the ventrolateral hypothalamus may influence steroid-dependent behaviors via the modulation of estrogen receptor-containing cells. Furthermore, ventrolateral hypothalamic projections may include direct connections with estrogen receptor-containing cells, suggesting the presence of a network of interconnected estradiol-sensitive neurons involved in the regulation of estradiol-dependent functions.
Collapse
Affiliation(s)
- J C Turcotte
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Mass., USA
| | | |
Collapse
|
28
|
Massanés-Rotger E, Aldavert-Vera L, Segura-Torres P, Martí-Nicolovius M, Morgado-Bernal I. Involvement of the parafascicular nucleus in the facilitative effect of intracranial self-stimulation on active avoidance in rats. Brain Res 1998; 808:220-31. [PMID: 9767168 DOI: 10.1016/s0006-8993(98)00845-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To evaluate whether parafascicular nucleus (PF) is involved in the facilitative effect of lateral hypothalamic intracranial self-stimulation (LH-ICSS) on two-way active avoidance acquisition (5 sessions, 10 trials each, one daily) and long-term retention (10 days), rats were lesioned bilaterally at the PF and implanted with an electrode aimed at the LH to obtain ICSS behavior. After each acquisition session rats were allowed to self-administer 2500 trains of LH-ICSS. The main results were: (1) LH-ICSS facilitated the acquisition and retention of conditioning; (2) PF lesions impaired both acquisition and retention of two-way active avoidance; (3) there was a positive relationship between PF lesions size and learning disruption, and (4) LH-ICSS failed to facilitate learning when PF was lesioned. We concluded that the lesion size is a critical variable to evaluate the effects of PF lesions on learning and memory, and that LH-ICSS treatment may exert their effects through the PF nucleus or, at least, the integrity of PF is required for LH-ICSS to improve clearly the task.
Collapse
Affiliation(s)
- E Massanés-Rotger
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
29
|
Abstract
Recent studies have demonstrated that a large number of spinal cord neurons convey somatosensory and visceral nociceptive information directly from cervical, lumbar, and sacral spinal cord segments to the hypothalamus. Because sensory information from head and orofacial structures is processed by all subnuclei of the trigeminal brainstem nuclear complex (TBNC) we hypothesized that all of them contain neurons that project directly to the hypothalamus. In the present study, we used the retrograde tracer Fluoro-Gold to examine this hypothesis. Fluoro-Gold injections that filled most of the hypothalamus on one side labeled approximately 1,000 neurons (best case = 1,048, mean = 718 +/- 240) bilaterally (70% contralateral) within all trigeminal subnuclei and C1-2. Of these neurons, 86% were distributed caudal to the obex (22% in C2, 22% in C1, 23% in subnucleus caudalis, and 18% in the transition zone between subnuclei caudalis and interpolaris), and 14% rostral to the obex (6% in subnucleus interpolaris, 4% in subnucleus oralis, and 4% in subnucleus principalis). Caudal to the obex, most labeled neurons were found in laminae I-II and V and the paratrigeminal nucleus, and fewer neurons in laminae III-IV and X. The distribution of retrogradely labeled neurons in TBNC gray matter areas that receive monosynaptic input from trigeminal primary afferent fibers innervating extracranial orofacial structures (such as the cornea, nose, tongue, teeth, lips, vibrissae, and skin) and intracranial structures (such as the meninges and cerebral blood vessels) suggests that sensory and nociceptive information originating in these tissues could be transferred to the hypothalamus directly by this pathway.
Collapse
Affiliation(s)
- A Malick
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
30
|
Waraczynski M, Carlton E, Perkins M. Midbrain periaqueductal lesions do not degrade medial forebrain bundle stimulation reward. Behav Brain Res 1998; 95:167-77. [PMID: 9806437 DOI: 10.1016/s0166-4328(98)00038-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the possible role of the midbrain central grey and dorsal raphe in medial forebrain bundle (MFB) self-stimulation, 12 rats received monopolar stimulation electrodes in both the lateral hypothalamic and ventral tegmental MFB and an ipsilateral lesioning electrode in either the central grey or dorsal raphe. Baseline rate-frequency data were collected at several currents at each stimulation site until the frequency required to maintain half-maximal responding stabilized and then an electrolytic lesion was made by passing either 20 or 60 s of anodal constant current through the lesioning electrode. Post-lesion rate-frequency data indicated that lesions of the central grey and dorsal raphe had little appreciable effect on the rewarding nature of MFB stimulation. One rat's lesion damaged the median raphe and produced sustained downward shifts in required frequency, suggesting post-lesion enhancement of the stimulation's rewarding effect.
Collapse
Affiliation(s)
- M Waraczynski
- Department of Psychology, University of Wisconsin-Whitewater, 53190, USA.
| | | | | |
Collapse
|
31
|
|
32
|
Ruggiero DA, Anwar S, Kim J, Glickstein SB. Visceral afferent pathways to the thalamus and olfactory tubercle: behavioral implications. Brain Res 1998; 799:159-71. [PMID: 9666113 DOI: 10.1016/s0006-8993(98)00442-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The goal of this study was to support the hypothesis that visceral signals may integrate and influence behavior by way of direct pathways from the nucleus tractus solitarii (NTS) to the olfactory tubercle and the midline/intralaminar thalamus. An anterograde tracer, biotinylated dextran amine (BDA) was iontophoresed bilaterally into the caudal NTS to optimize terminal labeling. NTS-cortical projections traversed both limbs of the diagonal bands providing heavy innervation, and terminated lightly within layer 3 of the olfactory tubercle. NTS-thalamic projections terminated within anterior and, as previously shown, posterior divisions of nucleus paraventricularis thalami and avoided the adjoining mediodorsal thalamic nucleus. Heretofore unrecognized projections were traced to the parafascicular and reuniens thalamic nuclei, and the peripeduncular nucleus. Control experiments identified the nucleus gracilis as the principal source of ascending projections to ventroposterior lateral, posterior and intralaminar thalamic nuclei. Our data corroborate the supposition that olfactory signals may integrate with visceral stimuli in the striatal compartment of olfactory tubercle. NTS projections encompass thalamic nuclei that project topographically to the prefrontal cortex, hippocampus and ventral (limbic) striatum, regions activated by visceral stimulation. Structural data support the idea that compartments of the non-discriminative thalamus may contribute to perception and behavioral responses to visceral stimulation.
Collapse
Affiliation(s)
- D A Ruggiero
- Columbia University College of Physicians and Surgeons, Department of Psychiatry, New York State Psychiatric Institute, Annex Box 28, 722 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
33
|
Abstract
To understand better the organisation of zona incerta of the thalamus, this study has examined the patterns of connections that this nucleus has with various nuclei of the brainstem. Injections of biotinylated dextran or cholera toxin subunit B were made into the dorsal raphe, midbrain reticular nucleus, pedunculopontine tegmental nucleus, periaqueductal grey matter, pontine reticular nucleus, substantia nigra, superior colliculus, and ventral tegmental area of Sprague-Dawley rats, and their brains were processed by using standard tracer-detection methods. In general, our results show that zona incerta forms the major zone in the thalamus where these ascending brainstem axons terminate and from which descending axons that travel back to these same brainstem centres originate. These incertal inputs and outputs are limited largely to a distinct sector of zona incerta, the dorsal sector. An exception to this pattern is evident in the incertal projection to the deep layers of the superior colliculus; this projection, unlike all of the others, arises from cells in the ventral sector of zona incerta. Our results also show little evidence for a well-defined topography of projection between the brainstem and the zona incerta. For instance, small injections into each brainstem nucleus result in labelled terminals and in cells spread throughout much of the dorsal sector of zona incerta, with no local zone of concentration within the sector. Again, an exception to this pattern is seen in the incertal projection to the superior colliculus. This projection, unlike the others, shows a clear topographical organisation: A medial-lateral shift in the injection site in the colliculus results in a lateral-medial shift in the position of labelled cells in zona incerta. Curiously, even though the incertal projection to the colliculus appears to be mapped, the collicular projection back to zona incerta is not mapped. In conclusion, then, a number of brainstem nuclei (except for the deep collicular layers) have strong and overlapping connections within the same sector of zona incerta. This convergence of many functionally diverse brainstem afferents within zona incerta places this nucleus in a strategic position to sample the general activity of the brainstem and, perhaps, acts as a relay of this information to higher centres, such as the dorsal thalamic relay nuclei and the cerebral hemispheres.
Collapse
Affiliation(s)
- C I Kolmac
- Department of Anatomy and Histology, Institute for Biomedical Research, University of Sydney, Australia
| | | | | |
Collapse
|
34
|
Horn EM, Shonis CA, Holzwarth MA, Waldrop TG. Decrease in glutamic acid decarboxylase level in the hypothalamus of spontaneously hypertensive rats. J Hypertens 1998; 16:625-33. [PMID: 9797174 DOI: 10.1097/00004872-199816050-00010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND A reduction in gamma-aminobutyric (GABA)-mediated inhibition of pressor sites in the caudal hypothalamus of spontaneously hypertensive rats compared with that of normotensive Wistar-Kyoto rats has recently been demonstrated. OBJECTIVE To determine whether the reduction in GABA-mediated inhibition of the caudal hypothalamus of the spontaneously hypertensive rats results from reductions both in the number of GABA-synthesizing neurons and in the amount of the GABA-synthesizing enzyme, glutamic acid decarboxylase messenger RNA (mRNA). DESIGN AND METHODS A polyclonal antibody (Chemicon) for the 67 kDa isoform of glutamic acid decarboxylase (GAD67) was used to immunocytochemically label GABAergic neurons in the caudal hypothalamus of spontaneously hypertensive and Wistar-Kyoto rats that had been treated beforehand with colchicine. The labeled cells were counted for both strains by a blinded analysis and compared. Caudal hypothalamic tissues from spontaneously hypertensive and Wistar-Kyoto rats were analysed for GAD67 mRNA by Northern blotting. The signal intensities of the radioactive probe specific for GAD67 for the two strains were analyzed by using a phosphorimager and compared. Control areas for the immunocytochemical (zona incerta) and Northern blotting (cortex, midbrain, cerebellum, and brain stem) experiments were used to determine regional differences in expression of GAD67. RESULTS Both the hypothalamus and cerebellum of spontaneously hypertensive and Wistar-Kyoto rats contained GAD67-immunoreactive neurons; however, there were 42% fewer GAD67 neurons in the caudal hypothalamus of spontaneously hypertensive rats than there were in that of Wistar-Kyoto rats. Furthermore, a 33% reduction in the amount of GAD67 messenger RNA in the caudal hypothalamus of spontaneously hypertensive rats compared with that for Wistar-Kyoto rats was demonstrated. Analysis of the expression of GAD67 in the cortex, midbrain, cerebellum, brain stem, and total brain revealed no difference between spontaneously hypertensive and Wistar-Kyoto rats. CONCLUSIONS Our findings demonstrate that the spontaneously hypertensive rat has fewer neurons synthesizing GABA and less GAD67 mRNA in the caudal hypothalamus than do Wistar-Kyoto rats. This deficit in the GABAergic system in the caudal hypothalamus, a well-known cardiovascular regulatory site, could contribute to the essential hypertension in this animal model.
Collapse
Affiliation(s)
- E M Horn
- Department of Molecular and Integrative Physiology, College of Medicine, University of Illinois, Urbana 61801, USA
| | | | | | | |
Collapse
|
35
|
Villanueva L, Desbois C, le Bars D, Bernard JF. Organization of diencephalic projections from the medullary subnucleus reticularis dorsalis and the adjacent cuneate nucleus: A retrograde and anterograde tracer study in the rat. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980105)390:1<133::aid-cne11>3.0.co;2-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
|
37
|
Abstract
BACKGROUND The zona incerta (ZI) receives projections from many telencephalic and brainstem structures. On the basis of its connectivity and physiology, this nucleus has been implicated in the control of saccadic eye movements. Because of the complexity of its afferent signals and its simple efferent signal, there must be much local interaction within the ZI to integrate these various afferents. The purpose of this study was to investigate, at the ultrastructural level, whether the ZI contains the anatomical substrata which could subserve the control of eye movements. METHODS Blocks of tissue from the ZI of macaque monkeys were prepared for electron microscopy using standard techniques. Some of these animals were taken specifically for electron microscopy. Others had received injections of tracer substances and were prepared for electron microscopy subsequent to tracer visualization. RESULTS Cell bodies of medium-large neurons were found in our preparations. They have large nucleoli and relatively small volumes of karyoplasm. Cell bodies and dendrites of all sizes have many synaptic contacts. Three types of synaptic profiles were found, designated Types 1, 2, and 3. Type 1 profiles are symmetrical and contact cell bodies and small dendrites. Type 2 profiles are thought to be presynaptic dendrites and may have symmetrical or asymmetrical contacts. Type 3 profiles are asymmetrical and primarily contact small dendrites. Many synapses contacted vesicle-containing profiles. In some cases, it was clear that these profiles participated in serial synapses on presumptive presynaptic dendrites. Other profiles appeared to be axoaxonic contacts. CONCLUSIONS Afferent and efferent signals are likely to be modulated extensively within the ZI. Therefore, there needs to be complex interactions between neuronal elements of the ZI and its afferents. This study demonstrates that this nucleus possesses the structural substrata to subserve diverse roles, such as the gating of saccadic eye movements.
Collapse
Affiliation(s)
- T P Ma
- Department of Anatomy, University of Mississippi Medical Center, Jackson 39216-4505, USA.
| | | | | |
Collapse
|
38
|
Li JL, Kaneko T, Shigemoto R, Mizuno N. Distribution of trigeminohypothalamic and spinohypothalamic tract neurons displaying substance P receptor-like immunoreactivity in the rat. J Comp Neurol 1997; 378:508-21. [PMID: 9034907 DOI: 10.1002/(sici)1096-9861(19970224)378:4<508::aid-cne6>3.0.co;2-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Primary afferent neurons containing substance P (SP) are apparently implicated in the transmission of noxious information from the periphery to the central nervous system, and SP released from primary afferent neurons acts on second-order neurons with the SP receptor (SPR). In the rat, nociceptive information reached the hypothalamus not only through indirect pathways but also directly through trigeminohypothalamic and spinohypothalamic pathways. Thus, in the present study, the distribution pattern of trigeminohypothalamic and spinohypothalamic tract neurons showing SPR-like immunoreactivity (SPR-LI) was examined in the rat by a retrograde tract-tracing method combined with immunofluorescence histochemistry for SPR. A substantial number of trigeminal and spinal neurons with SPR-LI were retrogradely labeled with Fluoro-Gold (FG) injected into the hypothalamic regions. These neurons were distributed mainly in lamina I of the medullary and spinal dorsal horns, lateral spinal nucleus, regions around the central canal of the spinal cord, and the lateral aspect of the deep part of the spinal dorsal horn. A number of SPR-LI neurons in the spinal parasympathetic nucleus were labeled with FG injected into the area around the paraventricular hypothalamic nucleus. Some SPR-LI neurons in the lateral spinal nucleus and the lateral aspect of the deep part of the spinal dorsal horn were also labeled with FG injected into the septal region. On the basis of the distribution areas of SPR-LI trigeminal and spinal neurons projecting to the hypothalamic and septal regions, it is likely that these neurons are involved in the transmission of somatic and/or visceral noxious information.
Collapse
Affiliation(s)
- J L Li
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
39
|
Abstract
We review many of the recent findings concerning mechanisms and pathways for pain and its modulation, emphasizing sensitization and the modulation of nociceptors and of dorsal horn nociceptive neurons. We describe the organization of several ascending nociceptive pathways, including the spinothalamic, spinomesencephalic, spinoreticular, spinolimbic, spinocervical, and postsynaptic dorsal column pathways in some detail and discuss nociceptive processing in the thalamus and cerebral cortex. Structures involved in the descending analgesia systems, including the periaqueductal gray, locus ceruleus, and parabrachial area, nucleus raphe magnus, reticular formation, anterior pretectal nucleus, thalamus and cerebral cortex, and several components of the limbic system are described and the pathways and neurotransmitters utilized are mentioned. Finally, we speculate on possible fruitful lines of research that might lead to improvements in therapy for pain.
Collapse
Affiliation(s)
- W D Willis
- Department of Anatomy & Neurosciences, University of Texas Medical Branch, Galveston 77555-1069, USA
| | | |
Collapse
|
40
|
Kostarczyk E, Zhang X, Giesler GJ. Spinohypothalamic tract neurons in the cervical enlargement of rats: locations of antidromically identified ascending axons and their collateral branches in the contralateral brain. J Neurophysiol 1997; 77:435-51. [PMID: 9120585 DOI: 10.1152/jn.1997.77.1.435] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Antidromic activation was used to determine the locations of ascending spinohypothalamic tract (SHT) axons and their collateral projections within C1, medulla, pons, midbrain, and caudal thalamus. Sixty-four neurons in the cervical enlargement were antidromically activated initially by stimulation within the contralateral hypothalamus. All but one of the examined SHT neurons responded either preferentially or specifically to noxious mechanical stimuli. A total of 239 low-threshold points was classified as originating from 64 ascending (or parent) SHT axons. Within C1, 38 ascending SHT axons were antidromically activated. These were located primarily in the dorsal half of the lateral funiculus. Within the medulla, the 29 examined ascending SHT axons were located ventrolaterally, within or adjacent to the lateral reticular nucleus or nucleus ambiguus. Within the pons, the 25 examined ascending SHT axons were located primarily surrounding the facial nucleus and the superior olivary complex. Within the caudal midbrain, the 23 examined SHT ascending axons coursed dorsally in a position adjacent to the lateral lemniscus. Within the anterior midbrain, SHT axons traveled rostrally near the brachium of the inferior colliculus. Within the posterior thalamus, all 17 examined SHT axons coursed rostrally through the posterior nucleus of thalamus. A total of 114 low-threshold points was classified as collateral branch points. Sixteen collateral branches were seen in C1; these were located primarily int he deep dorsal horn. Forty-five collateral branches were located in the medulla. These were primarily in or near the medullary reticular nucleus, nucleus ambiguus, lateral reticular nucleus, parvocellular reticular nucleus, gigantocellular reticular nucleus, cuneate nucleus, and the nucleus of the solitary tract. Twentysix collateral branches from SHT axons were located in the pons. These were in the pontine reticular nucleus caudalis, gigantocellular reticular nucleus, parvocellular reticular nucleus, and superior olivary complex. Twenty-three collateral branches were located in the midbrain. These were in or near the mesencephalic reticular nucleus, brachium of the inferior colliculus, cuneiform nucleus, superior colliculus, central gray, and substantia nigra. Int he caudal thalamus, two branches were in the posterior thalamic nucleus and two were in the medial geniculate. These results indicate that SHT axons ascend toward the hypothalamus in a clearly circumscribed projection in the lateral brain stem and posterior thalamus. In addition, large numbers of collaterals from SHT axons appears to project to a variety of targets in C1, the medulla, pons, midbrain, and caudal thalamus. Through its widespread collateral projections, the SHT appears to be capable of providing nociceptive input to many areas that are involved in the production of multifaceted responses to noxious stimuli.
Collapse
Affiliation(s)
- E Kostarczyk
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|
41
|
Hermann DM, Luppi PH, Peyron C, Hinckel P, Jouvet M. Forebrain projections of the rostral nucleus raphe magnus shown by iontophoretic application of choleratoxin b in rats. Neurosci Lett 1996; 216:151-4. [PMID: 8897480 DOI: 10.1016/0304-3940(96)13013-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nucleus raphe magnus belongs to the thermoafferent system. Following iontophoretic choleratoxin b injections in its rostral part, a substantial to large number of anterogradely labeled varicose fibres were observed in the medial and lateral preoptic areas, the bed nucleus, the substantia innominata, the ventral pallidum, the median preoptic nucleus, the paraventricular hypothalamic nucleus, the central amygdaloid nucleus and the lateral and dorsal hypothalamic areas. A small to moderate number were seen in the septal nuclei, the diagonal band, the magnocellular preoptic nucleus, the anterior hypothalamic area and the paraventricular and intralaminar thalamic nuclei. After choleratoxin b injections in the preoptic, dorsal and lateral hypothalamic areas, a substantial number of retrogradely labeled serotonin immunonegative neurones were specifically found in the rostral nucleus raphe magnus. Thus, non-serotonergic rostral nucleus raphe magnus cells might directly modulate hypothalamic thermointegrative neurones.
Collapse
Affiliation(s)
- D M Hermann
- Department of Experimental Medicine, CNRS ERS 5645, INSERM U52, Lyon, France.
| | | | | | | | | |
Collapse
|
42
|
Abstract
We recently described a direct nociceptive projection from the spinal cord to the hypothalamus in the rat. Several electrophysiological studies of this projection indicated that the axons of some spinohypothalamic tract neurons (SHT) reach the hypothalamus either by a lateral or by a medial route. The purpose of this study was to determine the origin of all SHT neurons that reach the hypothalamus through the lateral and the medial projections, and to investigate the possibility of ablating the SHT without damaging other important sensory and motor tracts by combining retrograde tracing techniques with axonal ablation. As compared with control cases, significant (P < .05) reductions in the number of labeled SHT neurons were encountered, 26% in the ipsilateral spinal cord following lesions of the medial projection, 67% in the contralateral spinal cord following lesions of the lateral projection, and 94% in both contra- and ipsilateral sides following lesions of both the medial and lateral projections. Bilateral lesions of the lateral projections had no effect on the distribution of labeled neurons in the spinal cord and dorsal column nuclei following injections of Fluoro-Gold (FG) into the thalamus, and a small unilateral lesion of the lateral projection reduced the ipsilateral labeling in the motor cortex following injections of FG into the pyramidal decussation. These findings suggest that most SHT neurons ascend through the contralateral lateral projection and that less than half continue in the medial projection to the ipsilateral side. They also suggest a site that can be lesioned without affecting other ascending sensory spinal pathways.
Collapse
Affiliation(s)
- R Burstein
- Department of Anesthesia and Critical Care, Beth Israel Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
43
|
Meador KJ, Loring DW, Sethi KD, Yaghmai F, Styren SD, DeKosky ST. Dementia associated with dorsal midbrain lesion. J Int Neuropsychol Soc 1996; 2:359-67. [PMID: 9375185 DOI: 10.1017/s1355617700001387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the dorsal midbrain has been implicated in cognitive processes in animals, its role in humans is unclear. We report the neuropsychological and postmortem neuropathological findings of a 52-yr-old university professor who developed a profound dementia in association with a focal dorsal midbrain lesion. The patient's disorder appeared to result from a tuberculous granuloma based on the clinical course and autopsy results. Neuropsychologically, he exhibited a generalized impairment across most of the cognitive domains assessed. His deficits were not explained by impaired arousal, specific sensory or motor defects, depression, or hydrocephalus. Although there are inherent limitations to a single-case investigation, our observations are consistent with animal studies that have demonstrated that focal dorsal midbrain lesions may result in cognitive impairment. We propose that the dorsal midbrain is involved in cognitive processing via modulation of thalamocortical networks.
Collapse
Affiliation(s)
- K J Meador
- Department of Neurology, Medical College of Georgia, Augusta 30912, USA
| | | | | | | | | | | |
Collapse
|
44
|
Burstein R. Somatosensory and visceral input to the hypothalamus and limbic system. PROGRESS IN BRAIN RESEARCH 1996; 107:257-67. [PMID: 8782524 DOI: 10.1016/s0079-6123(08)61869-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R Burstein
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
45
|
Valentino RJ, Pavcovich LA, Hirata H. Evidence for corticotropin-releasing hormone projections from Barrington's nucleus to the periaqueductal gray and dorsal motor nucleus of the vagus in the rat. J Comp Neurol 1995; 363:402-22. [PMID: 8847408 DOI: 10.1002/cne.903630306] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study used anterograde and retrograde tract tracing and immunohistochemistry to determine the efferent projections of corticotropin-releasing hormone (CRH) neurons of Barrington's nucleus in the rat. Injections of Phaseolus vulgaris-leucoagglutinin into Barrington's nucleus resulted in anterograde labeling in the dorsal motor nucleus of the vagus, periaqueductal gray, medial thalamic nuclei, lateral hypothalamus, paraventricular nucleus of the hypothalamus, lateral preoptic area, and lateral septum. The retrograde tract tracer, fluorogold, injected into the lumbosacral spinal cord labeled many, but not all, CRH-immunoreactive neurons in Barrington's nucleus. Moreover, some Barrington's neurons that were retrogradely labeled from the spinal cord were not CRH-immunoreactive. Several CRH-immunoreactive Barrington's neurons were retrogradely labeled by fluorogold injections into the periaqueductal gray, and these were located predominantly in the dorsal part of the nucleus. Additionally, some CRH-immunoreactive Barrington's neurons were retrogradely labeled from fluorogold injections into the dorsal motor nucleus of the vagus. In contrast, fluorogold injections into the lateral hypothalamus, lateral preoptic area, or lateral septum did not result in double labeling of CRH-immunoreactive neurons in Barrington's nucleus. These results suggest that many, but not all, CRH-containing neurons of Barrington's nucleus project to the lumbosacral spinal cord. In addition to their previously documented projections to the spinal cord, these neurons may be a source of CRH in the periaqueductal gray and dorsal motor nucleus of the vagus. CRH projections of Barrington's nucleus may play a role in behavioral or autonomic aspects of stress responses, in addition to their proposed role in micturition.
Collapse
Affiliation(s)
- R J Valentino
- Department of Psychiatry, Medical College of Pennsylvania and Hahnemann University, Philadelphia 19102, USA
| | | | | |
Collapse
|
46
|
Ford B, Holmes CJ, Mainville L, Jones BE. GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 1995; 363:177-96. [PMID: 8642069 DOI: 10.1002/cne.903630203] [Citation(s) in RCA: 276] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study was undertaken to determine the frequency and distribution of GABAergic neurons within the rat pontomesencephalic tegmentum and the relationship of GABAergic cells to cholinergic and other tegmental neurons projecting to the hypothalamus. In sections immunostained for glutamic acid decarboxylase (GAD), large numbers of small GAD-positive neurons (approximately 50,000 cells) were distributed through the tegmentum and associated with a high density of GAD-positive varicosities surrounding both GAD-positive and GAD-negative cells. Through the reticular formation, ventral tegmentum, raphe nuclei, and dorsal tegmentum, GAD-positive cells were codistributed with larger cells, which included neurons immunostained on adjacent sections for glutamate, tyrosine hydroxylase (TH), serotonin, or choline acetyltransferase (ChAT). In sections dual-immunostained for GAD and ChAT, GABAergic neurons were seen to be intermingled with less numerous cholinergic cells (approximately 2,600 GAD+ to approximately 1,400 ChAT+ cells in the laterodorsal tegmental nucleus, LDTg). Retrograde transport of cholera toxin (CT) was examined from the posterior lateral hypothalamus, where a major population of cortically projecting neurons are located. A small number of GABAergic cells were retrogradely labeled, representing a small percentage of all the GABAergic neurons (approximately 1%) and of all the hypothalamically projecting neurons (approximately 6%) in the tegmentum. The double-labeled GAD+/CT+ cells were commonly found ipsilaterally within 1) the deep mesencephalic reticular field, codistributed with putative glutamatergic projection neurons; 2) the ventral tegmental area, substantia nigra compacta, and retrorubral field, codistributed with dopaminergic projection neurons; 3) dorsal raphe, codistributed with serotonergic projection neurons; and 4) laterodorsal and pedunculopontine tegmental nuclei, codistributed with and in similar proportion to cholinergic projection cells (20-30% in LDTg). Acting as both projection and local neurons, the pontomesencephalic GABAergic cells would have the capacity to modulate the influence of the "ascending reticular activating system" and its chemically specific constituents upon cortical activation.
Collapse
Affiliation(s)
- B Ford
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | |
Collapse
|
47
|
Terenzi MG, Zagon A, Roberts MH. Efferent connections from the anterior pretectal nucleus to the diencephalon and mesencephalon in the rat. Brain Res 1995; 701:183-91. [PMID: 8925282 DOI: 10.1016/0006-8993(95)01001-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The anterior pretectal nucleus has been described as part of the visual pretectal complex. However, several electrophysiological and behavioural studies showed that this area is involved in somatosensory modulation, more specifically, antinociception. The efferents of the anterior pretectal nucleus have not been identified taking into account the different function of this nucleus in relation to the rest of the pretectal complex. In the study herein described, a sensitive anterograde tracer Phaseolus vulgaris leucoagglutinin was used to trace the mesencephalic and diencephalic efferents of the anterior pretectal nucleus in the rat. The majority of the connections were ipsilateral. Fibres with varicosities were observed in discrete areas of the thalamus (central lateral, posterior complex), hypothalamus (lateral, posterior and ventromedial), zona incerta, parvocellular red nucleus, intermediate and deep layers of the superior colliculus, central grey, deep mesencephalon, pontine parabrachial region, and pontine nuclei. Fibres en passant were detected in the medial lemniscus, from the level of the injection site to rostral medullary levels. Some labelled axons were seen coursing to the contralateral side through the posterior commissure and the decussation of the superior cerebellar peduncle. These results show that the anterior pretectal nucleus projects principally to areas involved in somatosensory and motor control in a manner that permits sensory modulation at higher and lower levels of the brain. These connections may explain the antinociceptive and antiaversive effects of stimulating the anterior pretectal nucleus in freely moving animals.
Collapse
Affiliation(s)
- M G Terenzi
- Department of Anatomy, School of Medical Sciences, University of Bristol, UK
| | | | | |
Collapse
|
48
|
Abstract
Thalamic projections from the parafascicularis nucleus to the raphe system were studied by means of anterograde techniques, utilizing both biocytin and dextran amine in rats. Both tracers injections in the parafascicularis nucleus resulted in the labeling of descending bundles of fibers running along the brainstem. Labeled terminal fields were found in all the raphe nuclei except the nucleus raphe pallidus. Three different types of labeled terminals (numerous small boutons, less numerous large claw-like terminals, varicosities in close apposition to blood vessel walls) originating from the parafascicular nucleus were present in the raphe system. Ultrastructural data suggest an inhibitory nature for the parafascicular-raphe projections. Our results confirm and extend previous retrograde data by indicating the trajectories, the terminal fields, the fine structure of terminal axonal arborizations and boutons. Based on previous retrograde data and our observations, we conclude that the relationship between the parafascicular nucleus and raphe system is reciprocal and concerns most of the raphe nuclei, suggesting that parafascicularis cell population may be involved in many of the functions ascribed to the raphe system.
Collapse
Affiliation(s)
- G Marini
- Istituto di Anatomia Umana, Universitá degli Studi, Milano, Italy
| | | |
Collapse
|
49
|
Abstract
The major functions of the midbrain periaqueductal gray (PAG), including pain and analgesia, fear and anxiety, vocalization, lordosis and cardiovascular control are considered in this review article. The PAG is an important site in ascending pain transmission. It receives afferents from nociceptive neurons in the spinal cord and sends projections to thalamic nuclei that process nociception. The PAG is also a major component of a descending pain inhibitory system. Activation of this system inhibits nociceptive neurons in the dorsal horn of the sinal cord. The dorsal PAG is a major site for processing of fear and anxiety. It interacts with the amygdala and its lesion alters fear and anxiety produced by stimulation of amygdala. Stimulation of PAG produces vocalization and its lesion produces mutism. The firing of many cells within the PAG correlates with vocalization. The PAG is a major site for lordosis and this role of PAG is mediated by a pathway connecting the medial preoptic with the PAG. The cardiovascular controlling network within the PAG are organized in columns. The dorsal column is involved in pressor and the ventrolateral column mediates depressor responses. The major intrinsic circuit within the PAG is a tonically-active GABAergic network and inhibition of this network is an important mechanism for activation of outputs of the PAG. The various functions of the PAG are interrelated and there is a significant interaction between different functional components of the PAG. Using the current information about the anatomy, physiology, and pharmacology of the PAG, a model is proposed to account for the interactions between these different functional components.
Collapse
Affiliation(s)
- M M Behbehani
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH 45267-0576, USA
| |
Collapse
|
50
|
Brodsky M, Elliott K, Hynansky A, Inturrisi CE. CNS levels of mu opioid receptor (MOR-1) mRNA during chronic treatment with morphine or naltrexone. Brain Res Bull 1995; 38:135-41. [PMID: 7583338 DOI: 10.1016/0361-9230(95)00079-t] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The CNS levels of mu opioid receptor (MOR-1) mRNA were determined by solution hybridization in rats treated chronically with morphine or naltrexone. Morphine treatment (2 x 75 mg pellets were implanted SC on Day 1 and 2 more on Day 4) resulted in the development of tolerance to morphine's antinociceptive (analgesic) effect, as assessed by the hot plate procedure on treatment Day 7. Following the hot plate test, selected CNS regions were obtained by microdissection. The levels of MOR-1 mRNA in pg/microgram RNA ranged from 0.7 in sensorimotor cortex to 15.3 in medial thalamus. MOR-1 mRNA levels were not altered in the dorsal horn of spinal cord, nucleus raphe magnus, periaqueductal grey, hypothalamus, medial thalamus, or sensorimotor cortex. In a separate experiment, a 2 day exposure to naltrexone (2 x 30 mg pellets) had no effect on CNS levels of MOR-1 mRNA; however, after an 8 day exposure a decrease was detected in the nucleus raphe magnus (by 28%), hypothalamus (by 21%), and medial thalamus (by 27%). Chronic exposure to morphine or naltrexone did not result in alterations in the size of full-length MOR-1 mRNA from rat brain, or in the size of the region protected by the MOR-1 riboprobe (i.e., the entire coding region). Thus, the neuroadaptive processes associated with the development of analgesic tolerance to morphine do not involve concurrent changes in the steady-state levels of MOR-1 mRNA. Chronic treatment with naltrexone appears to produce a region-specific downregulation of MOR-1 mRNA levels, which may be secondary to the naltrexone-induced increase in mu receptor binding.
Collapse
Affiliation(s)
- M Brodsky
- Department of Pharmacology, Cornell University Medical College, New York, NY 10021, USA
| | | | | | | |
Collapse
|