1
|
Zanta NC, Assad N, Suchecki D. Neurobiological mechanisms involved in maternal deprivation-induced behaviours relevant to psychiatric disorders. Front Mol Neurosci 2023; 16:1099284. [PMID: 37122626 PMCID: PMC10133561 DOI: 10.3389/fnmol.2023.1099284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Parental care is essential for proper development of stress response and emotion-related behaviours. Epidemiological studies show that parental loss in childhood represents a major risk factor for the development of mental disorders throughout the lifespan, including schizophrenia, depression, and anxiety. In most mammalian species, the mother is the main source of care and maternal behaviours regulate several physiological systems. Maternal deprivation (DEP) for 24 h is a paradigm widely used to disinhibit the hypothalamic-pituitary-adrenal axis response to stress during the stress hyporesponsive period. In this mini-review we will highlight the main DEP-induced neurobiological and behavioural outcomes, including alterations on stress-related hormones, neurogenesis, neurotransmitter/neuromodulatory systems and neuroinflammation. These neurobiological changes may be reflected by aberrant behaviours, which are relevant to the study of mental disorders. The evidence indicates that DEP consequences depend on the sex, the age when the DEP takes place and the age when the animals are evaluated, reflecting dynamic plasticity and individual variability. Individual variability and sex differences have a great relevance for the study of biological factors of stress resilience and vulnerability and the DEP paradigm is a suitable model for evaluation of phenotypes of stress- and emotion-related psychopathologies.
Collapse
|
2
|
Timmerman BM, Mooney-Leber SM, Brummelte S. The effects of neonatal procedural pain and maternal isolation on hippocampal cell proliferation and reelin concentration in neonatal and adult male and female rats. Dev Psychobiol 2021; 63:e22212. [PMID: 34813104 DOI: 10.1002/dev.22212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022]
Abstract
Preterm births accounted for over 10% of all U.S. live births in 2019 and the rate is rising. Neonatal stressors, especially procedural pain, experienced by preterm infants in the neonatal intensive care unit (NICU) have been associated with neurodevelopmental impairments. Parental care can alleviate stress during stressful or painful procedures; however, infants in the NICU often receive reduced parental care compared with their peers. Animal studies suggest that decreased maternal care similarly impairs neurodevelopment but also influences the effects of neonatal pain. It is important to mimic both stressors in animal models of neonatal stress exposure. In this study, researchers investigated the individual and combined impact of neonatal pain and maternal isolation on reelin protein levels and cellular proliferation in the hippocampal dentate gyrus of 8 days old and adult rats. Exposure to either stressor individually, but not both, increased reelin levels in the dentate gyrus of adult females without significantly altering reelin levels in adult males. However, cell proliferation levels at either age were unaffected by the early-life stressors. These results suggest that each early-life stressor has a unique effect on markers of brain development and more research is needed to further investigate their distinct influences.
Collapse
Affiliation(s)
- Brian M Timmerman
- Department of Psychology, Wayne State University, Detroit, Michigan, USA
| | - Sean M Mooney-Leber
- Department of Psychology, University of Wisconsin-Stevens Points, Stevens Point, Wisconsin, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, Michigan, USA.,Translational Neuroscience Program, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
3
|
Godoy LD, Garcia-Cairasco N. Maternal behavior and the neonatal HPA axis in the Wistar Audiogenic Rat (WAR) strain: Early-life implications for a genetic animal model in epilepsy. Epilepsy Behav 2021; 117:107877. [PMID: 33714185 DOI: 10.1016/j.yebeh.2021.107877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/28/2020] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Epileptogenesis is a multistage process and seizure susceptibility can be influenced by stress early in life. Wistar Audiogenic Rat (WAR) strain is an interesting model to study the association between stress and epilepsy, since it is naturally susceptible to seizures and present changes in the hypothalamus-pituitary-adrenal (HPA) axis activity. All these features are related to the pathogenic mechanisms usually associated with psychiatric comorbidities present in epilepsy. Therefore, the current study aimed to evaluate the neonate HPA axis function and maternal care under control and stress conditions in the WAR strain. Maternal behavior and neonate HPA axis were evaluated in Wistar and WAR strains under rest and after the presence of stressors. We observed that WAR pups present higher plasmatic corticosterone concentration as compared to Wistar pups. Although WAR dams do not show significant altered maternal behavior at rest, there is a higher latency to recover the litter in the pup retrieval test, while some did not recover all the litter. Wistar Audiogenic Rat dams presented similar behaviors to Wistar dams to a female intruder and maternal care with the pups in the maternal defense test. Taken together, these findings indicate that the WAR strain could show HPA axis disruption early in life and dams present altered maternal behavior under stressful events. Those alterations make the WAR strain an interesting model to evaluate vulnerability to epilepsy and its associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Henn L, Zanta NC, Girardi CEN, Suchecki D. Chronic Escitalopram Treatment Does Not Alter the Effects of Neonatal Stress on Hippocampal BDNF Levels, 5-HT 1A Expression and Emotional Behaviour of Male and Female Adolescent Rats. Mol Neurobiol 2021; 58:926-943. [PMID: 33063280 DOI: 10.1007/s12035-020-02164-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
Early life stress is considered a risk factor for the development of long-term psychiatric disorders. Maternal deprivation (MD) is a useful paradigm to understand the neurobiological underpinnings of early stress-induced changes in neurodevelopment trajectory. The goal of the present study was to examine the effects of a chronic treatment with escitalopram (ESC) on the hippocampal levels of BDNF and neuropeptide Y (NPY), expression of serotonin type 1A receptor (5-HT1A), plasma corticosterone levels and emotional behaviours in male and female adolescent rats submitted to MD at 9 days of life (group DEP9) and challenged with a brief and mild stress (saline injection (SAL)) at the end of MD. Whole litters were kept with mothers (CTL) or submitted to MD (DEP9). Within each group, pups were stress-challenged (CTL-SAL and DEP9-SAL) or not (CTL-NSAL and DEP9-NSAL). ESC or vehicle treatments began at weaning and lasted 24 days, when animals were sacrificed for determination of neurobiological variables or submitted to a battery of tests for evaluation of emotional behaviours. The results showed that BDNF levels were higher in SAL-challenged males and in DEP9-SAL females, whereas 5-HT1A receptor expression was reduced in DEP9 males and in SAL-challenged females. There were no changes in NPY or corticosterone levels. In the forced swim test, SAL-challenged males and DEP9 females displayed less immobility and ESC only increased social motivation in males. The results indicated that neonatal stress led to sex-dependent changes in neurobiology and behaviour and that chronic ESC treatment had minor effects on these parameters.
Collapse
Affiliation(s)
- Lorena Henn
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, 1° andar, São Paulo, SP, 04024-002, Brazil
| | - Natália C Zanta
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, 1° andar, São Paulo, SP, 04024-002, Brazil
| | - Carlos Eduardo N Girardi
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, 1° andar, São Paulo, SP, 04024-002, Brazil
| | - Deborah Suchecki
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, 1° andar, São Paulo, SP, 04024-002, Brazil.
| |
Collapse
|
5
|
Alviña K, Jodeiri Farshbaf M, Mondal AK. Long term effects of stress on hippocampal function: Emphasis on early life stress paradigms and potential involvement of neuropeptide Y. J Neurosci Res 2021; 99:57-66. [PMID: 32162350 DOI: 10.1002/jnr.24614] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Abstract
The brain is both central in orchestrating the response to stress, and, a very sensitive target when such response is not controlled. In fact, stress has long been associated with the onset and/or exacerbation of several neuropsychiatric disorders such as anxiety, depression, and drug addiction. The hippocampus is a key brain region involved in the response to stress, not only due to its anatomical connections with the hypothalamic-pituitary-adrenal axis but also as a major target of stress mediators. The hippocampal dentate gyrus (DG)-CA3 circuit, composed of DG granule cells axons (mossy fibers) synapsing onto CA3 pyramidal cells, plays an essential role in memory encoding and retrieval, functions that are vulnerable to stress. Although naturally excitatory, this circuit is under the inhibitory control of GABAergic interneurons that maintain the excitation/inhibition balance. One subgroup of such interneurons produces neuropeptide Y (NPY), which has emerged as a promising endogenous stress "resilience molecule" due to its anxiolytic and anti-epileptic properties. Here we examine existing evidence that reveals a potential role for hilar NPY+ interneurons in mediating stress-induced changes in hippocampal function. We will focus specifically on rodent models of early life stress (ELS), defined as adverse conditions during the early postnatal period that can have profound consequences for neurodevelopment. Collectively, these findings suggest that the long-lasting effects of ELS might stem from the loss of GABAergic NPY+ cells, which then can lead to reduced inhibition in the DG-CA3 pathway. Such change might then lead to hyperexcitability and concomitant hippocampal-dependent behavioral deficits.
Collapse
Affiliation(s)
- Karina Alviña
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Amit Kumar Mondal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
6
|
Sullivan RM, Opendak M. Defining Immediate Effects of Sensitive Periods on Infant Neurobehavioral Function. Curr Opin Behav Sci 2020; 36:106-114. [PMID: 33043102 PMCID: PMC7543993 DOI: 10.1016/j.cobeha.2020.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During a sensitive period associated with attachment, the infant brain has unique circuitry that enables the specialized adaptive behaviors required for survival in infancy. This infant brain is not an immature version of the adult brain. Within the attachment relationship, the infant remains close (proximity seeking) to the caregiver for nurturing and survival needs, but the caregiver also provides the immature infant with the physiological regulation interaction needed before self-regulation matures. Here we provide examples from the human and animal literature that illustrate some of these regulatory functions during sensitive periods, recent advances demonstrating the supporting transient neural mechanisms, and how these systems go awry in the absence of species-expected caregiving.
Collapse
Affiliation(s)
- Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Child and Adolescent Psychiatry, New York University Langone Medical Center New York, NY USA
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute, Child and Adolescent Psychiatry, New York University Langone Medical Center New York, NY USA
| |
Collapse
|
7
|
Perry RE, Braren SH, Opendak M, Brandes-Aitken A, Chopra D, Woo J, Sullivan R, Blair C. Elevated infant cortisol is necessary but not sufficient for transmission of environmental risk to infant social development: Cross-species evidence of mother-infant physiological social transmission. Dev Psychopathol 2020; 32:1696-1714. [PMID: 33427190 PMCID: PMC8951448 DOI: 10.1017/s0954579420001455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Environmental adversity increases child susceptibility to disrupted developmental outcomes, but the mechanisms by which adversity can shape development remain unclear. A translational cross-species approach was used to examine stress-mediated pathways by which poverty-related adversity can influence infant social development. Findings from a longitudinal sample of low-income mother-infant dyads indicated that infant cortisol (CORT) on its own did not mediate relations between early-life scarcity-adversity exposure and later infant behavior in a mother-child interaction task. However, maternal CORT through infant CORT served as a mediating pathway, even when controlling for parenting behavior. Findings using a rodent "scarcity-adversity" model indicated that pharmacologically blocking pup corticosterone (CORT, rodent equivalent to cortisol) in the presence of a stressed mother causally prevented social transmission of scarcity-adversity effects on pup social behavior. Furthermore, pharmacologically increasing pup CORT without the mother present was not sufficient to disrupt pup social behavior. Integration of our cross-species results suggests that elevated infant CORT may be necessary, but without elevated caregiver CORT, may not be sufficient in mediating the effects of environmental adversity on development. These findings underscore the importance of considering infant stress physiology in relation to the broader social context, including caregiver stress physiology, in research and interventional efforts.
Collapse
Affiliation(s)
- Rosemarie E. Perry
- Department of Applied Psychology, New York University, New York, NY, USA
| | - Stephen H. Braren
- Department of Applied Psychology, New York University, New York, NY, USA
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute & Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | - Divija Chopra
- Department of Applied Psychology, New York University, New York, NY, USA
| | - Joyce Woo
- Emotional Brain Institute, Nathan Kline Institute & Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Regina Sullivan
- Emotional Brain Institute, Nathan Kline Institute & Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Clancy Blair
- Department of Applied Psychology, New York University, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
8
|
Diaz-Chávez A, Lajud N, Roque A, Cheng JP, Meléndez-Herrera E, Valdéz-Alarcón JJ, Bondi CO, Kline AE. Early life stress increases vulnerability to the sequelae of pediatric mild traumatic brain injury. Exp Neurol 2020; 329:113318. [PMID: 32305419 DOI: 10.1016/j.expneurol.2020.113318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Early life stress (ELS) is a risk factor for many psychopathologies that happen later in life. Although stress can occur in cases of child abuse, studies on non-accidental brain injuries in pediatric populations do not consider the possible increase in vulnerability caused by ELS. Hence, we sought to determine whether ELS increases the effects of pediatric mild traumatic brain injury (mTBI) on cognition, hippocampal inflammation, and plasticity. Male rats were subjected to maternal separation for 180 min per day (MS180) or used as controls (CONT) during the first 21 post-natal (P) days. At P21 the rats were anesthetized with isoflurane and subjected to a mild controlled cortical impact or sham injury. At P32 the rats were injected with the cell proliferation marker bromodeoxyuridine (BrdU, 500 mg/kg), then evaluated for spatial learning and memory in a water maze (P35-40) and sacrificed for quantification of Ki67+, BrdU+ and Iba1+ (P42). Neither MS180 nor mTBI impacted cognitive outcome when provided alone but their combination (MS180 + mTBI) decreased spatial learning and memory relative to Sham controls (p < .01). mTBI increased microglial activation and affected BrdU+ cell survival in the ipsilateral hippocampus without affecting proliferation rates. However, only MS180 + mTBI increased microglial activation in the area adjacent to the injury and the contralateral CA1 hippocampal subfield, and decreased cell proliferation in the ipsilateral neurogenic niche. Overall, the data show that ELS increases the vulnerability to the sequelae of pediatric mTBI and may be mediated by increased neuroinflammation.
Collapse
Affiliation(s)
- Arturo Diaz-Chávez
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico; Instituto de Investigaciones sobre los Recursos Naturales - Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Naima Lajud
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Angélica Roque
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Esperanza Meléndez-Herrera
- Instituto de Investigaciones sobre los Recursos Naturales - Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Juan José Valdéz-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; Psychology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
9
|
Affiliation(s)
- S Yeap
- Neuroscience Center, St. Vincent's Hospital, Richmond Road, Dublin 3, Ireland
| | | |
Collapse
|
10
|
Short AK, Baram TZ. Early-life adversity and neurological disease: age-old questions and novel answers. Nat Rev Neurol 2019; 15:657-669. [PMID: 31530940 PMCID: PMC7261498 DOI: 10.1038/s41582-019-0246-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
Neurological illnesses, including cognitive impairment, memory decline and dementia, affect over 50 million people worldwide, imposing a substantial burden on individuals and society. These disorders arise from a combination of genetic, environmental and experiential factors, with the latter two factors having the greatest impact during sensitive periods in development. In this Review, we focus on the contribution of adverse early-life experiences to aberrant brain maturation, which might underlie vulnerability to cognitive brain disorders. Specifically, we draw on recent robust discoveries from diverse disciplines, encompassing human studies and experimental models. These discoveries suggest that early-life adversity, especially in the perinatal period, influences the maturation of brain circuits involved in cognition. Importantly, new findings suggest that fragmented and unpredictable environmental and parental signals comprise a novel potent type of adversity, which contributes to subsequent vulnerabilities to cognitive illnesses via mechanisms involving disordered maturation of brain 'wiring'.
Collapse
Affiliation(s)
- Annabel K Short
- Departments of Anatomy and Neruobiology, University of California-Irvine, Irvine, CA, USA
- Departments of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Departments of Anatomy and Neruobiology, University of California-Irvine, Irvine, CA, USA.
- Departments of Pediatrics, University of California-Irvine, Irvine, CA, USA.
- Departments of Neurology, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
11
|
Abuaish S, Spinieli RL, McGowan PO. Perinatal high fat diet induces early activation of endocrine stress responsivity and anxiety-like behavior in neonates. Psychoneuroendocrinology 2018; 98:11-21. [PMID: 30086533 DOI: 10.1016/j.psyneuen.2018.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/21/2022]
Abstract
The maternal environment has a profound effect on the development of offspring, including responses to stress mediated by the hypothalamic-pituitary-adrenal (HPA) axis. In rodents, perinatal high fat diet (HFD) has been shown to program the HPA axis in a manner that persists throughout adulthood, however the effects of perinatal HFD on stress-related behaviors and physiology in neonates are limited. The first two weeks of life in rodents are known as the stress hyporesponsive period, during which animals do not respond to stressors that are otherwise known to elicit behavioral and physiological responses in mature animals. As neonates emerge from the hyporesponsive period, the maturing neural systems mediating the HPA axis leads to the suppression of ultrasonic vocalizations (USVs) and movement in the presence of threatening stimuli, such as male adult rat odor. In this study, we investigated the effects of perinatal HFD exposure, spanning the maternal pregestation, gestation and lactation period, on stress-related behaviors and physiology in neonatal rat offspring throughout the stress hyporesponsive period. During the stress hyporesponsive period, postnatal day (PND) 7, HFD pups had higher corticosterone levels in response to the presence of male odor, produced fewer USVs, and had an increase in basal corticotropin releasing hormone (Crh) transcript levels in the paraventricular nucleus of the hypothalamus. As pup emerged from the stress hyporesponsive period, PND 13, HFD offspring exhibited higher adrenocorticotropic hormone (ACTH) levels in response to male odor, increased anxiety-like behaviors as shown by increased USVs and immobility, and lower glucocorticoid receptor (Nr3c1) transcript abundance in the ventral hippocampus. These results indicate an alteration in the typical physiological and behavioral responses to stress during the hyporesponsive period of the HPA axis as a function of perinatal HFD exposure, which involves changes in the regulation of key genes mediating the HPA axis.
Collapse
Affiliation(s)
- Sameera Abuaish
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada
| | - Richard L Spinieli
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada; Psychobiology Graduate Program, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrick O McGowan
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Neurobiology of Infant Sensitive Period for Attachment and Its Reinstatement Through Maternal Social Buffering. MINNESOTA SYMPOSIA ON CHILD PSYCHOLOGY 2018. [DOI: 10.1002/9781119461746.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Suchecki D. Maternal regulation of the infant's hypothalamic-pituitary-adrenal axis stress response: Seymour 'Gig' Levine's legacy to neuroendocrinology. J Neuroendocrinol 2018; 30:e12610. [PMID: 29774962 DOI: 10.1111/jne.12610] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 12/23/2022]
Abstract
Thirty years ago, Seymour 'Gig' Levine published a serendipitous, yet, seminal finding with respect to the regulatory role of maternal presence on the corticosterone stress response of neonatal rats during the developmental period known as the stress hyporesponsive period. At the same time, his group of students also investigated the stress response of infant monkeys with respect to maternal separation, as a means of understanding the stress to the primary caregiver resulting from disruptions of attachment. Gig and his group of students and collaborators, mainly in the USA and the Netherlands, investigated how initial social relationships buffer the stress response of nonhuman primates and rodent infants. His work in rodents involved determining how prolonged deprivation of maternal care disinhibits the stress response of neonates and how maternal behaviours regulate specific aspects of the hypothalamic-pituitary-adrenal axis. Maternal deprivation for 24 hours was useful for determining the importance of nutrition in suppressing the corticosterone stress response, whereas anogenital licking and grooming inhibited stress-induced adrenocortoctrophic hormone release, with the combination of both behaviours preventing the effects of maternal deprivation on the central hypothalamic stress response. Levine's group also studied the consequences of maternal deprivation on basal and stress-induced activity of the hypothalamic-pituitary-adrenal axis in juveniles and the persistent effects of the replacement of maternal behaviours on these parameters. Gig's legacy allowed many groups around the world to use the 24-hour maternal deprivation paradigm as an animal model of vulnerability and resilience to stress-related psychiatric disorders, as well as in studies of the neurobiological underpinnings of disruption of the mother-infant relationship and loss of parental care, a highly prevalent condition in humans. This review pays homage to a great scientist and mentor, whose discoveries paved the way for the understanding of how early social relationsships build resilience or lead to susceptibility to emotional disorders later in life.
Collapse
Affiliation(s)
- D Suchecki
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Cabbia R, Consoli A, Suchecki D. Association of 24 h maternal deprivation with a saline injection in the neonatal period alters adult stress response and brain monoamines in a sex-dependent fashion. Stress 2018; 21:333-346. [PMID: 29607713 DOI: 10.1080/10253890.2018.1456525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Maternal deprivation (MD) disinhibits the adrenal glands, rendering them responsive to various stressors, including saline injection, and this increased corticosterone (CORT) response can last for as long as 2 h. In the present study, we tested the hypothesis that association of MD on day 11 with a saline injection would alter emotional behavior, CORT response, and brain monoamine levels, in male and female adult rats. Rats were submitted to the novelty suppressed feeding (NSF), the sucrose negative contrast test (SNCT), social investigation test (SIT), and the elevated plus maze (EPM). One quarter of each group was not tested (providing basal values of CORT and brain monoamines) and the remainder was decapitated 15, 45, or 75 min after the EPM, to assess CORT reactivity. Monoamine levels were determined in the hypothalamus (HPT), frontal cortex (FC), amygdala (AMY), ventral, and dorsal hippocampus (vHPC, dHPC, respectively). MD reduced food intake, in the home-cage, and latency to eat in the NSF in both sexes; females explored less the target animal in the SIT and explored more the open arms of the EPM than males; the CORT response to the EPM was greater in maternally-deprived males and females than in their control counterparts, and this response was further elevated in maternally-deprived females injected with saline. Regarding monoamine levels, females were less affected, showing isolated effects of the stressors, while in males, MD increased 5-HT levels in the HPT and decreased this monoamine in the FC, MD associated with saline reduced dopamine levels in all brain regions, except the HPT. MD at 11 days did not alter emotional behaviors in adult rats, but had an impact in neurobiological parameters associated with this class of behaviors. The impact of MD associated with saline on dopamine levels suggests that males may be vulnerable to motivation-related disorders.
Collapse
Affiliation(s)
- Rafael Cabbia
- a Departamento de Psicobiologia, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brasil
| | - Amanda Consoli
- a Departamento de Psicobiologia, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brasil
| | - Deborah Suchecki
- a Departamento de Psicobiologia, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brasil
| |
Collapse
|
15
|
Borges-Aguiar AC, Schauffer LZ, de Kloet ER, Schenberg LC. Daily maternal separations during stress hyporesponsive period decrease the thresholds of panic-like behaviors to electrical stimulation of the dorsal periaqueductal gray of the adult rat. Behav Brain Res 2018; 344:132-144. [PMID: 29466713 DOI: 10.1016/j.bbr.2018.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/29/2018] [Accepted: 02/16/2018] [Indexed: 02/04/2023]
Abstract
The present study examined whether early life maternal separation (MS), a model of childhood separation anxiety, predisposes to panic at adulthood. For this purpose, male pups were submitted to 3-h daily maternal separations along postnatal (PN) days of either the 'stress hyporesponsive period' (SHRP) from PN4 to PN14 (MS11) or throughout lactation from PN2 to PN21 (MS20). Pups were further reunited to conscious (CM) or anesthetized (AM) mothers to assess the effect of mother-pup interaction upon reunion. Controls were subjected to brief handling (15 s) once a day throughout lactation (BH20). As adults (PN60), rats were tested for the thresholds to evoke panic-like behaviors upon electrical stimulation of dorsal periaqueductal gray matter and exposed to an elevated plus-maze, an open-field, a forced swim and a sucrose preference test. A factor analysis was also performed to gain insight into the meaning of behavioral tests. MS11-CM rather than MS20-CM rats showed enhanced panic responses and reductions in both swimming and sucrose preference. Panic facilitations were less intense in mother-neglected rats. Although MS did not affect anxiety, MS11-AM showed robust reductions of defecation in an open-field. Factor analysis singled out anxiety, hedonia, exploration, coping and gut activity. Although sucrose preference and coping loaded on separate factors, appetite (adult weight) correlated with active coping in both forced swim and open-field (central area exploration). Concluding, whereas 3h-daily maternal separations during SHRP increased rat's susceptibility to experimental panic attacks, separations throughout lactation had no effects on panic and enhanced active coping.
Collapse
Affiliation(s)
- Ana Cristina Borges-Aguiar
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil
| | - Luana Zanoni Schauffer
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil
| | - Edo Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Luiz Carlos Schenberg
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
16
|
O'Mahony SM, Clarke G, Dinan TG, Cryan JF. Irritable Bowel Syndrome and Stress-Related Psychiatric Co-morbidities: Focus on Early Life Stress. Handb Exp Pharmacol 2017; 239:219-246. [PMID: 28233180 DOI: 10.1007/164_2016_128] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome is a functional gastrointestinal disorder, with stress playing a major role in onset and exacerbation of symptoms such as abdominal pain and altered bowel movements. Stress-related disorders including anxiety and depression often precede the development of irritable bowel syndrome and vice versa. Stressor exposure during early life has the potential to increase an individual's susceptibility to both irritable bowel syndrome and psychiatric disease indicating that there may be a common origin for these disorders. Moreover, adverse early life events significantly impact upon many of the communication pathways within the brain-gut-microbiota axis, which allows bidirectional interaction between the central nervous system and the gastrointestinal tract. This axis is proposed to be perturbed in irritable bowel syndrome and studies now indicate that dysfunction of this axis is also seen in psychiatric disease. Here we review the co-morbidity of irritable bowel syndrome and psychiatric disease with their common origin in mind in relation to the impact of early life stress on the developing brain-gut-microbiota axis. We also discuss the therapeutic potential of targeting this axis in these diseases.
Collapse
Affiliation(s)
- Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland. .,APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Exposure to unpredictable maternal sensory signals influences cognitive development across species. Proc Natl Acad Sci U S A 2017; 114:10390-10395. [PMID: 28893979 DOI: 10.1073/pnas.1703444114] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maternal care is a critical determinant of child development. However, our understanding of processes and mechanisms by which maternal behavior influences the developing human brain remains limited. Animal research has illustrated that patterns of sensory information is important in shaping neural circuits during development. Here we examined the relation between degree of predictability of maternal sensory signals early in life and subsequent cognitive function in both humans (n = 128 mother/infant dyads) and rats (n = 12 dams; 28 adolescents). Behaviors of mothers interacting with their offspring were observed in both species, and an entropy rate was calculated as a quantitative measure of degree of predictability of transitions among maternal sensory signals (visual, auditory, and tactile). Human cognitive function was assessed at age 2 y with the Bayley Scales of Infant Development and at age 6.5 y with a hippocampus-dependent delayed-recall task. Rat hippocampus-dependent spatial memory was evaluated on postnatal days 49-60. Early life exposure to unpredictable sensory signals portended poor cognitive performance in both species. The present study provides evidence that predictability of maternal sensory signals early in life impacts cognitive function in both rats and humans. The parallel between experimental animal and observational human data lends support to the argument that predictability of maternal sensory signals causally influences cognitive development.
Collapse
|
18
|
Debiec J, Sullivan RM. The neurobiology of safety and threat learning in infancy. Neurobiol Learn Mem 2017; 143:49-58. [PMID: 27826033 PMCID: PMC5418109 DOI: 10.1016/j.nlm.2016.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022]
Abstract
What an animal needs to learn to survive is altered dramatically as they change from dependence on the parent for protection to independence and reliance on self-defense. This transition occurs in most altricial animals, but our understanding of the behavioral neurobiology has mostly relied on the infant rat. The transformation from dependence to independence occurs over three weeks in pups and is accompanied by complex changes in responses to both natural and learned threats and the supporting neural circuitry. Overall, in early life, the threat system is quiescent and learning is biased towards acquiring attachment related behaviors to support attachment to the caregiver and proximity seeking. Caregiver-associated cues learned in infancy have the ability to provide a sense of safety throughout lifetime. This attachment/safety system is activated by learning involving presumably pleasurable stimuli (food, warmth) but also painful stimuli (tailpinch, moderate shock). At about the midway point to independence, pups begin to have access to the adult-like amygdala-dependent threat system and amygdala-dependent responses to natural dangers such as predator odors. However, pups have the ability to switch between the infant and adult-like system, which is controlled by maternal presence and modification of stress hormones. Specifically, if the pup is alone, it will learn fear but if with the mother it will learn attachment (10-15days of age). As pups begin to approach weaning, pups lose access to the attachment system and rely only on the amygdala-dependent threat system. However, pups learning system is complex and exhibits flexibility that enables the mother to override the control of the attachment circuit, since newborn pups may acquire threat responses from the mother expressing fear in their presence. Together, these data suggest that the development of pups' threat learning system is not only dependent upon maturation of the amygdala, but it is also exquisitely controlled by the environment. Most notably the mother can switch pup learning between attachment to threat learning in a moment's notice. This enables the mother to navigate pup's learning about the world and what is threatening and what is safe.
Collapse
Affiliation(s)
- Jacek Debiec
- Molecular & Behavioral Neuroscience Institute and Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Child and Adolescent Psychiatry, New York University Langone Medical Center, United States.
| |
Collapse
|
19
|
Tang HL, Zhang G, Ji NN, Du L, Chen BB, Hua R, Zhang YM. Toll-Like Receptor 4 in Paraventricular Nucleus Mediates Visceral Hypersensitivity Induced by Maternal Separation. Front Pharmacol 2017; 8:309. [PMID: 28611665 PMCID: PMC5447361 DOI: 10.3389/fphar.2017.00309] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/11/2017] [Indexed: 01/30/2023] Open
Abstract
Neonatal maternal separation (MS) is a major early life stress that increases the risk of emotional disorders, visceral pain perception and other brain dysfunction. Elevation of toll-like receptor 4 (TLR4) signaling in the paraventricular nucleus (PVN) precipitates early life colorectal distension (CRD)-induced visceral hypersensitivity and pain in adulthood. The present study aimed to investigate the role of TLR4 signaling in the pathogenesis of postnatal MS-induced visceral hypersensitivity and pain during adulthood. The TLR4 gene was selectively knocked out in C57BL/10ScSn mice (Tlr4-/-). MS was developed by housing the offspring alone for 6 h daily from postnatal day 2 to day 15. Visceral hypersensitivity and pain were assessed in adulthood. Tlr4+/+, but not Tlr4-/-, mice that had experienced neonatal MS showed chronic visceral hypersensitivity and pain. TLR4 immunoreactivity was observed predominately in microglia in the PVN, and MS was associated with an increase in the expression of protein and/or mRNA levels of TLR4, corticotropin-releasing factor (CRF), CRF receptor 1 (CRFR1), tumor necrosis factor-α, and interleukin-1β in Tlr4+/+ mice. These alterations were not observed in Tlr4-/- mice. Local administration of lipopolysaccharide, a TLR4 agonist, into the lateral cerebral ventricle elicited visceral hypersensitivity and TLR4 mRNA expression in the PVN, which could be prevented by NBI-35965, an antagonist to CRFR1. The present results indicate that neonatal MS induces a sensitization and upregulation of microglial TLR4 signaling activity, which facilitates the neighboring CRF neuronal activity and, eventually, precipitates visceral hypersensitivity in adulthood. Highlights (1)Neonatal MS does not induce chronic visceral hypersensitivity and pain in Tlr4-/- mice.(2)Neonatal MS increases the expression of TLR4 mRNA, CRF protein and mRNA, CRFR1 protein, TNF-α protein, and IL-1β protein in Tlr4+/+ mice.(3)TLR4 agonist LPS (i.c.v.) elicits visceral hypersensitivity and TLR4 mRNA expression in the PVN.
Collapse
Affiliation(s)
- Hui-Li Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical UniversityXuzhou, China.,Department of Anesthesiology, The First Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Gongliang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Anhui Medical UniversityHefei, China
| | - Ning-Ning Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical UniversityXuzhou, China
| | - Lei Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical UniversityXuzhou, China
| | - Bin-Bin Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical UniversityXuzhou, China
| | - Rong Hua
- Department of Emergency, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical UniversityXuzhou, China
| |
Collapse
|
20
|
Opendak M, Gould E, Sullivan R. Early life adversity during the infant sensitive period for attachment: Programming of behavioral neurobiology of threat processing and social behavior. Dev Cogn Neurosci 2017; 25:145-159. [PMID: 28254197 PMCID: PMC5478471 DOI: 10.1016/j.dcn.2017.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 01/03/2017] [Accepted: 02/04/2017] [Indexed: 02/06/2023] Open
Abstract
Animals, including humans, require a highly coordinated and flexible system of social behavior and threat evaluation. However, trauma can disrupt this system, with the amygdala implicated as a mediator of these impairments in behavior. Recent evidence has further highlighted the context of infant trauma as a critical variable in determining its immediate and enduring consequences, with trauma experienced from an attachment figure, such as occurs in cases of caregiver-child maltreatment, as particularly detrimental. This review focuses on the unique role of caregiver presence during early-life trauma in programming deficits in social behavior and threat processing. Using data primarily from rodent models, we describe the interaction between trauma and attachment during a sensitive period in early life, which highlights the role of the caregiver's presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. These data suggest that trauma experienced directly from an abusive caregiver and trauma experienced in the presence of caregiver cues produce similar neurobehavioral deficits, which are unique from those resulting from trauma alone. We go on to integrate this information into social experience throughout the lifespan, including consequences for complex scenarios, such as dominance hierarchy formation and maintenance.
Collapse
Affiliation(s)
- Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA.
| | - Elizabeth Gould
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Regina Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA
| |
Collapse
|
21
|
Al Aïn S, Perry RE, Nuñez B, Kayser K, Hochman C, Brehman E, LaComb M, Wilson DA, Sullivan RM. Neurobehavioral assessment of maternal odor in developing rat pups: implications for social buffering. Soc Neurosci 2017; 12:32-49. [PMID: 26934130 PMCID: PMC5033694 DOI: 10.1080/17470919.2016.1159605] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother's social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering.
Collapse
Affiliation(s)
- Syrina Al Aïn
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Rosemarie E. Perry
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Neuroscience and Physiology, NYU Sackler Institute, New York University School of Medicine, New York, NY, USA
| | - Bestina Nuñez
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
| | - Kassandra Kayser
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
| | - Chase Hochman
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Elizabeth Brehman
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Miranda LaComb
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
22
|
Llidó A, Bartolomé I, Darbra S, Pallarès M. Effects of neonatal allopregnanolone manipulations and early maternal separation on adult alcohol intake and monoamine levels in ventral striatum of male rats. Horm Behav 2016; 82:11-20. [PMID: 27090561 DOI: 10.1016/j.yhbeh.2016.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/22/2016] [Accepted: 04/14/2016] [Indexed: 01/10/2023]
Abstract
Changes in endogenous neonatal levels of the neurosteroid allopregnanolone (AlloP) as well as a single 24h period of early maternal separation (EMS) on postnatal day (PND) 9 affect the development of the central nervous system (CNS), causing adolescent/adult alterations including systems and behavioural traits that could be related to vulnerability to drug abuse. In rats, some behavioural alterations caused by EMS can be neutralised by previous administration of AlloP. Thus, the aim of the present work is to analyse if manipulations of neonatal AlloP could increase adult alcohol consumption, and if EMS could change these effects. We administered AlloP or finasteride, a 5α-reductase inhibitor, from PND5 to PND9, followed by 24h of EMS at PND9. At PND70 we measured alcohol consumption using a two-bottle free-choice model (ethanol 10% (v/v)+glucose 3% (w/v), and glucose 3% (w/v)) for 15days. Ventral striatum samples were obtained to determine monoamine levels. Results revealed that neonatal finasteride increased both ethanol and glucose consumption, and AlloP increased alcohol intake compared with neonatal vehicle-injected animals. The differences between neonatal groups in alcohol consumption were not found in EMS animals. In accordance, both finasteride and AlloP animals that did not suffer EMS showed lower levels of dopamine and serotonin in ventral striatum. Taken together, these results reveal that neonatal neurosteroids alterations affect alcohol intake; an effect which can be modified by subsequent EMS. Thus, these data corroborate the importance of the relationship between neonatal neurosteroids and neonatal stress for the correct CNS development.
Collapse
Affiliation(s)
- Anna Llidó
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Iris Bartolomé
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Sònia Darbra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marc Pallarès
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
23
|
Mooney-Leber SM, Brummelte S. Neonatal pain and reduced maternal care: Early-life stressors interacting to impact brain and behavioral development. Neuroscience 2016; 342:21-36. [PMID: 27167085 DOI: 10.1016/j.neuroscience.2016.05.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/22/2016] [Accepted: 05/02/2016] [Indexed: 12/21/2022]
Abstract
Advances in neonatal intensive care units (NICUs) have drastically increased the survival chances of preterm infants. However, preterm infants are still exposed to a wide range of stressors during their stay in the NICU, which include painful procedures and reduced maternal contact. The activation of the hypothalamic-pituitary-adrenal (HPA) axis, in response to these stressors during this critical period of brain development, has been associated with many acute and long-term adverse biobehavioral outcomes. Recent research has shown that Kangaroo care, a non-pharmacological analgesic based on increased skin-to-skin contact between the neonate and the mother, negates the adverse outcomes associated with neonatal pain and reduced maternal care, however the biological mechanism remains widely unknown. This review summarizes findings from both human and rodent literature investigating neonatal pain and reduced maternal care independently, primarily focusing on the role of the HPA axis and biobehavioral outcomes. The physiological and positive outcomes of Kangaroo care will also be discussed in terms of how dampening of the HPA axis response to neonatal pain and increased maternal care may account for positive outcomes associated with Kangaroo care.
Collapse
Affiliation(s)
- Sean M Mooney-Leber
- Department of Psychology, Wayne State University, Detroit, MI, United States
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
24
|
Moussaoui N, Larauche M, Biraud M, Molet J, Million M, Mayer E, Taché Y. Limited Nesting Stress Alters Maternal Behavior and In Vivo Intestinal Permeability in Male Wistar Pup Rats. PLoS One 2016; 11:e0155037. [PMID: 27149676 PMCID: PMC4858303 DOI: 10.1371/journal.pone.0155037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022] Open
Abstract
A few studies indicate that limited nesting stress (LNS) alters maternal behavior and the hypothalamic pituitary adrenal (HPA) axis of dams and offspring in male Sprague Dawley rats. In the present study, we evaluated the impact of LNS on maternal behavior in Wistar rats, and on the HPA axis, glycemia and in vivo intestinal permeability of male and female offspring. Intestinal permeability is known to be elevated during the first week postnatally and influenced by glucocorticoids. Dams and neonatal litters were subjected to LNS or normal nesting conditions (control) from days 2 to 10 postnatally. At day 10, blood was collected from pups for determination of glucose and plasma corticosterone by enzyme immunoassay and in vivo intestinal permeability by oral gavage of fluorescein isothiocyanate-dextran 4kDa. Dams exposed to LNS compared to control showed an increase in the percentage of time spent building a nest (118%), self-grooming (69%), and putting the pups back to the nest (167%). LNS male and female pups exhibited a reduction of body weight by 5% and 4%, adrenal weights/100g body weight by 17% and 18%, corticosterone plasma levels by 64% and 62% and blood glucose by 11% and 12% respectively compared to same sex control pups. In male LNS pups, intestinal permeability was increased by 2.7-fold while no change was observed in females compared to same sex control. There was no sex difference in any of the parameters in control pups except the body weight. These data indicate that Wistar dams subjected to LNS during the first postnatal week have an altered repertoire of maternal behaviors which affects the development of the HPA axis in both sexes and intestinal barrier function in male offspring.
Collapse
Affiliation(s)
- Nabila Moussaoui
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
- * E-mail:
| | - Muriel Larauche
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| | - Mandy Biraud
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| | - Jenny Molet
- Department of Anatomy/Neurobiology, University of California Irvine, Irvine, CA, 92697–4475, United States of America
| | - Mulugeta Million
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| | - Emeran Mayer
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| | - Yvette Taché
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| |
Collapse
|
25
|
Kawakami SE, Quadros IMH, Suchecki D. Naltrexone Prevents in Males and Attenuates in Females the Expression of Behavioral Sensitization to Ethanol Regardless of Maternal Separation. Front Endocrinol (Lausanne) 2016; 7:135. [PMID: 27803689 PMCID: PMC5067536 DOI: 10.3389/fendo.2016.00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/20/2016] [Indexed: 02/04/2023] Open
Abstract
Maternal separation alters the activity of the opioid system, which modulates ethanol-induced stimulation and behavioral sensitization. This study examined the effects of an opioid antagonist, naltrexone (NTX), on the expression of behavioral sensitization to ethanol in adult male and female mice submitted to maternal separation from postnatal days (PNDs) 2 to 14. Whole litters of Swiss mice were either not separated [animal facility rearing (AFR)] or separated from their mothers for 3 h [long maternal separation (LMS)]. Starting on PND 90, male and female AFR and LMS mice received daily i.p. injections of saline (SAL) or ethanol (EtOH, 2.2 g/kg) for 21 days. Locomotor activity was assessed in cages containing photoelectric beams, once a week, to examine the development of behavioral sensitization. Five days after the end of the chronic treatment, animals were submitted to four locomotor activity tests spaced by 48 h, to assess the expression of behavioral sensitization. In all tests, animals received two i.p. injections with a 30-min interval and were then assessed for locomotor response to different treatment challenges, which were: SAL/SAL, SAL/EtOH (2.2 g/kg), NTX 2.0 mg/kg (NTX2)/EtOH, and NTX 4.0 mg/kg (NTX4)/EtOH. Regardless of maternal separation, EtOH-treated male and female mice displayed increased locomotor responses to EtOH during the 21-day treatment, indicating the development of behavioral sensitization. In the SAL/EtOH challenge, EtOH-treated LMS and AFR male and female mice exhibited higher locomotor activity than their SAL-treated counterparts, indicating the expression of sensitization. The coadministration of either dose of NTX blocked the expression of locomotor sensitization in both AFR and LMS male mice with a history of EtOH sensitization. In females, a significant attenuation of EtOH sensitization was promoted by both NTX doses, while still maintaining an augmented stimulant response to EtOH. Importantly, maternal separation did not interfere in this phenomenon. These results indicate that expression of behavioral sensitization was importantly modulated by opioidergic mechanisms both in male and female mice and that maternal separation did not play a major role in either development or expression of this EtOH sensitization.
Collapse
Affiliation(s)
- Suzi E. Kawakami
- Department of Psychobiology, Escola Paulista de Medicina – Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
| | - Isabel M. H. Quadros
- Department of Psychobiology, Escola Paulista de Medicina – Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Isabel M. H. Quadros,
| | - Deborah Suchecki
- Department of Psychobiology, Escola Paulista de Medicina – Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
26
|
McLaughlin RJ, Verlezza S, Gray JM, Hill MN, Walker CD. Inhibition of anandamide hydrolysis dampens the neuroendocrine response to stress in neonatal rats subjected to suboptimal rearing conditions. Stress 2016; 19:114-24. [PMID: 26552023 DOI: 10.3109/10253890.2015.1117448] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Exposure to stress during early development can exert profound effects on the maturation of the neuroendocrine stress axis. The endocannabinoid (ECB) system has recently surfaced as a fundamental component of the neuroendocrine stress response; however, the effect of early-life stress on neonatal ECB signaling and the capacity to which ECB enhancement may modulate neonatal stress responses is relatively unknown. The present study assessed whether exposure to early-life stress in the form of limited access to nesting/bedding material (LB) from postnatal (PND) day 2 to 9 alters neuroendocrine activity and hypothalamic ECB content in neonatal rats challenged with a novel immobilization stressor. Furthermore, we examined whether inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of anandamide (AEA) affects neuroendocrine responses in PND10 pups as a function of rearing conditions. Neonatal rats showed a robust increase in corticosterone (CORT) and adrenocorticotropin hormone (ACTH) secretion in response to immobilization stress, which was significantly blunted in pups reared in LB conditions. Accordingly, LB pups exhibited reduced stress-induced Fos immunoreactivity in the paraventricular nucleus of the hypothalamus, with no significant differences in hypothalamic ECB content. Administration of the FAAH inhibitor URB597 (0.3 mg/kg, ip) 90 min prior to immobilization stress significantly dampened stress-induced CORT release, but only in pups reared in LB conditions. These results suggest that rearing in restricted bedding conditions dampens the neuroendocrine response to stress, while augmenting AEA mitigates stress-induced alterations in glucocorticoid secretion preferentially in pups subjected to early-life stress.
Collapse
Affiliation(s)
- Ryan Joseph McLaughlin
- a Douglas Mental Health University Institute, McGill University , Montreal , QC , Canada
- b Department of Integrative Physiology & Neuroscience , College of Veterinary Medicine, Washington State University , Pullman , WA , USA , and
| | - Silvanna Verlezza
- a Douglas Mental Health University Institute, McGill University , Montreal , QC , Canada
| | - Jennifer Megan Gray
- c Department of Cell Biology & Anatomy and Psychiatry , Hotchkiss Brain Institute, University of Calgary , Calgary , AB , Canada
| | - Matthew Nicholas Hill
- c Department of Cell Biology & Anatomy and Psychiatry , Hotchkiss Brain Institute, University of Calgary , Calgary , AB , Canada
| | | |
Collapse
|
27
|
Abstract
Objectives:To examine the ultrastructural effects of maternal deprivation during developmental periods of limbi-chypothalamo-pituitary-adrenal system on hippocampal dendritic structures in adult rats.Methods:The experiments were carried out with male and female wistar rats in our department. The rats were mated and, after birth, the pups were divided into four groups. The first group (control group) pups remained undisturbed with their dam until postweaning day 22. Maternal deprived groups were separated from their dams for 24 hours at postnatal day 4, 9 and 18. The subjects were provided with food and water ad libitum until 3-months-of-age. At the third month, the rats were transcardially perfused, samples were taken from CA1 and CA3 regions of the hippocampus. Tissues were prepared for electron microscopy.Results:When the data were analyzed, there were no differences between male and female rats in both ultrastructure and semiquantitative analysis of axodendritic synapses. The ultrastructure of Group 1 was seen as normal while in the second Group some neurons nuclear envelope made deep invagination into the nucleus. Additionally, axodendritic synapses were found normal. In Group 3, micrographs and axodendritic synapses were showed normal structure. However, in Group 4 in some neurons invaginations were seen similar to Group 2. Axodendritic synapses were found to be normal.Conclusion:These experiments establish that MD in rats produces slight ultrastructural changes and decreases the number of synapses in CA1 and CA3 subregions of the hippocampus.
Collapse
|
28
|
Abstract
Stress is a powerful modulator of brain structure and function. While stress is beneficial for survival, inappropriate stress dramatically increases the risk of physical and mental health problems, particularly when experienced during early developmental periods. Here we focus on the neurobiology of the infant rat's odor learning system that enables neonates to learn and approach the maternal odor and describe the unique role of the stress hormone corticosterone in modulating this odor approach learning across development. During the first nine postnatal days, this odor approach learning of infant rats is supported by a wide range of sensory stimuli and ensures attachment to the mother's odor, even when interactions with her are occasionally associated with pain. With maturation and the emergence of a stress- or pain-induced corticosterone response, this odor approach learning terminates and a more adult-like amygdala-dependent fear/avoidance learning emerges. Strikingly, the odor approach and attenuated fear learning of older pups can be re-established by the presence of the mother, due to her ability to suppress her pups' corticosterone release and amygdala activity. This suggests that developmental changes in stress responsiveness and the stimuli that produce a stress response might be critically involved in optimally adapting the pup's attachment system to its respective ecological niche.
Collapse
|
29
|
Girardi CEN, Zanta NC, Suchecki D. Neonatal stress-induced affective changes in adolescent Wistar rats: early signs of schizophrenia-like behavior. Front Behav Neurosci 2014; 8:319. [PMID: 25309370 PMCID: PMC4159973 DOI: 10.3389/fnbeh.2014.00319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/27/2014] [Indexed: 12/17/2022] Open
Abstract
Psychiatric disorders are multifactorial diseases with etiology that may involve genetic factors, early life environment and stressful life events. The neurodevelopmental hypothesis of schizophrenia is based on a wealth of data on increased vulnerability in individuals exposed to insults during the perinatal period. Maternal deprivation (MD) disinhibits the adrenocortical response to stress in neonatal rats and has been used as an animal model of schizophrenia. To test if long-term affective consequences of early life stress were influenced by maternal presence, we submitted 10-day old rats, either deprived (for 22 h) or not from their dams, to a stress challenge (i.p. saline injection). Corticosterone plasma levels were measured 2 h after the challenge, whereas another subgroup was assessed for behavior in the open field, elevated plus maze (EPM), social investigation and the negative contrast sucrose consumption test in adolescence (postnatal day 45). Maternally deprived rats exhibited increased plasma corticosterone (CORT) levels which were higher in maternally deprived and stress challenged pups. Social investigation was impaired in maternally deprived rats only, while saline injection, independently of MD, was associated with increased anxiety-like behavior in the EPM and an impaired intake decrement in the negative sucrose contrast. In the open field, center exploration was reduced in all maternally-deprived adolescents and in control rats challenged with saline injection. The most striking finding was that exposure to a stressful stimulus per se, regardless of MD, was linked to differential emotional consequences. We therefore propose that besides being a well-known and validated model of schizophrenia in adult rats, the MD paradigm could be extended to model early signs of psychiatric dysfunction, and would particularly be a useful tool to detect early signs that resemble schizophrenia.
Collapse
Affiliation(s)
- Carlos Eduardo Neves Girardi
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, SP, Brazil
| | - Natália Cristina Zanta
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, SP, Brazil
| |
Collapse
|
30
|
Raineki C, Lucion AB, Weinberg J. Neonatal handling: an overview of the positive and negative effects. Dev Psychobiol 2014; 56:1613-25. [PMID: 25132525 DOI: 10.1002/dev.21241] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 06/24/2014] [Indexed: 02/06/2023]
Abstract
As one of the first rodent models designed to investigate the effects of early-life experiences, the neonatal handling paradigm has helped us better understand how subtle changes in the infant environment can powerfully drive neurodevelopment of the immature brain in typical or atypical trajectories. Here, we review data from more than 50 years demonstrating the compelling effects of neonatal handling on behavior, physiology, and neural function across the lifespan. Moreover, we present data that challenge the classical view of neonatal handling as an animal model that results only in positive/beneficial outcomes. Indeed, the overall goal of this review is to offer the suggestion that the effects of early-life experiences-including neonatal handling-are nuanced rather than unidirectional. Both beneficial and negative outcomes may occur, depending on the parameters of testing, sex of the subject, and neurobehavioral system analyzed.
Collapse
Affiliation(s)
- Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3.
| | | | | |
Collapse
|
31
|
Molet J, Maras PM, Avishai-Eliner S, Baram TZ. Naturalistic rodent models of chronic early-life stress. Dev Psychobiol 2014; 56:1675-88. [PMID: 24910169 DOI: 10.1002/dev.21230] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/15/2014] [Indexed: 12/17/2022]
Abstract
A close association between early-life experience and cognitive and emotional outcomes is found in humans. In experimental models, early-life experience can directly influence a number of brain functions long-term. Specifically, and often in concert with genetic background, experience regulates structural and functional maturation of brain circuits and alters individual neuronal function via large-scale changes in gene expression. Because adverse experience during sensitive developmental periods is often associated with neuropsychiatric disease, there is an impetus to create realistic models of distinct early-life experiences. These can then be used to study causality between early-life experiential factors and cognitive and emotional outcomes, and to probe the underlying mechanisms. Although chronic early-life stress has been linked to the emergence of emotional and cognitive disorders later in life, most commonly used rodent models of involve daily maternal separation and hence intermittent early-life stress. We describe here a naturalistic and robust chronic early-life stress model that potently influences cognitive and emotional outcomes. Mice and rats undergoing this stress develop structural and functional deficits in a number of limbic-cortical circuits. Whereas overt pathological memory impairments appear during adulthood, emotional and cognitive vulnerabilities emerge already during adolescence. This naturalistic paradigm, widely adopted around the world, significantly enriches the repertoire of experimental tools available for the study of normal brain maturation and of cognitive and stress-related disorders including depression, autism, post-traumatic stress disorder, and dementia.
Collapse
Affiliation(s)
- Jenny Molet
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, 92697-4475
| | | | | | | |
Collapse
|
32
|
Felice VD, Gibney SM, Gosselin RD, Dinan TG, O'Mahony SM, Cryan JF. Differential activation of the prefrontal cortex and amygdala following psychological stress and colorectal distension in the maternally separated rat. Neuroscience 2014; 267:252-62. [PMID: 24513388 DOI: 10.1016/j.neuroscience.2014.01.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 12/17/2022]
Abstract
Visceral hypersensitivity is a hallmark of many clinical conditions and remains an ongoing medical challenge. Although the central neural mechanisms that regulate visceral hypersensitivity are incompletely understood, it has been suggested that stress and anxiety often act as initiating or exacerbating factors. Dysfunctional corticolimbic structures have been implicated in disorders of visceral hypersensitivity such as irritable bowel syndrome (IBS). Moreover, the pattern of altered physiological responses to psychological and visceral stressors reported in IBS patients is also observed in the maternally separated (MS) rat model of IBS. However, the relative contribution of various divisions within the cortex to the altered stress responsivity of MS rats remains unknown. The aim of this study was to analyze the cellular activation pattern of the prefrontal cortex and amygdala in response to an acute psychological stressor (open field) and colorectal distension (CRD) using c-fos immunohistochemistry. Several corticoamygdalar structures were analyzed for the presence of c-fos-positive immunoreactivity including the prelimbic cortex, infralimbic cortex, the anterior cingulate cortex (both rostral and caudal) and the amygdala. Our data demonstrate distinct activation patterns within these corticoamygdalar regions including differential activation in basolateral versus central amygdala following exposure to CRD but not the open field stress. The identification of this neuronal activation pattern may provide further insight into the neurochemical pathways through which therapeutic strategies for IBS could be derived.
Collapse
Affiliation(s)
- V D Felice
- Department of Anatomy and Neuroscience, University College Cork, Ireland; Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - S M Gibney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - R D Gosselin
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - T G Dinan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; Department of Psychiatry, University College Cork, Ireland
| | - S M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Ireland; Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Ireland.
| | - J F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Ireland
| |
Collapse
|
33
|
Zuluaga MJ, Agrati D, Uriarte N, Ferreira A. Social aversive stimuli presented to the mother produce the precocious expression of fear in rat pups. Dev Psychobiol 2014; 56:1187-98. [DOI: 10.1002/dev.21199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 12/18/2013] [Indexed: 11/05/2022]
Affiliation(s)
- María J. Zuluaga
- Sección Fisiología y Nutrición, Facultad de Ciencias; Universidad de la República (UdelaR); Igua 4225 piso 10 ala sur, CP.11400 Montevideo Uruguay
| | - Daniella Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias; Universidad de la República (UdelaR); Igua 4225 piso 10 ala sur, CP.11400 Montevideo Uruguay
| | - Natalia Uriarte
- Laboratorio de Neurociencias; Sección Biomatemática; Facultad de Ciencias; UdelaR; Montevideo Uruguay
| | - Annabel Ferreira
- Sección Fisiología y Nutrición, Facultad de Ciencias; Universidad de la República (UdelaR); Igua 4225 piso 10 ala sur, CP.11400 Montevideo Uruguay
| |
Collapse
|
34
|
Maniam J, Antoniadis C, Morris MJ. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes. Front Endocrinol (Lausanne) 2014; 5:73. [PMID: 24860550 PMCID: PMC4026717 DOI: 10.3389/fendo.2014.00073] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/28/2014] [Indexed: 12/17/2022] Open
Abstract
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, which then modulates the degree of adaptation and response to a later stressor. It is known that early-life stress can impact on later health but less is known about how early-life stress impairs HPA axis activity, contributing to maladaptation of the stress-response system. Early-life stress exposure (either prenatally or in the early postnatal period) can impact developmental pathways resulting in lasting structural and regulatory changes that predispose to adulthood disease. Epidemiological, clinical, and experimental studies have demonstrated that early-life stress produces long term hyper-responsiveness to stress with exaggerated circulating glucocorticoids, and enhanced anxiety and depression-like behaviors. Recently, evidence has emerged on early-life stress-induced metabolic derangements, for example hyperinsulinemia and altered insulin sensitivity on exposure to a high energy diet later in life. This draws our attention to the contribution of later environment to disease vulnerability. Early-life stress can alter the expression of genes in peripheral tissues, such as the glucocorticoid receptor and 11-beta hydroxysteroid dehydrogenase (11β-HSD1). We propose that interactions between altered HPA axis activity and liver 11β-HSD1 modulates both tissue and circulating glucocorticoid availability, with adverse metabolic consequences. This review discusses the potential mechanisms underlying early-life stress-induced maladaptation of the HPA axis, and its subsequent effects on energy utilization and expenditure. The effects of positive later environments as a means of ameliorating early-life stress-induced health deficits, and proposed mechanisms underpinning the interaction between early-life stress and subsequent detrimental environmental exposures on metabolic risk will be outlined. Limitations in current methodology linking early-life stress and later health outcomes will also be addressed.
Collapse
Affiliation(s)
- Jayanthi Maniam
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Christopher Antoniadis
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
- *Correspondence: Margaret J. Morris, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia e-mail:
| |
Collapse
|
35
|
Central effects of ethanol interact with endogenous mu-opioid activity to control isolation-induced analgesia in maternally separated infant rats. Behav Brain Res 2013; 260:119-30. [PMID: 24315831 DOI: 10.1016/j.bbr.2013.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 12/23/2022]
Abstract
Endogenous opioid activity plays an important role in ethanol consumption and reinforcement in infant rats. Opioid systems are also involved in mediation and regulation of stress responses. Social isolation is a stressful experience for preweanling rats and changes the effects of ethanol through opioid-dependent mechanisms. The present study assessed effects of intracisternal (i.c.) administration of a selective mu-opioid antagonist (CTOP) and i.p. administration of a nonspecific opioid antagonist (naloxone) on voluntary intake and behavior in socially isolated 12-day-old (P12) pups treated with 0.5 g/kg ethanol. Voluntary intake of 0.1% saccharin or water, locomotion, rearing activity, paw licking and grooming were assessed during short-term isolation from littermates (STSI; 8-min duration). Thermal nociceptive reactivity was measured before and after this intake test, with normalized differences between pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). Results indicated several effects of social isolation and ethanol mediated through the mu-opioid system. Effects of low dose ethanol (0.5 g/kg) and voluntary consumption of saccharin interacted with endogenous mu-opioid activity associated with STSI. Blockade of mu-opioid receptors on saccharin consumption and paw licking-grooming affected intoxicated animals. Low dose ethanol and ingestion of saccharin blunted effects of CTOP on rearing behavior and nociceptive reactivity. Central injections of CTOP stimulated paw licking and grooming dependent on ethanol dose and type of fluid ingested. Ethanol selectively increased saccharin intake during STSI in females, naloxone and CTOP blocked ethanol-mediated enhancement of saccharin intake. We suggest that enhancement of saccharin intake by ethanol during STSI is the product of synergism between isolation-induced mu-opioid activity that increases the pup's sensitivity to appetitive taste stimulation and the anxiolytic effects of 0.5 g/kg ethanol that decreases behaviors otherwise competing with independent ingestive activity.
Collapse
|
36
|
Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc Natl Acad Sci U S A 2013; 110:15638-43. [PMID: 24019460 DOI: 10.1073/pnas.1307893110] [Citation(s) in RCA: 579] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Under typical conditions, medial prefrontal cortex (mPFC) connections with the amygdala are immature during childhood and become adult-like during adolescence. Rodent models show that maternal deprivation accelerates this development, prompting examination of human amygdala-mPFC phenotypes following maternal deprivation. Previously institutionalized youths, who experienced early maternal deprivation, exhibited atypical amygdala-mPFC connectivity. Specifically, unlike the immature connectivity (positive amygdala-mPFC coupling) of comparison children, children with a history of early adversity evidenced mature connectivity (negative amygdala-mPFC coupling) and thus, resembled the adolescent phenotype. This connectivity pattern was mediated by the hormone cortisol, suggesting that stress-induced modifications of the hypothalamic-pituitary-adrenal axis shape amygdala-mPFC circuitry. Despite being age-atypical, negative amygdala-mPFC coupling conferred some degree of reduced anxiety, although anxiety was still significantly higher in the previously institutionalized group. These findings suggest that accelerated amygdala-mPFC development is an ontogenetic adaptation in response to early adversity.
Collapse
|
37
|
Karsten CA, Baram TZ. How Does a Neuron "know" to Modulate Its Epigenetic Machinery in Response to Early-Life Environment/Experience? Front Psychiatry 2013; 4:89. [PMID: 23966959 PMCID: PMC3744051 DOI: 10.3389/fpsyt.2013.00089] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/30/2013] [Indexed: 12/27/2022] Open
Abstract
Exciting information is emerging about epigenetic mechanisms and their role in long-lasting changes of neuronal gene expression. Whereas these mechanisms are active throughout life, recent findings point to a critical window of early postnatal development during which neuronal gene expression may be persistently "re-programed" via epigenetic modifications. However, it remains unclear how the epigenetic machinery is modulated. Here we focus on an important example of early-life programing: the effect of sensory input from the mother on expression patterns of key stress-related genes in the developing brain. We focus on the lasting effects of this early-life experience on corticotropin-releasing hormone (CRH) gene expression in the hypothalamus, and describe recent work that integrates organism-wide signals with cellular signals that in turn impact epigenetic regulation. We describe the operational brain networks that convey sensory input to CRH-expressing cells, and highlight the resulting "re-wiring" of synaptic connectivity to these neurons. We then move from intercellular to intracellular mechanisms, speculating about the induction, and maintenance of lifelong CRH repression provoked by early-life experience. Elucidating such pathways is critical for understanding the enduring links between experience and gene expression. In the context of responses to stress, such mechanisms should contribute to vulnerability or resilience to post-traumatic stress disorder (PTSD) and other stress-related disorders.
Collapse
Affiliation(s)
- Carley A Karsten
- Department of Anatomy and Neurobiology, University of California-Irvine , Irvine, CA , USA ; Department of Pediatrics, University of California-Irvine , Irvine, CA , USA
| | | |
Collapse
|
38
|
Hall FS, Perona MTG. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions? Physiol Behav 2012; 107:623-40. [PMID: 22643448 PMCID: PMC3447116 DOI: 10.1016/j.physbeh.2012.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/30/2022]
Abstract
This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that is determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassel Drive, Baltimore, MD 21224, United States.
| | | |
Collapse
|
39
|
Kozlov AP, Nizhnikov ME, Kramskaya TA, Varlinskaya EI, Spear NE. μ-Opioid blockade reduces ethanol effects on intake and behavior of the infant rat during short-term but not long-term social isolation. Pharmacol Biochem Behav 2012. [PMID: 23182856 DOI: 10.1016/j.pbb.2012.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous findings in adult and infant rats have shown that the endogenous opioid system is involved in control of ethanol consumption and its reinforcing effects. Opioid systems are also involved in reactivity to social isolation with several factors (age, duration, and type of isolation) affecting this modulation. The present study investigated the effects of a selective mu-opioid antagonist CTOP (0, 0.1, 0.5mg/kg), ethanol (0, 0.5 g/kg), and the interaction of the two drugs on the behavioral consequences of two types of social isolation given to preweanling rats: 1) short-term social isolation from littermates (STSI, duration 8 min) and 2) relatively long-term (5h) isolation (LTSI) from the dam and littermates. Voluntary intake of saccharin, locomotion, rearing activity, paw licking, and grooming were assessed during an 8-min. intake test. Thermal nociceptive reactivity was also measured before and after the testing session with normalized differences in pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). The results indicate that pharmacological blockade of mu-opioid receptors by CTOP substantially attenuated ethanol's anxiolytic effects on the developing rat's reactions to social isolation. Some of these stress-attenuating effects of CTOP were observed only in animals exposed to short-term isolation (STSI) but not in pups isolated for 5h (LTSI). Ethanol selectively increased saccharin intake during STSI in females and CTOP blocked this effect. Ethanol decreased the magnitude of analgesia associated with STSI but had no effect on pain reactivity during LTSI. CTOP by itself did not affect IIA or saccharin intake in sober animals. The findings of the present experiments indicate that the anxiolytic effects of 0.5 g/kg ethanol on pups exposed to STSI are modulated by endogenous opioid activity.
Collapse
Affiliation(s)
- Andrey P Kozlov
- Center for Development & Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, United States
| | | | | | | | | |
Collapse
|
40
|
Baram TZ, Solodkin A, Davis EP, Stern H, Obenaus A, Sandman CA, Small SL. Fragmentation and unpredictability of early-life experience in mental disorders. Am J Psychiatry 2012; 169:907-15. [PMID: 22885631 PMCID: PMC3483144 DOI: 10.1176/appi.ajp.2012.11091347] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Maternal sensory signals in early life play a crucial role in programming the structure and function of the developing brain, promoting vulnerability or resilience to emotional and cognitive disorders. In rodent models of early-life stress, fragmentation and unpredictability of maternally derived sensory signals provoke persistent cognitive and emotional dysfunction in offspring. Similar variability and inconsistency of maternal signals during both gestation and early postnatal human life may influence development of emotional and cognitive functions, including those that underlie later depression and anxiety.
Collapse
|
41
|
Kosten TA, Kim JJ, Lee HJ. Early life manipulations alter learning and memory in rats. Neurosci Biobehav Rev 2012; 36:1985-2006. [PMID: 22819985 DOI: 10.1016/j.neubiorev.2012.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 12/24/2022]
Abstract
Much research shows that early life manipulations have enduring behavioral, neural, and hormonal effects. However, findings of learning and memory performance vary widely across studies. We reviewed studies in which pre-weaning rat pups were exposed to stressors and tested on learning and memory tasks in adulthood. Tasks were classified as aversive conditioning, inhibitory learning, or spatial/relational memory. Variables of duration, type, and timing of neonatal manipulation and sex and strain of animals were examined to determine if any predict enhanced or impaired performance. Brief separations enhanced and prolonged separations impaired performance on spatial/relational tasks. Performance was impaired in aversive conditioning and enhanced in inhibitory learning tasks regardless of manipulation duration. Opposing effects on performance for spatial/relational memory also depended upon timing of manipulation. Enhanced performance was likely if the manipulation occurred during postnatal week 3 but performance was impaired if it was confined to the first two postnatal weeks. Thus, the relationship between early life experiences and adulthood learning and memory performance is multifaceted and decidedly task-dependent.
Collapse
Affiliation(s)
- Therese A Kosten
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
42
|
Lomanowska AM, Chatterjee-Chakraborty M, Steiner M, Kraemer GW. Effects of motherless rearing on basal and stress-induced corticosterone secretion in rat pups. Stress 2011; 14:685-96. [PMID: 21790476 DOI: 10.3109/10253890.2011.594470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rearing of rat pups without a mother, artificial rearing (AR), produces substantial changes in the pups' behavior in later life. These changes are similar to those produced by the stress of repeated mother-pup separations. The predominant interpretation is that the long-term effects of disruptions to the mother-pup relationship are mediated by exposure to elevated levels of corticosterone which affect the development of neurobiological systems underlying cognition and behavior. Indeed, repeated separation of pups from the mother sensitizes the pups' corticosterone response to stress. This study examined basal and stress-induced corticosterone release in AR pups. Corticosterone levels were increased immediately following implantation of feeding cannulae. One day after the start of AR, circulating concentrations of corticosterone were not increased unless AR pups were challenged with an additional stressor (injection). Corticosterone levels were lowest when cannulation and AR started on postnatal day (PND) 5 compared with earlier PNDs. On PND 12, there was no evidence of increased corticosterone levels in AR pups at baseline or in response to stress, indicating that AR did not result in persistent sensitization of corticosterone release. The long-term effects of motherless rearing on rat behavior are mediated by mechanisms that are independent of sustained early corticosterone exposure.
Collapse
Affiliation(s)
- A M Lomanowska
- Department of Psychology, University of Toronto at Mississauga, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Barbosa Neto JB, Tiba PA, Faturi CB, de Castro-Neto EF, da Graça Naffah-Mazacoratti M, de Jesus Mari J, de Mello MF, Suchecki D. Stress during development alters anxiety-like behavior and hippocampal neurotransmission in male and female rats. Neuropharmacology 2011; 62:518-26. [PMID: 21945413 DOI: 10.1016/j.neuropharm.2011.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/18/2011] [Accepted: 09/09/2011] [Indexed: 12/18/2022]
Abstract
Epidemiological data indicate that early stress increases vulnerability to psychiatric disorders, including anxiety and depression. In the present study we sought to investigate the long-term behavioral and neurochemical consequences of increased and sustained corticosterone levels induced by a 24 h bout of maternal deprivation (DEP) imposed on postnatal day 11 (DEP11). As adults, animals were exposed to the elevated plus maze for assessment of anxiety-like behavior and corticosterone response to this challenge, or decapitated for determination of monoamines and amino acid neurotransmitters content in the hippocampus by HPLC method. The results showed that DEP11 male and female rats displayed increased time in the central hub of the maze and more risk assessment behavior, reflecting increased anxiety-like behavior; in addition, these animals continuously secreted corticosterone in response to the behavioral test until the latest time-point, e.g., 60 min post-stress. In males, maternal deprivation increased aspartate and glutamate levels and reduced taurine levels compared to non-deprived (NDEP) rats. DEP11 females displayed reduced noradrenaline, aspartate and GABA levels compared to NDEP counterparts. These results indicate that maternal deprivation at 11 days of age produced changes in hippocampal neurotransmission that may mediate the increased anxiety-like behavior observed in male and female deprived rats. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
|
44
|
de Lima MNM, Presti-Torres J, Vedana G, Alcalde LA, Stertz L, Fries GR, Roesler R, Andersen ML, Quevedo J, Kapczinski F, Schröder N. Early life stress decreases hippocampal BDNF content and exacerbates recognition memory deficits induced by repeated D-amphetamine exposure. Behav Brain Res 2011; 224:100-6. [PMID: 21645554 DOI: 10.1016/j.bbr.2011.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 05/17/2011] [Accepted: 05/22/2011] [Indexed: 12/14/2022]
Abstract
Adverse experiences early in life may have profound influences on brain development, for example, determining alterations in response to psychostimulant drugs, an increased risk of developing a substance abuse disorder, and individual differences in the vulnerability to neuropsychiatric disorders later in life. Here, we investigated the effects of exposure to an early adverse life event, maternal deprivation, combined with repeated d-amphetamine (AMPH) administration in adulthood, on recognition memory and brain-derived neurotrophic factor (BDNF) levels in rats' brain and serum. Rats were exposed to one of the following maternal rearing conditions from postnatal days 1 to 14: non-deprived (ND) or deprived (D). In adulthood, both groups received injections of saline (SAL) or AMPH (2.0mg/kg, i.p.) for 7 days. In Experiment I (performed 24h after the last AMPH injection), AMPH induced long-term memory (LTM) impairments in ND and D groups. The D+AMPH group also presented short-term memory (STM) impairments, indicating that the effects of AMPH on memory were more pronounced when the animals where maternally deprived. The group exposed to D+SAL (SAL) showed only LTM impairments. In Experiment II (performed 8 days after the last injection), AMPH detrimental effects on memory persisted in ND and D groups. BDNF levels were decreased in the hippocampus of D+SAL rats. In conclusion, AMPH produces severe and persistent recognition memory impairments that were more pronounced when the animals were maternally deprived, suggesting that an early adverse life event may increase the vulnerability of cognitive function to exposure to a psychostimulant later in life.
Collapse
Affiliation(s)
- Maria Noêmia Martins de Lima
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl) 2011; 214:71-88. [PMID: 20886335 DOI: 10.1007/s00213-010-2010-9] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/28/2010] [Indexed: 12/13/2022]
Abstract
RATIONALE Early life stress has been implicated in many psychiatric disorders ranging from depression to anxiety. Maternal separation in rodents is a well-studied model of early life stress. However, stress during this critical period also induces alterations in many systems throughout the body. Thus, a variety of other disorders that are associated with adverse early life events are often comorbid with psychiatric illnesses, suggesting a common underlying aetiology. Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is thought to involve a dysfunctional interaction between the brain and the gut. Essential aspects of the brain-gut axis include spinal pathways, the hypothalamic pituitary adrenal axis, the immune system, as well as the enteric microbiota. Accumulating evidence suggest that stress, especially in early life, is a predisposing factor to IBS. OBJECTIVE The objective of this review was to assess and compile the most relevant data on early life stress and alterations at all levels of the brain gut axis. RESULTS In this review, we describe the components of the brain-gut axis individually and how they are altered by maternal separation. The separated phenotype is characterised by alterations of the intestinal barrier function, altered balance in enteric microflora, exaggerated stress response and visceral hypersensitivity, which are all evident in IBS. CONCLUSION Thus, maternally separated animals are an excellent model of brain-gut axis dysfunction for the study of disorders such as IBS and for the development of novel therapeutic interventions.
Collapse
|
46
|
Mello MF, Serafim PM, Moraes ML, Miranda AM, Soussumi Y, Mello AF. The Impact of Early Maternal Presence on Child Development and the Stress Response System. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/15294145.2011.10773673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Hao Y, Huang W, Nielsen DA, Kosten TA. Litter gender composition and sex affect maternal behavior and DNA methylation levels of the oprm1 gene in rat offspring. Front Psychiatry 2011; 2:21. [PMID: 21629839 PMCID: PMC3098712 DOI: 10.3389/fpsyt.2011.00021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/12/2011] [Indexed: 01/05/2023] Open
Abstract
The mu-opioid receptor is encoded by the Oprm1 gene and contributes to mother-infant behaviors. Rodent dams lick male pups more than female pups in the anogenital region. This behavior is linked to stress responsivity in the offspring that may be mediated by epigenetic changes. We hypothesized that maternal behavior may affect DNA methylation levels of the Oprm1 gene and show sex differences. To further explore sex differences in mother-pup behaviors and DNA methylation levels, we altered the litter gender composition (LGC) of rats. Litters were culled to eight all male, all female, or four male/four female pups on postnatal (PN) day 1. On PN4, 7, and 10, a dam was placed in a test cage with a pup for a 10-min period. Latency to pup contact was determined as were times spent licking the anogenital and other body regions of the pup. Frequencies of other behaviors were tabulated. On PN35, samples from various brain regions were obtained. DNA methylation at specific CpG sites in the Oprm1 promoter region were measured by direct sequencing of bisulfite-treated DNA. LGC and sex interacted with day for latency to pup contact. Latencies were longest on PN4 for single-sex males and on PN10 for single-sex females. Dams licked male pups more than female pups in both the anogenital and other body areas. Sex differences were seen in other behaviors. LGC altered DNA methylation at specific CpG's of Oprm1 in hippocampus with higher levels in single-sex rats. In nucleus accumbens, single-sex males showed hypermethylation levels, a trend seen in caudate-putamen. Results confirm and extend sex differences in maternal care with modest LGC effects. That both LGC and sex have enduring effects on DNA methylation of the Oprm1 gene in brain regions associated with addiction, stress regulation, motivation, and cognition may suggest one factor that contributes to gender differences in these behaviors.
Collapse
Affiliation(s)
- Yanli Hao
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine Houston, TX, USA
| | | | | | | |
Collapse
|
48
|
Walker C, Anand K, Plotsky PAULM. Development of the Hypothalamic‐Pituitary‐Adrenal Axis and the Stress Response. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Korosi A, Baram TZ. The pathways from mother's love to baby's future. Front Behav Neurosci 2009; 3:27. [PMID: 19826614 PMCID: PMC2759360 DOI: 10.3389/neuro.08.027.2009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Accepted: 08/20/2009] [Indexed: 12/30/2022] Open
Abstract
Together with genetic factors, early-life experience governs the expression and function of stress-related genes throughout life. This, in turn, contributes to either resilience or vulnerability to depression and to aging-related cognitive decline. In humans and animal models, both the quality and quantity of early-life maternal care has been shown to be a predominant signal triggering bi-directional and enduring changes in expression profiles of genes including glucocorticoids and corticotropin releasing factor (CRH; hypothalamic and hippocampal), associated with the development of resilient or vulnerable phenotypes. However, many crucial questions remain unresolved. For examples, how is the maternal-derived signal transmitted to specific neuronal populations where enduring (likely epigenetic) regulation of gene expression takes place? What is the nature of this information? In other words, how do neurons know to ‘turn on’ epigenetic machinery? What are the direct functional consequences of altered gene expression? This review describes the voyage of recurrent bursts of sensory input from the mother (‘mother's love’) to CRH-expressing hypothalamic neurons that govern the magnitude of the response to stress. In addition, the acute and enduring effects of both nurturing and fragmented maternal care on the structure, cellular signaling and function of specific hippocampal and hypothalamic neurons are discussed. The evolving understanding of the processes initiated by the early life experience of ‘mother's love’ suggest novel molecular targets for prevention and therapy of stress-related affective and cognitive disorders.
Collapse
Affiliation(s)
- Aniko Korosi
- Anatomy/Neurobiology, Pediatrics and Neurology, University of California at Irvine Irvine, CA 92697-4475, USA
| | | |
Collapse
|
50
|
Faturi CB, Tiba PA, Kawakami SE, Catallani B, Kerstens M, Suchecki D. Disruptions of the mother-infant relationship and stress-related behaviours: altered corticosterone secretion does not explain everything. Neurosci Biobehav Rev 2009; 34:821-34. [PMID: 19751762 DOI: 10.1016/j.neubiorev.2009.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 08/19/2009] [Accepted: 09/05/2009] [Indexed: 01/15/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is the main neuroendocrine system of response to stress, and an imbalance of this system's activity is believed to be at the core of numerous psychiatric pathologies. During the neonatal period, the glucocorticoid response to stress is maintained at low levels by specific maternal behaviours, which is essential for proper brain development. Effective evaluation of the impact of increased secretion of corticosterone during an essentially anabolic developmental period on adulthood behaviour involved separation of the neonate from its mother for periods ranging from 3 to 24h. It has been shown that disinhibition of the stress response is achieved by such procedures. The pioneering studies by Seymour Levine set the stage for a prolific and promising field of study that may help neuroscientists unveil the neurobiological underpinnings of stress-related disorders. Based on a series of studies, we propose that maternal separation and maternal deprivation change stress-related behaviours, but that corticosterone seem to be only partially involved in these changes in adulthood. It appears that extra-hypothalamic corticotrophin-releasing factor and neurotransmitter systems may be the primary mediators of these behavioural outcomes.
Collapse
|