1
|
Bhardwaj I, Ansari AH, Rai SP, Singh S, Singh D. Molecular targets of caffeine in the central nervous system. PROGRESS IN BRAIN RESEARCH 2024; 288:35-58. [PMID: 39168558 DOI: 10.1016/bs.pbr.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Caffeine is an alkaloid obtained from plants and is one of the most consumptive drug in the form of chocolate, coffee and beverages. The potential impact of caffeine within CNS can be easily understood by mechanism of action-antagonism of adenosine receptor, calcium influx, inhibits phosphodiesterases. Adenosine a neuromodulator for adenosine receptors, which are abundantly expressed within the central nervous system. Caffeine antagonized the adenosine receptor, hence stimulate expression of dopamine. It plays pivotal role in many metabolic pathways within the brain and nervous system, it reduced the amyloid-β-peptide (Aβ) accumulation, downregulation of tau protein phosphorylation, stimulate cholinergic neurons and inhibits the acetylcholinestrase (AChE). It also possess antioxidant and antiapoptotic activity. Caffeine act as nutraceutical product, improves mental health. It contains antioxidants, vitamins, minerals and dietary supplements, by reducing the risk factor of several neurodegenerations including Alzheimer's disease, migraine, gallstone, cancer, Huntington's disease and sclerosis. This act as a stimulant and have capability to increase the effectiveness of certain pain killer. Beside positive affects, over-consumption of caffeine leads to negative impact: change in sleep pattern, hallucinations, high blood pressure, mineral loss and even heartburn. This chapter highlights pros and cons of caffeine consumption.
Collapse
Affiliation(s)
- Ishita Bhardwaj
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Atifa Haseeb Ansari
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Swayam Prabha Rai
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Sippy Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Durgesh Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India.
| |
Collapse
|
2
|
de Moraes Santos Corrêa É, Christofoletti G, de Souza AS. Effects of Intracerebral Aminophylline Dosing on Catalepsy and Gait in an Animal Model of Parkinson's Disease. Int J Mol Sci 2024; 25:5191. [PMID: 38791229 PMCID: PMC11120906 DOI: 10.3390/ijms25105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD) is a progressive disorder characterized by the apoptosis of dopaminergic neurons in the basal ganglia. This study explored the potential effects of aminophylline, a non-selective adenosine A1 and A2A receptor antagonist, on catalepsy and gait in a haloperidol-induced PD model. Sixty adult male Swiss mice were surgically implanted with guide cannulas that targeted the basal ganglia. After seven days, the mice received intraperitoneal injections of either haloperidol (experimental group, PD-induced model) or saline solution (control group, non-PD-induced model), followed by intracerebral infusions of aminophylline. The assessments included catalepsy testing on the bar and gait analysis using the Open Field Maze. A two-way repeated-measures analysis of variance (ANOVA), followed by Tukey's post hoc tests, was employed to evaluate the impact of groups (experimental × control), aminophylline (60 nM × 120 nM × saline/placebo), and interactions. Significance was set at 5%. The results revealed that the systemic administration of haloperidol in the experimental group increased catalepsy and dysfunction of gait that paralleled the observations in PD. Co-treatment with aminophylline at 60 nM and 120 nM reversed catalepsy in the experimental group but did not restore the normal gait pattern of the animals. In the non-PD induced group, which did not present any signs of catalepsy or motor dysfunctions, the intracerebral dose of aminophylline did not exert any interference on reaction time for catalepsy but increased walking distance in the Open Field Maze. Considering the results, this study highlights important adenosine interactions in the basal ganglia of animals with and without signs comparable to those of PD. These findings offer valuable insights into the neurobiology of PD and emphasize the importance of exploring novel therapeutic strategies to improve patient's catalepsy and gait.
Collapse
Affiliation(s)
| | | | - Albert Schiaveto de Souza
- Faculty of Medicine, Institute of Health, Federal University of Mato Grosso do Sul, UFMS, Campo Grande 79060-900, Brazil; (É.d.M.S.C.); (G.C.)
| |
Collapse
|
3
|
Shrestha K, Venton BJ. Transient Adenosine Modulates Serotonin Release Indirectly in the Dorsal Raphe Nuclei. ACS Chem Neurosci 2024; 15:798-807. [PMID: 38336455 PMCID: PMC10885004 DOI: 10.1021/acschemneuro.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Rapid adenosine transiently regulates dopamine and glutamate via A1 receptors, but other neurotransmitters, such as serotonin, have not been studied. In this study, we examined the rapid modulatory effect of adenosine on serotonin release in the dorsal raphe nuclei (DRN) of mouse brain slices by using fast-scan cyclic voltammetry. To mimic adenosine release during damage, a rapid microinjection of adenosine at 50 pmol was applied before electrical stimulation of serotonin release. Transient adenosine significantly reduced electrically evoked serotonin release in the first 20 s after application, but serotonin release recovered to baseline as adenosine was cleared from the slice. The continuous perfusion of adenosine did not change the evoked serotonin release. Surprisingly, the modulatory effects of adenosine were not regulated by A1 receptors as adenosine still inhibited serotonin release in A1KO mice and also after perfusion of an A1 antagonist (8-cyclopentyl-1,3-dipropyl xanthine). The inhibition was also not regulated by A3 receptors as perfusion of the A3 antagonist (MRS 1220) in A1KO brain slices did not eliminate the inhibitory effects of transient adenosine. In addition, adenosine also inhibited serotonin release in A2AKO mice, showing that A2A did not modulate serotonin. However, perfusion of a selective 5HT1A autoreceptor antagonist drug [(S)-WAY 100135 dihydrochloride] abolished the inhibitory effect of transient adenosine on serotonin release. Thus, the transient neuromodulatory effect of adenosine on DRN serotonin release is regulated by serotonin autoreceptors and not by adenosine receptors. Rapid, transient adenosine modulation of neurotransmitters such as serotonin may have important implications for diseases such as depression and brain injury.
Collapse
Affiliation(s)
- Kailash Shrestha
- Department of Chemistry, University
of Virginia, Charlottesville, Virginia 22901, United States
| | - B. Jill Venton
- Department of Chemistry, University
of Virginia, Charlottesville, Virginia 22901, United States
| |
Collapse
|
4
|
Kassim FM, Lim JHM, Slawik SV, Gaus K, Peters B, Lee JWY, Hepple EK, Rodger J, Albrecht MA, Martin-Iverson MT. The effects of caffeine and d-amphetamine on spatial span task in healthy participants. PLoS One 2023; 18:e0287538. [PMID: 37440493 PMCID: PMC10343048 DOI: 10.1371/journal.pone.0287538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Studies that examined the effect of amphetamine or caffeine on spatial working memory (SWM) and verbal working memory (VWM) have used various tasks. However, there are no studies that have used spatial span tasks (SSTs) to assess the SWM effect of amphetamine and caffeine, although some studies have used digit span tasks (DST) to assess VWM. Previous reports also showed that increasing dopamine increases psychosis-like experiences (PLE, or schizotypy) scores which are in turn negatively associated with WM performance in people with high schizotypy and people with schizophrenia. Therefore, the present study aimed to examine the influence of d-amphetamine (0.45 mg/kg, PO), a dopamine releasing stimulant, on SST, DST, and on PLE in healthy volunteers. In a separate study, we examined the effect of caffeine, a nonspecific adenosine receptor antagonist with stimulant properties, on similar tasks. METHODS Healthy participants (N = 40) took part in two randomized, double-blind, counter-balanced placebo-controlled cross-over pilot studies: The first group (N = 20) with d-amphetamine (0.45 mg/kg, PO) and the second group (N = 20) with caffeine (200 mg, PO). Spatial span and digit span were examined under four delay conditions (0, 2, 4, 8 s). PLE were assessed using several scales measuring various aspects of psychosis and schizotypy. RESULTS We failed to find an effect of d-amphetamine or caffeine on SWM or VWM, relative to placebo. However, d-amphetamine increased a composite score of psychosis-like experiences (p = 0.0005), specifically: Scores on Brief Psychiatric Rating Scale, Perceptual Aberrations Scale, and Magical Ideation Scale were increased following d-amphetamine. The degree of change in PLE following d-amphetamine negatively and significantly correlated with changes in SWM, mainly at the longest delay condition of 8 s (r = -0.58, p = 0.006). CONCLUSION The present results showed that moderate-high dose of d-amphetamine and moderate dose of caffeine do not directly affect performances on DST or SST. However, the results indicate that d-amphetamine indirectly influences SWM, through its effect on psychosis-like experiences. TRIAL REGISTRATION CLINICAL TRIAL REGISTRATION NUMBER CT-2018-CTN-02561 (Therapeutic Goods Administration Clinical Trial Registry) and ACTRN12618001292268 (The Australian New Zealand Clinical Trials Registry) for caffeine study, and ACTRN12608000610336 for d-amphetamine study.
Collapse
Affiliation(s)
- Faiz M. Kassim
- Psychopharmacology Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Department of Psychiatry, St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - J. H. Mark Lim
- Psychopharmacology Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Sophie V. Slawik
- Faculty of Human and Health Sciences, Psychology, University of Bremen, Bremen, Germany
| | - Katharina Gaus
- Faculty of Human and Health Sciences, Psychology, University of Bremen, Bremen, Germany
| | - Benjamin Peters
- Department of Psychiatry, St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Joseph W. Y. Lee
- Psychiatry, Medical School, University of Western Australia, Perth, WA, Australia
| | - Emily K. Hepple
- Mental Health, North Metropolitan Health Services, Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Matthew A. Albrecht
- Western Australian Centre for Road Safety Research, School of Psychological Science, University of Western Australa, Crawley, WA, Australia
| | - Mathew T. Martin-Iverson
- Psychopharmacology Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
5
|
Ferré S, Sarasola LI, Quiroz C, Ciruela F. Presynaptic adenosine receptor heteromers as key modulators of glutamatergic and dopaminergic neurotransmission in the striatum. Neuropharmacology 2023; 223:109329. [PMID: 36375695 DOI: 10.1016/j.neuropharm.2022.109329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Adenosine plays a very significant role in modulating striatal glutamatergic and dopaminergic neurotransmission. In the present essay we first review the extensive evidence that indicates this modulation is mediated by adenosine A1 and A2A receptors (A1Rs and A2ARs) differentially expressed by the components of the striatal microcircuit that include cortico-striatal glutamatergic and mesencephalic dopaminergic terminals, and the cholinergic interneuron. This microcircuit mediates the ability of striatal glutamate release to locally promote dopamine release through the intermediate activation of cholinergic interneurons. A1Rs and A2ARs are colocalized in the cortico-striatal glutamatergic terminals, where they form A1R-A2AR and A2AR-cannabinoid CB1 receptor (CB1R) heteromers. We then evaluate recent findings on the unique properties of A1R-A2AR and A2AR-CB1R heteromers, which depend on their different quaternary tetrameric structure. These properties involve different allosteric mechanisms in the two receptor heteromers that provide fine-tune modulation of adenosine and endocannabinoid-mediated striatal glutamate release. Finally, we evaluate the evidence supporting the use of different heteromers containing striatal adenosine receptors as targets for drug development for neuropsychiatric disorders, such as Parkinson's disease and restless legs syndrome, based on the ability or inability of the A2AR to demonstrate constitutive activity in the different heteromers, and the ability of some A2AR ligands to act preferentially as neutral antagonists or inverse agonists, or to have preferential affinity for a specific A2AR heteromer.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, USA.
| | - Laura I Sarasola
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907, L'Hospitalet de Llobregat, Spain
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
6
|
N Bissonnette J, Anderson TJ, McKearney KJ, Tibbo PG, Fisher DJ. EEG Microstates in Early Phase Psychosis: The Effects of Acute Caffeine Consumption. Clin EEG Neurosci 2022; 53:335-343. [PMID: 35257622 PMCID: PMC9174612 DOI: 10.1177/15500594221084994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Individuals with schizophrenia use on average twice as much caffeine than the healthy population, but the underlying cortical effects of caffeine in this population are still not well understood. Using resting electroencephalography (EEG) data, we can determine recurrent configurations of the electric field potential over the cortex. These configurations, referred to as microstates, are reported to be altered in schizophrenia and can give us insight into the functional dynamics of large-scale brain networks. In the current study, we use a placebo-controlled, randomized, double-blind, repeated-measures design to examine the effects of a moderate dose of caffeine (200mg) on microstate classes A, B, C, and D in a sample of individuals within the first five years of psychosis onset compared to healthy controls. The results support the reduction of microstate class C and D, as well as the increase of microstate class A and B in schizophrenia. Further, acute caffeine administration appears to exacerbate these group differences by reducing class D, and increasing occurrences of class A and B states in the patient group only. The current results support the hypothesis of a microstate class D reduction as an endophenotypic marker for psychosis and provide the first descriptive account of how caffeine is affecting these microstate classes in an early phase psychosis sample.
Collapse
Affiliation(s)
| | - T-Jay Anderson
- 3684Mount Saint Vincent University, Halifax, Nova Scotia, Canada.,3688Dalhousie University, Halifax, Nova Scotia, Canada
| | - Katelyn J McKearney
- 3688Dalhousie University, Halifax, Nova Scotia, Canada.,3690Saint Mary's University, Halifax, Nova Scotia, Canada
| | | | - Derek J Fisher
- 3688Dalhousie University, Halifax, Nova Scotia, Canada.,3684Mount Saint Vincent University, Halifax, Nova Scotia, Canada.,3688Dalhousie University, Halifax, Nova Scotia, Canada.,3690Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
N Bissonnette J, Anderson TJ, McKearney KJ, Tibbo PG, Fisher DJ. Alteration of Resting Electroencephalography by Acute Caffeine Consumption in Early Phase Psychosis. Clin EEG Neurosci 2022; 53:326-334. [PMID: 34806929 PMCID: PMC9174578 DOI: 10.1177/15500594211057355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Individuals with schizophrenia use twice as much caffeine on average when compared to healthy controls. Knowing the high rates of consumption, and the potential negative effects of such, it is important we understand the cortical mechanisms that underlie caffeine use, and the consequences of caffeine use on neural circuits in this population. Using a randomized, placebo controlled, double-blind, repeated measures design, the current study examines caffeine's effects on resting electroencephalography (EEG) power in those who have been recently diagnosed with schizophrenia (SZ) compared to regular-using healthy controls (HC). Correlations between average caffeine consumption, withdrawal symptoms, drug related symptoms and clinical psychosis symptoms were measured and significant correlations with neurophysiological data were examined. Results showed caffeine had no effect on alpha asymmetry in the SZ group, although caffeine produced a more global effect on the reduction of alpha2 power in the SZ group. Further, those with more positive symptoms were found to have a greater reduction in alpha2 power following caffeine administration. Caffeine also reduced beta power during eyes closed and eyes open resting in HC, but only during eyes closed resting conditions in the SZ group. These findings provide a descriptive profile of the resting EEG state following caffeine administration in individuals with schizophrenia. The findings ultimately suggest caffeine does not affect alpha or beta power as readily in this population and a higher dose may be needed to achieve the desired effects, which may elucidate motivational factors for high caffeine use.
Collapse
Affiliation(s)
- Jenna N Bissonnette
- Department of Psychiatry, 3688Dalhousie University, Halifax, Nova Scotia, Canada
| | - T-Jay Anderson
- Department of Psychology, 3684Mount Saint Vincent University, Halifax, Nova Scotia, Canada.,Department of Psychology & Neuroscience, 3688Dalhousie University, Halifax, Nova Scotia, Canada
| | - Katelyn J McKearney
- Department of Psychology & Neuroscience, 3688Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology, 3690Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Philip G Tibbo
- Department of Psychiatry, 3688Dalhousie University, Halifax, Nova Scotia, Canada
| | - Derek J Fisher
- Department of Psychiatry, 3688Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology, 3684Mount Saint Vincent University, Halifax, Nova Scotia, Canada.,Department of Psychology & Neuroscience, 3688Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology, 3690Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022; 137:104651. [PMID: 35367512 PMCID: PMC9119927 DOI: 10.1016/j.neubiorev.2022.104651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Evidence that glial cells influence behavior has been gaining a steady foothold in scientific literature. Out of the five main subtypes of glial cells in the brain, astrocytes and microglia have received an outsized share of attention with regard to shaping a wide spectrum of behavioral phenomena and there is growing appreciation that the signals intrinsic to these cells as well as their interactions with surrounding neurons reflect behavioral history in a brain region-specific manner. Considerable regional diversity of glial cell phenotypes is beginning to be recognized and may contribute to behavioral outcomes arising from circuit-specific computations within and across discrete brain nuclei. Here, we summarize current knowledge on the impact of astrocyte and microglia activity on behavioral outcomes, with a specific focus on brain areas relevant to higher cognitive control, reward-seeking, and circadian regulation.
Collapse
Affiliation(s)
- P I Ortinski
- Department of Neuroscience, University of Kentucky, USA
| | - K J Reissner
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, USA
| | - J Turner
- Department of Pharmaceutical Sciences, University of Kentucky, USA
| | - T A Anderson
- Department of Neuroscience, University of Kentucky, USA
| | - A Scimemi
- Department of Biology, State University of New York at Albany, USA
| |
Collapse
|
9
|
Fernández-Dueñas V, Bonaventura J, Aso E, Luján R, Ferré S, Ciruela F. Overcoming the Challenges of Detecting GPCR Oligomerization in the Brain. Curr Neuropharmacol 2022; 20:1035-1045. [PMID: 34736381 PMCID: PMC9886828 DOI: 10.2174/1570159x19666211104145727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest group of membrane receptor proteins controlling brain activity. Accordingly, GPCRs are the main target of commercial drugs for most neurological and neuropsychiatric disorders. One of the mechanisms by which GPCRs regulate neuronal function is by homo- and heteromerization, with the establishment of direct protein-protein interactions between the same and different GPCRs. The occurrence of GPCR homo- and heteromers in artificial systems is generally well accepted, but more specific methods are necessary to address GPCR oligomerization in the brain. Here, we revise some of the techniques that have mostly contributed to reveal GPCR oligomers in native tissue, which include immunogold electron microscopy, proximity ligation assay (PLA), resonance energy transfer (RET) between fluorescent ligands and the Amplified Luminescent Proximity Homogeneous Assay (ALPHA). Of note, we use the archetypical GPCR oligomer, the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer as an example to illustrate the implementation of these techniques, which can allow visualizing GPCR oligomers in the human brain under normal and pathological conditions. Indeed, GPCR oligomerization may be involved in the pathophysiology of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Víctor Fernández-Dueñas
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain;,Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L’Hospitalet de Llobregat, Spain;,Address correspondence to these authors at the Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain; E-mails: ,
| | - Jordi Bonaventura
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain;,Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L’Hospitalet de Llobregat, Spain
| | - Ester Aso
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain;,Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L’Hospitalet de Llobregat, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain;,Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L’Hospitalet de Llobregat, Spain;,Address correspondence to these authors at the Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain; E-mails: ,
| |
Collapse
|
10
|
Apostolakopoulou XA, Kontopoulou L, Karpetas GE, Marakis G, Vasara E, Katsaras IG, Maraki Z, Papathanasiou IV, Bonotis KS. Sugars, Alcohol, and Caffeine Intake From Drinks Among Outpatients With Mental Health Disorders in Greece: A Pilot Study. Cureus 2022; 14:e21563. [PMID: 35228922 PMCID: PMC8873368 DOI: 10.7759/cureus.21563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background and aim Excessive intake of sugars and energy from drinks has been postulated to increase the risk of obesity, which may in turn be associated with mental health disorders. In addition, excessive intakes of alcohol and caffeine may co-occur with psychiatric disorders. The purpose of the present pilot study was to estimate energy, sugar, caffeine, and alcohol intakes through the consumption of drinks in patients with schizophrenia and affective disorders and assess potential differences in drink consumption between the two disorders. Methodology The current study included 89 outpatients with schizophrenia (n = 36) and affective disorders (n = 53) attending the psychiatric clinic of the University General Hospital of Larissa (UGHL) in Greece. In addition to anthropometric measurements, the patients were asked to complete a specific, previously validated questionnaire on the frequency of drink consumption in order to estimate sugar, caffeine, and alcohol intakes. Results The participants had a mean body mass index (BMI) of 28.9 ± 5.6 kg/m2 without significant differences between the two types of mental disorders. Similarly, the mean waist circumference (102.6 ± 15.7 cm) and mean body fat percentage (32.9% ± 10.8%) were above the recommended values. The total energy intake from drinks was more than a third of the estimated daily energy requirements. Although there was no significant difference in the mean daily caffeine intake, those with affective disorders had a significantly higher intake of sugars from drinks (median (Mdn) = 80.0 (interquartile range (IQR) = 89.8) g/day) and alcohol (Mdn = 45.6 (IQR = 31.1) g/day), compared to those with schizophrenia (Mdn = 60.0 (IQR = 45.4) g/day and Mdn = 24.9 (IQR = 19.8) g/day, respectively). Conclusions Considering the link between high sugar and alcohol intake with excess body weight and mental health, these preliminary data are of particular concern and point to the need for better dietary counseling in order to improve the dietary behaviors of these patients.
Collapse
|
11
|
Grady FS, Boes AD, Geerling JC. A Century Searching for the Neurons Necessary for Wakefulness. Front Neurosci 2022; 16:930514. [PMID: 35928009 PMCID: PMC9344068 DOI: 10.3389/fnins.2022.930514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Wakefulness is necessary for consciousness, and impaired wakefulness is a symptom of many diseases. The neural circuits that maintain wakefulness remain incompletely understood, as do the mechanisms of impaired consciousness in many patients. In contrast to the influential concept of a diffuse "reticular activating system," the past century of neuroscience research has identified a focal region of the upper brainstem that, when damaged, causes coma. This region contains diverse neuronal populations with different axonal projections, neurotransmitters, and genetic identities. Activating some of these populations promotes wakefulness, but it remains unclear which specific neurons are necessary for sustaining consciousness. In parallel, pharmacological evidence has indicated a role for special neurotransmitters, including hypocretin/orexin, histamine, norepinephrine, serotonin, dopamine, adenosine and acetylcholine. However, genetically targeted experiments have indicated that none of these neurotransmitters or the neurons producing them are individually necessary for maintaining wakefulness. In this review, we emphasize the need to determine the specific subset of brainstem neurons necessary for maintaining arousal. Accomplishing this will enable more precise mapping of wakefulness circuitry, which will be useful in developing therapies for patients with coma and other disorders of arousal.
Collapse
Affiliation(s)
- Fillan S Grady
- Geerling Laboratory, Department of Neurology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, United States
| | - Aaron D Boes
- Boes Laboratory, Departments of Pediatrics, Neurology, and Psychiatry, The University of Iowa, Iowa City, IA, United States
| | - Joel C Geerling
- Geerling Laboratory, Department of Neurology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
12
|
Prasad K, de Vries EFJ, Elsinga PH, Dierckx RAJO, van Waarde A. Allosteric Interactions between Adenosine A 2A and Dopamine D 2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. Int J Mol Sci 2021; 22:ijms22041719. [PMID: 33572077 PMCID: PMC7915359 DOI: 10.3390/ijms22041719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor–receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson’s disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, C.Heymanslaan 10, 9000 Gent, Belgium
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| |
Collapse
|
13
|
Turco CV, Arsalan SO, Nelson AJ. The Influence of Recreational Substance Use in TMS Research. Brain Sci 2020; 10:E751. [PMID: 33080965 PMCID: PMC7603156 DOI: 10.3390/brainsci10100751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Transcranial magnetic stimulation (TMS) approaches are widely used to study cortical and corticospinal function. However, responses to TMS are subject to significant intra-and inter-individual variability. Acute and chronic exposure to recreational substances alters the excitability of the sensorimotor system and may contribute to the variability in TMS outcome measures. The increasing prevalence of recreational substance use poses a significant challenge for executing TMS studies, but there is a lack of clarity regarding the influence of these substances on sensorimotor function. (2) Methods: The literature investigating the influence of alcohol, nicotine, caffeine and cannabis on TMS outcome measures of corticospinal, intracortical and interhemispheric excitability was reviewed. (3) Results: Both acute and chronic use of recreational substances modulates TMS measures of excitability. Despite the abundance of research in this field, we identify knowledge gaps that should be addressed in future studies to better understand the influence of these substances on TMS outcomes. (4) Conclusions: This review highlights the need for TMS studies to take into consideration the history of participant substance use and to control for acute substance use prior to testing.
Collapse
Affiliation(s)
| | | | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (C.V.T.); (S.O.A.)
| |
Collapse
|
14
|
Baek EJ, Kim H, Basova LA, Rosander A, Kesby JP, Semenova S, Marcondes MCG. Sex differences and Tat expression affect dopaminergic receptor expression and response to antioxidant treatment in methamphetamine-sensitized HIV Tat transgenic mice. Neuropharmacology 2020; 178:108245. [PMID: 32783894 DOI: 10.1016/j.neuropharm.2020.108245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Methamphetamine (Meth) abuse is a common HIV comorbidity. Males and females differ in their patterns of Meth use, associated behaviors, and responses, but the underlying mechanisms and impact of HIV infection are unclear. Transgenic mice with inducible HIV-1 Tat protein in the brain (iTat) replicate many neurological aspects of HIV infection in humans. We previously showed that Tat induction enhances the Meth sensitization response associated with perturbation of the dopaminergic system, in male iTat mice. Here, we used the iTat mouse model to investigate sex differences in individual and interactive effects of Tat and Meth challenge on locomotor sensitization, brain expression of dopamine receptors (DRDs) and regulatory adenosine receptors (ADORAs). Because Meth administration increases the production of reactive oxygen species (ROS), we also determined whether the effects of Meth could be rescued by concomitant treatment with the ROS scavenger N-acetyl cysteine (NAC). After Meth sensitization and a 7-day abstinence period, groups of Tat+ and Tat-male and female mice were challenged with Meth in combination with NAC. We confirmed that Tat expression and Meth challenge suppressed DRD mRNA and protein in males and females' brains, and showed that females were particularly susceptible to the effects of Meth on D1-like and D2-like DRD subtypes and ADORAs. The expression of these markers differed strikingly between males and females, and between females in different phases of the estrous cycle, in a Tat -dependent manner. NAC attenuated Meth-induced locomotor sensitization and preserved DRD expression in all groups except for Tat + females. These data identify complex interactions between sex, Meth use, and HIV infection on addiction responses, with potential implications for the treatment of male and female Meth users in the context of HIV, especially those with cognitive disorders.
Collapse
Affiliation(s)
- Eun Ji Baek
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hahoon Kim
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Liana A Basova
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA
| | - Ashley Rosander
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - James P Kesby
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia; Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Maria Cecilia Garibaldi Marcondes
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA.
| |
Collapse
|
15
|
Massari CM, Constantino LC, Marques NF, Binder LB, Valle-León M, López-Cano M, Fernández-Dueñas V, Ciruela F, Tasca CI. Involvement of adenosine A 1 and A 2A receptors on guanosine-mediated anti-tremor effects in reserpinized mice. Purinergic Signal 2020; 16:379-387. [PMID: 32725400 DOI: 10.1007/s11302-020-09716-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) signs and symptoms regularly include tremor. Interestingly, the nucleoside guanosine (GUO) has already proven to be effective in reducing reserpine-induced tremulous jaw movements (TJMs) in rodent models, thus becoming a promising antiparkinsonian drug. Here, we aimed at revealing the mechanism behind GUO antiparkinsonian efficacy by assessing the role of adenosine A1 and A2A receptors (A1R and A2AR) on GUO-mediated anti-tremor effects in the reserpinized mouse model of PD. Reserpinized mice showed elevated reactive oxygen species (ROS) production and cellular membrane damage in striatal slices assessed ex vivo and GUO treatment reversed ROS production. Interestingly, while the simultaneous administration of sub-effective doses of GUO (5 mg/kg) and SCH58261 (0.01 mg/kg), an A2AR antagonist, precluded reserpine-induced TJMs, these were ineffective on reverting ROS production in ex vivo experiments. Importantly, GUO was able to reduce TJM and ROS production in reserpinized mouse lacking the A2AR, thus suggesting an A2AR-independent mechanism of GUO-mediated effects. Conversely, the administration of DPCPX (0.75 mg/kg), an A1R antagonist, completely abolished both GUO-mediated anti-tremor effects and blockade of ROS production. Overall, these results indicated that GUO anti-tremor and antioxidant effects in reserpinized mice were A1R dependent but A2AR independent, thus suggesting a differential participation of adenosine receptors in GUO-mediated effects.
Collapse
Affiliation(s)
- C M Massari
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - L C Constantino
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - N F Marques
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - L B Binder
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Valle-León
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultatde Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - M López-Cano
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultatde Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - V Fernández-Dueñas
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultatde Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - F Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultatde Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - C I Tasca
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil. .,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil. .,Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
16
|
The functional cooperation of 5-HT 1A and mGlu4R in HEK-293 cell line. Pharmacol Rep 2020; 72:1358-1369. [PMID: 32472388 PMCID: PMC7550284 DOI: 10.1007/s43440-020-00114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 10/28/2022]
Abstract
BACKGROUND The serotonin 5-HT1A receptor (5-HT1AR) and metabotropic glutamate receptor 4 (mGlu4) have been implicated as sites of antipsychotic drug action. 5-HT1AR belongs to the A class of G protein-coupled receptors (GPCRs); mGlu4 is a representative of class C GPCRs. Both receptors preferentially couple with Gi protein to inhibit cAMP formation. The present work aimed to examine the possibility of mGlu4 and 5-HT1A receptor cross-talk, the phenomenon that could serve as a molecular basis of the interaction of these receptor ligands observed in behavioral studies. METHODS First, in vitro studies were performed to examine the pharmacological modulation of interaction of the mGlu4 and 5-HT1A receptors in the T-REx 293 cell line using SNAP- or HALO-tag and cAMP accumulation assay. Next, the colocalization of these two receptors was examined in some regions of the mouse brain by applying RNAScope dual fluorescence in situ hybridization, immunohistochemical labeling, and proximity ligation assay (PLA). RESULTS The ex vivo and in vitro results obtained in the present work suggest the existence of interactions between mGlu4 and 5-HT1A receptors. The changes were observed in cAMP accumulation assay and were dependent on expression and activation of mGlu4R in T-REx 293cell line. Moreover, the existence of spots with proximity expression of both receptors were showed by PLA, immunofluorescence labeling and RNAscope methods. CONCLUSION The existence of interactions between mGlu4 and 5-HT1A receptors may represent another signaling pathway involved in the development and treatment psychiatric disorders such as schizophrenia or depression.
Collapse
|
17
|
Byeon JJ, Park MH, Shin SH, Park Y, Lee BI, Choi JM, Kim N, Park SJ, Park MJ, Lim JH, Na YG, Shin YG. In Vitro, In Silico, and In Vivo Assessments of Pharmacokinetic Properties of ZM241385. Molecules 2020; 25:molecules25051106. [PMID: 32131453 PMCID: PMC7179144 DOI: 10.3390/molecules25051106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease is one of the most common neurodegenerative diseases. Adenosine regulates the response to other neurotransmitters in the brain regions related to motor function. In the several subtypes of adenosine receptors, especially, adenosine 2A receptors (A2ARs) are involved in neurodegenerative conditions. ZM241385 is one of the selective non-xanthine A2AR antagonists with high affinity in the nanomolar range. This study describes the in vitro and in vivo pharmacokinetic properties of ZM241385 in rats. A liquid chromatography-quadrupole time-of-flight mass spectrometric (LC-qToF MS) method was developed for the determination of ZM241385 in rat plasma. In vivo IV administration studies showed that ZM241385 was rapidly eliminated in rats. However, the result of in vitro metabolic stability studies showed that ZM241385 had moderate clearance, suggesting that there is an extra clearance pathway in addition to hepatic clearance. In addition, in vivo PO administration studies demonstrated that ZM241385 had low exposure in rats. The results of semi-mass balance studies and the in silico PBPK modeling studies suggested that the low bioavailability of ZM241385 after oral administration in rats was due to the metabolism and by liver, kidney, and gut.
Collapse
|
18
|
Zyma M, Pawliczak R. Characteristics and the role of purinergic receptors in pathophysiology with focus on immune response. Int Rev Immunol 2020; 39:97-117. [PMID: 32037918 DOI: 10.1080/08830185.2020.1723582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleotide adenosine-5'-triphosphate (ATP) is mostly thought to be energy carrier, but evidence presented in multiple studies proves ATP involvement into variety of processes, due to its neuromodulatory capabilities. ATP and its metabolite-adenosine, bind to the purinergic receptors, which are divided into two types: adenosine binding P1 receptor and ADP/ATP binding P2 receptor. These receptors are expressed in different tissues and organs. Recent studies report their immunomodulatory characteristics, connected with varying immunological processes, such as immunological response or antigen presentation. Besides, they seem to play an important role in medical conditions such as bronchial asthma or variety of cancers. In this article, we would like to review recent discoveries on the field of purinergic receptors research focusing on their role in immunological system, and shed a new light upon the importance of these receptors in modern medicine development.
Collapse
Affiliation(s)
- Marharyta Zyma
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Alstadhaug KB, Andreou AP. Caffeine and Primary (Migraine) Headaches-Friend or Foe? Front Neurol 2019; 10:1275. [PMID: 31849829 PMCID: PMC6901704 DOI: 10.3389/fneur.2019.01275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The actions of caffeine as an antagonist of adenosine receptors have been extensively studied, and there is no doubt that both daily and sporadic dietary consumption of caffeine has substantial biological effects on the nervous system. Caffeine influences headaches, the migraine syndrome in particular, but how is unclear. Materials and Methods: This is a narrative review based on selected articles from an extensive literature search. The aim of this study is to elucidate and discuss how caffeine may affect the migraine syndrome and discuss the potential pathophysiological pathways involved. Results: Whether caffeine has any significant analgesic and/or prophylactic effect in migraine remains elusive. Neither is it clear whether caffeine withdrawal is an important trigger for migraine. However, withdrawal after chronic exposure of caffeine may cause migraine-like headache and a syndrome similar to that experienced in the prodromal phase of migraine. Sensory hypersensitivity however, does not seem to be a part of the caffeine withdrawal syndrome. Whether it is among migraineurs is unknown. From a modern viewpoint, the traditional vascular explanation of the withdrawal headache is too simplistic and partly not conceivable. Peripheral mechanisms can hardly explain prodromal symptoms and non-headache withdrawal symptoms. Several lines of evidence point at the hypothalamus as a locus where pivotal actions take place. Conclusion: In general, chronic consumption of caffeine seems to increase the burden of migraine, but a protective effect as an acute treatment or in severely affected patients cannot be excluded. Future clinical trials should explore the relationship between caffeine withdrawal and migraine, and investigate the effects of long-term elimination.
Collapse
Affiliation(s)
- Karl B. Alstadhaug
- Nordland Hospital Trust, Bodø, Norway
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Anna P. Andreou
- Headache Research, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- The Headache Centre, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
20
|
Martin K, Meeusen R, Thompson KG, Keegan R, Rattray B. Mental Fatigue Impairs Endurance Performance: A Physiological Explanation. Sports Med 2019; 48:2041-2051. [PMID: 29923147 DOI: 10.1007/s40279-018-0946-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mental fatigue reflects a change in psychobiological state, caused by prolonged periods of demanding cognitive activity. It has been well documented that mental fatigue impairs cognitive performance; however, more recently, it has been demonstrated that endurance performance is also impaired by mental fatigue. The mechanism behind the detrimental effect of mental fatigue on endurance performance is poorly understood. Variables traditionally believed to limit endurance performance, such as heart rate, lactate accumulation and neuromuscular function, are unaffected by mental fatigue. Rather, it has been suggested that the negative impact of mental fatigue on endurance performance is primarily mediated by the greater perception of effort experienced by mentally fatigued participants. Pageaux et al. (Eur J Appl Physiol 114(5):1095-1105, 2014) first proposed that prolonged performance of a demanding cognitive task increases cerebral adenosine accumulation and that this accumulation may lead to the higher perception of effort experienced during subsequent endurance performance. This theoretical review looks at evidence to support and extend this hypothesis.
Collapse
Affiliation(s)
- Kristy Martin
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia.
| | - Romain Meeusen
- Vrije Universiteit Brussel Human Performance Research Group, Brussels, Belgium
| | - Kevin G Thompson
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
- New South Wales Institute of Sport, Sydney, NSW, Australia
| | - Richard Keegan
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
| | - Ben Rattray
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
| |
Collapse
|
21
|
Lin CY, Lai HL, Chen HM, Siew JJ, Hsiao CT, Chang HC, Liao KS, Tsai SC, Wu CY, Kitajima K, Sato C, Khoo KH, Chern Y. Functional roles of ST8SIA3-mediated sialylation of striatal dopamine D 2 and adenosine A 2A receptors. Transl Psychiatry 2019; 9:209. [PMID: 31455764 PMCID: PMC6712005 DOI: 10.1038/s41398-019-0529-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/22/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023] Open
Abstract
Sialic acids are typically added to the end of glycoconjugates by sialyltransferases. Among the six ST8 α-N-acetyl-neuraminide α-2,8-sialyltransferases (ST8SIA) existing in adult brains, ST8SIA2 is a schizophrenia-associated gene. However, the in vivo substrates and physiological functions of most sialyltransferases are currently unknown. The ST8SIA3 is enriched in the striatum. Here, we showed that ablation of St8sia3 in mice (St8sia3-KO) led to fewer disialylated and trisialylated terminal glycotopes in the striatum of St8sia3-KO mice. Moreover, the apparent sizes of several striatum-enriched G-protein-coupled receptors (GPCRs) (including the adenosine A2A receptor (A2AR) and dopamine D1/D2 receptors (D1R and D2R)) were smaller in St8sia3-KO mice than in WT mice. A sialidase treatment removed the differences in the sizes of these molecules between St8sia3-KO and WT mice, confirming the involvement of sialylation. Expression of ST8SIA3 in the striatum of St8sia3-KO mice using adeno-associated viruses normalized the sizes of these proteins, demonstrating a direct role of ST8SIA3. The lack of ST8SIA3-mediated sialylation altered the distribution of these proteins in lipid rafts and the interaction between D2R and A2AR. Locomotor activity assays revealed altered pharmacological responses of St8sia3-KO mice to drugs targeting these receptors and verified that a greater population of D2R formed heteromers with A2AR in the striatum of St8sia3-KO mice. Since the A2AR-D2R heteromer is an important drug target for several basal ganglia diseases (such as schizophrenia and Parkinson's disease), the present study not only reveals a crucial role for ST8SIA3 in striatal functions but also provides a new drug target for basal ganglia-related diseases.
Collapse
Affiliation(s)
- Chien-Yu Lin
- 0000 0001 2287 1366grid.28665.3fInstitute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsing-Lin Lai
- 0000 0001 2287 1366grid.28665.3fInstitute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- 0000 0001 2287 1366grid.28665.3fInstitute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jing Siew
- 0000 0001 2287 1366grid.28665.3fInstitute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,0000 0001 0425 5914grid.260770.4Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Cheng-Te Hsiao
- 0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hua-Chien Chang
- 0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuo-Shiang Liao
- 0000 0001 2287 1366grid.28665.3fGenomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Chieh Tsai
- grid.36020.37Department of Research and Development, National Laboratory Animal Center, National Applied Research Laboratories, Taipei and Tainan, Taipei, Taiwan
| | - Chung-Yi Wu
- 0000 0001 2287 1366grid.28665.3fGenomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ken Kitajima
- 0000 0001 0943 978Xgrid.27476.30Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-860 Japan
| | - Chihiro Sato
- 0000 0001 0943 978Xgrid.27476.30Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-860 Japan
| | - Kay-Hooi Khoo
- 0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
22
|
Janse van Rensburg HD, Legoabe LJ, Terre'Blanche G, Van der Walt MM. Methoxy substituted 2-benzylidene-1-indanone derivatives as A 1 and/or A 2A AR antagonists for the potential treatment of neurological conditions. MEDCHEMCOMM 2019; 10:300-309. [PMID: 30881617 PMCID: PMC6390816 DOI: 10.1039/c8md00540k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/06/2019] [Indexed: 12/19/2022]
Abstract
A prior study reported on hydroxy substituted 2-benzylidene-1-indanone derivatives as A1 and/or A2A antagonists for the potential treatment of neurological conditions. A lead compound (1a) was identified with both A1 and A2A affinity in the micromolar range. The current study explored the structurally related methoxy substituted 2-benzylidene-1-indanone derivatives with various substitutions on ring A and B of the benzylidene indanone scaffold in order to enhance A1 and A2A affinity. This led to compounds with both A1 and A2A affinity in the nanomolar range, namely 2c (A1 K i (rat) = 41 nM; A2A K i (rat) = 97 nM) with C4-OCH3 substitution on ring A together with meta (3') hydroxy substitution on ring B and 2e (A1 K i (rat) = 42 nM; A2A K i (rat) = 78 nM) with C4-OCH3 substitution on ring A together with meta (3') and para (4') dihydroxy substitution on ring B. Additionally, 2c is an A1 antagonist. Consequently, the methoxy substituted 2-benzylidene-1-indanone scaffold is highly promising for the design of novel A1 and A2A antagonists.
Collapse
Affiliation(s)
- Helena D Janse van Rensburg
- Pharmaceutical Chemistry , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa .
| | - Gisella Terre'Blanche
- Pharmaceutical Chemistry , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa
- Centre of Excellence for Pharmaceutical Sciences , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa .
| | - Mietha M Van der Walt
- Centre of Excellence for Pharmaceutical Sciences , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa .
| |
Collapse
|
23
|
Abstract
Although self-injurious behavior is a common comorbid behavior problem among individuals with neurodevelopmental disorders, little is known about its etiology and underlying neurobiology. Interestingly, it shows up in various forms across patient groups with distinct genetic errors and diagnostic categories. This suggests that there may be shared neuropathology that confers vulnerability in these disparate groups. Convergent evidence from clinical pharmacotherapy, brain imaging studies, postmortem neurochemical analyses, and animal models indicates that dopaminergic insufficiency is a key contributing factor. This chapter provides an overview of studies in which animal models have been used to investigate the biochemical basis of self-injury and highlights the convergence in findings between these models and expression of self-injury in humans.
Collapse
Affiliation(s)
- Darragh P Devine
- Behavioral and Cognitive Neuroscience Program, Department of Psychology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Poleszak E, Szopa A, Bogatko K, Wyska E, Wośko S, Świąder K, Doboszewska U, Wlaź A, Wróbel A, Wlaź P, Serefko A. Antidepressant-Like Activity of Typical Antidepressant Drugs in the Forced Swim Test and Tail Suspension Test in Mice Is Augmented by DMPX, an Adenosine A 2A Receptor Antagonist. Neurotox Res 2018; 35:344-352. [PMID: 30267268 PMCID: PMC6331646 DOI: 10.1007/s12640-018-9959-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 01/06/2023]
Abstract
Unsatisfactory therapeutic effects of currently used antidepressants force to search for new pharmacological treatment strategies. Recent research points to the relationship between depressive disorders and the adenosinergic system. Therefore, the main goal of our studies was to evaluate the effects of DMPX (3 mg/kg, i.p.), which possesses selectivity for adenosine A2A receptors versus A1 receptors, on the activity of imipramine (15 mg/kg, i.p.), escitalopram (2.5 mg/kg, i.p.), and reboxetine (2 mg/kg, i.p.) given in subtherapeutic doses. The studies carried out using the forced swim and tail suspension tests in mice showed that DMPX at a dose of 6 and 12 mg/kg exerts antidepressant-like effect and does not affect the locomotor activity. Co-administration of DMPX at a dose of 3 mg/kg with the studied antidepressant drugs caused the reduction of immobility time in both behavioral tests. The observed effect was not associated with an increase in the locomotor activity. To evaluate whether the observed effects were due to a pharmacokinetic/pharmacodynamic interaction, the levels of the antidepressants in blood and brain were measured using high-performance liquid chromatography. It can be assumed that the interaction between DMPX and imipramine was exclusively pharmacodynamic in nature, whereas an increased antidepressant activity of escitalopram and reboxetine was at least partly related to its pharmacokinetic interaction with DMPX.
Collapse
Affiliation(s)
- Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland.
| | - Aleksandra Szopa
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland.
| | - Karolina Bogatko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688, Kraków, Poland
| | - Sylwia Wośko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Katarzyna Świąder
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL 20-090, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| |
Collapse
|
25
|
Haab Lutte A, Huppes Majolo J, Reali Nazario L, Da Silva RS. Early exposure to ethanol is able to affect the memory of adult zebrafish: Possible role of adenosine. Neurotoxicology 2018; 69:17-22. [PMID: 30157450 DOI: 10.1016/j.neuro.2018.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022]
Abstract
Ethanol is one of the most widely consumed drugs in the world, and the effects of ethanol during early development include morphological and cognitive problems. The regulation of adenosine levels is essential for the proper function of major neurotransmitter systems in the brain, particularly glutamate and dopamine; thus, the investigation of the relation of adenosine and memory after early ethanol exposure becomes relevant. Embryos of zebrafish were exposed to 1% ethanol during two distinct developmental stages: gastrula/segmentation or pharyngula. The evaluation of memory, morphology, and locomotor parameters was performed when fish were 3 months old. The effect of ecto-5'-nucleotidase and adenosine deaminase inhibition on the consequences of ethanol exposure with regard to memory formation was observed. Morphological evaluation showed decreases in body length and the relative telencephalic and cerebellar areas in ethanol exposed animals. The locomotor parameters evaluated were not affected by ethanol. In the inhibitory avoidance paradigm, ethanol exposure during the gastrula/segmentation and pharyngula stages decreased zebrafish memory retention. When ethanol was given in the pharyngula stage, the inhibition of ecto-5'-nucleotidase in the acquisition phase of memory tests was able to revert the effects of ethanol on the memory of adults. These findings suggest that the increased adenosine levels caused by ethanol could alter the neuromodulation of important components of memory formation, such as neurotransmitters. The adjustment of adenosine levels through ecto-5'-nucleotidase inhibition appears to be effective at restoring normal adenosine levels and the acquisition of memory in animals exposed to ethanol during the pharyngula stage.
Collapse
Affiliation(s)
- Aline Haab Lutte
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Huppes Majolo
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza Reali Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Beach KM, Hung LF, Arumugam B, Smith EL, Ostrin LA. Adenosine receptor distribution in Rhesus monkey ocular tissue. Exp Eye Res 2018; 174:40-50. [PMID: 29792846 DOI: 10.1016/j.exer.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/26/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
Adenosine receptor (ADOR) antagonists, such as 7-methylxanthine (7-MX), have been shown to slow myopia progression in humans and animal models. Adenosine receptors are found throughout the body, and regulate the release of neurotransmitters such as dopamine and glutamate. However, the role of adenosine in eye growth is unclear. Evidence suggests that 7-MX increases scleral collagen fibril diameter, hence preventing axial elongation. This study used immunohistochemistry (IHC) and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) to examine the distribution of the four ADORs in the normal monkey eye to help elucidate potential mechanisms of action. Eyes were enucleated from six Rhesus monkeys. Anterior segments and eyecups were separated into components and flash-frozen for RNA extraction or fixed in 4% paraformaldehyde and processed for immunohistochemistry against ADORA1, ADORA2a, ADORA2b, and ADORA3. RNA was reverse-transcribed, and qPCR was performed using custom primers. Relative gene expression was calculated using the ΔΔCt method normalizing to liver expression, and statistical analysis was performed using Relative Expression Software Tool. ADORA1 immunostaining was highest in the iris sphincter muscle, trabecular meshwork, ciliary epithelium, and retinal nerve fiber layer. ADORA2a immunostaining was highest in the corneal epithelium, trabecular meshwork, ciliary epithelium, retinal nerve fiber layer, and scleral fibroblasts. ADORA2b immunostaining was highest in corneal basal epithelium, limbal stem cells, iris sphincter, ciliary muscle, ciliary epithelium, choroid, isolated retinal ganglion cells and scattered scleral fibroblasts. ADORA3 immunostaining was highest in the iris sphincter, ciliary muscle, ciliary epithelium, choroid, isolated retinal ganglion cells, and scleral fibroblasts. Compared to liver mRNA, ADORA1 mRNA was significantly higher in the brain, retina and choroid, and significantly lower in the iris/ciliary body. ADORA2a expression was higher in brain and retina, ADORA2b expression was higher in retina, and ADORA3 was higher in the choroid. In conclusion, immunohistochemistry and RT-qPCR indicated differential patterns of expression of the four adenosine receptors in the ocular tissues of the normal non-human primate. The presence of ADORs in scleral fibroblasts and the choroid may support mechanisms by which ADOR antagonists prevent myopia. The potential effects of ADOR inhibition on both anterior and posterior ocular structures warrant investigation.
Collapse
Affiliation(s)
- Krista M Beach
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Li-Fang Hung
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Baskar Arumugam
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Earl L Smith
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Lisa A Ostrin
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA.
| |
Collapse
|
27
|
Ferré S, Bonaventura J, Zhu W, Hatcher-Solis C, Taura J, Quiroz C, Cai NS, Moreno E, Casadó-Anguera V, Kravitz AV, Thompson KR, Tomasi DG, Navarro G, Cordomí A, Pardo L, Lluís C, Dessauer CW, Volkow ND, Casadó V, Ciruela F, Logothetis DE, Zwilling D. Essential Control of the Function of the Striatopallidal Neuron by Pre-coupled Complexes of Adenosine A 2A-Dopamine D 2 Receptor Heterotetramers and Adenylyl Cyclase. Front Pharmacol 2018; 9:243. [PMID: 29686613 PMCID: PMC5900444 DOI: 10.3389/fphar.2018.00243] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/05/2018] [Indexed: 01/10/2023] Open
Abstract
The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating "Go" responses upon exposure to reward-related stimuli and "NoGo" responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes. The striatopallidal neuron selectively expresses dopamine D2 receptors (D2R) and adenosine A2A receptors (A2AR), and numerous experiments using multiple genetic and pharmacological in vitro, in situ and in vivo approaches, demonstrate they can form A2AR-D2R heteromers. It was initially assumed that different pharmacological interactions between dopamine and adenosine receptor ligands indicated the existence of different subpopulations of A2AR and D2R in the striatopallidal neuron. However, as elaborated in the present essay, most evidence now indicates that all interactions can be explained with a predominant population of striatal A2AR-D2R heteromers forming complexes with adenylyl cyclase subtype 5 (AC5). The A2AR-D2R heteromer has a tetrameric structure, with two homodimers, which allows not only multiple allosteric interactions between different orthosteric ligands, agonists, and antagonists, but also the canonical Gs-Gi antagonistic interaction at the level of AC5. We present a model of the function of the A2AR-D2R heterotetramer-AC5 complex, which acts as an integrative device of adenosine and dopamine signals that determine the excitability and gene expression of the striatopallidal neurons. The model can explain most behavioral effects of A2AR and D2R ligands, including the psychostimulant effects of caffeine. The model is also discussed in the context of different functional striatal compartments, mainly the dorsal and the ventral striatum. The current accumulated knowledge of the biochemical properties of the A2AR-D2R heterotetramer-AC5 complex offers new therapeutic possibilities for Parkinson's disease, schizophrenia, SUD and other neuropsychiatric disorders with dysfunction of dorsal or ventral striatopallidal neurons.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Jordi Bonaventura
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Wendy Zhu
- Circuit Therapeutics, Inc., Menlo Park, CA, United States
| | - Candice Hatcher-Solis
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Jaume Taura
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Ning-Sheng Cai
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Estefanía Moreno
- Center for Biomedical Research in Neurodegenerative Diseases Network, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Verónica Casadó-Anguera
- Center for Biomedical Research in Neurodegenerative Diseases Network, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Alexxai V Kravitz
- Eating and Addiction Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Intramural Research Program, National Institutes of Health, Bethesda, MD, United States
| | | | - Dardo G Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, National Institutes of Health, Rockville, MD, United States
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Arnau Cordomí
- Laboratory of Computational Medicine, School of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Leonardo Pardo
- Laboratory of Computational Medicine, School of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Carme Lluís
- Center for Biomedical Research in Neurodegenerative Diseases Network, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, National Institutes of Health, Rockville, MD, United States
| | - Vicent Casadó
- Center for Biomedical Research in Neurodegenerative Diseases Network, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
| | | |
Collapse
|
28
|
Abstract
Psychiatrists rarely enquire about caffeine intake when assessing patients. This may lead to a failure to identify caffeine-related problems and offer appropriate interventions. Excessive caffeine ingestion leads to symptoms that overlap with those of many psychiatric disorders. Caffeine is implicated in the exacerbation of anxiety and sleep disorders, and people with eating disorders often misuse it. It antagonises adenosine receptors, which may potentiate dopaminergic activity and exacerbate psychosis. In psychiatric in-patients, caffeine has been found to increase anxiety, hostility and psychotic symptoms. Assessment of caffeine intake should form part of routine psychiatric assessment and should be carried out before prescribing hypnotics. Gradual reduction in intake or gradual substitution with caffeine-free alternatives is probably preferable to abrupt cessation. Decaffeinated beverages should be provided on psychiatric wards.
Collapse
|
29
|
Taura J, Valle-León M, Sahlholm K, Watanabe M, Van Craenenbroeck K, Fernández-Dueñas V, Ferré S, Ciruela F. Behavioral control by striatal adenosine A 2A -dopamine D 2 receptor heteromers. GENES BRAIN AND BEHAVIOR 2017; 17:e12432. [PMID: 29053217 DOI: 10.1111/gbb.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/30/2017] [Accepted: 10/14/2017] [Indexed: 01/13/2023]
Abstract
G protein-coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A2A receptors (A2A R) and dopamine D2 receptors (D2 R) predominantly form A2A R-D2 R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A2A R and D2 R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain-related differences, a new D2 R-deficient mouse with the same genetic background (CD-1) than the A2A R knock-out mouse was generated. Locomotor activity, pre-pulse inhibition (PPI) and drug-induced catalepsy were then evaluated in wild-type, A2A R and D2 R knock-out mice, with and without the concomitant administration of either the D2 R agonist sumanirole or the A2A R antagonist SCH442416. SCH442416-mediated locomotor effects were demonstrated to be dependent on D2 R signaling. Similarly, a significant dependence on A2A R signaling was observed for PPI and for haloperidol-induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A2A R-D2 R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- J Taura
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - M Valle-León
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - K Sahlholm
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - M Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - K Van Craenenbroeck
- Laboratory of GPCR Expression and Signal Transduction, Ghent University, Ghent, Belgium
| | - V Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - S Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - F Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Acton D, Miles GB. Gliotransmission and adenosinergic modulation: insights from mammalian spinal motor networks. J Neurophysiol 2017; 118:3311-3327. [PMID: 28954893 DOI: 10.1152/jn.00230.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Astrocytes are proposed to converse with neurons at tripartite synapses, detecting neurotransmitter release and responding with release of gliotransmitters, which in turn modulate synaptic strength and neuronal excitability. However, a paucity of evidence from behavioral studies calls into question the importance of gliotransmission for the operation of the nervous system in healthy animals. Central pattern generator (CPG) networks in the spinal cord and brain stem coordinate the activation of muscles during stereotyped activities such as locomotion, inspiration, and mastication and may therefore provide tractable models in which to assess the contribution of gliotransmission to behaviorally relevant neural activity. We review evidence for gliotransmission within spinal locomotor networks, including studies indicating that adenosine derived from astrocytes regulates the speed of locomotor activity via metamodulation of dopamine signaling.
Collapse
Affiliation(s)
- David Acton
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife , United Kingdom
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife , United Kingdom
| |
Collapse
|
31
|
Janse van Rensburg HD, Terre'Blanche G, van der Walt MM, Legoabe LJ. 5-Substituted 2-benzylidene-1-tetralone analogues as A 1 and/or A 2A antagonists for the potential treatment of neurological conditions. Bioorg Chem 2017; 74:251-259. [PMID: 28881253 DOI: 10.1016/j.bioorg.2017.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023]
Abstract
Adenosine A1 and A2A receptors are attracting great interest as drug targets for their role in cognitive and motor deficits, respectively. Antagonism of both these adenosine receptors may offer therapeutic benefits in complex neurological diseases, such as Alzheimer's and Parkinson's disease. The aim of this study was to explore the affinity and selectivity of 2-benzylidene-1-tetralone derivatives as adenosine A1 and A2A receptor antagonists. Several 5-hydroxy substituted 2-benzylidene-1-tetralone analogues with substituents on ring B were synthesized and assessed as antagonists of the adenosine A1 and A2A receptors via radioligand binding assays. The results indicated that hydroxy substitution in the meta and para position of phenyl ring B, displayed the highest selectivity and affinity for the adenosine A1 receptor with Ki values in the low micromolar range. Replacement of ring B with a 2-amino-pyrimidine moiety led to compound 12 with an increase of affinity and selectivity for the adenosine A2A receptor. These substitution patterns led to enhanced adenosine A1 and A2A receptor binding affinity. The para-substituted 5-hydroxy analogue 3 behaved as an adenosine A1 receptor antagonists in a GTP shift assay performed with rat whole brain membranes expressing adenosine A1 receptors. In conclusion, compounds 3 and 12, showed the best adenosine A1 and A2A receptor affinity respectively, and therefore represent novel adenosine receptor antagonists that may have potential with further structural modifications as drug candidates for neurological disorders.
Collapse
Affiliation(s)
- H D Janse van Rensburg
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - G Terre'Blanche
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - M M van der Walt
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - L J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
32
|
Legoabe LJ, Van der Walt MM, Terre'Blanche G. Evaluation of 2-benzylidene-1-tetralone derivatives as antagonists of A 1 and A 2A adenosine receptors. Chem Biol Drug Des 2017; 91:234-244. [PMID: 28734058 DOI: 10.1111/cbdd.13074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/11/2017] [Accepted: 07/08/2017] [Indexed: 11/29/2022]
Abstract
Antagonists of the adenosine receptors (A1 and A2A ) are thought to be beneficial in neurological disorders, such as Alzheimer's and Parkinson's disease. The aim of this study was to explore 2-benzylidene-1-tetralone derivatives as antagonists of A1 and/or A2A adenosine receptors. In general, the test compounds were found to be selective for the A1 adenosine receptor, with only three test compounds possessing affinity for both the A1 and A2A adenosine receptor. The 2-benzylidene-1-tetralones bearing a hydroxyl substituent at either position C5, C6 or C7 of ring A displayed favourable adenosine A1 receptor binding, while C5 hydroxy substitution led to favourable A2A adenosine receptor affinity. Interestingly, para-hydroxy substitution on ring B in combination with ring A bearing a hydroxy at position C6 or C7 provided the 2-benzylidene-1-tetralones with both A1 and A2A adenosine receptor affinity. Compounds 4 and 8 displayed the highest A1 and A2A adenosine receptor affinity with values below 7 μm. Both these compounds behaved as A1 adenosine receptor antagonists in the performed GTP shift assays. In conclusion, the 2-benzylidene-1-tetralone derivatives can be considered as lead compounds to design a new class of dual acting adenosine A1 /A2A receptor antagonists that may have potential in treating both dementia and locomotor deficits in Parkinson's disease.
Collapse
Affiliation(s)
- Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Mietha M Van der Walt
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa.,Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| |
Collapse
|
33
|
Evolution of the HIV-1 transgenic rat: utility in assessing the progression of HIV-1-associated neurocognitive disorders. J Neurovirol 2017; 24:229-245. [PMID: 28730408 DOI: 10.1007/s13365-017-0544-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/05/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022]
Abstract
Understanding the progression of HIV-1-associated neurocognitive disorders (HAND) is a critical need as the prevalence of HIV-1 in older individuals (>50 years) is markedly increasing due to the great success of combination antiretroviral therapy (cART). Longitudinal experimental designs, in comparison to cross-sectional studies, provide an opportunity to establish age-related disease progression in HAND. The HIV-1 transgenic (Tg) rat, which has been promoted for investigating the effect of long-term HIV-1 viral protein exposure, was used to examine two interrelated goals. First, to establish the integrity of sensory and motor systems through the majority of the animal's functional lifespan. Strong evidence for intact sensory and motor system function through advancing age in HIV-1 Tg and control animals was observed in cross-modal prepulse inhibition (PPI) and locomotor activity. The integrity of sensory and motor system function suggested the utility of the HIV-1 Tg rat in investigating the progression of HAND. Second, to assess the progression of neurocognitive impairment, including temporal processing and long-term episodic memory, in the HIV-1 Tg rat; the factor of biological sex was integral to the experimental design. Cross-modal PPI revealed significant alterations in the development of temporal processing in HIV-1 Tg animals relative to controls; alterations which were more pronounced in female HIV-1 Tg rats relative to male HIV-1 Tg rats. Locomotor activity revealed deficits in intrasession habituation, suggestive of a disruption in long-term episodic memory, in HIV-1 Tg animals. Understanding the progression of HAND heralds an opportunity for the development of an advantageous model of progressive neurocognitive deficits in HIV-1 and establishes fundamental groundwork for the development of neurorestorative treatments.
Collapse
|
34
|
Khadrawy YA, Salem AM, El-Shamy KA, Ahmed EK, Fadl NN, Hosny EN. Neuroprotective and Therapeutic Effect of Caffeine on the Rat Model of Parkinson's Disease Induced by Rotenone. J Diet Suppl 2017; 14:553-572. [PMID: 28301304 DOI: 10.1080/19390211.2016.1275916] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate the protective and therapeutic effects of caffeine on rotenone-induced rat model of Parkinson's disease (PD). Rats were divided into control, PD model induced by rotenone (1.5 mg/kg intraperitoneally (i.p.) for 45 days), protected group injected with caffeine (30 mg/kg, i.p.) and rotenone for 45 days (during the development of PD model), and treated group injected with caffeine (30 mg/kg, i.p.) for 45 days after induction of PD model. The data revealed a state of oxidative and nitrosative stress in the midbrain and the striatum of animal model of PD as indicated from the increased lipid peroxidation and nitric oxide levels and the decreased reduced glutathione level and activities of glutathione-S-transferase and superoxide dismutase. Rotenone induced a decrease in acetylcholinesterase and Na+/K+-ATPase activities and an increase in tumor necrosis factor-α level in the midbrain and the striatum. Protection and treatment with caffeine ameliorated the oxidative stress and the changes in acetylcholinesterase and Na+/K+-ATPase activities induced by rotenone in the midbrain and the striatum. This was associated with improvement in the histopathological changes induced in the two areas of PD model. Caffeine protection and treatment restored the depletion of midbrain and striatal dopamine induced by rotenone and prevented decline in motor activities (assessed by open field test) and muscular strength (assessed by traction and hanging tests) and improved norepinephrine level in the two areas. The present study showed that caffeine offered a significant neuroprotection and treatment against neurochemical, histopathological, and behavioral changes in a rotenone-induced rat model of PD.
Collapse
Affiliation(s)
- Yasser A Khadrawy
- a Medical Physiology Department , Medical Division, National Research Centre , Giza , Egypt
| | - Ahmed M Salem
- b Biochemistry Department , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Karima A El-Shamy
- a Medical Physiology Department , Medical Division, National Research Centre , Giza , Egypt
| | - Emad K Ahmed
- b Biochemistry Department , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Nevein N Fadl
- a Medical Physiology Department , Medical Division, National Research Centre , Giza , Egypt
| | - Eman N Hosny
- a Medical Physiology Department , Medical Division, National Research Centre , Giza , Egypt
| |
Collapse
|
35
|
Ferré S. Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders. Psychopharmacology (Berl) 2016; 233:1963-79. [PMID: 26786412 PMCID: PMC4846529 DOI: 10.1007/s00213-016-4212-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND The psychostimulant properties of caffeine are reviewed and compared with those of prototypical psychostimulants able to cause substance use disorders (SUD). Caffeine produces psychomotor-activating, reinforcing, and arousing effects, which depend on its ability to disinhibit the brake that endogenous adenosine imposes on the ascending dopamine and arousal systems. OBJECTIVES A model that considers the striatal adenosine A2A-dopamine D2 receptor heteromer as a key modulator of dopamine-dependent striatal functions (reward-oriented behavior and learning of stimulus-reward and reward-response associations) is introduced, which should explain most of the psychomotor and reinforcing effects of caffeine. HIGHLIGHTS The model can explain the caffeine-induced rotational behavior in rats with unilateral striatal dopamine denervation and the ability of caffeine to reverse the adipsic-aphagic syndrome in dopamine-deficient rodents. The model can also explain the weaker reinforcing effects and low abuse liability of caffeine, compared with prototypical psychostimulants. Finally, the model can explain the actual major societal dangers of caffeine: the ability of caffeine to potentiate the addictive and toxic effects of drugs of abuse, with the particularly alarming associations of caffeine (as adulterant) with cocaine, amphetamine derivatives, synthetic cathinones, and energy drinks with alcohol, and the higher sensitivity of children and adolescents to the psychostimulant effects of caffeine and its potential to increase vulnerability to SUD. CONCLUSIONS The striatal A2A-D2 receptor heteromer constitutes an unequivocal main pharmacological target of caffeine and provides the main mechanisms by which caffeine potentiates the acute and long-term effects of prototypical psychostimulants.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| |
Collapse
|
36
|
Synergistic antidepressant-like effect of the joint administration of caffeine and NMDA receptor ligands in the forced swim test in mice. J Neural Transm (Vienna) 2015; 123:463-72. [PMID: 26510772 PMCID: PMC4805709 DOI: 10.1007/s00702-015-1467-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
Abstract
The optimal treatment of depressed patients remains one of the most important challenges concerning depression. The identification of the best treatment strategies and development of new, safer, and more effective agents are crucial. The glutamatergic system seems to be a promising drug target, and consequently the use of the NMDA receptor ligands, particularly in co-administration with other substances exerting the antidepressant activity, has emerged among the new ideas. The objective of this study was to examine the effect of caffeine on the performance of mice treated with various NMDA modulators in the forced swim test. We demonstrated a significant interaction between caffeine (5 mg/kg) and the following NMDA receptor ligands: MK-801 (an antagonist binding in the ion channel, 0.05 mg/kg), CGP 37849 (an antagonist of the glutamate site, 0.312 mg/kg), L-701,324 (an antagonist of the glycine site, 1 mg/kg), and d-cycloserine (a high-efficacy partial agonist of the glycine site, 2.5 mg/kg), while the interaction between caffeine and the inorganic modulators, i.e., Zn2+ (2.5 mg/kg) and Mg2+ (10 mg/kg), was not considered as significant. Based on the obtained results, the simultaneous blockage of the adenosine and NMDA receptors may be a promising target in the development of new antidepressants.
Collapse
|
37
|
Acevedo J, Santana-Almansa A, Matos-Vergara N, Marrero-Cordero LR, Cabezas-Bou E, Díaz-Ríos M. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms. Neuropharmacology 2015; 101:490-505. [PMID: 26493631 DOI: 10.1016/j.neuropharm.2015.10.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/16/2015] [Accepted: 10/15/2015] [Indexed: 01/31/2023]
Abstract
Caffeine is a potent psychostimulant that can have significant and widely variable effects on the activity of multiple neuronal pathways. The most pronounced caffeine-induced behavioral effect seen in rodents is to increase locomotor activity which has been linked to a dose-dependent inhibition of A1 and A(2A) receptors. The effects of caffeine at the level of the lumbar spinal central pattern generator (CPG) network for hindlimb locomotion are lacking. We assessed the effects of caffeine to the locomotor function of the spinal CPG network via extracellular ventral root recordings using the isolated neonatal mouse spinal cord preparation. Addition of caffeine and of an A1 receptor antagonist significantly decreased the cycle period accelerating the ongoing locomotor rhythm, while decreasing burst duration reversibly in most preparations suggesting the role of A1 receptors as the primary target of caffeine. Caffeine and an A1 receptor antagonist failed to stimulate ongoing locomotor activity in the absence of dopamine or in the presence of a D1 receptor antagonist supporting A1/D1 receptor-dependent mechanism of action. The use of caffeine or an A1 receptor blocker failed to stimulate an ongoing locomotor rhythm in the presence of a blocker of the cAMP-dependent protein kinase (PKA) supporting the need of this intracellular pathway for the modulatory effects of caffeine to occur. These results support a stimulant effect of caffeine on the lumbar spinal network controlling hindlimb locomotion through the inhibition of A1 receptors and subsequent activation of D1 receptors via a PKA-dependent intracellular mechanism.
Collapse
Affiliation(s)
- JeanMarie Acevedo
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Alexandra Santana-Almansa
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Nikol Matos-Vergara
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Luis René Marrero-Cordero
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Ernesto Cabezas-Bou
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA.
| |
Collapse
|
38
|
Poleszak E, Szopa A, Wyska E, Wośko S, Serefko A, Wlaź A, Pieróg M, Wróbel A, Wlaź P. The influence of caffeine on the activity of moclobemide, venlafaxine, bupropion and milnacipran in the forced swim test in mice. Life Sci 2015; 136:13-8. [DOI: 10.1016/j.lfs.2015.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/05/2015] [Accepted: 06/10/2015] [Indexed: 11/26/2022]
|
39
|
Ferré S, Bonaventura J, Tomasi D, Navarro G, Moreno E, Cortés A, Lluís C, Casadó V, Volkow ND. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer. Neuropharmacology 2015; 104:154-60. [PMID: 26051403 DOI: 10.1016/j.neuropharm.2015.05.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/22/2015] [Indexed: 12/18/2022]
Abstract
The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson's disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other's effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Jordi Bonaventura
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 2092, USA
| | - Gemma Navarro
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Estefanía Moreno
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Antonio Cortés
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Carme Lluís
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Vicent Casadó
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 2092, USA
| |
Collapse
|
40
|
Tea component, epigallocatechin gallate, potentiates anticataleptic and locomotor-sensitizing effects of caffeine in mice. Behav Pharmacol 2015; 26:125-32. [DOI: 10.1097/fbp.0000000000000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Santiago FE, Fior-Chadi DR, Carrettiero DC. Alpha2-adrenoceptor and adenosine A1 receptor within the nucleus tractus solitarii in hypertension development. Auton Neurosci 2014; 187:36-44. [PMID: 25466830 DOI: 10.1016/j.autneu.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/21/2014] [Accepted: 11/01/2014] [Indexed: 02/07/2023]
Abstract
Alpha2-adrenoceptor and A1 adenosine receptor systems within the nucleus tractus solitarii (NTS) play an important role in cardiovascular control. Deregulation of these systems may result in an elevated sympathetic tone, one of the root causes of neurogenic hypertension. The dorsomedial/dorsolateral and subpostremal NTS subnuclei of spontaneously hypertensive rats (SHR) show density changes in both receptors, even at 15 days of age, prior to the onset of hypertension. In addition, adenosine A1 receptors have been specifically reported to modulate alpha2-adrenoceptors in several brain regions, including the NTS, via a PLC-dependent pathway involving cross regulation between sympathetic neurons and astrocytes. The physiological cross talk between these receptor systems is also deregulated in SHR suggesting that alpha2-adrenoceptor and A1 adenosine receptor might be germane to the development of hypertension. In this review, we will focus on these systems within the NTS during development, pointing out some interesting modulations in processes, and chemical changes within specific subnuclei of NTS circuitry, that might have implications for neurogenic hypertension.
Collapse
Affiliation(s)
- Fernando E Santiago
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Santo André, SP, Brazil
| | - Débora R Fior-Chadi
- Universidade de São Paulo (USP), Departamento de Fisiologia, Instituto de Biociências, São Paulo, SP, Brazil
| | - Daniel C Carrettiero
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Santo André, SP, Brazil.
| |
Collapse
|
42
|
Ross AE, Venton BJ. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors. J Neurochem 2014; 132:51-60. [PMID: 25219576 DOI: 10.1111/jnc.12946] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/26/2014] [Accepted: 09/10/2014] [Indexed: 01/20/2023]
Abstract
Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate-putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 μM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2 s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7%, similar to the 54 ± 6% decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 min. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. Here, transient adenosine was shown to modulate phasic dopamine release on the order of seconds by acting at the A1 receptor. However, sustained increases in adenosine did not regulate phasic dopamine release. This study demonstrates for the first time a transient, neuromodulatory function of rapid adenosine to regulate rapid neurotransmitter release.
Collapse
Affiliation(s)
- Ashley E Ross
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
43
|
Caffeine induces behavioural sensitization and overexpression of cocaine-regulated and amphetamine-regulated transcript peptides in mice. Behav Pharmacol 2014; 25:32-43. [PMID: 24366314 DOI: 10.1097/fbp.0000000000000016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study examined whether repeated administration of caffeine would induce behavioural sensitization and overexpression of cocaine-regulated and amphetamine-regulated transcript (CART) peptides in mice. The involvement of dopaminergic receptors and adenosine receptors in caffeine-induced behavioural sensitization and CART overexpression was studied. The relevance of D₁R and D₂R, and A₁R and A(2A)R in the overexpression of CART peptides in mouse striatum was also evaluated. Repeated administration of caffeine induced behavioural sensitization in mice. Significant increases in CART mRNA levels were observed on day 3 and peaked at day 5 of caffeine administration, and then decreased gradually. Higher proportions of CART⁺ cells were observed in the dorsolateral and ventrolateral part of the caudate putamen than in the nucleus accumbens shell and core. The behavioural sensitization induced by caffeine was inhibited by dopaminergic receptor antagonists and adenosine receptor agonists. D₁R and D₂R, and cyclic AMP (cAMP)/protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signalling were activated by caffeine, but A₁R and A(2A)R were inhibited. Overexpression of caffeine-induced CART peptides and pCREB activity were blocked by N-cyclopentyladenosine (CPA, an A₁R agonist) and 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680, an A(2A)R agonist), but not by R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH 23390, a D₁R antagonist) or raclopride (a D₂R antagonist). Caffeine-induced overexpression of CART peptides was associated with the inhibition of A₁R and A(2A)R, and the activation of cAMP/PKA/pCREB signalling. Moreover, the A(2A)R-D₂R heterodimer might be involved in the overexpression of CART peptides induced by caffeine.
Collapse
|
44
|
Habitual coffee consumption enhances attention and vigilance in hemodialysis patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:707460. [PMID: 24895603 PMCID: PMC4026941 DOI: 10.1155/2014/707460] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 11/24/2022]
Abstract
Objective. Coffee drinking is the main source of caffeine intake among adult population in the western world. It has been reported that low to moderate caffeine intake has beneficial effect on alertness and cognitive functions in healthy subjects. The aim of this study is to evaluate the impact of habitual coffee consumption on cognitive function in hemodialysis patients. Methods. In a cross-sectional study, 86 patients from a single-dialysis centre underwent assessment by the Montreal Cognitive Assessment tool and evaluation for symptoms of fatigue, mood, and sleep disorders by well-validated questionnaires. The habitual coffee use and the average daily caffeine intake were estimated by participants' response to a dietary questionnaire. Results. Sixty-seven subjects (78%) consumed black coffee daily, mostly in low to moderate dose. Cognitive impairment was found in three-quarters of tested patients. Normal mental performance was more often in habitual coffee users (25% versus 16%). Regular coffee drinkers achieved higher mean scores on all tested cognitive domains, but a significant positive correlation was found only for items that measure attention and concentration (P = 0.024). Conclusions. Moderate caffeine intake by habitual coffee consumption could have beneficial impact on cognitive function in hemodialysis patients due to selective enhancement of attention and vigilance.
Collapse
|
45
|
Gramza-Michałowska A. Caffeine in tea Camellia sinensis--content, absorption, benefits and risks of consumption. J Nutr Health Aging 2014; 18:143-9. [PMID: 24522465 DOI: 10.1007/s12603-013-0404-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapeutic properties of tea Camellia sinensis are of particular interest since it has been consumed for ages and was always regarded as safe beverage. Tea is most popular beverage in the world because of its attractive aroma, exceptional taste, health promoting and pharmaceutical potential. Current results showed that antioxidative, antibacterial and other health effects are attributed to its caffeine content and caffeine - polyphenols interactions. An overview is given on caffeine content in different tea leaves beverage. Special attention is drawn to caffeine physiological effect on human organism. Controversies concerning the possible caffeine influence on human physical and psychological health are briefly summarized and presented.
Collapse
Affiliation(s)
- A Gramza-Michałowska
- A. Gramza-Michałowska, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland, Tel. +48(61)8487331, Fax +48(61)8487430, E-mail:
| |
Collapse
|
46
|
Hobson BD, O'Neill CE, Levis SC, Monteggia LM, Neve RL, Self DW, Bachtell RK. Adenosine A1 and dopamine d1 receptor regulation of AMPA receptor phosphorylation and cocaine-seeking behavior. Neuropsychopharmacology 2013; 38:1974-83. [PMID: 23598433 PMCID: PMC3746705 DOI: 10.1038/npp.2013.96] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 11/09/2022]
Abstract
AMPAR (α-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptor) stimulation in the nucleus accumbens (NAc) is critical in cocaine seeking. Here, we investigate the functional interaction between D1 dopamine receptors (D1DR) and AMPARs in the NAc, and explore how A1 adenosine receptor (A1AR) stimulation may reduce dopamine-induced facilitation of AMPARs and cocaine seeking. All animals were trained to self-administer cocaine and were tested for reinstatement of cocaine seeking following extinction procedures. The role of AMPARs in both AMPA- and D1DR-induced cocaine seeking was assessed using viral-mediated gene transfer to bi-directionally modulate AMPAR activity in the NAc core. The ability of pharmacological AMPAR blockade to modulate D1DR-induced cocaine seeking also was tested. Immunoblotting was used to determine whether stimulating D1DR altered synaptic AMPA GluA1 phosphorylation (pGluA1). Finally, the ability of an A1AR agonist to modulate D1DR-induced cocaine seeking and synaptic GluA1 receptor subunit phosphorylation was explored. Decreasing AMPAR function inhibited both AMPA- and D1DR-induced cocaine seeking. D1DR stimulation increased AMPA pGluA1(S845). Administration of the A1AR agonist alone decreased synaptic GluA1 expression, whereas coadministration of the A1AR agonist inhibited both cocaine- and D1DR-induced cocaine seeking and reversed D1DR-induced AMPA pGluA1(S845). These findings suggest that D1DR stimulation facilitates AMPAR function to initiate cocaine seeking in D1DR-containing direct pathway NAc neurons. A1AR stimulation inhibits both the facilitation of AMPAR function and subsequent cocaine seeking, suggesting that reducing AMPA glutamate neurotransmission in direct pathway neurons may restore inhibitory control and reduce cocaine relapse.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Casey E O'Neill
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Sophia C Levis
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Lisa M Monteggia
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David W Self
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan K Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA,Institute of Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA,Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309-0345, USA, Tel: +1 303 735 1012, Fax: +1 303 492 2967, E-mail:
| |
Collapse
|
47
|
Farrell MS, Pei Y, Wan Y, Yadav PN, Daigle TL, Urban DJ, Lee HM, Sciaky N, Simmons A, Nonneman RJ, Huang XP, Hufeisen SJ, Guettier JM, Moy SS, Wess J, Caron MG, Calakos N, Roth BL. A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 2013; 38:854-62. [PMID: 23303063 PMCID: PMC3671990 DOI: 10.1038/npp.2012.251] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 01/11/2023]
Abstract
Here, we describe a newly generated transgenic mouse in which the Gs DREADD (rM3Ds), an engineered G protein-coupled receptor, is selectively expressed in striatopallidal medium spiny neurons (MSNs). We first show that in vitro, rM3Ds can couple to Gαolf and induce cAMP accumulation in cultured neurons and HEK-T cells. The rM3Ds was then selectively and stably expressed in striatopallidal neurons by creating a transgenic mouse in which an adenosine2A (adora2a) receptor-containing bacterial artificial chromosome was employed to drive rM3Ds expression. In the adora2A-rM3Ds mouse, activation of rM3Ds by clozapine-N-oxide (CNO) induces DARPP-32 phosphorylation, consistent with the known consequence of activation of endogenous striatal Gαs-coupled GPCRs. We then tested whether CNO administration would produce behavioral responses associated with striatopallidal Gs signaling and in this regard CNO dose-dependently decreases spontaneous locomotor activity and inhibits novelty induced locomotor activity. Last, we show that CNO prevented behavioral sensitization to amphetamine and increased AMPAR/NMDAR ratios in transgene-expressing neurons of the nucleus accumbens shell. These studies demonstrate the utility of adora2a-rM3Ds transgenic mice for the selective and noninvasive modulation of Gαs signaling in specific neuronal populations in vivo.This unique tool provides a new resource for elucidating the roles of striatopallidal MSN Gαs signaling in other neurobehavioral contexts.
Collapse
Affiliation(s)
- Martilias S Farrell
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Ying Pei
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Yehong Wan
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Prem N Yadav
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Tanya L Daigle
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Daniel J Urban
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Hyeong-Min Lee
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Arkeen Simmons
- Elizabeth City State University, Elizabeth City, NC, USA
| | - Randal J Nonneman
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Sandy J Hufeisen
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Jean-Marc Guettier
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIH-NIDDK, Bethesda, MD, USA
| | - Sheryl S Moy
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIH-NIDDK, Bethesda, MD, USA
| | - Marc G Caron
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Nicole Calakos
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Program in Neuroscience, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- NIMH Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
48
|
Tavares AADS, Batis J, Barret O, Alagille D, Vala C, Kudej G, Koren A, Cosgrove KP, Nice K, Kordower JH, Seibyl J, Tamagnan GD. In vivo evaluation of [(123)I]MNI-420: a novel single photon emission computed tomography radiotracer for imaging of adenosine 2A receptors in brain. Nucl Med Biol 2013; 40:403-9. [PMID: 23332393 DOI: 10.1016/j.nucmedbio.2012.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/24/2012] [Accepted: 12/03/2012] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Dysregulation of adenosine 2A (A2A) receptor function in brain has been implicated in multiple psychiatric and neurodegenerative disorders, including schizophrenia and Parkinson's disease, making the development of an imaging agent to study A2A receptors in both healthy brain and disease states desirable. In this study, [(123)I]MNI-420 was evaluated as a potential single photon emission computed tomography (SPECT) radiotracer for imaging A2A receptors in brain. METHODS Two adult male monkeys (Macaca fascicularis) and three adult female baboons (Papio anubis) were anesthetized and imaged on Neurofocus SPECT cameras. Baboons underwent baseline and displacement studies using varying doses of caffeine (2.0-20mg/kg). Baseline and pre-blocking experiments with multiple doses of preladenant (0.01-1.2mg/kg), a highly selective A2A antagonist, were performed in cynomolgus monkeys. RESULTS Following bolus intravenous (i.v.) injection, [(123)I]MNI-420 rapidly entered the non-human primate brain. The regional brain accumulation of [(123)I]MNI-420 matched the known distribution of A2A receptors in brain (highest in the striatum). Striatum to cerebellum ratios and binding potentials of around 3.0-3.5 and 2.0-2.5, respectively, were measured in monkey and baboon brain. A dose-dependent occupancy was observed following i.v. injection of caffeine at pseudo-equilibrium conditions during displacement experiments. Pre-treatment with preladenant blocked specific binding in A2A rich regions in a dose-dependent fashion. CONCLUSIONS The data indicate that [(123)I]MNI-420 holds promise as a SPECT radiotracer for imaging A2A receptors in brain and further evaluation is warranted, in order to determine its utility as a SPECT radiotracer for imaging of A2A in brain.
Collapse
|
49
|
Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl) 2013; 225:251-74. [PMID: 23241646 DOI: 10.1007/s00213-012-2917-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
RATIONALE Despite the large number of studies on the behavioural effects of caffeine, an unequivocal conclusion had not been reached. In this review, we seek to disentangle a number of questions. OBJECTIVE Whereas there is a general consensus that caffeine can improve performance on simple tasks, it is not clear whether complex tasks are also affected, or if caffeine affects performance of the three attention networks (alerting, orienting and executive control). Other questions being raised in this review are whether effects are more pronounced for higher levels of caffeine, are influenced by habitual caffeine use and whether there effects are due to withdrawal reversal. METHOD Literature review of double-blind placebo controlled studies that assessed acute effects of caffeine on attention tasks in healthy adult volunteers. RESULTS Caffeine improves performance on simple and complex attention tasks, and affects the alerting, and executive control networks. Furthermore, there is inconclusive evidence on dose-related performance effects of caffeine, or the influence of habitual caffeine consumption on the performance effects of caffeine. Finally, caffeine's effects cannot be attributed to withdrawal reversal. CONCLUSIONS Evidence shows that caffeine has clear beneficial effects on attention, and that the effects are even more widespread than previously assumed.
Collapse
|
50
|
Parkinson's disease. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|