1
|
Sharma L, Sharma A, Kumar D, Asthana MK, Lalhlenmawia H, Kumar A, Bhattacharyya S, Kumar D. Promising protein biomarkers in the early diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1727-1744. [PMID: 35015199 DOI: 10.1007/s11011-021-00847-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an insidious, multifactorial disease that involves the devastation of neurons leading to cognitive impairments. Alzheimer's have compounded pathologies of diverse nature, including proteins as one important factor along with mutated genes and enzymes. Although various review articles have proposed biomarkers, still, the statistical importance of proteins is missing. Proteins associated with AD include amyloid precursor protein, glial fibrillary acidic protein, calmodulin-like skin protein, hepatocyte growth factor, matrix Metalloproteinase-2. These proteins play a crucial role in the AD hypothesis which includes the tau hypothesis, amyloid-beta (Aβ) hypothesis, cholinergic neuron damage, etc. The present review highlights the role of major proteins and their physiological functions in the early diagnosis of AD. Altered protein expression results in cognitive impairment, synaptic dysfunction, neuronal degradation, and memory loss. On the medicinal ground, efforts of making anti-amyloid, anti-tau, anti-inflammatory treatments are on the peak, having these proteins as putative targets. Few proteins, e.g., Amyloid precursor protein results in the formation of non-soluble sticky Aβ40 and Aβ42 monomers that, over time, aggregate into plaques in the cortical and limbic brain areas and neurogranin is believed to regulate calcium-mediated signaling pathways and thus modulating synaptic plasticity are few putative and potential forthcoming targets for developing effective anti-AD therapies. These proteins may help to diagnose the disease early, bode well for the successful discovery and development of therapeutic and preventative regimens for this devasting public health problem.
Collapse
Affiliation(s)
- Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Deepak Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Manish Kumar Asthana
- Department of Humanities & Social Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - H Lalhlenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences, Zemabawk, Aizawl, 796017, India
| | - Ashwani Kumar
- Council of Scientific and Industrial Research, Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173 229, India.
| |
Collapse
|
2
|
Tsai CW, Tsai SJ, Pan YJ, Lin HM, Pan TY, Yang FY. Transcranial Ultrasound Stimulation Reverses Behavior Changes and the Expression of Calcium-Binding Protein in a Rodent Model of Schizophrenia. Neurotherapeutics 2022; 19:649-659. [PMID: 35229268 PMCID: PMC9226253 DOI: 10.1007/s13311-022-01195-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive dysfunctions are a core feature of schizophrenia that may be linked to abnormalities in gamma-aminobutyric-acid (GABA)ergic neurons. Traditional antipsychotics show poor efficacy in treating cognitive symptoms. The purpose of this study was to investigate the restorative role of transcranial ultrasound stimulation (TUS) in counteracting dizocilpine (MK-801)-induced cognitive deficits and GABAergic interneuron dysfunction in a simulation of schizophrenia. Some rats subjected to MK-801 administration were treated with low-intensity pulsed ultrasound (LIPUS) daily for 5 days, while other rats subjected to MK-801 administration received no LIPUS treatment. After LIPUS treatment, the neuroprotective effects of LIPUS in the LIPUS-treated rats were assessed through behavioral analysis, western blotting, and histological observations. Compared with the MK-801-treated group, the MK-801 plus LIPUS-treated rats revealed a preference for novel objects. The MK-801 plus LIPUS-treated rats also exhibited a significant decrease in swim times compared to the MK-801-treated rats. LIPUS stimulation significantly increased hippocampal levels of CB and PV and restored the cell densities of PV + and CB + in the cingulate cortex in the MK-801 plus LIPUS-treated group. In addition, LIPUS stimulation rebalanced the BDNF levels in the hippocampus and medial prefrontal cortex. Our findings indicate that LIPUS improves cognitive deficits and ameliorates neuropathology in MK-801-treated rats. These results suggest that LIPUS may constitute a potential novel therapeutic approach for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Che-Wen Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Pan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Mei Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Yu Pan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Chapman G, Shanmugalingam U, Smith PD. The Role of Neuronal Pentraxin 2 (NP2) in Regulating Glutamatergic Signaling and Neuropathology. Front Cell Neurosci 2020; 13:575. [PMID: 31969807 PMCID: PMC6960182 DOI: 10.3389/fncel.2019.00575] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/12/2019] [Indexed: 01/30/2023] Open
Abstract
Pentraxins are a superfamily of evolutionarily conserved proteins that are characterized by their multimeric architecture and their calcium-dependent binding. They can be broadly grouped into two subfamilies: short pentraxins and long pentraxins. Pentraxins regulate many processes in the brain as well as the periphery. Neuronal pentraxin 2 (NP2/NPTX2), also known as neuronal activity-regulated pentraxin (Narp), is an immediate-early gene that has been shown to play a critical role in guiding synaptic plasticity. NP2 has been previously linked to excitatory neurotransmission, based on its ability to aggregate excitatory receptors in the central nervous system. The mechanisms mediating the effects of NP2 on excitatory neurotransmission remain unclear and warrants further investigation. This review article focuses on the biological features of NP2 and discusses the literature supporting a role for NP2 and other pentraxins in glutamatergic signaling. An analysis of evidence around the role of pentraxins in neuropathology is also reviewed.
Collapse
Affiliation(s)
- Georgina Chapman
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | - Patrice D Smith
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
4
|
Shou J, Tran A, Snyder N, Bleem E, Kim S. Distinct Roles of GluA2-lacking AMPA Receptor Expression in Dopamine D1 or D2 Receptor Neurons in Animal Behavior. Neuroscience 2019; 398:102-112. [DOI: 10.1016/j.neuroscience.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
|
5
|
Laccetta G, Fiori S, Giampietri M, Ferrari A, Cetica V, Bernardini M, Chesi F, Mazzotti S, Parrini E, Ciantelli M, Guzzetta A, Ghirri P. A de novo KCNQ2 Gene Mutation Associated With Non-familial Early Onset Seizures: Case Report and Revision of Literature Data. Front Pediatr 2019; 7:348. [PMID: 31552204 PMCID: PMC6743415 DOI: 10.3389/fped.2019.00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Among neonatal epileptic syndromes, benign familial neonatal seizures (BFNS) are often due to autosomal-dominant mutations of the KCNQ2 gene. Seizures are usually characterized by asymmetric tonic posturing with apnea with onset in the first 7 days of life; they may even occur more than 10 times per day or evolve into status epilepticus. The delivery course of our patient was uneventful and family history was negative; on the second day of life the baby became pale, rigid, and apnoic during breastfeeding and appeared jittery and irritable when stimulated or examined. At age 3 days, she experienced clusters of generalized tonic seizures with pallor, desaturation, bradycardia, and partial response to intravenous phenobarbital; during her 4th and 5th days of life, three episodes of tonic seizures were noticed. At age 6 days, the patient experienced about 10 episodes of tonic seizures involving both sides of the body, which gradually responded to intravenous phenytoin. Electroencephalograms revealed abnormalities but brain MRI was normal. The patient is seizure-free since postnatal day 21; she is now 12 months old with cognitive development within normal limits at Bayley III Scale and mild motor delay. The patient is on maintenance therapy with phenobarbital since she was 7 months old. A de novo heterozygous mutation (c.853C>T/p.P285S) in the KCNQ2 gene was identified. We therefore describe a case of de novo KCNQ2-related neonatal convulsions with necessity of multiple anticonvulsants for the control of seizures, mutation occurring in the pore channel of the voltage-gated potassium channel subfamily Q member 2 associated with a likely benign course; furthermore, the same mutation of the KCNQ2 gene and a similar one (c.854C>A/p.P285H) have already been described in association with Ohtahara syndrome. Probably acquired environmental, perinatal and genetic risk factors are very important in determining the different phenotype; we hope that the rapid progress of analysis tools in molecular diagnosis can also be used in the search of an individualized therapeutic approach for these patients.
Collapse
Affiliation(s)
- Gianluigi Laccetta
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Maternal and Child Health, Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Simona Fiori
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Matteo Giampietri
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Maternal and Child Health, Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Annarita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Valentina Cetica
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's University Hospital, University of Florence, Florence, Italy
| | - Manuela Bernardini
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Maternal and Child Health, Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Francesca Chesi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Maternal and Child Health, Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Sara Mazzotti
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's University Hospital, University of Florence, Florence, Italy
| | - Massimiliano Ciantelli
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Maternal and Child Health, Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Andrea Guzzetta
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Ghirri
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Maternal and Child Health, Santa Chiara Hospital, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Holley SM, Galvan L, Kamdjou T, Cepeda C, Levine MS. Striatal GABAergic interneuron dysfunction in the Q175 mouse model of Huntington's disease. Eur J Neurosci 2018; 49:79-93. [PMID: 30472747 DOI: 10.1111/ejn.14283] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/01/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023]
Abstract
The pathological hallmark of Huntington's disease (HD) is the massive loss of striatal and cortical neurons. Until recently, it was believed that striatal interneurons were spared from degeneration. This view has changed after the demonstration that parvalbumin (PV)-expressing interneurons also are vulnerable in humans. Here we compared morphological and functional changes of striatal fast-spiking interneurons (FSIs) and low-threshold spiking (LTS) interneurons in the Q175 mouse model of HD at presymptomatic (2 months) and symptomatic (12 months) stages of the disease. Electrophysiological intrinsic and synaptic properties of FSIs were significantly altered in symptomatic mice compared to wild-type (WT) littermates. Overall, FSIs became more excitable with disease progression. Sholl analysis also revealed a significant loss of dendritic complexity and excitatory synaptic inputs. The basic membrane and synaptic properties of LTS interneurons were similar in Q175 and WT mice regardless of disease stage. The resilience of LTS interneurons could be related to their sparsity of excitatory synaptic inputs compared with FSIs. However, in symptomatic mice, a subpopulation of LTS interneurons displayed an increase in action potential firing within oscillating bursts. Thus, we conclude that while both FSI and LTS interneurons demonstrate increases in excitability, the HD mutation differentially affects their membrane and synaptic properties as well as their ability to respond to compensatory challenges presented during the late stage of the disease. Alterations in GABAergic interneuron intrinsic activity and responsiveness to incoming signals may significantly affect SPN output thus contributing to abnormal motor movements in patients afflicted with HD.
Collapse
Affiliation(s)
- Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, UCLA, Los Angeles, California
| | - Laurie Galvan
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, UCLA, Los Angeles, California
| | - Talia Kamdjou
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, UCLA, Los Angeles, California
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, UCLA, Los Angeles, California
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, UCLA, Los Angeles, California
| |
Collapse
|
7
|
Tambasco N, Romoli M, Calabresi P. Selective basal ganglia vulnerability to energy deprivation: Experimental and clinical evidences. Prog Neurobiol 2018; 169:55-75. [DOI: 10.1016/j.pneurobio.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
8
|
Conti MM, Chambers N, Bishop C. A new outlook on cholinergic interneurons in Parkinson's disease and L-DOPA-induced dyskinesia. Neurosci Biobehav Rev 2018; 92:67-82. [PMID: 29782883 DOI: 10.1016/j.neubiorev.2018.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/05/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Traditionally, dopamine (DA) and acetylcholine (ACh) striatal systems were considered antagonistic and imbalances or aberrant signaling between these neurotransmitter systems could be detrimental to basal ganglia activity and pursuant motor function, such as in Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID). Herein, we discuss the involvement of cholinergic interneurons (ChIs) in striatally-mediated movement in a healthy, parkinsonian, and dyskinetic state. ChIs integrate numerous neurotransmitter signals using intrinsic glutamate, serotonin, and DA receptors and convey the appropriate transmission onto nearby muscarinic and nicotinic ACh receptors to produce movement. In PD, severe DA depletion causes abnormal rises in ChI activity which promote striatal signaling to attenuate normal movement. When treating PD with L-DOPA, hyperkinetic side effects, or LID, develop due to increased striatal DA; however, the role of ChIs and ACh transmission, until recently has been unclear. Fortunately, new technology and pharmacological agents have facilitated understanding of ChI function and ACh signaling in the context of LID, thus offering new opportunities to modify existing and discover future therapeutic strategies in movement disorders.
Collapse
Affiliation(s)
- Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Nicole Chambers
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
9
|
Reiner A, Deng Y. Disrupted striatal neuron inputs and outputs in Huntington's disease. CNS Neurosci Ther 2018; 24:250-280. [PMID: 29582587 PMCID: PMC5875736 DOI: 10.1111/cns.12844] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a hereditary progressive neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the protein huntingtin, resulting in a pathogenic expansion of the polyglutamine tract in the N-terminus of this protein. The HD pathology resulting from the mutation is most prominent in the striatal part of the basal ganglia, and progressive differential dysfunction and loss of striatal projection neurons and interneurons account for the progression of motor deficits seen in this disease. The present review summarizes current understanding regarding the progression in striatal neuron dysfunction and loss, based on studies both in human HD victims and in genetic mouse models of HD. We review evidence on early loss of inputs to striatum from cortex and thalamus, which may be the basis of the mild premanifest bradykinesia in HD, as well as on the subsequent loss of indirect pathway striatal projection neurons and their outputs to the external pallidal segment, which appears to be the basis of the chorea seen in early symptomatic HD. Later loss of direct pathway striatal projection neurons and their output to the internal pallidal segment account for the severe akinesia seen late in HD. Loss of parvalbuminergic striatal interneurons may contribute to the late dystonia and rigidity.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTNUSA
| | - Yun‐Ping Deng
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
10
|
Galinsky R, Davidson JO, Lear CA, Bennet L, Green CR, Gunn AJ. Connexin hemichannel blockade improves survival of striatal GABA-ergic neurons after global cerebral ischaemia in term-equivalent fetal sheep. Sci Rep 2017; 7:6304. [PMID: 28740229 PMCID: PMC5524909 DOI: 10.1038/s41598-017-06683-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/15/2017] [Indexed: 11/17/2022] Open
Abstract
Basal ganglia injury at term remains a major cause of disability, such as cerebral palsy. In this study we tested the hypotheses that blockade of astrocytic connexin hemichannels with a mimetic peptide would improve survival of striatal phenotypic neurons after global cerebral ischaemia in term-equivalent fetal sheep, and that neuronal survival would be associated with electrophysiological recovery. Fetal sheep (0.85 gestation) were randomly assigned to receive a short or long (1 or 25 h) intracerebroventricular infusion of a mimetic peptide or vehicle, starting 90 minutes after 30 minutes of cerebral ischaemia. Sheep were killed 7 days after ischaemia. Cerebral ischaemia was associated with reduced numbers of calbindin-28k, calretinin, parvalbumin and GAD positive striatal neurons (P < 0.05 ischaemia + vehicle, n = 6 vs. sham ischaemia, n = 6) but not ChAT or nNOS positive neurons. Short infusion of peptide (n = 6) did not significantly improve survival of any striatal phenotype. Long infusion of peptide (n = 6) was associated with increased survival of calbindin-28k, calretinin, parvalbumin and GAD positive neurons (P < 0.05 vs. ischaemia + vehicle). Neurophysiological recovery was associated with improved survival of calbindin-28k, calretinin and parvalbumin positive striatal neurons (P < 0.05 for all). In conclusion, connexin hemichannel blockade after cerebral ischaemia in term-equivalent fetal sheep improves survival of striatal GABA-ergic neurons.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, The University of Auckland, Auckland, New Zealand.,The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
11
|
Hadzic M, Jack A, Wahle P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J Comp Neurol 2016; 525:976-1033. [PMID: 27560295 DOI: 10.1002/cne.24103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minela Hadzic
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
12
|
Singh-Bains MK, Tippett LJ, Hogg VM, Synek BJ, Roxburgh RH, Waldvogel HJ, Faull RLM. Globus pallidus degeneration and clinicopathological features of Huntington disease. Ann Neurol 2016; 80:185-201. [PMID: 27255697 DOI: 10.1002/ana.24694] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Numerous studies have focused on striatal neurodegeneration in Huntington disease (HD). In comparison, the globus pallidus (GP), a main striatal output nucleus, has received less focus in HD research. This study characterizes the pattern of neurodegeneration in 3 subdivisions of the human GP, and its relation to clinical symptomatology. METHODS Stereology was used to measure regional atrophy, neuronal loss, and soma neuronal atrophy in 3 components of the GP-the external segment (GPe), internal segment (GPi), and ventral pallidum (VP)-in 8 HD cases compared with 7 matched control cases. The findings in the HD patients were compared with HD striatal neuropathological grade, and symptom scores of motor impairment, chorea, cognition, and mood. RESULTS Relative to controls, in the HD patients the GPe showed a 54% overall volume decline, 60% neuron loss, and 34% reduced soma volume. Similarly, the VP was reduced in volume by 31%, with 48% neuron loss and 64% reduced soma volume. In contrast, the GPi was less affected, with a 38% reduction in overall volume only. The extent of GP neurodegeneration correlated with increasing striatal neuropathological grade. Decreasing GPe and VP volumes were associated with poorer cognition and increasing motor impairments, but not chorea. In contrast, decreasing GPi volumes were associated with decreasing levels of irritability. INTERPRETATION The HD gene mutation produces variable degrees of GP segment degeneration, highlighting the differential vulnerability of striato-GP target projections. The relationship established between clinical symptom scores and pallidal degeneration provides a novel contribution to understanding the clinicopathological associations in HD. Ann Neurol 2016;80:185-201.
Collapse
Affiliation(s)
- Malvindar K Singh-Bains
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Lynette J Tippett
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Psychology, University of Auckland, Auckland, New Zealand
| | - Virginia M Hogg
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Psychology, University of Auckland, Auckland, New Zealand
| | - Beth J Synek
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Forensic Pathology, Auckland City Hospital, Auckland, New Zealand
| | - Richard H Roxburgh
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM. AMPA Receptors as Therapeutic Targets for Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:203-61. [DOI: 10.1016/bs.apcsb.2015.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
15
|
Lim SAO, Kang UJ, McGehee DS. Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci 2014; 6:22. [PMID: 25374536 PMCID: PMC4204445 DOI: 10.3389/fnsyn.2014.00022] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/05/2014] [Indexed: 01/11/2023] Open
Abstract
The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh). Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI), which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.
Collapse
Affiliation(s)
| | - Un Jung Kang
- Department of Neurology, Columbia University New York, NY, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago Chicago, IL, USA ; Department of Anesthesia and Critical Care, University of Chicago Chicago, IL, USA
| |
Collapse
|
16
|
Kobylecki C, Crossman AR, Ravenscroft P. Alternative splicing of AMPA receptor subunits in the 6-OHDA-lesioned rat model of Parkinson's disease and L-DOPA-induced dyskinesia. Exp Neurol 2013; 247:476-84. [DOI: 10.1016/j.expneurol.2013.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/10/2013] [Accepted: 01/21/2013] [Indexed: 11/28/2022]
|
17
|
Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T, Claes LRF, Deprez L, Smets K, Hristova D, Yordanova I, Jordanova A, Ceulemans B, Jansen A, Hasaerts D, Roelens F, Lagae L, Yendle S, Stanley T, Heron SE, Mulley JC, Berkovic SF, Scheffer IE, de Jonghe P. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 2012; 71:15-25. [PMID: 22275249 DOI: 10.1002/ana.22644] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE KCNQ2 and KCNQ3 mutations are known to be responsible for benign familial neonatal seizures (BFNS). A few reports on patients with a KCNQ2 mutation with a more severe outcome exist, but a definite relationship has not been established. In this study we investigated whether KCNQ2/3 mutations are a frequent cause of epileptic encephalopathies with an early onset and whether a recognizable phenotype exists. METHODS We analyzed 80 patients with unexplained neonatal or early-infantile seizures and associated psychomotor retardation for KCNQ2 and KCNQ3 mutations. Clinical and imaging data were reviewed in detail. RESULTS We found 7 different heterozygous KCNQ2 mutations in 8 patients (8/80; 10%); 6 mutations arose de novo. One parent with a milder phenotype was mosaic for the mutation. No KCNQ3 mutations were found. The 8 patients had onset of intractable seizures in the first week of life with a prominent tonic component. Seizures generally resolved by age 3 years but the children had profound, or less frequently severe, intellectual disability with motor impairment. Electroencephalography (EEG) at onset showed a burst-suppression pattern or multifocal epileptiform activity. Early magnetic resonance imaging (MRI) of the brain showed characteristic hyperintensities in the basal ganglia and thalamus that later resolved. INTERPRETATION KCNQ2 mutations are found in a substantial proportion of patients with a neonatal epileptic encephalopathy with a potentially recognizable electroclinical and radiological phenotype. This suggests that KCNQ2 screening should be included in the diagnostic workup of refractory neonatal seizures of unknown origin.
Collapse
Affiliation(s)
- Sarah Weckhuysen
- Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Adamczyk A, Mejias R, Takamiya K, Yocum J, Krasnova IN, Calderon J, Cadet JL, Huganir RL, Pletnikov MV, Wang T. GluA3-deficiency in mice is associated with increased social and aggressive behavior and elevated dopamine in striatum. Behav Brain Res 2012; 229:265-72. [PMID: 22285418 DOI: 10.1016/j.bbr.2012.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/30/2011] [Accepted: 01/04/2012] [Indexed: 12/19/2022]
Abstract
Glutamate signaling has been implicated in the regulation of social behavior. AMPA-glutamate receptors are assembled from four subunits (GluA1-4) of mainly GluA1/2 and GluA2/3 tetramers that form ion channels of distinct functional properties. Mice lacking GluA1 showed a reduced anxiety and male aggression. To understand the role of GluA3 in modulating social behavior, we investigated GluA3-deficient mice (Gria3-/Y) on C57BL/6J background. Compared to wild type (WT) littermates (n=14), Gria3-/Y mice (n=13) showed an increase in isolation-induced male aggression (p=0.011) in home cage resident-intruder test; an increase in sociability (p=0.01), and increase in male-male social interactions in neutral arena (p=0.005); an increase in peripheral activities in open field test (p=0.037) with normal anxiety levels in elevated plus maze and light-dark box; and minor deficits in motor and balance function in accelerating rotarod test (p=0.016) with normal grip strength. Gria3-/Y mice showed no significant deficit in spatial memory function in Morris-water maze and Y-maze tests, and normal levels of testosterone. Increased dopamine concentrations in stratum (p=0.034) and reduced serotonin turnover in olfactory bulb (p=0.002) were documented in Gria3-/Y mice. These results support a role of GluA3 in the modulation of social behavior through brain dopamine and/or serotonin signaling and different AMPA receptor subunits affect social behavior through distinct mechanisms.
Collapse
Affiliation(s)
- Abby Adamczyk
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 733 North Broadway BRB 513, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rajput PS, Kharmate G, Norman M, Liu SH, Sastry BR, Brunicardi CF, Kumar U. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice. PLoS One 2011; 6:e24467. [PMID: 21912697 PMCID: PMC3166321 DOI: 10.1371/journal.pone.0024467] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/10/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD). However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST) positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5). METHODS AND FINDINGS To delineate subtype selective biological responses we have here investigated changes in SSTR1 and 5 double knockout mice brain and compared with HD transgenic mouse model (R6/2). Our study revealed significant loss of dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32) and comparable changes in SST, N-methyl-D-aspartic acid receptors subtypes, calbindin and brain nitric oxide synthase expression as well as in key signaling proteins including calpain, phospho-extracellular-signal-regulated kinases1/2, synapsin-IIa, protein kinase C-α and calcineurin in SSTR1/5(-/-) and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice. CONCLUSIONS This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the pathophysiology of Huntington's disease.
Collapse
Affiliation(s)
- Padmesh S. Rajput
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Geetanjali Kharmate
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Norman
- Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shi-He Liu
- Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bhagavatula R. Sastry
- Neuroscience Research Laboratory, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles F. Brunicardi
- Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ujendra Kumar
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
20
|
Choe ES, Ahn SM, Yang JH, Go BS, Wang JQ. Linking cocaine to endoplasmic reticulum in striatal neurons: role of glutamate receptors. ACTA ACUST UNITED AC 2011; 1:59-63. [PMID: 21808746 DOI: 10.1016/j.baga.2011.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The endoplasmic reticulum (ER) controls protein folding. Accumulation of unfolded and misfolded proteins in the ER triggers an ER stress response to accelerate normal protein folding or if failed to cause apoptosis. The ER stress response is a conserved cellular response in mammalian cells and is sensitive to various physiological or pathophysiological stimuli. Recent studies unravel that this response in striatal neurons is subject to the tight modulation by psychostimulants. Cocaine and amphetamines markedly increased expression of multiple ER stress reporter proteins in the dorsal striatum (caudate putamen) and other basal ganglia sites. This evoked ER stress response is mediated by activation of group I metabotropic glutamate receptors and N-methyl-D-aspartate receptors. Converging Ca(2+) signals derived from activation of these receptors activate the c-Jun N-terminal kinase pathway to evoke ER stress responses. The discovery of robust ER stress responses to stimulant exposure establishes a previously unrecognized stimulant-ER coupling. This inducible coupling seems to contribute to neurotoxicity of stimulants related to various neuropsychiatric and neurodegenerative illnesses. Elucidating cellular mechanisms linking cocaine and other stimulants to ER is therefore important for the development of therapeutic agents for treating neurological disorders resulted from stimulant toxicity.
Collapse
Affiliation(s)
- Eun Sang Choe
- Department of Biological Sciences, Pusan National University, Pusan 609-735, Korea
| | | | | | | | | |
Collapse
|
21
|
Mao LM, Guo ML, Jin DZ, Fibuch EE, Choe ES, Wang JQ. Post-translational modification biology of glutamate receptors and drug addiction. Front Neuroanat 2011; 5:19. [PMID: 21441996 PMCID: PMC3062099 DOI: 10.3389/fnana.2011.00019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/03/2011] [Indexed: 01/26/2023] Open
Abstract
Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein–protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | | | | | | | | | | |
Collapse
|
22
|
Reiner A, Dragatsis I, Dietrich P. Genetics and neuropathology of Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:325-72. [PMID: 21907094 PMCID: PMC4458347 DOI: 10.1016/b978-0-12-381328-2.00014-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder that prominently affects the basal ganglia, leading to affective, cognitive, behavioral and motor decline. The basis of HD is a CAG repeat expansion to >35 CAG in a gene that codes for a ubiquitous protein known as huntingtin, resulting in an expanded N-terminal polyglutamine tract. The size of the expansion is correlated with disease severity, with increasing CAG accelerating the age of onset. A variety of possibilities have been proposed as to the mechanism by which the mutation causes preferential injury to the basal ganglia. The present chapter provides a basic overview of the genetics and pathology of HD.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Ave. Memphis, TN 38163, USA
| | | | | |
Collapse
|
23
|
Immunohistochemical localization of AMPA-type glutamate receptor subunits in the striatum of rhesus monkey. Brain Res 2010; 1344:104-23. [PMID: 20460117 DOI: 10.1016/j.brainres.2010.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/10/2010] [Accepted: 05/03/2010] [Indexed: 12/20/2022]
Abstract
Corticostriatal and thalamostriatal projections utilize glutamate as their neurotransmitter. Their influence on striatum is mediated, in part, by ionotropic AMPA-type glutamate receptors, which are heteromers composed of GluR1-4 subunits. While the cellular localization of AMPA-type subunits in the basal ganglia has been well characterized in rodents, the cellular localization of AMPA subunits in primate basal ganglia is not. We thus carried out immunohistochemical studies of GluR1-4 distribution in rhesus monkey basal ganglia in conjunction with characterization of each major neuron type. In striatum, about 65% of striatal neurons immunolabeled for GluR1, 75%-79% immunolabeled for GluR2 or GluR2/3, and only 2.5% possessed GluR4. All neurons the large size of cholinergic interneurons (mean diameter 26.1 microm) were moderately labeled for GluR1, while all neurons in the size range of parvalbuminergic interneurons (mean diameter 13.8 microm) were intensely rich in GluR1. Additionally, somewhat more than half of the neurons in the size range of projection neurons (mean diameter 11.6 microm) immunolabeled for GluR1, and about one third of these were very rich in GluR1. About half of the neurons the size of cholinergic interneurons were immunolabeled for GluR2, and the remainder of the neurons that were immunolabeled for GluR2 coincided with projection neurons in size and shape (GluR2 diameter=10.7 microm), indicating that the vast majority of striatal projection neurons possess immunodectible GluR2. Similar results were observed with GluR2/3 immunolabeling. Half of the neurons the size of cholinergic interneurons immunolabeled for GluR4 and seemingly all neurons in the size range of parvalbuminergic interneurons possessed GluR4. These results indicate that AMPA receptor subunit combinations for striatal projection neurons in rhesus monkey are similar to those for the corresponding neuron types in rodents, and thus their AMPA responses to glutamate are likely to be similar to those demonstrated in rodents.
Collapse
|
24
|
Anastasio NC, Xia Y, O'Connor ZR, Johnson KM. Differential role of N-methyl-D-aspartate receptor subunits 2A and 2B in mediating phencyclidine-induced perinatal neuronal apoptosis and behavioral deficits. Neuroscience 2009; 163:1181-91. [PMID: 19654040 DOI: 10.1016/j.neuroscience.2009.07.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/13/2009] [Accepted: 07/21/2009] [Indexed: 11/29/2022]
Abstract
The mechanism underlying phencyclidine (PCP)-induced apoptosis in perinatal rats and the development of schizophrenia-like behaviors is incompletely understood. We used antagonists for N-methyl-D-aspartate (NMDA) receptor subunit NR2A- and NR2B-containing NMDA receptor to test the hypothesis that the behavioral and apoptotic effects of PCP are mediated by blockade of NR1/NR2A-containing receptors, rather than NR1/NR2B-containing receptors. Sprague-Dawley rats were treated on PN7, PN9, and PN11 with PCP (10 mg/kg), PEAQX (NR2A-preferring antagonist; 10, 20, or 40 mg/kg), or ifenprodil (selective NR2B antagonist; 1, 5, or 10 mg/kg) and sacrificed for measurement of caspase-3 activity (an index of apoptosis) or allowed to age and tested for locomotor sensitization to PCP challenge on PN28-PN35. PCP or PEAQX on PN7, PN9, and PN11 markedly elevated caspase-3 activity in the cortex; ifenprodil showed no effect. Striatal apoptosis was evident only after subchronic treatment with a high dose of PEAQX (20 mg/kg). Animals treated with PCP or PEAQX on PN7, PN9, and PN11 showed a sensitized locomotor response to PCP challenge on PN28-PN35. Ifenprodil treatment had no effect on either measure. Therefore, PCP blockade of cortical NR1/NR2A, rather than NR1/NR2B, appears to be responsible for PCP-induced apoptosis and the development of long-lasting behavioral deficits.
Collapse
Affiliation(s)
- N C Anastasio
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | | | | | | |
Collapse
|
25
|
Cholinergic innervation and thalamic input in rat nucleus accumbens. J Chem Neuroanat 2008; 37:33-45. [PMID: 18773952 DOI: 10.1016/j.jchemneu.2008.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/08/2008] [Accepted: 08/09/2008] [Indexed: 11/23/2022]
Abstract
Cholinergic interneurons are the only known source of acetylcholine in the rat nucleus accumbens (nAcb); yet there is little anatomical data about their mode of innervation and the origin of their excitatory drive. We characterized the cholinergic and thalamic innervations of nAcb with choline acetyltransferase (ChAT) immunocytochemistry and anterograde transport of Phaseolus vulgaris-leucoagglutinin (PHA-L) from the midline/intralaminar/paraventricular thalamic nuclei. The use of a monoclonal ChAT antiserum against whole rat ChAT protein allowed for an optimal visualization of the small dendritic branches and fine varicose axons of cholinergic interneurons. PHA-L-labeled thalamic afferents were heterogeneously distributed throughout the core and shell regions of nAcb, overlapping regionally with cholinergic somata and dendrites. At the ultrastructural level, several hundred single-section profiles of PHA-L and ChAT-labeled axon terminals were analyzed for morphology, synaptic frequency, and the nature of their synaptic targets. The cholinergic profiles were small and apposed to various neuronal elements, but rarely exhibited a synaptic membrane specialization (5% in single ultrathin sections). Stereological extrapolation indicated that less than 15% of these cholinergic varicosities were synaptic. The PHA-L-labeled profiles were comparatively large and often synaptic (37% in single ultrathin sections), making asymmetrical contacts primarily with dendritic spines (>90%). Stereological extrapolation indicated that all PHA-L-labeled terminals were synaptic. In double-labeled material, some PHA-L-labeled terminals were directly apposed to ChAT-labeled somata or dendrites, but synapses were never seen between the two types of elements. These observations demonstrate that the cholinergic innervation of rat nAcb is largely asynaptic. They confirm that the afferents from midline/intralaminar/paraventricular thalamic nuclei to rat nAcb synapse mostly on dendritic spines, presumably of medium spiny neurons, and suggest that the excitatory drive of nAcb cholinergic interneurons from thalamus is indirect, either via substance P release from recurrent collaterals of medium spiny neurons and/or by extrasynaptic diffusion of glutamate.
Collapse
|
26
|
Sakuma M, Hyakawa N, Kato H, Araki T. Time dependent changes of striatal interneurons after focal cerebral ischemia in rats. J Neural Transm (Vienna) 2008; 115:413-22. [PMID: 18301954 DOI: 10.1007/s00702-007-0860-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 11/04/2007] [Indexed: 11/29/2022]
Abstract
The cellular damage over time and the alterations of neuronal subtypes was characterized in the striatum after 90-min middle cerebral artery occlusion and reperfusion in rats. We investigated the immunohistochemical alterations of choline acetyltransferase (ChAT)-positive (cholinergic-positive), gamma-aminobutyric acid (GABA)ergic parvalbumin (PV)-positive, GABAergic nNOS (neuronal nitric oxide synthase)-positive interneurons, neuronal nuclei (NeuN)-positive spiny projection neurons, glial fibrillary acidic protein (GFAP)-positive strocytes and microglial response factor-1 (MRF-1)-positive microglia in the striatum after focal cerebral ischemia in rats. In the present study, transient focal cerebral ischemia in rats caused severe damage against interneurons as well as spiny projection neurons in the striatum. In contrast, a significant increase in the number of GFAP-immunopositive astrocytes was observed in the ipsilateral striatum 15 days after focal cerebral ischemia. Furthermore, a significant increase of MRF-1 immunoreactivity was observed in microglia of the ipsilateral striatum 7 days and 15 days after focal cerebral ischemia. Among three types of cholinergic interneurons, GABAergic PV-positive interneurons and GABAergic nNOS-positive interneurons, the severe damage of cholinergic and GABAergic PV-positive interneurons was more pronounced than that of GABAergic nNOS-positive interneurons after transient focal cerebral ischemia in rats. Furthermore, the present results suggest that GABAergic nNOS-positive interneurons in the striatum after focal cerebral ischemia undergo cellular death in a delayed manner.
Collapse
Affiliation(s)
- M Sakuma
- Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
| | | | | | | |
Collapse
|
27
|
Mora F, Segovia G, Del Arco A. Glutamate-dopamine-GABA interactions in the aging basal ganglia. ACTA ACUST UNITED AC 2007; 58:340-53. [PMID: 18036669 DOI: 10.1016/j.brainresrev.2007.10.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/05/2007] [Accepted: 10/06/2007] [Indexed: 12/25/2022]
Abstract
The study of neurotransmitter interactions gives a better understanding of the physiology of specific circuits in the brain. In this review we focus mostly on our own results on the interaction of the neurotransmitters glutamate, dopamine and GABA in the basal ganglia during the normal process of aging. We review first the studies on the action of endogenous glutamate on the extracellular concentrations of dopamine and GABA in the neostriatum and nucleus accumbens during aging. It was found that there exists an age-related change in the interaction of glutamate, dopamine and GABA and that these effects of aging exhibit a dorsal-to-ventral pattern of effects with no changes in the dorsal parts (dorsal striatum) and changes in the most ventral parts (nucleus accumbens). Second we reviewed the data on the effects of different ionotropic and metabotropic glutamate receptor agonists on the extracellular concentrations of dopamine and GABA in the nucleus accumbens. The results obtained clearly show the different contribution of each glutamate receptor subtype in the age-related changes produced on the interaction of glutamate, dopamine and GABA in this area of the brain. Third the effects of an enriched environment on the action of AMPA and NMDA-receptor agonists in the nucleus accumbens of rats during aging are also evaluated. Finally, and since the nucleus accumbens has been suggested to play a role in emotion and motivation and also motor behaviour, we speculated on the possibility of a specific contribution for the different glutamatergic pathways terminating in the nucleus accumbens and their interaction with a decreased dopamine playing a relevant role in motor behaviour during aging.
Collapse
Affiliation(s)
- Francisco Mora
- Department of Physiology, Faculty of Medicine, Universidad Complutense, Ciudad Universitaria, s/n 28040 Madrid, Spain.
| | | | | |
Collapse
|
28
|
Bloomfield C, O'Donnell P, French SJ, Totterdell S. Cholinergic neurons of the adult rat striatum are immunoreactive for glutamatergic N-methyl-d-aspartate 2D but not N-methyl-d-aspartate 2C receptor subunits. Neuroscience 2007; 150:639-46. [PMID: 17961930 DOI: 10.1016/j.neuroscience.2007.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/11/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
Cholinergic neurons of the striatum play a crucial role in controlling output from this region. Their firing is under the control of a relatively limited glutamatergic input, deriving principally from the thalamus. Glutamate transmission is effected via three major subtypes of receptors, including those with affinity for N-methyl-d-aspartate (NMDA) and the properties of individual receptors reflect their precise subunit composition. We examined the distribution of NMDA2C and NMDA2D subunits in the rat striatum using immunocytochemistry and show that a population of large neurons is strongly immunoreactive for NMDA2D subunits. From their morphology and ultrastructure, these neurons were presumed to be cholinergic and this was confirmed with double immunofluorescence. We also show that NMDA2C is present in a small number of septal and olfactory cortical neurons but absent from the striatum. Receptors that include NMDA2D subunits are relatively insensitive to magnesium ion block making neurons more likely to fire at more negative membrane potentials. Their localization to cholinergic neurons may enable very precise regulation of firing of these neurons by relatively small glutamatergic inputs.
Collapse
Affiliation(s)
- C Bloomfield
- Department of Pharmacology, Oxford University, Mansfield Road, Oxford, OX1 3QT UK
| | | | | | | |
Collapse
|
29
|
Wang JQ, Liu X, Zhang G, Parelkar NK, Arora A, Haines M, Fibuch EE, Mao L. Phosphorylation of glutamate receptors: a potential mechanism for the regulation of receptor function and psychostimulant action. J Neurosci Res 2007; 84:1621-9. [PMID: 16983660 DOI: 10.1002/jnr.21050] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ionotropic glutamate receptors, N-methyl-d-aspartate receptors (NMDARs) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs), are densely distributed in the mammalian brain and actively regulate a variety of cellular activities. Expression and function of these receptors are also under a tight regulation by many molecular mechanisms. Protein phosphorylation represents one of the important mechanisms for the posttranslational modulation of these receptors. Constitutive and regulatory phosphorylation occurs at distinct sites (serine, threonine, or tyrosine) on the intracellular C-terminal domain of almost all subunits capable of assembling a functional channel. Several key protein kinases, such as protein kinase A, protein kinase C, Ca(2+)/calmodulin-dependent protein kinases, and tyrosine kinases are involved in the site-specific catalyzation and regulation of NMDAR and AMPAR phosphorylation. Through the phosphorylation mechanism, these protein kinases as well as protein phosphatases control biochemical properties (biosynthesis, delivery, and subunit assembling), subcellular distribution, and interactions of these receptors with various synaptic proteins, which ultimately modify the efficacy and strength of excitatory synapses containing NMDARs and AMPARs and many forms of synaptic plasticity. Emerging evidence shows that psychostimulants (cocaine and amphetamine) are among effective agents that profoundly alter the phosphorylation status of both receptors in striatal neurons in vivo. Thus, psychostimulants may modulate NMDAR and AMPAR function through the phosphorylation mechanism to shape the excitatory synaptic plasticity related to additive properties of drugs of abuse.
Collapse
Affiliation(s)
- John Q Wang
- Department of Basic Medical Science, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Deng YP, Xie JP, Wang HB, Lei WL, Chen Q, Reiner A. Differential localization of the GluR1 and GluR2 subunits of the AMPA-type glutamate receptor among striatal neuron types in rats. J Chem Neuroanat 2007; 33:167-92. [PMID: 17446041 PMCID: PMC1993922 DOI: 10.1016/j.jchemneu.2007.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 01/05/2023]
Abstract
Differences among the various striatal projection neuron and interneuron types in cortical input, function, and vulnerability to degenerative insults may be related to differences among them in AMPA-type glutamate receptor abundance and subunit configuration. We therefore used immunolabeling to assess the frequency and abundance of GluR1 and GluR2, the most common AMPA subunits in striatum, in the main striatal neuron types. All neurons projecting to the external pallidum (GPe), internal pallidum (GPi) or substantia nigra, as identified by retrograde labeling, possessed perikaryal GluR2, while GluR1 was more common in striato-GPe than striato-GPi perikarya. The frequency and intensity of immunostaining indicated the rank order of their perikaryal GluR1:GluR2 ratio to be striato-GPe>striatonigral>striato-GPi. Ultrastructural studies suggested a differential localization of GluR1 and GluR2 to striatal projection neuron dendritic spines as well, with GluR1 seemingly more common in striato-GPe spines and GluR2 more common in striato-GPi and/or striatonigral spines. Comparisons among projection neurons and interneurons revealed GluR1 to be most common and abundant in parvalbuminergic interneurons, and GluR2 most common and abundant in projection neurons, with the rank order for the GluR1:GluR2 ratio being parvalbuminergic interneurons>calretinergic interneurons>cholinergic interneurons>projection neurons>somatostatinergic interneurons. Striosomal projection neurons had a higher GluR1:GluR2 ratio than did matrix projection neurons. The abundance of both GluR1 and GluR2 in striatal parvalbuminergic interneurons and projection neurons is consistent with their prominent cortical input and susceptibility to excitotoxic insult, while differences in GluR1:GluR2 ratio among projection neurons are likely to yield differences in Ca(2+) permeability, desensitization, and single channel current, which may contribute to differences among them in plasticity, synaptic integration, and excitotoxic vulnerability. The apparent association of the GluR1 subunit with synaptic plasticity, in particular, suggests striato-GPe neuron spines as a particular site of corticostriatal synaptic plasticity, presumably associated with motor learning.
Collapse
Affiliation(s)
- Y P Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
31
|
George S, Scotter J, Dean JM, Bennet L, Waldvogel HJ, Guan J, Faull RLM, Gunn AJ. Induced cerebral hypothermia reduces post-hypoxic loss of phenotypic striatal neurons in preterm fetal sheep. Exp Neurol 2007; 203:137-47. [PMID: 16962098 DOI: 10.1016/j.expneurol.2006.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/17/2006] [Accepted: 07/28/2006] [Indexed: 12/20/2022]
Abstract
Perinatal hypoxic-ischemic injury of the basal ganglia is a significant cause of disability in premature infants. Prolonged, moderate cerebral hypothermia has been shown to be neuroprotective after experimental hypoxia-ischemia; however, it has not been tested in the preterm brain. We therefore examined the effects of severe hypoxia and the potential neuroprotective effects of delayed hypothermia on phenotypic striatal neurons. Preterm (0.7 gestation) fetal sheep received complete umbilical cord occlusion for 25 min followed by cerebral hypothermia (fetal extradural temperature reduced from 39.4+/-0.3 degrees C to 29.5+/-2.6 degrees C) from 90 min to 70 h after the end of occlusion. Hypothermia was associated with a significant overall reduction in striatal neuronal loss compared with normothermia-occlusion fetuses (mean+/-SEM, 5.5+/-1.2% vs. 38.1+/-6.5%, P<0.01). Immunohistochemical studies showed that occlusion resulted in a significant loss of calbindin-28 kd, glutamic acid decarboxylase isoform 67 and neuronal nitric oxide synthase-immunopositive neurons (n=7, P<0.05), but not choline acetyltransferase-positive neurons, compared with sham controls (n=7). Hypothermia (n=7) significantly reduced the loss of calbindin-28 kd and neuronal nitric oxide synthase, but not glutamic acid decarboxylase-immunopositive neurons. In conclusion, delayed, prolonged moderate head cooling was associated with selective protection of particular phenotypic striatal projection neurons after severe hypoxia in the preterm fetus. These findings suggest that head cooling may help reduce basal ganglia injury in some premature babies.
Collapse
Affiliation(s)
- S George
- Department of Physiology, Faculty of Medicine and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Deng YP, Lei WL, Reiner A. Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling. J Chem Neuroanat 2006; 32:101-16. [PMID: 16914290 DOI: 10.1016/j.jchemneu.2006.07.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 12/17/2022]
Abstract
The localization of D1 and D2 dopamine receptors to striatal projection neuron types has been controversial, with some data favoring segregation of D1 to direct pathway neurons (substance P-containing) and D2 to indirect pathway neurons (enkephalinergic), and others reporting significant colocalization of D1 and D2 on individual projection neuron types. In the present study, we used subtype-specific antibodies against D1 and D2 and confocal laser scanning microscopy to determine their perikaryal localization in striatum in general, and in direct and indirect pathway neuron perikarya defined by retrograde labeling in particular. We found that D1 in rat was detectable on 49.5% of NeuN-immunolabeled striatal perikarya, and D2 on 61.6% of NeuN-immunolabeled perikarya, implying that at least 15-20% of D1+ neurons must possess D2 and vice versa. Secondly, we retrogradely labeled neuronal perikarya from the external globus pallidus (GPe), internal globus pallidus (GPi) or substantia nigra with rhodamine dextran amine 3 kDa (RDA3k). We found that 92% of perikarya labeled from nigra and 96% of perikarya labeled from GPi immunolabeled for D1, but only 23% of perikarya labeled from GPe immunolabeled for D1. Since direct pathway neurons (striato-nigral and striato-GPi) have a collateral projection to GPe, it is possible that many of the D1+ striatal perikarya retrogradely labeled from GPe were direct pathway neurons. About 96% of perikarya retrogradely labeled from GPe were immunolabeled for D2, while about 40% of those retrogradely labeled from GPi and 44% of those retrogradely labeled from nigra immunolabeled for D2. These findings suggest that: (1) while many striato-GPi/SN neurons possess D1 and D2, the majority mainly or exclusively possess D1 and (2) the vast majority of striato-GPe neurons mainly or exclusively possess D2.
Collapse
Affiliation(s)
- Yun-Ping Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis, TN 38163, USA
| | | | | |
Collapse
|
33
|
Ba M, Kong M, Yang H, Ma G, Lu G, Chen S, Liu Z. Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-dopa-treated rats. Neurochem Res 2006; 31:1337-47. [PMID: 17053970 DOI: 10.1007/s11064-006-9177-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
Recent evidence has linked striatal amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor function to the adverse effects of long-term dopaminergic treatment in Parkinson's disease. The phosphorylation of AMPA subunit, GluR1, reflects AMPA receptor activity. To determine whether serine phosphorylation of GluR1 subunit by activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) contributes to the process, we examined the effects of unilateral nigrostriatal depletion with 6-hydroxydopamine and subsequent L: -dopa treatment on motor responses and phosphorylation states. Three weeks of L: -dopa administration to rats shortened the duration of the rotational response. We found a significant reduction in the abundance of both phosphorylated GluR1 at serine-831 site (pGluR1S831) and GluR1 in the cell plasma membrane of lesioned striatum. Chronic treatment of lesioned rats with L: -dopa markedly upregulated the phosphorylation of GluR1 in lesioned striatum with a concomitant normalization of the plasma membrane GluR1 abundance, which lasted at least 1 day after withdrawal of chronic L: -dopa treatment. Our immunostaining data showed that these changes were confined to parvalbumin-positive neurons where GluR1 subunits are exclusively expressed. Both the altered motor response duration and the degree of pGluR1S831 were attenuated by the intrastriatal administration of CaMKII inhibitor KN-93. These findings suggest that activation of CaMKII contributes to both development and maintenance of motor response duration alterations, through a mechanism that involves an increase in pGluR1S831 within parvalbumin-positive neurons.
Collapse
Affiliation(s)
- Maowen Ba
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Lui PW, Yeung CW, Yung WH, Shi Y, Chen LW, Chan YS, Yung KKL. Ablation of gene expression of N-methyl-D-aspartate receptor one by antisense oligonucleotides in striatal neurons in culture. Neurosignals 2006; 14:303-16. [PMID: 16772733 DOI: 10.1159/000093045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 02/28/2006] [Indexed: 11/19/2022] Open
Abstract
In the present study, a twenty-mer antisense oligonucleotide specific for N-methyl-D-aspartate receptor one (ANR1) was applied to striatal neurons in primary cell culture. The ANR1 was found to be specific and nontoxic. Significant reductions in expression of NR1 mRNA and proteins were resulted after a single dose of ANR1 transcripts. Interestingly, there were reductions in total NR1 proteins but two phosphorylated forms of NR1 proteins at serine 896 and 897 residues were not reduced. There was also no change in the pattern of distribution of NR1 immunoreactivity in the striatal neurons. In addition, significant reductions of NMDA-mediated peak inward current were found after application of a higher concentration of ANR1 (20-100 microM) by patch clamp recordings. The present results indicate that ANR1 is a useful agent in reducing NMDA receptor functions. The present data thus provide detailed cellular and molecular mechanisms to explain our previous findings of amelioration of motor symptoms in a rat model of Parkinson's disease. More importantly, application of ANR1 was also found to display neuroprotective effects of striatal neurons against NMDA-induced excitotoxic cell death. The findings have implications in development of new approach in prevention of cell death in neurodegenerative diseases and new treatments for these diseases.
Collapse
Affiliation(s)
- P W Lui
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
ZHU JPQ, XU W, ANGULO JA. Methamphetamine-induced cell death: selective vulnerability in neuronal subpopulations of the striatum in mice. Neuroscience 2006; 140:607-22. [PMID: 16650608 PMCID: PMC2882192 DOI: 10.1016/j.neuroscience.2006.02.055] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Revised: 02/02/2006] [Accepted: 02/08/2006] [Indexed: 01/02/2023]
Abstract
Methamphetamine (METH) is an illicit and potent psychostimulant, which acts as an indirect dopamine agonist. In the striatum, METH has been shown to cause long lasting neurotoxic damage to dopaminergic nerve terminals and recently, the degeneration and death of striatal cells. The present study was undertaken to identify the type of striatal neurons that undergo apoptosis after METH. Male mice received a single high dose of METH (30 mg/kg, i.p.) and were killed 24 h later. To demonstrate that METH induces apoptosis in neurons, we combined terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining with immunohistofluorescence for the neuronal marker neuron-specific nuclear protein (NeuN). Staining for TUNEL and NeuN was colocalized throughout the striatum. METH induces apoptosis in approximately 25% of striatal neurons. Cell counts of TUNEL-positive neurons in the dorsomedial, ventromedial, dorsolateral and ventrolateral quadrants of the striatum did not reveal anatomical preference. The type of striatal neuron undergoing cell death was determined by combining TUNEL with immunohistofluorescence for selective markers of striatal neurons: dopamine- and cAMP-regulated phosphoprotein, of apparent Mr 32,000, parvalbumin, choline acetyltransferase and somatostatin (SST). METH induces apoptosis in approximately 21% of dopamine- and cAMP-regulated phosphoprotein, of apparent Mr 32,000-positive neurons (projection neurons), 45% of GABA-parvalbumin-positive neurons in the dorsal striatum, and 29% of cholinergic neurons in the dorsal-medial striatum. In contrast, the SST-positive interneurons were refractory to METH-induced apoptosis. Finally, the amount of cell loss determined with Nissl staining correlated with the amount of TUNEL staining in the striatum of METH-treated animals. In conclusion, some of the striatal projection neurons and the GABA-parvalbumin and cholinergic interneurons were removed by apoptosis in the aftermath of METH. This imbalance in the populations of striatal neurons may lead to functional abnormalities in the output and processing of neural information in this part of the brain.
Collapse
Affiliation(s)
| | | | - J. A. ANGULO
- Corresponding author. Tel: +1-212-772-5232; fax: +1-212-772-5230. (J. A. Angulo)
| |
Collapse
|
36
|
Rujescu D, Bender A, Keck M, Hartmann AM, Ohl F, Raeder H, Giegling I, Genius J, McCarley RW, Möller HJ, Grunze H. A pharmacological model for psychosis based on N-methyl-D-aspartate receptor hypofunction: molecular, cellular, functional and behavioral abnormalities. Biol Psychiatry 2006; 59:721-9. [PMID: 16427029 DOI: 10.1016/j.biopsych.2005.08.029] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 08/09/2005] [Accepted: 08/29/2005] [Indexed: 02/08/2023]
Abstract
BACKGROUND The psychotomimetic effects of N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP) in healthy humans and their ability to exacerbate psychotic symptoms in schizophrenic patients have promoted a view of schizophrenia as being related to altered glutamatergic neurotransmission. METHODS This prompted us and others to develop animal models for psychosis based on a glutamatergic approach. Pharmacological induction of a state of impaired glutamatergic neurotransmission based on chronic, low-dose application of MK-801, a highly selective noncompetitive NMDA antagonist, revealed marked parallels between schizophrenia and our animal model. RESULTS MK-801 altered the expression of NR1 splice variants and NR2 subunits of the NMDA receptor in a pattern partially resembling the alterations detected in schizophrenia. Ultrastructurally, the number of gamma-aminobutyric-acid (GABA)ergic parvalbumin-positive interneurons was relatively decreased, a finding which again parallels observations in post mortem brain from schizophrenic patients. As a functional consequence, local inhibition of pyramidal cells which is largely mediated by recurrent axon collaterals, originating from GABAergic interneurons, was altered. Not unexpectedly, these animals showed cognitive deficits resembling findings in schizophrenic humans. CONCLUSIONS These convergent lines of evidence suggest that our approach has a significant potential of serving as a model of the pathobiology of several aspects of psychosis and consequently could contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Dan Rujescu
- Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Laverghetta AV, Toledo CAB, Veenman CL, Yamamoto K, Wang H, Reiner A. Cellular Localization of AMPA Type Glutamate Receptor Subunits in the Basal Ganglia of Pigeons (Columba livia). BRAIN, BEHAVIOR AND EVOLUTION 2006; 67:10-38. [PMID: 16219996 DOI: 10.1159/000088856] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 05/24/2005] [Indexed: 11/19/2022]
Abstract
Corticostriatal and thalamostriatal projections utilize glutamate as a neurotransmitter in mammals and birds. The influence on striatum is mediated, in part, by ionotropic AMPA-type glutamate receptors, which are heteromers composed of GluR1-4 subunits. Although the cellular localization of AMPA-type subunits has been well characterized in mammalian basal ganglia, their localization in avian basal ganglia has not. We thus carried out light microscopic single- and double-label and electron microscopic single-label immunohistochemical studies of GluR1-4 distribution and cellular localization in pigeon basal ganglia. Single-label studies showed that the striatal neuropil is rich in GluR1, GluR2, and GluR2/3 immunolabeling, suggesting the localization of GluR1, GluR2 and/or GluR3 to the dendrites and spines of striatal projection neurons. Double-label studies and perikaryal size distribution determined from single-label material indicated that about 25% of enkephalinergic and 25% of substance P-containing striatal projection neuron perikarya contained GluR1, whereas GluR2 was present in about 75% of enkephalinergic neurons and all substance-P -containing neurons. The perikaryal size distribution for GluR2 compared to GluR2/3 suggested that enkephalinergic neurons might more commonly contain GluR3 than do substance P neurons. Parvalbuminergic and calretininergic striatal interneurons were rich in GluR1 and GluR4, a few cholinergic striatal interneurons possessed GluR2, but somatostatinergic striatal interneurons were devoid of all subunits. The projection neurons of globus pallidus all possessed GluR1, GluR2, GluR2/3 and GluR4 immunolabeling. Ultrastructural analysis of striatum revealed that GluR1 was preferentially localized to dendritic spines, whereas GluR2/3 was found in spines, dendrites, and perikarya. GluR2/3-rich spines were generally larger than GluR1 spines and more frequently possessed perforated post-synaptic densities. These results show that the diverse basal ganglia neuron types each display different combinations of AMPA subunit localization that shape their responses to excitatory input. For striatal projection neurons and parvalbuminergic interneurons, the combinations resemble those for the corresponding cell types in mammals, and thus their AMPA responses to glutamate are likely to be similar.
Collapse
Affiliation(s)
- Antonio V Laverghetta
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Choe ES, Shin EH, Wang JQ. Regulation of phosphorylation of NMDA receptor NR1 subunits in the rat neostriatum by group I metabotropic glutamate receptors in vivo. Neurosci Lett 2005; 394:246-51. [PMID: 16300895 DOI: 10.1016/j.neulet.2005.10.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/13/2005] [Accepted: 10/14/2005] [Indexed: 11/27/2022]
Abstract
Group I metabotropic glutamate receptors (mGluRs) are Galphaq-protein-coupled receptors and are densely expressed in medium-sized spiny projection neurons of the neostriatum. Among different subtypes of glutamate receptors, group I mGluRs have been demonstrated to actively interact with the ionotropic glutamate receptor N-methyl-d-aspartate (NMDA) subtypes for regulating various forms of cellular activities and synaptic plasticity. In this study, the possible role of group I mGluRs in regulating serine phosphorylation of NMDA receptor NR1 subunits in the neostriatum was investigated in vivo. We found in chronically cannulated rats that injection of the group I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) into the dorsal striatum (caudate putamen) significantly increased phosphorylation of the two serine residues (serine 896 and serine 897) on the intracellular C-terminus of the NR1. The increase in NR1 phosphorylation was dose-dependent and DHPG had no effect on basal levels of NR1 proteins. Intrastriatal infusion of the group I mGluR antagonist N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) significantly attenuated the DHPG-stimulated NR1 phosphorylation. Pretreatment with the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) also produced the same effect. These data suggest that group I mGluRs, likely mGluR5 subtypes, possess the ability to upregulate protein phosphorylation of NMDA receptor NR1 subunits in striatal neurons in vivo.
Collapse
Affiliation(s)
- Eun Sang Choe
- Department of Biology, Pusan National University, Pusan 609-735, South Korea
| | | | | |
Collapse
|
39
|
Wu Y, Kawakami R, Shinohara Y, Fukaya M, Sakimura K, Mishina M, Watanabe M, Ito I, Shigemoto R. Target-cell-specific left-right asymmetry of NMDA receptor content in schaffer collateral synapses in epsilon1/NR2A knock-out mice. J Neurosci 2005; 25:9213-26. [PMID: 16207881 PMCID: PMC6725769 DOI: 10.1523/jneurosci.2134-05.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Input-dependent left-right asymmetry of NMDA receptor epsilon2 (NR2B) subunit allocation was discovered in hippocampal Schaffer collateral (Sch) and commissural fiber pyramidal cell synapses (Kawakami et al., 2003). To investigate whether this asymmetrical epsilon2 allocation is also related to the types of the postsynaptic cells, we compared postembedding immunogold labeling for epsilon2 in left and right Sch synapses on pyramidal cells and interneurons. To facilitate the detection of epsilon2 density difference, we used epsilon1 (NR2A) knock-out (KO) mice, which have a simplified NMDA receptor subunit composition. The labeling density for epsilon2 but not zeta1 (NR1) and subtype 2/3 glutamate receptor (GluR2/3) in Sch-CA1 pyramidal cell synapses was significantly different between the left and right hippocampus with opposite directions in strata oriens and radiatum; the left to right ratio of epsilon2 labeling density was 1:1.50 in stratum oriens and 1.44:1 in stratum radiatum. No significant difference, however, was detected in CA1 stratum radiatum between the left and right Sch-GluR4-positive (mostly parvalbumin-positive) and Sch-GluR4-negative interneuron synapses. Consistent with the anatomical asymmetry, the amplitude ratio of NMDA EPSCs to non-NMDA EPSCs in pyramidal cells was approximately two times larger in right than left stratum radiatum and vice versa in stratum oriens of epsilon1 KO mice. Moreover, the amplitude of long-term potentiation in the Sch-CA1 synapses of left stratum radiatum was significantly larger than that in the right corresponding synapses. These results indicate that the asymmetry of epsilon2 distribution is target cell specific, resulting in the left-right difference in NMDA receptor content and plasticity in Sch-CA1 pyramidal cell synapses in epsilon1 KO mice.
Collapse
Affiliation(s)
- Yue Wu
- Department of Physiology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
David HN, Ansseau M, Abraini JH. Dopamine-glutamate reciprocal modulation of release and motor responses in the rat caudate-putamen and nucleus accumbens of "intact" animals. ACTA ACUST UNITED AC 2005; 50:336-60. [PMID: 16278019 DOI: 10.1016/j.brainresrev.2005.09.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 09/10/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022]
Abstract
Functional interactions between dopaminergic neurotransmission and glutamatergic neurotransmission are well known to play a crucial integrative role in the striatum, the major input structure of the basal ganglia now widely recognized to contribute to the control of motor activity and movements but also to the processing of cognitive and limbic functions. However, the nature of these interactions is still a matter of debate and controversy. This review (1) summarizes anatomical data on the distribution of dopaminergic and glutamatergic receptors in the striatum-accumbens complex, (2) focuses on the dopamine-glutamate interactions in the modulation of each other's release in the striatum-accumbens complex, and (3) examines the dopamine-glutamate interactions in the entire striatum involved in the control of locomotor activity. The effects of dopaminergic and glutamatergic receptor selective agonists and antagonists on dopamine and glutamate release as well on motor responses are analyzed in the entire striatum, by reviewing both in vitro and in vivo data. Regarding in vivo data, only findings from focal injections studies in the nucleus accumbens or the caudate-putamen of "intact" animals are reviewed. Altogether, the available data demonstrate that dopamine and glutamate do not uniformly interact to modulate each others' release and postsynaptic modulation of striatal output neurons. Depending on the receptor subtypes involved, interactions between dopaminergic and glutamatergic transmission vary as a multiple and complex combination of tonic, phasic, facilitatory, and inhibitory properties.
Collapse
Affiliation(s)
- Hélène N David
- Unité de Psychologie Médicale, CHU Sart-Tilman, B 4000 Liège, Belgium.
| | | | | |
Collapse
|
41
|
Liang ZQ, Wang XX, Wang Y, Chuang DM, DiFiglia M, Chase TN, Qin ZH. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Neurobiol Dis 2005; 20:562-73. [PMID: 15922606 DOI: 10.1016/j.nbd.2005.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 03/08/2005] [Accepted: 04/07/2005] [Indexed: 11/29/2022] Open
Abstract
The present studies evaluated the potential contribution of Bcl-2, p53, and c-Myc to the differential vulnerability of striatal neurons to the excitotoxin quinolinic acid (QA). In normal rat striatum, Bcl-2 immunoreactivity (Bcl-2-i) was most intense in large aspiny interneurons including choline acetyltransferase positive (CAT+) and parvalbumin positive (PARV+) neurons, but low in a majority of medium-sized neurons. In human brain, intense Bcl-2-i was seen in large striatal neurons but not in medium-sized spiny projection neurons. QA produced degeneration of numerous medium-sized neurons, but not those enriched in Bcl-2-i. Many Bcl-2-i-enriched interneurons including those with CAT+ and PARV+ survived QA injection, while medium-sized neurons labeled for calbindin D-28K (CAL D-28+) did not. In addition, proapoptotic proteins p53-i and c-Myc-i were robustly induced in medium-sized neurons, but not in most large neurons. The selective vulnerability of striatal medium spiny neurons to degeneration in a rodent model of Huntington's disease appears to correlate with their low levels of Bcl-2-i and high levels of induced p53-i and c-Myc-i.
Collapse
Affiliation(s)
- Zhong-Qin Liang
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215007, P.R. China
| | | | | | | | | | | | | |
Collapse
|
42
|
Hilton GD, Ndubuizu A, Nunez JL, McCarthy MM. Simultaneous glutamate and GABA(A) receptor agonist administration increases calbindin levels and prevents hippocampal damage induced by either agent alone in a model of perinatal brain injury. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 159:99-111. [PMID: 16125793 DOI: 10.1016/j.devbrainres.2005.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 07/20/2005] [Accepted: 07/23/2005] [Indexed: 12/11/2022]
Abstract
Perinatal brain injury is associated with the release of amino acids, principally glutamate and GABA, resulting in massive increases in intracellular calcium and eventual cell death. We have previously demonstrated that independent administration of kainic acid (KA), an AMPA/kainate receptor agonist, or muscimol, a GABA(A) receptor agonist, to newborn rats results in hippocampal damage [Hilton, G.D., Ndubuizu, A., and McCarthy, M.M., 2004. Neuroprotective effects of estradiol in newborn female rat hippocampus. Dev. Brain Res. 150, 191-198; Hilton, G. D., Nunez, J.L. and McCarthy, M.M., 2003. Sex differences in response to kainic acid and estradiol in the hippocampus of newborn rats. Neuroscience. 116, 383-391; Nunez, J.L. and McCarthy, M.M., 2003. Estradiol exacerbates hippocampal damage in a model of preterm infant brain injury. Endocrinology. 144, 2350-2359; Nunez, J.L., Alt, J.J. and McCarthy, M.M., 2003. A new model for prenatal brain damage. I. GABA(A) receptor activation induces cell death in developing rat hippocampus. Exp. Neurol. 181, 258-269]. We now report that KA or muscimol alone administered to immature hippocampal neurons in culture induces significant cell death as evidenced by TUNEL assay. Surprisingly, simultaneous administration of equimolar quantities of these two agonists blocks the effect of either one alone. Moreover, treatment of newborn pups results in less damage compared to either muscimol or KA alone. We further observed that immunoreactivity for the calcium-binding protein, calbindin D(28K), is increased in the brains of pups simultaneously administered KA and muscimol as compared to either alone.
Collapse
Affiliation(s)
- Genell D Hilton
- Departments of Physiology and Psychiatry, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
43
|
Marti M, Manzalini M, Fantin M, Bianchi C, Della Corte L, Morari M. Striatal glutamate release evoked in vivo by NMDA is dependent upon ongoing neuronal activity in the substantia nigra, endogenous striatal substance P and dopamine. J Neurochem 2005; 93:195-205. [PMID: 15773919 DOI: 10.1111/j.1471-4159.2005.03015.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of the present microdialysis study was to investigate whether the increase in striatal glutamate levels induced by intrastriatal perfusion with NMDA was dependent on the activation of extrastriatal loops and/or endogenous striatal substance P and dopamine. The NMDA-evoked striatal glutamate release was mediated by selective activation of the NMDA receptor-channel complex and action potential propagation, as it was prevented by local perfusion with dizocilpine and tetrodotoxin, respectively. Tetrodotoxin and bicuculline, perfused distally in the substantia nigra reticulata, prevented the NMDA-evoked striatal glutamate release, suggesting its dependence on ongoing neuronal activity and GABA(A) receptor activation, respectively, in the substantia nigra. The NMDA-evoked glutamate release was also dependent on striatal substance P and dopamine, as it was antagonized by intrastriatal perfusion with selective NK(1) (SR140333), D(1)-like (SCH23390) and D(2)-like (raclopride) receptor antagonists, as well as by striatal dopamine depletion. Furthermore, impairment of dopaminergic transmission unmasked a glutamatergic stimulation by submicromolar NMDA concentrations. We conclude that in vivo the NMDA-evoked striatal glutamate release is mediated by activation of striatofugal GABAergic neurons and requires activation of striatal NK(1) and dopamine receptors. Endogenous striatal dopamine inhibits or potentiates the NMDA action depending on the strength of the excitatory stimulus (i.e. the NMDA concentration).
Collapse
Affiliation(s)
- Matteo Marti
- Department of Experimental and Clinical Medicine, Section of Pharmacology, and Neuroscience Center, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Alberch J, Canals JM, Pérez-Navarro E. Therapeutic strategies in Huntington’s disease. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.4.449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Pezzi S, Checa N, Alberch J. The vulnerability of striatal projection neurons and interneurons to excitotoxicity is differentially regulated by dopamine during development. Int J Dev Neurosci 2005; 23:343-9. [PMID: 15927758 DOI: 10.1016/j.ijdevneu.2004.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/07/2004] [Accepted: 12/07/2004] [Indexed: 11/16/2022] Open
Abstract
The maturation of striatal projection neurons and interneurons is influenced by the development and integrity of their connectivity. In the present work, we have analyzed the modulation of striatum vulnerability to quinolinate (QUIN)-induced excitotoxicity in different neuronal populations by the nigrostriatal dopaminergic pathway during postnatal development. A single striatal lesion with 6-hydroxydopamine (6-OHDA) at the second postnatal day (P) 2 or QUIN at P7 induced a reduction in the striatal volume at P30, whereas an additive effect was observed when these two lesions were performed in the same animal. The analysis of different striatal neuronal populations showed that the excitotoxic lesion induced by QUIN over projection neurons stained with calbindin was partially reverted by the previous injection of 6-OHDA at P2. However, cholinergic interneurons were affected neither by the lack of dopamine innervation nor by QUIN treatment. This neuronal population also remained intact after the double lesion. In contrast, the number of other type of striatal interneurons, parvalbumin-positive neurons, were reduced by the dopaminergic ablation and also by the QUIN-induced excitotoxicity and this effect was additive after the double lesion when it was measured at P30. On the other hand, we studied the effect on the striatal outputs measuring the density of substance P-positive fibers in the substantia nigra and enkephalin-positive fibers in the globus pallidus. A reduction in substance P-positive fibers was observed in 6-OHDA injected animals, while the density of enkephalin-positive fibers was only decreased after QUIN treatment. The double lesion did not modify the effects of the single lesions. In conclusion, our results show that dopamine modulates the vulnerability to excitotoxicity during striatal postnatal development, and this effect is specific for projection neurons. Furthermore, striatonigral and striatopallidal pathways are differentially regulated by the activation of dopamine or glutamate receptors.
Collapse
Affiliation(s)
- Susana Pezzi
- Departament de Biologia Cel.lular i Anatomia Patològica, Facultat de Medicina, IDIBAPS, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | |
Collapse
|
46
|
Segovia G, Mora F. Dopamine and GABA increases produced by activation of glutamate receptors in the nucleus accumbens are decreased during aging. Neurobiol Aging 2005; 26:91-101. [PMID: 15585349 DOI: 10.1016/j.neurobiolaging.2004.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 12/16/2003] [Accepted: 02/17/2004] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to investigate the effects of aging on the increases of dopamine and GABA induced by activation of ionotropic and metabotropic glutamate receptors in the nucleus accumbens of the freely moving rat. The effects of local perfusion of the agonists NMDA (10, 100 and 500 microM), AMPA (1, 20 and 100 microM) and ACPD (100, 500 and 1000 microM) on extracellular concentration of dopamine and GABA in the nucleus accumbens of young (2-4 months), middle-aged (10-14 months) and aged (24-32 months) male Wistar rats were studied using microdialysis. In young rats, perfusion of the agonists NMDA and AMPA, but not ACPD, produced an increase of dialysate concentrations of dopamine. Perfusion of the three glutamate agonists (NMDA, AMPA and ACPD) produced an increase of dialysate GABA. This increase was delayed in time compared with the increase of dopamine. In the nucleus accumbens of middle-aged and aged rats, the increases of dopamine induced by NMDA were significantly lower than those in young rats. Also the increases of dopamine induced by AMPA were lower in aged rats than those in young rats. The effects of AMPA, NMDA and ACPD on dialysate GABA were significantly lower in aged rats than in young rats. These findings suggest that aging changes the interaction between the neurotransmitters glutamate and dopamine and glutamate and GABA in the nucleus accumbens of the freely moving rat.
Collapse
Affiliation(s)
- Gregorio Segovia
- Department of Physiology, Faculty of Medicine, Universidad Complutense, 28040 Madrid, Spain.
| | | |
Collapse
|
47
|
Deng YP, Albin RL, Penney JB, Young AB, Anderson KD, Reiner A. Differential loss of striatal projection systems in Huntington's disease: a quantitative immunohistochemical study. J Chem Neuroanat 2004; 27:143-64. [PMID: 15183201 DOI: 10.1016/j.jchemneu.2004.02.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 01/20/2004] [Accepted: 02/08/2004] [Indexed: 11/26/2022]
Abstract
Prior studies suggest differences exist among striatal projection neuron types in their vulnerability to Huntington's disease (HD). In the present study, we immunolabeled the fibers and terminals of the four main types of striatal projection neuron in their target areas for substance P, enkephalin, or glutamic acid decarboxylase (GAD), and used computer-assisted image analysis to quantify the abundance of immunolabeled terminals in a large sample of HD cases ranging from grade 0 to grade 4 [J. Neuropathol. Exp. Neurol. 44 (1985) 559], normalized to labeling in control human brains. Our goal was to characterize the relative rates of loss of the two striatopallidal projection systems (to the internal versus the external pallidal segments) and the two striatonigral projections systems (to pars compacta versus pars reticulata). The findings for GAD and the two neuropeptides were similar--the striatal projection to the external pallidal segment was the most vulnerable, showing substantial loss by grade 1. Loss of fibers in both subdivisions of the substantia nigra was also already great by grade 1. By contrast, the loss in the striatal projection system to the internal segment of globus pallidus proceeded more gradually. By grade 4 of HD, however, profound loss in all projection systems was apparent. These findings support the notion that the striatal neurons preferentially projecting to the internal pallidal segment are, in fact, less vulnerable in HD than are the other striatal projection neuron types.
Collapse
Affiliation(s)
- Y P Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
48
|
Arruda Paes PC, de Magalhães L, Camillo MAP, Rogero JR, Troncone LRP. Ionotropic glutamate receptors regulating labeled acetylcholine release from rat striatal tissue in vitro: possible involvement of receptor modulation in magnesium sensitivity. Neurosci Res 2004; 49:289-95. [PMID: 15196777 DOI: 10.1016/j.neures.2004.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 03/18/2004] [Indexed: 11/27/2022]
Abstract
This study evaluated the role of glutamate ionotropic receptors on the control of [3H]acetylcholine ([3H]ACh) release by the intrinsic striatal cholinergic cells. [3H]-choline previously taken up by chopped striatal tissue and converted to [3H]ACh, was released under stimulation by glutamate, N-methyl-d-aspartate (NMDA), kainate and a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). Experiments were conducted in the absence of choline uptake inhibitors or acetylcholinesterase inhibitors. A paradigm of two stimulations was employed, the first in control conditions and the second after 9 min of perfusion with the test agents MK-801, 2-amino-5-phosphonopentanoic acid (AP-5), tetrodotoxin (TTX), 6,7-dinitroquinoxaline-2,3-dione (DNQX), 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo-[f]quinoxaline-7-sulfonamide (NBQX), glycine and magnesium. Our results support that (1) in the absence of Mg2+, NMDA is the most effective agonist to stimulate [3H]ACh release from striatal slices (2) magnesium effectively antagonized kainate and AMPA stimulation suggesting that at least part of the kainate and AMPA effects might be attributed to glutamate release (3) besides NMDA, kainate receptors showed a more direct involvement in [3H]ACh release control based on the smaller dependence on Mg2+ and less inhibition by TTX and (4) stimulation of ionotropic glutamate receptors may induce long lasting biochemical changes in receptor/ion channel function since the effects of TTX and/or Mg2+ ions on [3H]ACh release were modified by previous exposure of the tissue to agonists.
Collapse
Affiliation(s)
- Paulo C Arruda Paes
- Molecular Biology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Av. Prof. Lineu Prestes 2242, Cidade Universitária, SP, São Paulo 05508-900, Brazil
| | | | | | | | | |
Collapse
|
49
|
Tamura S, Morikawa Y, Iwanishi H, Hisaoka T, Senba E. Foxp1 gene expression in projection neurons of the mouse striatum. Neuroscience 2004; 124:261-7. [PMID: 14980377 DOI: 10.1016/j.neuroscience.2003.11.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2003] [Indexed: 11/21/2022]
Abstract
The developmental processes of maturation in the CNS are the result of specific events including mitogenesis, differentiation, and cell death which occur in a precise spatial and temporal manner. It has been reported that many transcription factors, including forkhead transcription factors, play a key role in these processes. First, we examined the expression pattern of the forkhead transcription factor Foxp1 in the adult CNS. Foxp1 was highly expressed in the striatum and moderately in the cerebral cortex, CA1/2 subfields of the hippocampus, and several thalamic nuclei. In situ hybridization combined with immunohistochemistry in the striatum of adult mice revealed that Foxp1 mRNA was detected in a subset of projection neurons, not in interneurons. In addition, the expression of Foxp1 mRNA was observed in the developing basal ganglia with the exception of the globus pallidus. Thus, Foxp1 mRNA was expressed in a subset of striatal projection neurons, probably the matrix neurons. The expression pattern of Foxp1 mRNA suggests that Foxp1 may play a role in the development and formation of a circuit in the basal ganglia, which is involving the matrix neurons.
Collapse
Affiliation(s)
- S Tamura
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | | | | | | | | |
Collapse
|
50
|
Hernández LF, Segovia G, Mora F. Effects of activation of NMDA and AMPA glutamate receptors on the extracellular concentrations of dopamine, acetylcholine, and GABA in striatum of the awake rat: a microdialysis study. Neurochem Res 2004; 28:1819-27. [PMID: 14649723 DOI: 10.1023/a:1026115607216] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of activation of the AMPA and NMDA ionotropic glutamate receptors on the extracellular concentration of dopamine, acetylcholine, (ACh) and GABA in striatum of the awake rat was investigated. Also the levels of DOPAC, HVA, and choline (Ch) were included in this study. Seven to eight days after stereotaxical implantation of a guide-cannulae assembly, microdialysis experiments were performed. The dopamine and ACh content of samples were measured by HPLC coupled to electrochemical detection. GABA was measured using fluorometric detection. Perfusion of AMPA (1, 20, 100 microM) produced a dose-related increase of dopamine and a dose-related decrease of DOPAC and HVA. AMPA 100 microM decreased extracellular concentrations of ACh and increased the extracellular concentration of Ch and GABA. Perfusion of NMDA 500 microM increased the concentration of dopamine and decreased DOPAC and HVA. Also, NMDA 100 microM decreased DOPAC. NMDA 500 microM decreased the extracellular concentrations of ACh and increased the concentrations of Ch and GABA. Perfusion of the AMPA/kainate-antagonist DNQX (100 microM) blocked the effects of AMPA (100 microM) on dopamine, DOPAC, HVA, ACh, and GABA concentrations. Perfusion of the NMDA-antagonist CPP (100 microM) blocked the effects of NMDA 500 microM on dopamine, DOPAC, HVA, ACh, Ch, and GABA concentrations. These results suggest an interaction between glutamate-dopamine-ACh-GABA in striatum of the awake rat.
Collapse
Affiliation(s)
- L F Hernández
- Department of Physiology, Faculty of Medicine, University Complutense, Madrid, Spain
| | | | | |
Collapse
|