1
|
Xu Z, Wen S, Dong M, Zhou L. Targeting central pathway of Glucose-Dependent Insulinotropic Polypeptide, Glucagon and Glucagon-like Peptide-1 for metabolic regulation in obesity and type 2 diabetes. Diabetes Obes Metab 2024. [PMID: 39723473 DOI: 10.1111/dom.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Obesity and type 2 diabetes are significant public health challenges that greatly impact global well-being. The development of effective therapeutic strategies has become more and more concentrated on the central nervous system and metabolic regulation. The primary pharmaceutical interventions for the treatment of obesity and uncontrolled hyperglycemia are now generally considered to be incretin-based anti-diabetic treatments, particularly glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonists. This is a result of their substantial influence on the central nervous system and the consequent effects on energy balance and glucose regulation. It is increasingly crucial to understand the neural pathways of these pharmaceuticals. The purpose of this review is to compile and present the most recent central pathways regarding glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide and glucagon receptors, with a particular emphasis on central metabolic regulation.
Collapse
Affiliation(s)
- Zhimin Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Fudan University, Shanghai, China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
2
|
Banks WA, Rhea EM, Reed MJ, Erickson MA. The penetration of therapeutics across the blood-brain barrier: Classic case studies and clinical implications. Cell Rep Med 2024; 5:101760. [PMID: 39383873 PMCID: PMC11604479 DOI: 10.1016/j.xcrm.2024.101760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
The blood-brain barrier (BBB) plays central roles in the maintenance and health of the brain. Its mechanisms to safeguard the brain against xenobiotics and endogenous toxins also make the BBB the primary obstacle to the development of drugs for the central nervous system (CNS). Here, we review classic examples of the intersection of clinical medicine, drug delivery, and the BBB. We highlight the role of lipid solubility (heroin), saturable brain-to-blood (efflux: opiates) and blood-to-brain (influx: nutrients, vitamins, and minerals) transport systems, and adsorptive transcytosis (viruses and incretin receptor agonists). We examine how the disruption of the BBB that occurs in certain diseases (tumors) can also be modulated (osmotic agents and microbubbles) and used to deliver treatments, and the role of extracellular pathways in gaining access to the CNS (albumin and antibodies). In summary, this review provides a historical perspective of the key role of the BBB in delivery of drugs to the brain in health and disease.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA.
| | - Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - May J Reed
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Michelle A Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
3
|
Behar AE, Maayan G. A cocktail of Cu 2+- and Zn 2+-peptoid-based chelators can stop ROS formation for Alzheimer's disease therapy. Chem Sci 2024:d4sc04313h. [PMID: 39464602 PMCID: PMC11503657 DOI: 10.1039/d4sc04313h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
The formation of reactive oxygen species (ROS) in the brain is a major cause of neuropathologic degradation associated with Alzheimer's Disease (AD). It has been suggested that the copper (Cu)-amyloid-β (Aβ) peptide complex can lead to ROS formation in the brain. An external chelator for Cu that can extract Cu from the CuAβ complex should inhibit the formation of ROS, making Cu chelation an excellent therapeutic approach for AD. Such a chelator should possess high selectivity for Cu over zinc (Zn), which is also present within the synaptic cleft. However, such selectivity is generally hard to achieve in one molecule due to the similarities in the binding preferences of these two metal ions. As an alternative to monotherapy (where Cu extraction is performed using a single chelator), herein we describe a variation of combination therapy - a novel cocktail approach, which is based on the co-administration of two structurally different peptidomimetic chelators, aiming to target both Cu2+ and Zn2+ ions simultaneously but independently from each other. Based on rigorous spectroscopic experiments, we demonstrate that our peptidomimetic cocktail allows, for the first time, the complete and immediate inhibition of ROS production by the CuAβ complex in the presence of Zn2+. In addition, we further demonstrate the high stability of the cocktail under simulated physiological conditions and its resistance to proteolytic degradation by trypsin and report the water/n-octanol partition coefficient, initially assessing the blood-brain barrier (BBB) permeability potential of the chelators.
Collapse
Affiliation(s)
- Anastasia E Behar
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City 3200008 Haifa Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City 3200008 Haifa Israel
| |
Collapse
|
4
|
Xie C, Alkhouri N, Elfeki MA. Role of incretins and glucagon receptor agonists in metabolic dysfunction-associated steatotic liver disease: Opportunities and challenges. World J Hepatol 2024; 16:731-750. [PMID: 38818288 PMCID: PMC11135259 DOI: 10.4254/wjh.v16.i5.731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most common chronic liver disease worldwide, paralleling the rising pandemic of obesity and type 2 diabetes. Due to the growing global health burden and complex pathogenesis of MASLD, a multifaceted and innovative therapeutic approach is needed. Incretin receptor agonists, which were initially developed for diabetes management, have emerged as promising candidates for MASLD treatment. This review describes the pathophysiological mechanisms and action sites of three major classes of incretin/glucagon receptor agonists: glucagon-like peptide-1 receptor agonists, glucose-dependent insulinotropic polypeptide receptor agonists, and glucagon receptor agonists. Incretins and glucagon directly or indirectly impact various organs, including the liver, brain, pancreas, gastrointestinal tract, and adipose tissue. Thus, these agents significantly improve glycemic control and weight management and mitigate MASLD pathogenesis. Importantly, this study provides a summary of clinical trials analyzing the effectiveness and safety of incretin receptor agonists in MASLD management and provides an in-depth analysis highlighting their beneficial effects on improving liver function, hepatic steatosis, and intrahepatic inflammation. There are emerging challenges associated with the use of these medications in the real world, particularly adverse events, drug-drug interactions, and barriers to access, which are discussed in detail. Additionally, this review highlights the evolving role of incretin receptor agonists in MASLD management and suggests future research directions.
Collapse
Affiliation(s)
- Chencheng Xie
- Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, United States
- Department of Hepatology, Avera Mckennan University Hospital and Transplant Institute, Sioux Falls, SD 57105, United States
| | - Naim Alkhouri
- Department of Hepatology, Arizona Liver Health, Chandler, AZ 85712, United States
| | - Mohamed A Elfeki
- Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, United States
- Department of Hepatology, Avera McKennan University Hospital and Transplant Institute, Sioux Falls, SD 57105, United States.
| |
Collapse
|
5
|
Singh S, Srivastava P. Targeted Protein Degraders- The Druggability Perspective. J Pharm Sci 2024; 113:539-554. [PMID: 37926234 DOI: 10.1016/j.xphs.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
Targeted Protein degraders (TPDs) show promise in harnessing cellular machinery to eliminate disease-causing proteins, even those previously considered undruggable. Especially if protein turnover is low, targeted protein removal bestows lasting therapeutic effect over typical inhibition. The demonstrated safety and efficacy profile of clinical candidates has fueled the surge in the number of potential candidates across different therapeutic areas. As TPDs often do not comply with Lipinski's rule of five, developing novel TPDs and unlocking their full potential requires overcoming solubility, permeability and oral bioavailability challenges. Tailored in-vitro assays are key to precise profiling and optimization, propelling breakthroughs in targeted protein degradation.
Collapse
|
6
|
Katiyar D, Manish. Recent Advances in Electrochemical Biosensors Targeting Stress Markers. Comb Chem High Throughput Screen 2024; 27:1877-1886. [PMID: 38279751 DOI: 10.2174/0113862073278547231210170007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION When the body experiences a change in its internal environment due to factors such as mood (euphoria, stress) and illness, it releases biomarkers in large quantities. These biomarkers are used for detecting a disease at its early stages. This involves the detection of insufficient quantities of biocomponents, which can be done by using nanomaterials, conventional materials, and biotechnology; thus, scientists can increase the sensitivity of electrochemical sensors. According to studies conducted in this area, electrochemical sensors have shown promise as a diagnostic tool due to their ability to identify and pinpoint illness biomarkers. The present review article was compiled to gather the latest information on electrochemical biosensors targeting stress markers. MATERIALS AND METHODS The authors searched scholarly databases like ScienceDirect, Pubmed, Medline, and Scopus for information on electrochemical biosensors targeting stress markers. RESULTS In this article, we looked at the recent developments in electrochemical sensors for stress monitoring. Because of advances in nanomaterial and biomolecule processes, electrochemical biosensors have been developed with the sensitivity to detect several biomarkers in real-time in therapeutically relevant materials. CONCLUSION This biomarker sensor strategy can analyze various biofluids (sweat, plasma, urine, and saliva).
Collapse
Affiliation(s)
- Deepti Katiyar
- Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Manish
- Department of Electronics and Communication Engineering, ABES Engineering College, 19th KM Stone, NH-09 Ghaziabad, 201009, Uttar Pradesh, India
| |
Collapse
|
7
|
Banks WA. Viktor Mutt lecture: Peptides can cross the blood-brain barrier. Peptides 2023; 169:171079. [PMID: 37598757 DOI: 10.1016/j.peptides.2023.171079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
The field of peptides exploded in the 1970's and has continued to be a major area of discovery. Among the early discoveries was that peptides administered peripherally could affect brain functions. This led Kastin to propose that peptides could cross the blood-brain barrier (BBB). Although initially very controversial, Kastin, I, and others demonstrated not only that peptides can cross the BBB, but elucidated many fundamental characteristics of that passage. That work was in large part the basis of the 2022 Viktor Mutt Lectureship. Here, we review some of the early work with current updates on topics related to the penetration of peptides across the BBB. We briefly review mechanisms by which peripherally administered peptides can affect brain function without crossing the BBB, and then review the major mechanisms by which peptides and their analogs have been show to cross the BBB: transmembrane diffusion, saturable transport, and adsorptive transcytosis. Saturable transport systems are adaptable to physiologic changes and can be altered by disease states. In particular, the transport across the BBB of insulin and of pituitary adenylate cyclase activating polypeptide (PACAP) illustrate many of the concepts regarding peptide transport across the BBB.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle 98108, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
8
|
Stępnik K, Kukula-Koch W, Plazinski W, Rybicka M, Gawel K. Neuroprotective Properties of Oleanolic Acid-Computational-Driven Molecular Research Combined with In Vitro and In Vivo Experiments. Pharmaceuticals (Basel) 2023; 16:1234. [PMID: 37765042 PMCID: PMC10536188 DOI: 10.3390/ph16091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Oleanolic acid (OA), as a ubiquitous compound in the plant kingdom, is studied for both its neuroprotective and neurotoxic properties. The mechanism of acetylcholinesterase (AChE) inhibitory potential of OA is investigated using molecular dynamic simulations (MD) and docking as well as biomimetic tests. Moreover, the in vitro SH-SY5Y human neuroblastoma cells and the in vivo zebrafish model were used. The inhibitory potential towards the AChE enzyme is examined using the TLC-bioautography assay (the IC50 value is 9.22 μM). The CH-π interactions between the central fragment of the ligand molecule and the aromatic cluster created by the His440, Phe288, Phe290, Phe330, Phe331, Tyr121, Tyr334, Trp84, and Trp279 side chains are observed. The results of the in vitro tests using the SH-SY5Y cells indicate that the viability rate is reduced to 71.5%, 61%, and 43% at the concentrations of 100 µg/mL, 300 µg/mL, and 1000 µg/mL, respectively, after 48 h of incubation, whereas cytotoxicity against the tested cell line with the IC50 value is 714.32 ± 32.40 µg/mL. The in vivo tests on the zebrafish prove that there is no difference between the control and experimental groups regarding the mortality rate and morphology (p > 0.05).
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie–Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland;
| | - Wojciech Plazinski
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland;
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Magda Rybicka
- Department of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, ul. Abrahama 58, 80-307 Gdańsk, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, ul. Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
| |
Collapse
|
9
|
Wewer Albrechtsen NJ, Holst JJ, Cherrington AD, Finan B, Gluud LL, Dean ED, Campbell JE, Bloom SR, Tan TMM, Knop FK, Müller TD. 100 years of glucagon and 100 more. Diabetologia 2023; 66:1378-1394. [PMID: 37367959 DOI: 10.1007/s00125-023-05947-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
The peptide hormone glucagon, discovered in late 1922, is secreted from pancreatic alpha cells and is an essential regulator of metabolic homeostasis. This review summarises experiences since the discovery of glucagon regarding basic and clinical aspects of this hormone and speculations on the future directions for glucagon biology and glucagon-based therapies. The review was based on the international glucagon conference, entitled 'A hundred years with glucagon and a hundred more', held in Copenhagen, Denmark, in November 2022. The scientific and therapeutic focus of glucagon biology has mainly been related to its role in diabetes. In type 1 diabetes, the glucose-raising properties of glucagon have been leveraged to therapeutically restore hypoglycaemia. The hyperglucagonaemia evident in type 2 diabetes has been proposed to contribute to hyperglycaemia, raising questions regarding underlying mechanism and the importance of this in the pathogenesis of diabetes. Mimicry experiments of glucagon signalling have fuelled the development of several pharmacological compounds including glucagon receptor (GCGR) antagonists, GCGR agonists and, more recently, dual and triple receptor agonists combining glucagon and incretin hormone receptor agonism. From these studies and from earlier observations in extreme cases of either glucagon deficiency or excess secretion, the physiological role of glucagon has expanded to also involve hepatic protein and lipid metabolism. The interplay between the pancreas and the liver, known as the liver-alpha cell axis, reflects the importance of glucagon for glucose, amino acid and lipid metabolism. In individuals with diabetes and fatty liver diseases, glucagon's hepatic actions may be partly impaired resulting in elevated levels of glucagonotropic amino acids, dyslipidaemia and hyperglucagonaemia, reflecting a new, so far largely unexplored pathophysiological phenomenon termed 'glucagon resistance'. Importantly, the hyperglucagonaemia as part of glucagon resistance may result in increased hepatic glucose production and hyperglycaemia. Emerging glucagon-based therapies show a beneficial impact on weight loss and fatty liver diseases and this has sparked a renewed interest in glucagon biology to enable further pharmacological pursuits.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Lise Lotte Gluud
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - E Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Filip K Knop
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
10
|
Mair MJ, Bartsch R, Le Rhun E, Berghoff AS, Brastianos PK, Cortes J, Gan HK, Lin NU, Lassman AB, Wen PY, Weller M, van den Bent M, Preusser M. Understanding the activity of antibody-drug conjugates in primary and secondary brain tumours. Nat Rev Clin Oncol 2023; 20:372-389. [PMID: 37085569 DOI: 10.1038/s41571-023-00756-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/23/2023]
Abstract
Antibody-drug conjugates (ADCs), a class of targeted cancer therapeutics combining monoclonal antibodies with a cytotoxic payload via a chemical linker, have already been approved for the treatment of several cancer types, with extensive clinical development of novel constructs ongoing. Primary and secondary brain tumours are associated with high mortality and morbidity, necessitating novel treatment approaches. Pharmacotherapy of brain tumours can be limited by restricted drug delivery across the blood-brain or blood-tumour barrier, although data from phase II studies of the HER2-targeted ADC trastuzumab deruxtecan indicate clinically relevant intracranial activity in patients with brain metastases from HER2+ breast cancer. However, depatuxizumab mafodotin, an ADC targeting wild-type EGFR and EGFR variant III, did not provide a definitive overall survival benefit in patients with newly diagnosed or recurrent EGFR-amplified glioblastoma in phase II and III trials, despite objective radiological responses in some patients. In this Review, we summarize the available data on the central nervous system activity of ADCs from trials involving patients with primary and secondary brain tumours and discuss their clinical implications. Furthermore, we explore pharmacological determinants of intracranial activity and discuss the optimal design of clinical trials to facilitate development of ADCs for the treatment of gliomas and brain metastases.
Collapse
Affiliation(s)
- Maximilian J Mair
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Emilie Le Rhun
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria
| | - Priscilla K Brastianos
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quirónsalud Group, Madrid and Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
- Medical Scientia Innovation Research (MEDSIR), Barcelona, Spain
| | - Hui K Gan
- Cancer Therapies and Biology Group, Centre of Research Excellence in Brain Tumours, Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Heidelberg, VIC, Australia
- La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, USA
| | - Patrick Y Wen
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Martin van den Bent
- The Brain Tumour Center, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Edgerton DS, Kraft G, Smith M, Farmer B, Williams P, Cherrington AD. A physiologic increase in brain glucagon action alters the hepatic gluconeogenic/glycogenolytic ratio but not glucagon's overall effect on glucose production. Am J Physiol Endocrinol Metab 2023; 324:E199-E208. [PMID: 36652399 PMCID: PMC9925168 DOI: 10.1152/ajpendo.00304.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
It has been proposed that brain glucagon action inhibits glucagon-stimulated hepatic glucose production (HGP), which may explain, at least in part, why glucagon's effect on HGP is transient. However, the pharmacologic off-target effects of glucagon in the brain may have been responsible for previously observed effects. Therefore, the aim of this study was to determine if central glucagon action plays a physiologic role in the regulation of HGP. Insulin was maintained at baseline while glucagon was either infused into the carotid and vertebral arteries or into a peripheral (leg) vein at rates designed to increase glucagon in the head in one group, while keeping glucagon at the liver matched between groups. The extraction rate of glucagon across the head was high (double that of the liver), and hypothalamic cAMP increased twofold, in proportion to the exposure of the brain to increased glucagon, but HGP was not reduced by the increase in brain glucagon signaling, as had been suggested previously (the areas under the curve for HGP were 840 ± 14 vs. 871 ± 36 mg/kg/240 min in head vs. peripheral infusion groups, respectively). Central nervous system glucagon action reduced circulating free fatty acids and glycerol, and this was associated with a modest reduction in net hepatic gluconeogenic flux. However, offsetting autoregulation by the liver (i.e., a reciprocal increase in net hepatic glycogenolysis) prevented a change in HGP. Thus, while physiologic engagement of the brain by glucagon can alter hepatic carbon flux, it does not appear to be responsible for the transient fall in HGP that occurs following the stimulation of HGP during a square wave rise in glucagon.NEW & NOTEWORTHY Glucagon stimulates hepatic glucose production through its direct effects on the liver but may indirectly inhibit this process by acting on the brain. This was tested by delivering glucagon via the cerebral circulatory system. Central nervous system glucagon action reduced liver gluconeogenic flux, but glycogenolysis increased, resulting in no net change in hepatic glucose production. Surprisingly, brain glucagon also appeared to suppress lipolysis (plasma free fatty acid and glycerol levels were reduced).
Collapse
Affiliation(s)
- Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Phillip Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
12
|
Banks WA, Noonan C, Rhea EM. Evidence for an alternative insulin transporter at the blood-brain barrier. AGING PATHOBIOLOGY AND THERAPEUTICS 2022; 4:100-108. [PMID: 36644126 PMCID: PMC9837797 DOI: 10.31491/apt.2022.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggests there is an alternative insulin transporter besides the insulin receptor at the blood-brain barrier (BBB), responsible for shuttling insulin from the circulation into the brain. In this review, we summarize key features of the BBB and what makes it unique compared to other capillary beds; summarize what we know about insulin BBB transport; provide an extensive list of diseases, physiological states, and serum factors tested in modifying insulin BBB transport; and lastly, highlight potential alternative transport systems that may be involved in or have already been tested in mediating insulin BBB transport. Identifying the transport system for insulin at the BBB would aide in controlling central nervous system (CNS) insulin levels in multiple diseases and conditions including Alzheimer's disease (AD) and obesity, where availability of insulin to the CNS is limited.
Collapse
Affiliation(s)
- William A. Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Cassidy Noonan
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M. Rhea
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
13
|
Aragón-González A, Shaw PJ, Ferraiuolo L. Blood-Brain Barrier Disruption and Its Involvement in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms232315271. [PMID: 36499600 PMCID: PMC9737531 DOI: 10.3390/ijms232315271] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) is a highly specialized and dynamic compartment which regulates the uptake of molecules and solutes from the blood. The relevance of the maintenance of a healthy BBB underpinning disease prevention as well as the main pathomechanisms affecting BBB function will be detailed in this review. Barrier disruption is a common aspect in both neurodegenerative diseases, such as amyotrophic lateral sclerosis, and neurodevelopmental diseases, including autism spectrum disorders. Throughout this review, conditions altering the BBB during the earliest and latest stages of life will be discussed, revealing common factors involved. Due to the barrier's role in protecting the brain from exogenous components and xenobiotics, drug delivery across the BBB is challenging. Potential therapies based on the BBB properties as molecular Trojan horses, among others, will be reviewed, as well as innovative treatments such as stem cell therapies. Additionally, due to the microbiome influence on the normal function of the brain, microflora modulation strategies will be discussed. Finally, future research directions are highlighted to address the current gaps in the literature, emphasizing the idea that common therapies for both neurodevelopmental and neurodegenerative pathologies exist.
Collapse
Affiliation(s)
- Ana Aragón-González
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Correspondence: ; Tel.: +44-(0)114-222-2257; Fax: +44-(0)114-222-2290
| |
Collapse
|
14
|
Takeuchi Y, Fukunaga M, Iwatani S, Miyanaga K, Adachi T, Yamamoto N. Release of an anti-anxiety peptide in casein hydrolysate with Aspergillus oryzae protease. Food Funct 2022; 13:10449-10460. [PMID: 36129023 DOI: 10.1039/d2fo01793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food protein-derived peptides with agonistic effects on receptors have great potential for treating anxiety, hypertension, and stress. In the present study, opioid peptides with agonistic activities for δ-receptor-expressing HEK293 cells were screened from casein hydrolysates prepared with five types of food grade proteolytic enzymes, among which casein hydrolysate with Aspergillus oryzae protease ASD showed the highest opioid activity. Eluted fractions showing potent opioid activity were further purified for active peptides by reverse phase-HPLC. The peptide in the active fraction was identified as YPFPGPIPNS, a member of β-casomorphin (CM-10) (β-casein 60-69). Various CM-10 derivative peptides were synthesized and their characteristic features for specificities towards δ- and μ-receptors were determined. Peptides 5 to 12 amino acids long showed relatively higher opioid activities for δ- and μ-receptors. CM-10 was docked into the optimized δ-receptor model. The CDOCKER energies of the CM-10 derivatives were consistent with their opioid activities. In the elevated plus-maze study, CM-10 showed a significant anti-anxiety effect in BALB/c mice at a dose of 10 mg per kg body weight when administered orally, but not via intravenous injection. Furthermore, intravital imaging revealed that Ca2+ signaling was induced in the small intestinal villi of a Yellow Cameleon 3.60 (YC3.60)-expressing mouse upon injection with CM-10. However, this decreased in the presence of δ- or μ-receptor antagonists. These results suggest that the opioid peptide CM-10 prepared from casein with ASD has an anti-anxiety effect through interaction with gut δ- and/or μ-opioid receptors in the mouse gut.
Collapse
Affiliation(s)
- Yui Takeuchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.
| | - Moe Fukunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan. .,Tsukuba Biotechnology Research Center, 5-2-3, Tokodai, Tsukuba-shi, Ibaraki 300-2698, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan. .,Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi, Tochigi, 329-0498, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Naoyuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
15
|
Lee YS. Peptidomimetics and Their Applications for Opioid Peptide Drug Discovery. Biomolecules 2022; 12:biom12091241. [PMID: 36139079 PMCID: PMC9496382 DOI: 10.3390/biom12091241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
16
|
Todorovski T, Mendonça DA, Fernandes-Siqueira LO, Cruz-Oliveira C, Guida G, Valle J, Cavaco M, Limas FIV, Neves V, Cadima-Couto Í, Defaus S, Veiga AS, Da Poian AT, Castanho MARB, Andreu D. Targeting Zika Virus with New Brain- and Placenta-Crossing Peptide-Porphyrin Conjugates. Pharmaceutics 2022; 14:738. [PMID: 35456572 PMCID: PMC9032516 DOI: 10.3390/pharmaceutics14040738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Viral disease outbreaks affect hundreds of millions of people worldwide and remain a serious threat to global health. The current SARS-CoV-2 pandemic and other recent geographically- confined viral outbreaks (severe acute respiratory syndrome (SARS), Ebola, dengue, zika and ever-recurring seasonal influenza), also with devastating tolls at sanitary and socio-economic levels, are sobering reminders in this respect. Among the respective pathogenic agents, Zika virus (ZIKV), transmitted by Aedes mosquito vectors and causing the eponymous fever, is particularly insidious in that infection during pregnancy results in complications such as foetal loss, preterm birth or irreversible brain abnormalities, including microcephaly. So far, there is no effective remedy for ZIKV infection, mainly due to the limited ability of antiviral drugs to cross blood-placental and/or blood-brain barriers (BPB and BBB, respectively). Despite its restricted permeability, the BBB is penetrable by a variety of molecules, mainly peptide-based, and named BBB peptide shuttles (BBBpS), able to ferry various payloads (e.g., drugs, antibodies, etc.) into the brain. Recently, we have described peptide-porphyrin conjugates (PPCs) as successful BBBpS-associated drug leads for HIV, an enveloped virus in which group ZIKV also belongs. Herein, we report on several brain-directed, low-toxicity PPCs capable of targeting ZIKV. One of the conjugates, PP-P1, crossing both BPB and BBB, has shown to be effective against ZIKV (IC50 1.08 µM) and has high serum stability (t1/2 ca. 22 h) without altering cell viability at all tested concentrations. Peptide-porphyrin conjugation stands out as a promising strategy to fill the ZIKV treatment gap.
Collapse
Affiliation(s)
- Toni Todorovski
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Diogo A. Mendonça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Lorena O. Fernandes-Siqueira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.O.F.-S.); (F.I.V.L.)
| | - Christine Cruz-Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Giuseppina Guida
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Javier Valle
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Fernanda I. V. Limas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.O.F.-S.); (F.I.V.L.)
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Íris Cadima-Couto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Sira Defaus
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Andrea T. Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.O.F.-S.); (F.I.V.L.)
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| |
Collapse
|
17
|
Exploring the Pivotal Neurophysiologic and Therapeutic Potentials of Vitamin C in Glioma. JOURNAL OF ONCOLOGY 2021. [PMID: 33598702 PMCID: PMC8691980 DOI: 10.1155/2021/6141591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gliomas represent solely primary brain cancers of glial cell or neuroepithelial origin. Gliomas are still the most lethal human cancers despite modern innovations in both diagnostic techniques as well as therapeutic regimes. Gliomas have the lowest overall survival rate compared to other cancers 5 years after definitive diagnosis. The dietary intake of vitamin C has protective effect on glioma risk. Vitamin C is an essential compound that plays a vital role in the regulation of lysyl and prolyl hydroxylase activity. Neurons store high levels of vitamin C via sodium dependent-vitamin C transporters (SVCTs) to protect them from oxidative ischemia-reperfusion injury. Vitamin C is a water-soluble enzyme, typically seen as a powerful antioxidant in plants as well as animals. The key function of vitamin C is the inhibition of redox imbalance from reactive oxygen species produced via the stimulation of glutamate receptors. Gliomas absorb vitamin C primarily via its oxidized dehydroascorbate form by means of GLUT 1, 3, and 4 and its reduced form, ascorbate, by SVCT2. Vitamin C is able to preserve prosthetic metal ions like Fe2+ and Cu+ in their reduced forms in several enzymatic reactions as well as scavenge free radicals in order to safeguard tissues from oxidative damage. Therapeutic concentrations of vitamin C are able to trigger H2O2 generation in glioma. High-dose combination of vitamin C and radiation has a much more profound cytotoxic effect on primary glioblastoma multiforme cells compared to normal astrocytes. Control trials are needed to validate the use of vitamin C and standardization of the doses of vitamin C in the treatment of patients with glioma.
Collapse
|
18
|
Zeigerer A, Sekar R, Kleinert M, Nason S, Habegger KM, Müller TD. Glucagon's Metabolic Action in Health and Disease. Compr Physiol 2021; 11:1759-1783. [PMID: 33792899 PMCID: PMC8513137 DOI: 10.1002/cphy.c200013] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.
Collapse
Affiliation(s)
- Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Shelly Nason
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirk M. Habegger
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timo D. Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
19
|
Song YH, Yoon J, Lee SH. The role of neuropeptide somatostatin in the brain and its application in treating neurological disorders. Exp Mol Med 2021; 53:328-338. [PMID: 33742131 PMCID: PMC8080805 DOI: 10.1038/s12276-021-00580-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Somatostatin (SST) is a well-known neuropeptide that is expressed throughout the brain. In the cortex, SST is expressed in a subset of GABAergic neurons and is known as a protein marker of inhibitory interneurons. Recent studies have identified the key functions of SST in modulating cortical circuits in the brain and cognitive function. Furthermore, reduced expression of SST is a hallmark of various neurological disorders, including Alzheimer's disease and depression. In this review, we summarize the current knowledge on SST expression and function in the brain. In particular, we describe the physiological roles of SST-positive interneurons in the cortex. We further describe the causal relationship between pathophysiological changes in SST function and various neurological disorders, such as Alzheimer's disease. Finally, we discuss potential treatments and possibility of novel drug developments for neurological disorders based on the current knowledge on the function of SST and SST analogs in the brain derived from experimental and clinical studies.
Collapse
Affiliation(s)
- You-Hyang Song
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 Republic of Korea
| | - Jiwon Yoon
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 Republic of Korea
| | - Seung-Hee Lee
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 Republic of Korea
| |
Collapse
|
20
|
Li W, Kirchner T, Ho G, Bonilla F, D'Aquino K, Littrell J, Zhang R, Jian W, Qiu X, Zheng S, Gao B, Wong P, Leonard JN, Camacho RC. Amino acids are sensitive glucagon receptor-specific biomarkers for glucagon-like peptide-1 receptor/glucagon receptor dual agonists. Diabetes Obes Metab 2020; 22:2437-2450. [PMID: 33463043 DOI: 10.1111/dom.14173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022]
Abstract
AIM The aim of this study was to evaluate amino acids as glucagon receptor (GCGR)-specific biomarkers in rodents and cynomolgus monkeys in the presence of agonism of both glucagon-like peptide-1 receptor (GLP1R) and GCGR with a variety of dual agonist compounds. MATERIALS AND METHODS Primary hepatocytes, rodents (normal, diet-induced obese and GLP1R knockout) and cynomolgus monkeys were treated with insulin (hepatocytes only), glucagon (hepatocytes and cynomolgus monkeys), the GLP1R agonist, dulaglutide, or a variety of dual agonists with varying GCGR potencies. RESULTS A long-acting dual agonist, Compound 2, significantly decreased amino acids in both wild-type and GLP1R knockout mice in the absence of changes in food intake, body weight, glucose or insulin, and increased expression of hepatic amino acid transporters. Dulaglutide, or a variant of Compound 2 lacking GCGR agonism, had no effect on amino acids. A third variant with ~31-fold less GCGR potency than Compound 2 significantly decreased amino acids, albeit to a significantly lesser extent than Compound 2. Dulaglutide (with saline infusion) had no effect on amino acids, but an infusion of glucagon dose-dependently decreased amino acids on the background of GLP1R engagement (dulaglutide) in cynomolgus monkeys, as did Compound 2. CONCLUSIONS These results show that amino acids are sensitive and translatable GCGR-specific biomarkers.
Collapse
Affiliation(s)
- Wenyu Li
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Thomas Kirchner
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - George Ho
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Fany Bonilla
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Katharine D'Aquino
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - James Littrell
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Rui Zhang
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Wenying Jian
- Pharmacokinetics, Dynamics, and Metabolism, Janssen R&D, Spring House, Pennsylvania, USA
| | - Xi Qiu
- Pharmacokinetics, Dynamics, and Metabolism, Janssen R&D, Spring House, Pennsylvania, USA
| | - Songmao Zheng
- Janssen Biotherapeutics, Janssen R&D, Spring House, Pennsylvania, USA
| | - Bin Gao
- Translational Medicine and Early Development Statistics, Janssen R&D, Spring House, Pennsylvania, USA
| | - Peggy Wong
- Quantitative Sciences, Janssen R&D, Raritan, New Jersey, USA
| | - James N Leonard
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Raul C Camacho
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| |
Collapse
|
21
|
Sun W, Li X, Tang D, Wu Y, An L. Subacute melamine exposure disrupts task-based hippocampal information flow via inhibiting the subunits 2 and 3 of AMPA glutamate receptors expression. Hum Exp Toxicol 2020; 40:928-939. [PMID: 33243008 DOI: 10.1177/0960327120975821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although melamine exposure induces cognitive deficits and dysfunctional neurotransmission in hippocampal Cornus Ammonis (CA) 1 region of rats, it is unclear whether the neural function, such as neural oscillations between hippocampal CA3-CA1 pathway and postsynaptic receptors involves in these effects. The levels of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit glutamate receptor (GluR) 1 and GluR2/3 in CA1 region of melamine-treated rats, which were intragastric treated with 300 mg/kg/day for 4 weeks, were detected. Following systemic or intra-hippocampal CA1 injection with GluR2/3 agonist, spatial learning of melamine-treated rats was assessed in Morris water maze (MWM) task. Local field potentials were recorded in CA3-CA1 pathway before and during behavioral test. General Partial Directed Coherence approach was applied to determine directionality of neural information flow between CA3 and CA1 regions. Results showed that melamine exposure reduced GluR2/3 but not GluR1 level and systemic or intra-hippocampal CA1 injection with GluR2/3 agonist effectively mitigated the learning deficits. Phase synchronization between CA3 and CA1 regions were significantly diminished in delta, theta and alpha oscillations. Coupling directional index and strength of CA3 driving CA1 were marked reduced as well. Intra-hippocampal CA1 infusion with GluR2/3 agonist significantly enhanced the phase locked value and reversed the melamine-induced reduction in the neural information flow (NIF) from CA3 to CA1 region. These findings support that melamine exposure decrease the expression of GluR2/3 subunit involved in weakening directionality index of NIF, and thereby induced spatial learning deficits.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Hospital, Jinan, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanhua Wu
- Department of Neurology, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Jinan Hospital, Jinan, China.,Department of Neurology, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
22
|
Izzi-Engbeaya C, Jones S, Crustna Y, Machenahalli PC, Papadopoulou D, Modi M, Starikova J, Chan D, Eng PC, Phylactou M, Ratnasabapathy R, Mills E, Yang L, Pacuszka E, Bech P, Minnion J, Tharakan G, Tan T, Veldhuis J, Abbara A, Comninos AN, Dhillo WS. Acute Effects of Glucagon on Reproductive Hormone Secretion in Healthy Men. J Clin Endocrinol Metab 2020; 105:5813904. [PMID: 32232363 PMCID: PMC7182124 DOI: 10.1210/clinem/dgaa164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/27/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Glucagon increases energy expenditure; consequently, glucagon receptor agonists are in development for the treatment of obesity. Obesity negatively affects the reproductive axis, and hypogonadism itself can exacerbate weight gain. Therefore, knowledge of the effects of glucagon receptor agonism on reproductive hormones is important for developing therapeutics for obesity; but reports in the literature about the effects of glucagon receptor agonism on the reproductive axis are conflicting. OBJECTIVE The objective of this work is to investigate the effect of glucagon administration on reproductive hormone secretion in healthy young men. DESIGN A single-blinded, randomized, placebo-controlled crossover study was conducted. SETTING The setting of this study was the Clinical Research Facility, Imperial College Healthcare NHS Trust. PARTICIPANTS Eighteen healthy eugonadal men (mean ± SEM: age 25.1 ± 1.0 years; body mass index 22.5 ± 0.4 kg/m2; testosterone 21.2 ± 1.2 nmol/L) participated in this study. INTERVENTION An 8-hour intravenous infusion of 2 pmol/kg/min glucagon or rate-matched vehicle infusion was administered. MAIN OUTCOME MEASURES Luteinizing hormone (LH) pulsatility; LH, follicle-stimulating hormone (FSH), and testosterone levels were measured. RESULTS Although glucagon administration induced metabolic effects (insulin area under the curve: vehicle 1065 ± 292 min.µU/mL vs glucagon 2098 ± 358 min.µU/mL, P < .001), it did not affect LH pulsatility (number of LH pulses/500 min: vehicle 4.7 ± 0.4, glucagon 4.2 ± 0.4, P = .22). Additionally, there were no significant differences in circulating LH, FSH, or testosterone levels during glucagon administration compared with vehicle administration. CONCLUSIONS Acute administration of a metabolically active dose of glucagon does not alter reproductive hormone secretion in healthy men. These data are important for the continued development of glucagon-based treatments for obesity.
Collapse
Affiliation(s)
- Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Sophie Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Yoshibye Crustna
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | | | - Deborah Papadopoulou
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Manish Modi
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Jessica Starikova
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Derek Chan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Pei Chia Eng
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Maria Phylactou
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Risheka Ratnasabapathy
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Edouard Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Lisa Yang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Ewa Pacuszka
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Paul Bech
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - James Minnion
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - George Tharakan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Acute Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | | | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
- Correspondence and Reprint Requests: Waljit S. Dhillo, MBBS, BSc, PhD, Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK. E-mail:
| |
Collapse
|
23
|
Stemmer K, Finan B, DiMarchi RD, Tschöp MH, Müller TD. Insights into incretin-based therapies for treatment of diabetic dyslipidemia. Adv Drug Deliv Rev 2020; 159:34-53. [PMID: 32485206 DOI: 10.1016/j.addr.2020.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023]
Abstract
Derangements in triglyceride and cholesterol metabolism (dyslipidemia) are major risk factors for the development of cardiovascular diseases in obese and type-2 diabetic (T2D) patients. An emerging class of glucagon-like peptide-1 (GLP-1) analogues and next generation peptide dual-agonists such as GLP-1/glucagon or GLP-1/GIP could provide effective therapeutic options for T2D patients. In addition to their role in glucose and energy homeostasis, GLP-1, GIP and glucagon serve as regulators of lipid metabolism. This review summarizes the current knowledge in GLP-1, glucagon and GIP effects on lipid and lipoprotein metabolism and frames the emerging therapeutic benefits of GLP-1 analogs and GLP-1-based multiagonists as add-on treatment options for diabetes associated dyslipidemia.
Collapse
|
24
|
Roomruangwong C, Sirivichayakul S, Carvalho AF, Maes M. The uterine-chemokine-brain axis: menstrual cycle-associated symptoms (MCAS) are in part mediated by CCL2, CCL5, CCL11, CXCL8 and CXCL10. J Affect Disord 2020; 269:85-93. [PMID: 32217347 DOI: 10.1016/j.jad.2020.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/17/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To examine associations between chemokines and menstrual cycle associated symptoms (MCAS). METHODS Forty-one women completed the Daily Record of Severity of Problems (DRSP) rating scale during 28 consecutive days of the menstrual cycle. MCAS is diagnosed when the total daily DRSP score during the menstrual cycle is > 0.666 percentile. We assayed plasma CCL2, CCL5, CCL11, CXCL8, CXCL10, EGF, IGF-1, and PAI-1 at days 7, 14, 21 and 28 of the menstrual cycle. RESULTS CCL2, CCL5, CCL11 and EGF are significantly higher in women with MCAS than in those without. Increased CCL2, CXCL10, CXCL8, CCL11 and CCL5 levels are significantly associated with DRSP scores while CCL2 is the most significant predictor explaining 39.6% of the variance. The sum of the neurotoxic chemokines CCL2, CCL11 and CCL5 is significantly associated with the DRSP score and depression, physiosomatic, breast-craving and anxiety symptoms. The impact of chemokines on MCAS symptoms differ between consecutive weeks of the menstrual cycle with CCL2 being the most important predictor of increased DRSP levels during the first two weeks, and CXCL10 or a combination of CCL2, CCL11 and CCL5 being the best predictors during week 3 and 4, respectively. DISCUSSION The novel case definition "MCAS" is externally validated by increased levels of uterus-associated chemokines and EGF. Those chemokines are involved in MCAS and are regulated by sex hormones and modulate endometrium functions and brain neuro-immune responses, which may underpin MCAS symptoms. As such, uterine-related chemokines may link the uterus with brain functions via a putative uterine-chemokine-brain axis.
Collapse
Affiliation(s)
- Chutima Roomruangwong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunee Sirivichayakul
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Andre F Carvalho
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; IMPACT Strategic Research Center, Deakin University, Geelong, Australia.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria; IMPACT Strategic Research Center, Deakin University, Geelong, Australia.
| |
Collapse
|
25
|
An Overview of the Antioxidant Effects of Ascorbic Acid and Alpha Lipoic Acid (in Liposomal Forms) as Adjuvant in Cancer Treatment. Antioxidants (Basel) 2020; 9:antiox9050359. [PMID: 32344912 PMCID: PMC7278686 DOI: 10.3390/antiox9050359] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Antioxidants are known to minimize oxidative stress by interacting with free radicals produced as a result of cell aerobic reactions. Oxidative stress has long been linked to many diseases, especially tumours. Therefore, antioxidants play a crucial role in the prevention or management of free radical-related diseases. However, most of these antioxidants have anticancer effects only if taken in large doses. Others show inadequate bioavailability due to their instability in the blood or having a hydrophilic nature that limits their permeation through the cell membrane. Therefore, entrapping antioxidants in liposomes may overcome these drawbacks as liposomes have the capability to accommodate both hydrophilic and hydrophobic compounds with a considerable stability. Additionally, liposomes have the capability to accumulate at the cancer tissue passively, due to their small sizes, with enhanced drug delivery. Additionally, liposomes can be engineered with targeting moieties to increase the delivery of chemotherapeutic agents to specific tumour cells with decreased accumulation in healthy tissues. Therefore, combined use of liposomes and antioxidants, with or without chemotherapeutic agents, is an attractive strategy to combat varies tumours. This mini review focuses on the liposomal delivery of selected antioxidants, namely ascorbic acid (AA) and alpha-lipoic acid (ALA). The contribution of these nanocarriers in enhancing the antioxidant effect of AA and ALA and consequently their anticancer potentials will be demonstrated.
Collapse
|
26
|
Majerova P, Hanes J, Olesova D, Sinsky J, Pilipcinec E, Kovac A. Novel Blood-Brain Barrier Shuttle Peptides Discovered through the Phage Display Method. Molecules 2020; 25:molecules25040874. [PMID: 32079185 PMCID: PMC7070575 DOI: 10.3390/molecules25040874] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/12/2023] Open
Abstract
Delivery of therapeutic agents into the brain is a major challenge in central nervous system drug development. The blood–brain barrier (BBB) prevents access of biotherapeutics to their targets in the central nervous system and, therefore, prohibits the effective treatment of many neurological disorders. To find blood–brain barrier shuttle peptides that could target therapeutics to the brain, we applied a phage display technology on a primary endothelial rat cellular model. Two identified peptides from a 12 mer phage library, GLHTSATNLYLH and VAARTGEIYVPW, were selected and their permeability was validated using the in vitro BBB model. The permeability of peptides through the BBB was measured by ultra-performance liquid chromatography-tandem mass spectrometry coupled to a triple-quadrupole mass spectrometer (UHPLC-MS/MS). We showed higher permeability for both peptides compared to N–C reversed-sequence peptides through in vitro BBB: for peptide GLHTSATNLYLH 3.3 × 10−7 cm/s and for peptide VAARTGEIYVPW 1.5 × 10−6 cm/s. The results indicate that the peptides identified by the in vitro phage display technology could serve as transporters for the administration of biopharmaceuticals into the brain. Our results also demonstrated the importance of proper BBB model for the discovery of shuttle peptides through phage display libraries.
Collapse
Affiliation(s)
- Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia; (P.M.); (J.H.); (D.O.); (J.S.)
| | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia; (P.M.); (J.H.); (D.O.); (J.S.)
| | - Dominika Olesova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia; (P.M.); (J.H.); (D.O.); (J.S.)
| | - Jakub Sinsky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia; (P.M.); (J.H.); (D.O.); (J.S.)
| | - Emil Pilipcinec
- Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia;
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia; (P.M.); (J.H.); (D.O.); (J.S.)
- Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia
- Correspondence: ; Tel.: +421-254788100
| |
Collapse
|
27
|
Covarrubias-Zambrano O, Yu J, Bossmann SH. Nano-Inspired Technologies for Peptide Delivery. Curr Protein Pept Sci 2019; 21:379-400. [PMID: 31793426 DOI: 10.2174/1389203720666191202112429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/26/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
Nano-inspired technologies offer unique opportunities to treat numerous diseases by using therapeutic peptides. Therapeutic peptides have attractive pharmacological profiles and can be manufactured at relatively low costs. The major advantages of using a nanodelivery approach comprises significantly lower required dosages compared to systemic delivery, and thus reduced toxicity and immunogenicity. The combination of therapeutic peptides with delivery peptides and nanoparticles or small molecule drugs offers systemic treatment approaches, instead of aiming for single biological targets or pathways. This review article discusses exemplary state-of-the-art nanosized delivery systems for therapeutic peptides and antibodies, as well as their biochemical and biophysical foundations and emphasizes still remaining challenges. The competition between using different nanoplatforms, such as liposome-, hydrogel-, polymer-, silica nanosphere-, or nanosponge-based delivery systems is still "on" and no clear frontrunner has emerged to date.
Collapse
Affiliation(s)
| | - Jing Yu
- Department of Chemistry, Kansas State University, 419 CBC Building, Manhattan, KS 66506-0401, United States.,Johns Hopkins University, Department of Radiology, Baltimore, MD, United States
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, 419 CBC Building, Manhattan, KS 66506-0401, United States
| |
Collapse
|
28
|
Kleinert M, Sachs S, Habegger KM, Hofmann SM, Müller TD. Glucagon Regulation of Energy Expenditure. Int J Mol Sci 2019; 20:ijms20215407. [PMID: 31671603 PMCID: PMC6862306 DOI: 10.3390/ijms20215407] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Glucagon's ability to increase energy expenditure has been known for more than 60 years, yet the mechanisms underlining glucagon's thermogenic effect still remain largely elusive. Over the last years, significant efforts were directed to unravel the physiological and cellular underpinnings of how glucagon regulates energy expenditure. In this review, we summarize the current knowledge on how glucagon regulates systems metabolism with a special emphasis on its acute and chronic thermogenic effects.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Stephan Sachs
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- Division of Metabolic Diseases, Technische Universität München, 85740 Munich, Germany.
| | - Kirk M Habegger
- Department of Medicine-Endocrinology and Comprehensive Diabetes Center, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35899, USA.
| | - Susanna M Hofmann
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der LMU, 80336 München, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, 72076 Tübingen, Germany.
| |
Collapse
|
29
|
Gorky J, Schwaber J. Conceptualization of a Parasympathetic Endocrine System. Front Neurosci 2019; 13:1008. [PMID: 31607849 PMCID: PMC6767939 DOI: 10.3389/fnins.2019.01008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
We here propose a parasympathetic endocrine system (PES) comprised of circulating peptides released from secretory cells in the gut, significantly modulated by vagal projections from the dorsal motor nucleus of the vagus (DMV). While most of these gut peptides mediate well-described satiety and digestive effects that increase parasympathetic control of digestion (Lee et al., 1994; Gutzwiller et al., 1999; Klok et al., 2007), they also have actions that are far-reaching and increase parasympathetic signaling broadly throughout the body. The actions beyond satiety that peptides like somatostatin, cholecystokinin, glucagon-like peptide 1, and vasoactive intestinal peptide have been well-examined, but not in a systematic way. Consideration has been given to the idea that these and other gut-derived peptides are part of an endocrine system has been partially considered (Rehfeld, 2012; Drucker, 2016), but that it is coordinated through parasympathetic control and may act to increase the actions of parasympathetic projections has not been formalized before. Here only gut-derived hormones are included although there are potentially other parasympathetically mediated factors released from other sites like lung and liver (Drucker, 2016). The case for the existence of the PES with the DMV as its integrative controller will be made through examination of an anatomical substrate and evidence of physiological control mechanisms as well as direct examples of PES antagonism of sympathetic signaling in mammals, including humans. The implications for this conceptual understanding of a PES reframe diseases like metabolic syndrome and may help underscore the role of the autonomic nervous system in the associated symptoms.
Collapse
Affiliation(s)
- Jonathan Gorky
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - James Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
30
|
Glucagon Control on Food Intake and Energy Balance. Int J Mol Sci 2019; 20:ijms20163905. [PMID: 31405212 PMCID: PMC6719123 DOI: 10.3390/ijms20163905] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Glucagon exerts pleiotropic actions on energy balance and has emerged as an attractive target for the treatment of diabetes and obesity in the last few years. Glucagon reduces body weight and adiposity by suppression of appetite and by modulation of lipid metabolism. Moreover, this hormone promotes weight loss by activation of energy expenditure and thermogenesis. In this review, we cover these metabolic actions elicited by glucagon beyond its canonical regulation of glucose metabolism. In addition, we discuss recent developments of therapeutic approaches in the treatment of obesity and diabetes by dual- and tri-agonist molecules based on combinations of glucagon with other peptides. New strategies using these unimolecular polyagonists targeting the glucagon receptor (GCGR), have become successful approaches to evaluate the multifaceted nature of glucagon signaling in energy balance and metabolic syndrome.
Collapse
|
31
|
Banks W, Engelke K, Hansen KM, Bullock KM, Calias P. Modest Blood-Brain Barrier Permeability of the Cyclodextrin Kleptose: Modification by Efflux and Luminal Surface Binding. J Pharmacol Exp Ther 2019; 371:121-129. [DOI: 10.1124/jpet.119.260497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
|
32
|
Gallo M, Defaus S, Andreu D. 1988-2018: Thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Arch Biochem Biophys 2018; 661:74-86. [PMID: 30447207 DOI: 10.1016/j.abb.2018.11.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022]
Abstract
In 1988, two unrelated papers reported the discovery of peptide vectors with innate cell translocation properties, setting the ground for a new area of research that over the years has grown into considerable therapeutic potential. The vectors, named cell-penetrating peptides (CPPs), constitute a now large and diversified family, sharing the extraordinary ability to diffuse unaltered across cell membranes while ferrying diverse associated cargos. Such properties have made CPPs ideal tools for delivery of nucleic acids, proteins and other therapeutic/diagnostic molecules to cells and tissues via covalent conjugation or complexation. This year 2018 marks the 30th anniversary of a peptide research landmark opening new perspectives in drug delivery. Given its vastness, exhaustive coverage of the main features and accomplishments in the CPP field is virtually impossible. Hence this manuscript, after saluting the above 30th jubilee, focuses by necessity on the most recent contributions, providing a comprehensive list of recognized CPPs and their latest-reported applications over the last two years. In addition, it thoroughly reviews three areas of peptide vector research of particular interest to us, namely (i) efficient transport of low-bioavailability drugs into the brain; (ii) CPP-delivered disruptors of G protein-coupled receptor (GPCRs) heteromers related to several disorders, and (iii) CPP-mediated delivery of useful but poorly internalized drugs into parasites.
Collapse
Affiliation(s)
- Maria Gallo
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Sira Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| |
Collapse
|
33
|
Abstract
Hormones produced by glands in the endocrine system and neurotransmitters produced by the nervous system control many bodily functions. The concentrations of these molecules in the body are an indication of its state, hence the use of the term biomarker. Excess concentrations of biomarkers, such as cortisol, serotonin, epinephrine, and dopamine, are released by the body in response to a variety of conditions, for example, emotional state (euphoria, stress) and disease. The development of simple, low-cost modalities for point-of-use (PoU) measurements of biomarkers levels in various bodily fluids (blood, urine, sweat, saliva) as opposed to conventional hospital or lab settings is receiving increasing attention. This paper starts with a review of the basic properties of 12 primary stress-induced biomarkers: origin in the body (i.e., if they are produced as hormones, neurotransmitters, or both), chemical composition, molecular weight (small/medium size molecules and polymers, ranging from ∼100 Da to ∼100 kDa), and hydro- or lipophilic nature. Next is presented a detailed review of the published literature regarding the concentration of these biomarkers found in several bodily fluids that can serve as the medium for determination of the condition of the subject: blood, urine, saliva, sweat, and, to a lesser degree, interstitial tissue fluid. The concentration of various biomarkers in most fluids covers a range of 5-6 orders of magnitude, from hundreds of nanograms per milliliter (∼1 μM) down to a few picograms per milliliter (sub-1 pM). Mechanisms and materials for point-of-use biomarker sensors are summarized, and key properties are reviewed. Next, selected methods for detecting these biomarkers are reviewed, including antibody- and aptamer-based colorimetric assays and electrochemical and optical detection. Illustrative examples from the literature are discussed for each key sensor approach. Finally, the review outlines key challenges of the field and provides a look ahead to future prospects.
Collapse
Affiliation(s)
- Andrew J. Steckl
- Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221-0030, United States
| | - Prajokta Ray
- Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221-0030, United States
| |
Collapse
|
34
|
Bocchio-Chiavetto L, Zanardini R, Tosato S, Ventriglia M, Ferrari C, Bonetto C, Lasalvia A, Giubilini F, Fioritti A, Pileggi F, Pratelli M, Pavanati M, Favaro A, De Girolamo G, Frisoni GB, Ruggeri M, Gennarelli M. Immune and metabolic alterations in first episode psychosis (FEP) patients. Brain Behav Immun 2018; 70:315-324. [PMID: 29548996 DOI: 10.1016/j.bbi.2018.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022] Open
Abstract
The molecular underpinnings associated to first episode psychosis (FEP) remains to be elucidated, but compelling evidence supported an association of FEP with blood alterations in biomarkers related to immune system, growth factors and metabolism regulators. Many of these studies have not been already confirmed in larger samples or have not considered the FEP diagnostic subgroups. In order to identify biochemical signatures of FEP, the serum levels of the growth factors BDNF and VEGF, the immune regulators IL-1RA, IL-6, IL-10 and IL-17, RANTES/CCL5, MIP-1b/CCL4, IL-8 and the metabolic regulators C-peptide, ghrelin, GIP, GLP-1, glucagon, insulin, leptin, PAI-1, resistin and visfatin were analysed in 260 subjects collected in the GET UP project. The results indicated an increase of MIP-1b/CCL4, VEGF, IL-6 and PAI-1, while IL-17, ghrelin, glucagon and GLP-1 were decreased in the whole sample of FEP patients (p < 0.01 for all markers except for PAI-1 p < 0.05). No differences were evidenced for these markers among the diagnostic groups that constitute the FEP sample, whereas IL-8 is increased only in patients with a diagnosis of affective psychosis. The principal component analysis (PCA) and variable importance analysis (VIA) indicated that MIP-1b/CCL4, ghrelin, glucagon, VEGF and GLP-1 were the variables mostly altered in FEP patients. On the contrary, none of the analysed markers nor a combination of them can discriminate between FEP diagnostic subgroups. These data evidence a profile of immune and metabolic alterations in FEP patients, providing new information on the molecular mechanism associated to the psychosis onset for the development of preventive strategies and innovative treatment targets.
Collapse
Affiliation(s)
- Luisella Bocchio-Chiavetto
- IRCCS Centro S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy; Faculty of Psychology, eCampus University, Novedrate (Como), Italy.
| | | | - Sarah Tosato
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation, AFaR Division, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Clarissa Ferrari
- IRCCS Centro S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Chiara Bonetto
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonio Lasalvia
- Unit of Psychiatry, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
| | | | | | | | | | - Michele Pavanati
- Department of Medical Sciences of Communication and Behavior, Section of Psychiatry, The Consultation-Liaison Psychiatric Service and Psychiatric Unit, University of Ferrara, Italy
| | - Angela Favaro
- Department of Neurosciences, University of Padua and Azienda Ospedaliera, Padua, Italy
| | | | - Giovanni Battista Frisoni
- IRCCS Centro S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy; Geneva University Hospital and University of Geneva, Switzerland
| | - Mirella Ruggeri
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Gennarelli
- IRCCS Centro S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy; Dept. of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Italy
| |
Collapse
|
35
|
Dash S, Xiao C, Stahel P, Koulajian K, Giacca A, Lewis GF. Evaluation of the specific effects of intranasal glucagon on glucose production and lipid concentration in healthy men during a pancreatic clamp. Diabetes Obes Metab 2018; 20:328-334. [PMID: 28730676 DOI: 10.1111/dom.13069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/01/2017] [Accepted: 07/13/2017] [Indexed: 01/19/2023]
Abstract
AIM To investigate the specific effects of intranasal glucagon (ING) on plasma glucose, endogenous glucose production (EGP) and lipid concentration. METHODS We conducted a single-blind, randomized, crossover study at our academic investigation unit. Under pancreatic clamp conditions with tracer infusion, 1 mg ING or intranasal placebo (INP) was administered to 10 healthy men. As pilot studies showed that ING transiently increased plasma glucagon, we infused intravenous glucagon for 30 minutes along with INP to ensure similar plasma glucagon concentrations between interventions. The main outcome measures were plasma glucose, EGP, free fatty acid (FFA) and triglyceride (TG) concentrations. RESULTS In the presence of similar plasma glucagon concentrations, the increase in plasma glucose under these experimental conditions was attenuated with ING (mean plasma glucose analysis of variance P < .001) with reduction in EGP (P = .027). No significant differences were seen in plasma FFA and TG concentrations. CONCLUSION ING raises plasma glucose but this route of administration attenuates the gluco-stimulatory effect of glucagon by reducing EGP. This observation invites speculation about a potential central nervous system effect of glucagon, which requires further investigation. If ING is developed as a treatment for hypoglycaemia, this attenuated effect on plasma glucose should be taken into account.
Collapse
Affiliation(s)
- Satya Dash
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Priska Stahel
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Khajag Koulajian
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adria Giacca
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Gary F Lewis
- Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Domenger D, Cudennec B, Kouach M, Touche V, Landry C, Lesage J, Gosselet F, Lestavel S, Goossens JF, Dhulster P, Ravallec R. Food-Derived Hemorphins Cross Intestinal and Blood-Brain Barriers In Vitro. Front Endocrinol (Lausanne) 2018; 9:159. [PMID: 29692758 PMCID: PMC5903475 DOI: 10.3389/fendo.2018.00159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
A qualitative study is presented, where the main question was whether food-derived hemorphins, i.e., originating from digested alimentary hemoglobin, could pass the intestinal barrier and/or the blood-brain barrier (BBB). Once absorbed, hemorphins are opioid receptor (OR) ligands that may interact with peripheral and central OR and have effects on food intake and energy balance regulation. LLVV-YPWT (LLVV-H4), LVV-H4, VV-H4, VV-YPWTQRF (VV-H7), and VV-H7 hemorphins that were previously identified in the 120 min digest resulting from the simulated gastrointestinal digestion of hemoglobin have been synthesized to be tested in in vitro models of passage of IB and BBB. LC-MS/MS analyses yielded that all hemorphins, except the LLVV-H4 sequence, were able to cross intact the human intestinal epithelium model with Caco-2 cells within 5-60 min when applied at 5 mM. Moreover, all hemorphins crossed intact the human BBB model with brain-like endothelial cells (BLEC) within 30 min when applied at 100 µM. Fragments of these hemorphins were also detected, especially the YPWT common tetrapeptide that retains OR-binding capacity. A cAMP assay performed in Caco-2 cells indicates that tested hemorphins behave as OR agonists in these cells by reducing cAMP production. We further provide preliminary results regarding the effects of hemorphins on tight junction proteins, specifically here the claudin-4 that is involved in paracellular permeability. All hemorphins at 100 µM, except the LLVV-H4 peptide, significantly decreased claudin-4 mRNA levels in the Caco-2 intestinal model. This in vitro study is a first step toward demonstrating food-derived hemorphins bioavailability which is in line with the growing body of evidence supporting physiological functions for food-derived peptides.
Collapse
Affiliation(s)
- Dorothée Domenger
- Université de Lille INRA, ISA, Université d’Artois, Université Littoral Côte d’Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| | - Benoit Cudennec
- Université de Lille INRA, ISA, Université d’Artois, Université Littoral Côte d’Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
- *Correspondence: Benoit Cudennec, ; Rozenn Ravallec,
| | - Mostafa Kouach
- Plateau de Spectrométrie de Masse “PSM-GRITA”, EA 7365, Faculté de Pharmacie, Université de Lille, Lille, France
| | - Véronique Touche
- Université de Lille INSERM, CHU Lille, Institut Pasteur de Lille, U1011 – EGID, Lille, France
| | - Christophe Landry
- Université d’Artois EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Lens, France
| | - Jean Lesage
- Université Lille Nord de France, Unité Environnement Périnatal et Croissance EA 4489, Équipe dénutritions maternelles périnatales, Université Lille 1, Villeneuve-d’Ascq, France
| | - Fabien Gosselet
- Université d’Artois EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Lens, France
| | - Sophie Lestavel
- Université de Lille INSERM, CHU Lille, Institut Pasteur de Lille, U1011 – EGID, Lille, France
| | - Jean-François Goossens
- Plateau de Spectrométrie de Masse “PSM-GRITA”, EA 7365, Faculté de Pharmacie, Université de Lille, Lille, France
| | - Pascal Dhulster
- Université de Lille INRA, ISA, Université d’Artois, Université Littoral Côte d’Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| | - Rozenn Ravallec
- Université de Lille INRA, ISA, Université d’Artois, Université Littoral Côte d’Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
- *Correspondence: Benoit Cudennec, ; Rozenn Ravallec,
| |
Collapse
|
37
|
Zhou M, Li X, Li Y, Yao Q, Ming Y, Li Z, Lu L, Shi S. Ascorbyl palmitate-incorporated paclitaxel-loaded composite nanoparticles for synergistic anti-tumoral therapy. Drug Deliv 2017; 24:1230-1242. [PMID: 28856937 PMCID: PMC8241186 DOI: 10.1080/10717544.2017.1370619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
A co-loaded drug delivery system based on ascorbyl palmitate that can transport various functional drugs to their targets within a tumor represents an attractive strategy for increasing the efficiency of anticancer treatment. In this study, we developed a dual drug delivery system to encapsulate ascorbyl palmitate (AP) and paclitaxel (PTX) for synergistic cancer therapy. AP, which is a vitamin C derivative, and PTX were incorporated into solid lipid nanoparticles (AP/PTX-SLNs), which were used to treat murine B16F10 melanoma that had metastasized to the lungs of mice. These nanoparticles were spherical with an average size of 223 nm as measured by transmission electron microscope and dynamic light scattering. In vitro cytotoxicity assays indicated that the AP/PTX-SLNs with an AP/PTX mass ratio of 2/1 provided the optimal synergistic anticancer efficacy. In vivo, AP/PTX-SLNs were revealed to be much more effective in suppressing tumor growth in B16F10-bearing mice and in eliminating cancer cells in the lungs than single drug (AP or PTX)-loaded SLNs via a synergistic effect through reducing the Bcl-2/Bax ratio. Furthermore, no marked side effects were observed during the treatment with the AP/PTX-SLNs, indicating that the co-delivery system with ascorbyl palmitate holds promising clinical potential in cancer therapy.
Collapse
Affiliation(s)
- Min Zhou
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| | - Xin Li
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| | - Yuanyuan Li
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| | - Qiu'e Yao
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| | - Yue Ming
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| | - Ziwei Li
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| | - Laichun Lu
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China.,b Teaching Experimental Center , College of Pharmacy, Third Military Medical University , Chongqing , China
| | - Sanjun Shi
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
38
|
Petrakova L, Boy K, Kügler M, Benson S, Engler H, Möller L, Schedlowski M. Plasma cortisol response cannot be classically conditioned in a taste-endocrine paradigm in humans. Psychopharmacology (Berl) 2017; 234:3249-3257. [PMID: 28804807 DOI: 10.1007/s00213-017-4718-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022]
Abstract
RATIONALE Peripheral immune responses can be modified by associative learning procedures. Less is known, however, whether and to what extent neuroendocrine parameters can be classically conditioned. OBJECTIVES In this randomized double-blind study, we modified an established paradigm to behaviorally condition endocrine responses in humans. METHODS Thirty-one healthy male participants received a distinctively flavored green drink as the conditioned stimulus (CS) and intravenous injections of corticotropin-releasing hormone (CRH) (CRH group, N = 17) or NaCl (placebo group, N = 14) as the unconditioned stimulus (US) during two subsequent acquisition trials. Plasma levels of cortisol and noradrenaline, heart rate, and psychological parameters were analyzed before and 15, 30, 60, 120, and 180 min after injection. The two acquisition trials were followed by two evocation trials, during which participants underwent the same procedure but now receiving NaCl injections. RESULTS CRH administration induced pronounced increases in cortisol and noradrenaline plasma concentrations, heart rate, and anxiety levels. However, re-exposure to the CS during evocations trials did not provoke conditioned increases in neuroendocrine parameters. Median split of the CRH group based on the cortisol baseline level into "cort-high" and "cort-low" subgroups showed that the "cort-high" subgroup displayed a significantly increased cortisol production on evocation days compared to the "cort-low" subgroup and the placebo group. CONCLUSION This taste-endocrine paradigm employing CRH injection as the US in healthy male volunteers failed to induce a behaviorally conditioned cortisol release as a learned endocrine response. Future studies should clarify a possible role of higher baseline cortisol levels in perhaps facilitating a conditioned cortisol response.
Collapse
Affiliation(s)
- Liubov Petrakova
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Karoline Boy
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Marisa Kügler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Lars Möller
- Clinic for Endocrinology, University Hospital Essen, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
39
|
Wei C, Pohorille A. Sequence-Dependent Interfacial Adsorption and Permeation of Dipeptides across Phospholipid Membranes. J Phys Chem B 2017; 121:9859-9867. [PMID: 28982244 DOI: 10.1021/acs.jpcb.7b08238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We investigate permeation of three blocked dipeptides with different side chain polarity across a phospholipid membrane and their behavior at the water-membrane interface by way of molecular dynamics simulations. Hydrophilic serine-serine dipeptide is found to desorb from the interface to aqueous phase, whereas hydrophobic phenylalanine-leucine and amphiphilic serine-leucine tend to accumulate at the interface with a free energy minimum of -3 kcal/mol. All three dipeptides exhibit free energy barriers to permeation across the membrane located at the center of the bilayer. The height of the barrier is strongly sequence dependent and increases with the dipeptide polarity. It is equal to 3.5, 6.4, and 10.0 kcal/mol for phenylalanine-leucine, serine-leucine, and serine-serine, respectively. The corresponding permeability coefficients are equal to 4.6 × 10-3, 4.5 × 10-5, and 8.7 × 10-8 cm/s. The apparent insensitivity of membrane permeability to hydrophobicity of dipeptides, found in some experiments, is attributed to neglecting corrections for unstirred water layers near membrane surface, which are significant for hydrophobic species. Different hydrophobicity of the dipeptides also influences their conformations and orientations, both at the interface and inside the membrane. In particular, penetration of hydrophilic serine-serine dipeptide causes the formation of water-filled defects in the bilayer. These results are relevant to the delivery of peptide-based therapeutic agents.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center, Mail Stop 239-4, Moffett Field, California 94035, United States.,Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94143, United States
| | - Andrew Pohorille
- NASA Ames Research Center, Mail Stop 239-4, Moffett Field, California 94035, United States.,Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94143, United States
| |
Collapse
|
40
|
Yang R, Wei T, Goldberg H, Wang W, Cullion K, Kohane DS. Getting Drugs Across Biological Barriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201606596. [PMID: 28752600 PMCID: PMC5683089 DOI: 10.1002/adma.201606596] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/30/2017] [Indexed: 05/13/2023]
Abstract
The delivery of drugs to a target site frequently involves crossing biological barriers. The degree and nature of the impediment to flux, as well as the potential approaches to overcoming it, depend on the tissue, the drug, and numerous other factors. Here an overview of approaches that have been taken to crossing biological barriers is presented, with special attention to transdermal drug delivery. Technology and knowledge pertaining to addressing these issues in a variety of organs could have a significant clinical impact.
Collapse
Affiliation(s)
- Rong Yang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Tuo Wei
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hannah Goldberg
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Kathleen Cullion
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
41
|
Dakic TB, Jevdjovic TV, Peric MI, Bjelobaba IM, Markelic MB, Milutinovic BS, Lakic IV, Jasnic NI, Djordjevic JD, Vujovic PZ. Short-term fasting promotes insulin expression in rat hypothalamus. Eur J Neurosci 2017; 46:1730-1737. [PMID: 28544147 DOI: 10.1111/ejn.13607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/26/2017] [Accepted: 05/14/2017] [Indexed: 11/30/2022]
Abstract
In the hypothalamus, insulin takes on many roles involved in energy homoeostasis. Therefore, the aim of this study was to examine hypothalamic insulin expression during the initial phase of the metabolic response to fasting. Hypothalamic insulin content was assessed by both radioimmunoassay and Western blot. The relative expression of insulin mRNA was examined by qPCR. Immunofluorescence and immunohistochemistry were used to determine the distribution of insulin immunopositivity in the hypothalamus. After 6-h fasting, both glucose and insulin levels were decreased in serum but not in the cerebrospinal fluid. Our study showed for the first time that, while the concentration of circulating glucose and insulin decreased, both insulin mRNA expression and insulin content in the hypothalamic parenchyma were increased after short-term fasting. Increased insulin immunopositivity was detected specifically in the neurons of the hypothalamic periventricular nucleus and in the ependymal cells of fasting animals. These novel findings point to the complexity of mechanisms regulating insulin expression in the CNS in general and in the hypothalamus in particular.
Collapse
Affiliation(s)
- Tamara B Dakic
- Department for Comparative Physiology and Ecophysiology, Faculty of Biology, Institute for Physiology and Biochemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Tanja V Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Faculty of Biology, Institute for Physiology and Biochemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Mina I Peric
- Centre for Laser Microscopy, Faculty of Biology, Institute for Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Ivana M Bjelobaba
- Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Belgrade, Serbia
| | - Milica B Markelic
- Chair for Cell and Tissue Biology, Faculty of Biology, Institute for Zoology, University of Belgrade, Belgrade, Serbia
| | - Bojana S Milutinovic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Iva V Lakic
- Department for Comparative Physiology and Ecophysiology, Faculty of Biology, Institute for Physiology and Biochemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Nebojsa I Jasnic
- Department for Comparative Physiology and Ecophysiology, Faculty of Biology, Institute for Physiology and Biochemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Jelena D Djordjevic
- Department for Comparative Physiology and Ecophysiology, Faculty of Biology, Institute for Physiology and Biochemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Predrag Z Vujovic
- Department for Comparative Physiology and Ecophysiology, Faculty of Biology, Institute for Physiology and Biochemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| |
Collapse
|
42
|
Prolyl oligopeptidase and its role in the organism: attention to the most promising and clinically relevant inhibitors. Future Med Chem 2017. [DOI: 10.4155/fmc-2017-0030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prolyl oligopeptidase (POP), also called prolyl endopeptidase, is a cytosolic enzyme investigated by several research groups. It has been proposed to play an important role in physiological processes such as modulation of the levels of several neuronal peptides and hormones containing a proline residue. Due to its proteolytic activity and physiological role in cell signaling pathways, inhibition of POP offers an emerging approach for the treatment of Alzheimer's and Parkinson's diseases as well as other diseases related to cognitive impairment. Furthermore, it may also represent an interesting target for treatment of neuropsychiatric disorders, and as an antiangiogenesis or antineoplastic agent. In this review paper, we summarized naturally occurring POP inhibitors together with peptide-like inhibitors and their biological effects. Some of them have shown promising results and interesting pharmacological profiles. However, to date, there is no POP inhibitor available on the market although several clinical trials have been undertaken.
Collapse
|
43
|
Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. The New Biology and Pharmacology of Glucagon. Physiol Rev 2017; 97:721-766. [PMID: 28275047 DOI: 10.1152/physrev.00025.2016] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last two decades we have witnessed sizable progress in defining the role of gastrointestinal signals in the control of glucose and energy homeostasis. Specifically, the molecular basis of the huge metabolic benefits in bariatric surgery is emerging while novel incretin-based medicines based on endogenous hormones such as glucagon-like peptide 1 and pancreas-derived amylin are improving diabetes management. These and related developments have fostered the discovery of novel insights into endocrine control of systemic metabolism, and in particular a deeper understanding of the importance of communication across vital organs, and specifically the gut-brain-pancreas-liver network. Paradoxically, the pancreatic peptide glucagon has reemerged in this period among a plethora of newly identified metabolic macromolecules, and new data complement and challenge its historical position as a gut hormone involved in metabolic control. The synthesis of glucagon analogs that are biophysically stable and soluble in aqueous solutions has promoted biological study that has enriched our understanding of glucagon biology and ironically recruited glucagon agonism as a central element to lower body weight in the treatment of metabolic disease. This review summarizes the extensive historical record and the more recent provocative direction that integrates the prominent role of glucagon in glucose elevation with its under-acknowledged effects on lipids, body weight, and vascular health that have implications for the pathophysiology of metabolic diseases, and the emergence of precision medicines to treat metabolic diseases.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - B Finan
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - C Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - R D DiMarchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| |
Collapse
|
44
|
Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res 2017; 141:140-149. [PMID: 28232248 DOI: 10.1016/j.antiviral.2017.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/20/2017] [Accepted: 02/19/2017] [Indexed: 12/14/2022]
Abstract
Japanese encephalitis virus (JEV) and Zika virus (ZIKV) are mosquito-borne viruses of the Flavivirus genus that cause viral encephalitis and congenital microcephaly, respectively, in humans, and thus present a risk to global public health. The envelope glycoprotein (E protein) of flaviviruses is a class II viral fusion protein that mediates host cell entry through a series of conformational changes, including association between the stem region and domain II leading to virion-target cell membrane fusion. In this study, peptides derived from the JEV E protein stem were investigated for their ability to block JEV and ZIKV infection. Peptides from stem helix 2 inhibit JEV infection with the 50% inhibitory concentration (IC50) in the nanomolar range. One of these peptides (P5) protected mice against JEV-induced lethality by decreasing viral load, while abrogating histopathological changes associated with JEV infection. We also found that P5 blocked ZIKV infection with IC50 at the micromolar level. Moreover, P5 was proved to reduce the histopathological damages in brain and testes resulting from ZIKV infection in type I and II interferon receptor-deficient (AG6) mice. These findings provide a basis for the development of peptide-based drugs against JEV and ZIKV.
Collapse
|
45
|
Borges NM, Kenny PW, Montanari CA, Prokopczyk IM, Ribeiro JFR, Rocha JR, Sartori GR. The influence of hydrogen bonding on partition coefficients. J Comput Aided Mol Des 2017; 31:163-181. [PMID: 28054187 DOI: 10.1007/s10822-016-0002-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/16/2016] [Indexed: 11/28/2022]
Abstract
This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect 'frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.
Collapse
Affiliation(s)
- Nádia Melo Borges
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Peter W Kenny
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil.
| | - Carlos A Montanari
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Igor M Prokopczyk
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Jean F R Ribeiro
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Josmar R Rocha
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Geraldo Rodrigues Sartori
- Grupo de Estudos em Química Medicinal - NEQUIMED, Instituto de Química de São Carlos - Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13566-590, Brazil
| |
Collapse
|
46
|
Rajasekar N, Nath C, Hanif K, Shukla R. Intranasal Insulin Administration Ameliorates Streptozotocin (ICV)-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Memory Impairment in Rats. Mol Neurobiol 2016; 54:6507-6522. [PMID: 27730514 DOI: 10.1007/s12035-016-0169-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is associated with reduced insulin level and impairment of insulin receptor (IR) signaling in the brain, which correlates to amyloid pathology, neuroinflammation, and synaptic neurotoxicity. Clinical studies show that intranasal insulin improves memory in AD patients without peripheral hypoglycemia. However, neuroprotective molecular mechanism of the beneficial effect of intranasal insulin in AD pathology is unexplored. Therefore, we investigated the role of intranasal insulin on intracerebroventricular (ICV) streptozotocin (STZ)-induced memory impairment in rats as evaluated in the Morris water maze test. STZ (ICV) treated rats had shown memory impairment along with a significant decrease in IR signaling molecules (IR, pIRS-1, pAkt, and pGSK-3α/β expression) and IDE expression in both hippocampus and cerebral cortex. Intranasal insulin delivery prevented these changes. Moreover, intranasal insulin was found to inhibit significantly glial cell activation (GFAP and Iba-1 expression), neuroinflammation (COX-2 expression, NFκB translocation, TNF-α, and IL-10 level) and amyloidogenic protein expression (BACE-1 and Aβ1-42 expression) in STZ (ICV)-injected rats. STZ (ICV)-induced caspase activation and postsynaptic neurotoxicity were also prevented by treatment with intranasal insulin. Our findings reveal that insulin has the neuroprotective effect and clearly signifies the potential use of intranasal insulin delivery for the treatment of AD. Graphical Abstract Neuroprotective effects of intranasal insulin administration on streptozotocin (ICV)-induced memory impairment in rats.
Collapse
Affiliation(s)
- N Rajasekar
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Chandishwar Nath
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Kashif Hanif
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Rakesh Shukla
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India.
| |
Collapse
|
47
|
Extended solvent-contact model approach to blind SAMPL5 prediction challenge for the distribution coefficients of drug-like molecules. J Comput Aided Mol Des 2016; 30:1019-1033. [PMID: 27448686 DOI: 10.1007/s10822-016-9928-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/20/2016] [Indexed: 01/28/2023]
Abstract
The performance of the extended solvent-contact model has been addressed in the SAMPL5 blind prediction challenge for distribution coefficient (LogD) of drug-like molecules with respect to the cyclohexane/water partitioning system. All the atomic parameters defined for 41 atom types in the solvation free energy function were optimized by operating a standard genetic algorithm with respect to water and cyclohexane solvents. In the parameterizations for cyclohexane, the experimental solvation free energy (ΔG sol ) data of 15 molecules for 1-octanol were combined with those of 77 molecules for cyclohexane to construct a training set because ΔG sol values of the former were unavailable for cyclohexane in publicly accessible databases. Using this hybrid training set, we established the LogD prediction model with the correlation coefficient (R), average error (AE), and root mean square error (RMSE) of 0.55, 1.53, and 3.03, respectively, for the comparison of experimental and computational results for 53 SAMPL5 molecules. The modest accuracy in LogD prediction could be attributed to the incomplete optimization of atomic solvation parameters for cyclohexane. With respect to 31 SAMPL5 molecules containing the atom types for which experimental reference data for ΔG sol were available for both water and cyclohexane, the accuracy in LogD prediction increased remarkably with the R, AE, and RMSE values of 0.82, 0.89, and 1.60, respectively. This significant enhancement in performance stemmed from the better optimization of atomic solvation parameters by limiting the element of training set to the molecules with experimental ΔG sol data for cyclohexane. Due to the simplicity in model building and to low computational cost for parameterizations, the extended solvent-contact model is anticipated to serve as a valuable computational tool for LogD prediction upon the enrichment of experimental ΔG sol data for organic solvents.
Collapse
|
48
|
Biological evaluation and molecular docking studies of AA3052, a compound containing a μ-selective opioid peptide agonist DALDA and d-Phe-Phe-d-Phe-Leu-Leu-NH2, a substance P analogue. Eur J Pharm Sci 2016; 93:11-20. [PMID: 27423260 DOI: 10.1016/j.ejps.2016.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 11/20/2022]
Abstract
The design of novel drugs for pain relief with improved analgesic properties and diminished side effect induction profile still remains a challenging pursuit. Tolerance is one of the most burdensome phenomena that may hamper ongoing opioid therapy, especially in chronic pain patients. Therefore, a promising strategy of hybridizing two pharmacophores that target distinct binding sites involved in pain modulation and transmission was established. Previous studies have led to the development of opioid agonist/NK1 agonist hybrids that produce sufficient analgesia and also suppress opioid-induced tolerance development. In our present investigation we assessed the antinociceptive potency of a new AA3052 chimera comprised of a potent MOR selective dermorphin derivative (DALDA) and an NK1 agonist, a stabilized substance P analogue. We have shown that AA3052 significantly prolonged responses to both mechanical and noxious thermal stimuli in rats after intracerebroventricular administration. Additionally, AA3052 did not trigger the development of tolerance in a 6-day daily injection paradigm nor did it produce any sedative effects, as assessed in the rotarod performance test. However, the antinociceptive effect of AA3052 was independent of opioid receptor stimulation by the DALDA pharmacophore as shown in the agonist-stimulated G-protein assay. Altogether the current results confirm the antinociceptive effectiveness of a novel opioid/SP hybrid agonist, AA3052, and more importantly its ability to inhibit the development of tolerance.
Collapse
|
49
|
Abstract
In recent years, novel discoveries have reshaped our understanding of the biology of brain glucagon in the regulation of peripheral homeostasis. Here we compare and contrast brain glucagon action in feeding vs glucose regulation and depict the physiological relevance of brain glucagon by reviewing their actions in two key regions of the central nervous system: the mediobasal hypothalamus and the dorsal vagal complex. These novel findings pave the way to future therapeutic strategies aimed at enhancing brain glucagon action for the treatment of diabetes and obesity. This review summarises a presentation given at the 'Novel data on glucagon' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Young Lee and colleagues, DOI: 10.1007/s00125-016-3965-9 ), and by Russell Miller and Morris Birnbaum, DOI: 10.1007/s00125-016-3955-y ) and an overview by the Session Chair, Isabel Valverde (DOI: 10.1007/s00125-016-3946-z ).
Collapse
Affiliation(s)
- Mona A Abraham
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, ON, M5G 1L7, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
- MaRS Centre, 101 College Street, Toronto Medical Discovery Tower, 10th floor-Room 705, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
50
|
Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 2016; 15:275-92. [PMID: 26794270 DOI: 10.1038/nrd.2015.21] [Citation(s) in RCA: 732] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders is achieving sufficient blood-brain barrier (BBB) penetration. Research in the past few decades has revealed that the BBB is not only a substantial barrier for drug delivery to the CNS but also a complex, dynamic interface that adapts to the needs of the CNS, responds to physiological changes, and is affected by and can even promote disease. This complexity confounds simple strategies for drug delivery to the CNS, but provides a wealth of opportunities and approaches for drug development. Here, I review some of the most important areas that have recently redefined the BBB and discuss how they can be applied to the development of CNS therapeutics.
Collapse
Affiliation(s)
- William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center and Department of Medicine, University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, 1660 South Columbian Way, Seattle, Washington 98108, USA
| |
Collapse
|