1
|
Ratzan EM, Moon AM, Deans MR. Fgf8 genetic labeling reveals the early specification of vestibular hair cell type in mouse utricle. Development 2020; 147:dev.192849. [PMID: 33046506 DOI: 10.1242/dev.192849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/07/2020] [Indexed: 01/16/2023]
Abstract
FGF8 signaling plays diverse roles in inner ear development, acting at multiple stages from otic placode induction to cellular differentiation in the organ of Corti. As a secreted morphogen with diverse functions, Fgf8 expression is likely to be spatially restricted and temporally dynamic throughout inner ear development. We evaluated these characteristics using genetic labeling mediated by Fgf8 mcm gene-targeted mice and determined that Fgf8 expression is a specific and early marker of Type-I vestibular hair cell identity. Fgf8 mcm expression initiates at E11.5 in the future striolar region of the utricle, labeling hair cells following EdU birthdating, and demonstrates that sub-type identity is determined shortly after terminal mitosis. This early fate specification is not apparent using markers or morphological criteria that are not present before birth in the mouse. Although analyses of Fgf8 conditional knockout mice did not reveal developmental phenotypes, the restricted pattern of Fgf8 expression suggests that functionally redundant FGF ligands may contribute to vestibular hair cell differentiation and supports a developmental model in which Type-I and Type-II hair cells develop in parallel rather than from an intermediate precursor.
Collapse
Affiliation(s)
- Evan M Ratzan
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.,Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Anne M Moon
- Departments of Molecular and Functional Genomics and Pediatrics, Weis Center for Research, Geisinger Clinic and Geisinger Commonwealth School of Medicine, Danville, PA 17822, USA.,Departments of Pediatrics and Human Genetics, University of Utah, Salt Lake City, UT 84112 USA
| | - Michael R Deans
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA .,Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
2
|
Li W, You D, Chen Y, Chai R, Li H. Regeneration of hair cells in the mammalian vestibular system. Front Med 2016; 10:143-51. [DOI: 10.1007/s11684-016-0451-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022]
|
3
|
Nie X, Zhang K, Wang L, Ou G, Zhu H, Gao WQ. Transcription factor STOX1 regulates proliferation of inner ear epithelial cells via the AKT pathway. Cell Prolif 2015; 48:209-20. [PMID: 25677106 DOI: 10.1111/cpr.12174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/02/2014] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Storkhead box 1 (STOX1) belongs to the forkhead family of transcription factors, and is reported to be involved in apoptosis of Caenorhabditis elegans. However, up to now the precise role of STOX1 in mammalian epithelial development has not been established. Here, we report that it plays an important role in regulation of proliferation of inner ear epithelial cells. MATERIALS AND METHODS Immunohistochemistry and reverse transcription-PCR assays were used to determine expression pattern of STOX1 in the mouse inner ear. Furthermore, its overexpression and knockdown effects on mouse inner ear epithelial cells were studied using RT-PCR, immunofluorescence, MTT assay, BrdU labelling and western blotting. RESULTS Storkhead box 1 was selectively expressed in epithelial cells, but not in stromal cells of the inner ear. Its over-expression enhanced cell proliferation and sphere formation, however, STOX1 knockdown inhibited cell proliferation and sphere formation in purified utricular epithelial cells in culture. Consistently, several cell cycle regulatory genes such as for PCNA, cyclin A and cyclin E, were up-regulated by STOX1 over-expression. Furthermore, biochemical analyses indicated that proliferation-promoting effects induced by STOX1 were mediated via phosphorylation of AKT in these cells. CONCLUSIONS Taken together, we demonstrate that STOX1 is a novel stimulatory factor for inner ear epithelial cell proliferation and might be an important target to be considered in regeneration or repair of inner ear epithelium.
Collapse
Affiliation(s)
- Xiaowei Nie
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 210027, China
| | | | | | | | | | | |
Collapse
|
4
|
Thiede BR, Corwin JT. Permeation of fluorophore-conjugated phalloidin into live hair cells of the inner ear is modulated by P2Y receptors. J Assoc Res Otolaryngol 2013; 15:13-30. [PMID: 24263968 DOI: 10.1007/s10162-013-0425-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022] Open
Abstract
Phalloidin, a toxin isolated from the death cap mushroom, Amanita phalloides, binds to filamentous actin with high affinity, and this has made fluorophore-conjugated phalloidin a useful tool in cellular imaging. Hepatocytes take up phalloidin via the liver-specific organic anion transporting polypeptide 1b2, but phalloidin does not permeate most living cells. Rapid entry of styryl dyes into live hair cells has been used to evaluate function, but the usefulness of those fluorescence dyes is limited by broad and fixed absorption spectra. Since phalloidin can be conjugated to fluorophores with various spectra, we investigated whether it would permeate living hair cells. When we incubated mouse utricles in 66 nM phalloidin-CF488A and followed that by washes in phalloidin-free medium, we observed that it entered a subset of hair cells and labeled entire hair bundles fluorescently after 20 min. Incubations of 90 min labeled nearly all the hair bundles. When phalloidin-treated utricles were cultured for 24 h after washout, the label disappeared from the hair cells and progressively but heterogeneously labeled filamentous actin in the supporting cells. We investigated how phalloidin may enter hair cells and found that P2 receptor antagonists, pyridoxalphosphate-6-azophenyl-2', 4'-disulfonic acid and suramin, blocked phalloidin entry, while the P2Y receptor ligands, uridine-5'-diphosphate and uridine-5'-triphosphaste, stimulated uptake. Consistent with that, the P2Y6 receptor antagonist, MRS 2578, decreased phalloidin uptake. The results show that phalloidin permeates live hair cells through a pathway that requires metabotropic P2Y receptor signaling and suggest that phalloidin can be transferred from hair cells to supporting cells in culture.
Collapse
Affiliation(s)
- Benjamin R Thiede
- Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Rd, PO Box 801392, Charlottesville, VA, 22908, USA
| | | |
Collapse
|
5
|
Inner ear supporting cells: rethinking the silent majority. Semin Cell Dev Biol 2013; 24:448-59. [PMID: 23545368 DOI: 10.1016/j.semcdb.2013.03.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/21/2013] [Indexed: 11/21/2022]
Abstract
Sensory epithelia of the inner ear contain two major cell types: hair cells and supporting cells. It has been clear for a long time that hair cells play critical roles in mechanoreception and synaptic transmission. In contrast, until recently the more abundant supporting cells were viewed as serving primarily structural and homeostatic functions. In this review, we discuss the growing information about the roles that supporting cells play in the development, function and maintenance of the inner ear, their activities in pathological states, their potential for hair cell regeneration, and the mechanisms underlying these processes.
Collapse
|
6
|
"In-bone" utricle cultures--a simplified, atraumatic technique for in situ cultures of the adult mouse (Mus musculus) utricle. Otol Neurotol 2013; 34:353-9. [PMID: 23444481 DOI: 10.1097/mao.0b013e31827ca330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS The "in-bone" method of culturing utricles described here is a reliable and atraumatic technique for culturing mature mouse hair cells and studying hair cell death and protection. BACKGROUND The current in vitro technique for studying hair cells of the mature mouse utricle involves removal from the temporal bone and free floating culture in media. This technique can be problematic because of variability in the preservation of the sensory epithelium and a steep learning curve that results in injury of the sensory epithelium in less experienced hands. We present a new atraumatic technique of culturing the utricle in situ within the temporal bone. METHODS Leaving the temporal bone largely intact, a window is opened in the bony vestibule overlying the mouse utricle. The entire temporal bone is then placed into culture media. Utricles were cultured in situ for several days with minimal damage to the epithelium. The utricles are then fixed in situ, removed from the temporal bone, and processed. A standardized aminoglycoside-induced hair cell damage protocol was developed. RESULTS Mature mouse utricles maintained hair cell numbers for 3 days in culture. Exposure to neomycin resulted in significant dose-dependent hair cell toxicity (p < 0.0001, 1-way analysis of variance). Exposure to the protective drug tacrine resulted in significant protection against neomycin (p < 0.05, 3-way analysis of variance). CONCLUSION The "in-bone" technique is a reliable and atraumatic method for culturing mature mouse utricles and studying hair cell death and protection. It is easily mastered and can make in vitro study of hair cells accessible to more research groups.
Collapse
|
7
|
Abstract
Auditory hair cells are surrounded on their basolateral aspects by supporting cells, and these two cell types together constitute the sensory epithelium of the organ of Corti, which is the hearing apparatus of the ear. We show here that Lgr5, a marker for adult stem cells, was expressed in a subset of supporting cells in the newborn and adult murine cochlea. Lgr5-expressing supporting cells, sorted by flow cytometry and cultured in a single-cell suspension, compared with unsorted cells, displayed an enhanced capacity for self-renewing neurosphere formation in response to Wnt and were converted to hair cells at a higher (>10-fold) rate. The greater differentiation of hair cells in the neurosphere assay showed that Lgr5-positive cells had the capacity to act as cochlear progenitor cells, and lineage tracing confirmed that Lgr5-expressing cells accounted for the cells that formed neurospheres and differentiated to hair cells. The responsiveness to Wnt of cells with a capacity for division and sensory cell formation suggests a potential route to new hair cell generation in the adult cochlea.
Collapse
|
8
|
Abstract
In all mammals, the sensory epithelium for audition is located along the spiraling organ of Corti that resides within the conch shaped cochlea of the inner ear (fig 1). Hair cells in the developing cochlea, which are the mechanosensory cells of the auditory system, are aligned in one row of inner hair cells and three (in the base and mid-turns) to four (in the apical turn) rows of outer hair cells that span the length of the organ of Corti. Hair cells transduce sound-induced mechanical vibrations of the basilar membrane into neural impulses that the brain can interpret. Most cases of sensorineural hearing loss are caused by death or dysfunction of cochlear hair cells. An increasingly essential tool in auditory research is the isolation and in vitro culture of the organ explant. Once isolated, the explants may be utilized in several ways to provide information regarding normative, anomalous, or therapeutic physiology. Gene expression, stereocilia motility, cell and molecular biology, as well as biological approaches for hair cell regeneration are examples of experimental applications of organ of Corti explants. This protocol describes a method for the isolation and culture of the organ of Corti from neonatal mice. The accompanying video includes stepwise directions for the isolation of the temporal bone from mouse pups, and subsequent isolation of the cochlea, spiral ligament, and organ of Corti. Once isolated, the sensory epithelium can be plated and cultured in vitro in its entirety, or as a further dissected micro-isolate that lacks the spiral limbus and spiral ganglion neurons. Using this method, primary explants can be maintained for 7-10 days. As an example of the utility of this procedure, organ of Corti explants will be electroporated with an exogenous DsRed reporter gene. This method provides an improvement over other published methods because it provides reproducible, unambiguous, and stepwise directions for the isolation, microdissection, and primary culture of the organ of Corti.
Collapse
Affiliation(s)
- Mark Parker
- Department of Otology and Laryngology, Harvard Medical School, USA.
| | | | | |
Collapse
|
9
|
|
10
|
Involvement of platelet-derived growth factor receptor-beta in maintenance of mesenchyme and sensory epithelium of the neonatal mouse inner ear. Hear Res 2008; 245:73-81. [PMID: 18817860 DOI: 10.1016/j.heares.2008.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 08/27/2008] [Accepted: 08/29/2008] [Indexed: 11/23/2022]
Abstract
Platelet-derived growth factor receptor (PDGFR) signaling has been demonstrated to play a pivotal role in early embryonic development. Although the expression of PDGF in the inner ear has been studied by RT-PCR, how PDGFR is involved there remains largely unclear. In the current study, we used the antagonistic anti-PDGFR-beta antibody, APB5, to investigate the role of PDGFR-beta in the neonatal mouse inner ear. PDGFR-beta was detected immunohistochemically in the mesenchymal tissue adjacent to the sensory epithelium of the inner ear, and a ligand for PDGFR-beta was detected around the sensory epithelium. To determine whether this expression plays a functional role, we injected APB5 into neonates to block the function of PDGFR-beta. Mesenchymal tissue defects and abnormal capillaries with irregular shapes, especially in the cochlear lateral wall, were detected in APB5-treated mice. The results of a TUNEL assay revealed that not only the adjacent mesenchymal cells but also the sensory epithelial cells underwent cell death. These results indicate that PDGFR-beta signals are required for the survival of the capillary and mesenchymal cells in the neonatal mouse inner ear and also indirectly implicate these signals in the survival of the sensory epithelium.
Collapse
|
11
|
Löwenheim H, Waldhaus J, Hirt B, Sandke S, Müller M. [Regenerative medicine in the treatment of sensorineural hearing loss]. HNO 2008; 56:288-300. [PMID: 18288464 DOI: 10.1007/s00106-008-1689-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Regenerative medicine offers the prospect of causal treatment of sensorineural hearing loss. In humans, the loss of sensory hair cells is irreversible and results in chronic hearing loss. Other vertebrates, particularly birds, have the capability to spontaneously regenerate lost sensory hair cells and restore hearing. In the bird model, regeneration of hair cells is based on the proliferation of supporting cells. In mammals, supporting cells have lost their proliferative capacity and are terminally differentiated. To gain an understanding about regeneration of hair cells in mammals, cell division of supporting cells has to be controlled. Gene disruption of the cell cycle inhibitor p27(Kip1) allows supporting cell proliferation in the organ of Corti in vivo. Furthermore, in vitro studies indicate that newly generated cells may differentiate into hair cells after p27(Kip1) disruption. Other current methods to induce hair cell regeneration include the gene transfer of Math1 and transplantation of stem cells to the inner ear.
Collapse
Affiliation(s)
- H Löwenheim
- Klinik für Hals-Nasen-Ohren-Heilkunde, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Deutschland.
| | | | | | | | | |
Collapse
|
12
|
Park JY, Park YH, Shin DH, Oh SH. Insulin-like growth factor binding protein (IGFBP)-mediated hair cell survival on the mouse utricle exposed to neomycin: the roles of IGFBP-4 and IGFBP-5. Acta Otolaryngol 2007:22-9. [PMID: 17882566 DOI: 10.1080/03655230701624822] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONCLUSION This study suggests for the first time that 1) IGF-I, IGFBP-4, and -5 alone and IGF-I+IGFBP-5 mixture stimulated hair cell survival and prevented neomycin-induced hair cell loss in the sensory epithelial culture of mouse utricles, 2) When administered together, IGFBP-4 diminished the effect of IGF-I, 3) In P3-5 mice utricle, IGF-I, IGFBP-4, and IGFBP-5 are expressed in the cytoplasm of hair cells. And Insulin/IGF-I Receptor is expressed in the nucleus of hair cells. OBJECTIVES Several growth factors have been demonstrated to protect auditory sensory cells in vitro and in vivo from aminoglycoside toxicity. IGF-I is one of the most well-known mitogenic and protective substance working in the inner ear. However, there are no reports available regarding the function of IGFBPs in the inner ear. In the present study, the effects of IGFBP-4 and -5 on hair cell survival were investigated in mouse utriclular organ cultures. MATERIALS AND METHODS The amount of cellular damage and cell viability in vestibular organs were assessed by counting hair cells stained with a rhodamine-phalloidin probe. The expressions of IGFBP-4, IGFBP-5, IGF-IR, and IGF-I were localized by immunohistochemistry. RESULTS When treated with IGF-I, IGFBP-4, or IGFBP-5 for 24 h, explant culture showed hair cell survival rates of 136+/-18%, 140+/-15%, and 133+/-6%, respectively, compared to controls. Neomycin (1 mM) induced hair cell loss resulted in 45+/-17% of hair cell survival. However, pre-treatment of IGF-I, IGFBP-4, or -5 before neomycin insult showed survival rates of 113+/-14%, 98+/-8%, and 73+/-24%, respectively. Similar to IGF-I, IGFBP-4 and IGFBP-5 were significantly protective. IGFBP-4 and -5 immunoreactivities were observed in the cytoplasm of normal explanted vestibular hair cells as well as in the P3 mouse utricular hair cells in vivo.
Collapse
Affiliation(s)
- Ji Yeong Park
- Department of Otorhinolaryngology, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
13
|
Gu R, Montcouquiol M, Marchionni M, Corwin JT. Proliferative responses to growth factors decline rapidly during postnatal maturation of mammalian hair cell epithelia. Eur J Neurosci 2007; 25:1363-72. [PMID: 17425563 DOI: 10.1111/j.1460-9568.2007.05414.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Millions of lives are affected by hearing and balance deficits that arise as a consequence of sensory hair cell loss. Those deficits affect mammals permanently, but hearing and balance recover in nonmammals after epithelial supporting cells divide and produce replacement hair cells. Hair cells are not effectively replaced in mammals, but balance epithelia cultured from the ears of rodents and adult humans can respond to hair cell loss with low levels of supporting cell proliferation. We have sought to stimulate vestibular proliferation; and we report here that treatment with glial growth factor 2 (rhGGF2) yields a 20-fold increase in cell proliferation within sheets of pure utricular hair cell epithelium explanted from adult rats into long-term culture. In epithelia from neonates, substantially greater proliferation responses are evoked by rhGGF2 alone, insulin alone and to a lesser degree by serum even during short-term cultures, but all these responses progressively decline during the first 2 weeks of postnatal maturation. Thus, sheets of utricular epithelium from newborn rats average > 40% labelling when cultured for 72 h with bromo-deoxyuridine (BrdU) and either rhGGF2 or insulin. Those from 5- and 6-day-olds average 8-15%, 12-day-olds average < 1% and after 72 h there is little or no labelling in epithelia from 27- and 35-day-olds. These cells are the mammalian counterparts of the progenitors that produce replacement hair cells in nonmammals, so the postnatal quiescence described here is likely to be responsible for at least part of the mammalian ear's unique vulnerability to permanent sensory deficits.
Collapse
Affiliation(s)
- Rende Gu
- Department of Neuroscience, University of Virginia, School of Medicine, HSC Box 801392, MR-4 Bldg., Rm 5150, Lane Road, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
14
|
Zhang Y, Zhai SQ, Shou J, Song W, Sun JH, Guo W, Zheng GL, Hu YY, Gao WQ. Isolation, growth and differentiation of hair cell progenitors from the newborn rat cochlear greater epithelial ridge. J Neurosci Methods 2007; 164:271-9. [PMID: 17583357 DOI: 10.1016/j.jneumeth.2007.05.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/09/2007] [Accepted: 05/10/2007] [Indexed: 11/15/2022]
Abstract
Mammalian cochlear hair cell loss is irreversible and leads to permanent hearing loss. To restore hearing physiologically, it is necessary to generate new functional hair cells either from endogenous cells or from exogenously transplanted hair cells/progenitors. Previous studies suggest that cochlear greater epithelial ridge (GER) and lesser epithelial ridge (LER) cells are capable of differentiating into hair cells. While it was recently possible to obtain and culture pure LER progenitors, isolation of pure GER progenitors has not been reported. Here we describe a method that allows isolation of pure GER cells from neonatal rat cochleae. The cochlear epithelial sheet (CES) containing GER progenitor cells was mechanically separated from the underlying mesenchymal tissue after digestion with thermolysin. The GER area could then be dissected following mechanical removal of organ of Corti as well as all the lateral area. The isolated GER cells showed significant proliferation and expressed markers for GER cells but not markers for hair cells or LER. When the GER cells were cultured in serum-free medium containing epidermal growth factor, spheres were formed where they continued to proliferate. Furthermore, when GER cells were induced to express Hath1 or co-cultured with mesenchymal cells prepared from neonate rat cochleae, they showed the potential to differentiate into hair cell-like cells. Successful isolation, culture and differentiation of GER hair cell progenitors will shed additional light on the mechanism of hair cell differentiation and potential hair cell replacement.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Otolaryngology and Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wooltorton JRA, Gaboyard S, Hurley KM, Price SD, Garcia JL, Zhong M, Lysakowski A, Eatock RA. Developmental changes in two voltage-dependent sodium currents in utricular hair cells. J Neurophysiol 2006; 97:1684-704. [PMID: 17065252 DOI: 10.1152/jn.00649.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two kinds of sodium current (I(Na)) have been separately reported in hair cells of the immature rodent utricle, a vestibular organ. We show that rat utricular hair cells express one or the other current depending on age (between postnatal days 0 and 22, P0-P22), hair cell type (I, II, or immature), and epithelial zone (striola vs. extrastriola). The properties of these two currents, or a mix, can account for descriptions of I(Na) in hair cells from other reports. The patterns of Na channel expression during development suggest a role in establishing the distinct synapses of vestibular hair cells of different type and epithelial zone. All type I hair cells expressed I(Na,1), a TTX-insensitive current with a very negative voltage range of inactivation (midpoint: -94 mV). I(Na,2) was TTX sensitive and had less negative voltage ranges of activation and inactivation (inactivation midpoint: -72 mV). I(Na,1) dominated in the striola at all ages, but current density fell by two-thirds after the first postnatal week. I(Na,2) was expressed by 60% of hair cells in the extrastriola in the first week, then disappeared. In the third week, all type I cells and about half of type II cells had I(Na,1); the remaining cells lacked sodium current. I(Na,1) is probably carried by Na(V)1.5 subunits based on biophysical and pharmacological properties, mRNA expression, and immunoreactivity. Na(V)1.5 was also localized to calyx endings on type I hair cells. Several TTX-sensitive subunits are candidates for I(Na,2).
Collapse
|
16
|
Hurley KM, Gaboyard S, Zhong M, Price SD, Wooltorton JRA, Lysakowski A, Eatock RA. M-like K+ currents in type I hair cells and calyx afferent endings of the developing rat utricle. J Neurosci 2006; 26:10253-69. [PMID: 17021181 PMCID: PMC6674627 DOI: 10.1523/jneurosci.2596-06.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/18/2006] [Accepted: 08/21/2006] [Indexed: 12/17/2022] Open
Abstract
Type I vestibular hair cells have large K+ currents that, like neuronal M currents, activate negative to resting potential and are modulatable. In rodents, these currents are acquired postnatally. In perforated-patch recordings from rat utricular hair cells, immature hair cells [younger than postnatal day 7 (P7)] had a steady-state K+ conductance (g(-30)) with a half-activation voltage (V1/2) of -30 mV. The size and activation range did not change in maturing type II cells, but, by P16, type I cells had added a K conductance that was on average fourfold larger and activated much more negatively. This conductance may comprise two components: g(-60) (V1/2 of -60 mV) and g(-80) (V1/2 of -80 mV). g(-80) washed out during ruptured patch recordings and was blocked by a protein kinase inhibitor. M currents can include contributions from KCNQ and ether-a-go-go-related (erg) channels. KCNQ and erg channel blockers both affected the K+ currents of type I cells, with KCNQ blockers being more potent at younger than P7 and erg blockers more potent at older than P16. Single-cell reverse transcription-PCR and immunocytochemistry showed expression of KCNQ and erg subunits. We propose that KCNQ channels contribute to g(-30) and g(-60) and erg subunits contribute to g(-80). Type I hair cells are contacted by calyceal afferent endings. Recordings from dissociated calyces and afferent endings revealed large K+ conductances, including a KCNQ conductance. Calyx endings were strongly labeled by KCNQ4 and erg1 antisera. Thus, both hair cells and calyx endings have large M-like K+ conductances with the potential to control the gain of transmission.
Collapse
Affiliation(s)
- Karen M. Hurley
- The Bobby R. Alford Department of Otorhinolaryngology, Head and Neck Surgery and
| | - Sophie Gaboyard
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612
| | - Meng Zhong
- The Bobby R. Alford Department of Otorhinolaryngology, Head and Neck Surgery and
| | - Steven D. Price
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612
| | | | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612
| | - Ruth Anne Eatock
- The Bobby R. Alford Department of Otorhinolaryngology, Head and Neck Surgery and
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, and
| |
Collapse
|
17
|
Kim TS, Nakagawa T, Kita T, Higashi T, Takebayashi S, Matsumoto M, Kojima K, Sakamoto T, Ito J. Neural connections between embryonic stem cell-derived neurons and vestibular hair cells in vitro. Brain Res 2006; 1057:127-33. [PMID: 16122715 DOI: 10.1016/j.brainres.2005.07.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 07/19/2005] [Accepted: 07/21/2005] [Indexed: 11/30/2022]
Abstract
This study aimed to examine the potential of embryonic stem cell (ESC)-derived neural progenitors for restoration of the neural network in the peripheral vestibular system. Mouse ESC-derived neural progenitors were co-cultured with explants of vestibular sensory epithelia from neonatal mice. Histological analyses demonstrated that ESC-derived neurons substantially elongated their neurites towards vestibular hair cells, and attached to hair cells at the regions corresponding to the location of nerve endings in normal vestibular epithelia. Immunoreactivity for synaptophysin, a marker for synaptic vesicles, was present only in the cytoplasm of hair cells in sensory epithelia cultured alone, while the nerve endings of ESC-derived neurons attached to hair cells exhibited intense immunoreactivity for synaptophysin and some hair cells were moderately reactive in co-cultured specimens. The pattern of synaptophysin expression in co-cultured specimens was very similar to that observed in developing sensory epithelia, in which synaptic connections between hair cells and nerve endings are actively formed. These findings indicate that ESC-derived neurons have the potential to restore neural connections in the peripheral vestibular system.
Collapse
Affiliation(s)
- Tae-Soo Kim
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kawaharacho 54, Shogoin, Sakyo-ku, 606-8507 Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Holley MC. Keynote review: The auditory system, hearing loss and potential targets for drug development. Drug Discov Today 2005; 10:1269-82. [PMID: 16214671 DOI: 10.1016/s1359-6446(05)03595-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a huge potential market for the treatment of hearing loss. Drugs are already available to ameliorate predictable, damaging effects of excessive noise and ototoxic drugs. The biggest challenge now is to develop drug-based treatments for regeneration of sensory cells following noise-induced and age-related hearing loss. This requires careful consideration of the physiological mechanisms of hearing loss and identification of key cellular and molecular targets. There are many molecular cues for the discovery of suitable drug targets and a full range of experimental resources are available for initial screening through to functional analysis in vivo. There is now an unparalleled opportunity for translational research.
Collapse
Affiliation(s)
- Matthew C Holley
- Department of Biomedical Sciences, Addison Building, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
19
|
Di Pasquale G, Rzadzinska A, Schneider ME, Bossis I, Chiorini JA, Kachar B. A Novel Bovine Virus Efficiently Transduces Inner Ear Neuroepithelial Cells. Mol Ther 2005; 11:849-55. [PMID: 15922955 DOI: 10.1016/j.ymthe.2005.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 11/22/2022] Open
Abstract
Disruption of the cellular composition or arrangement of the sensory epithelia due to hair cell or supporting cell damage leads to hearing loss and vestibular dysfunctions. These peripheral hearing disorders make good targets for gene therapy; however, development requires efficient gene transfer methods for the inner ear. Here we characterized the cellular tropism of a novel adeno-associated bovine virus vector (BAAV) in cultured rat inner ear epithelia. To help identify transduced cells, we used beta-actin-GFP as a reporter gene. We found that BAAV efficiently transduced auditory and vestibular hair cells as well as all types of supporting cells with no apparent pathological effects. The number of transduced hair cells significantly increased in both a dose- and a time-dependent manner. Transduction was independent of the cells' maturation state and was observed in both P2 and P10 cultures. Interestingly, even after several days of incubation with BAAV, hair cells demonstrated varying progression of beta-actin-GFP incorporation into the stereocilia. This suggests that the onset of viral transduction can occur throughout the course of the experiment. Of the other tested AAVs, AAV2 and AAV5 transduced only a small percentage of inner and vestibular hair cells, respectively, whereas no transduction was detected with AAV4.
Collapse
Affiliation(s)
- Giovanni Di Pasquale
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
20
|
Diaz-Casares A, Leon Y, de la Rosa EJ, Varela-Nieto I. Regulation of Vertebrate Sensory Organ Development: A Scenario for Growth Hormone and Insulin-Like Growth Factors Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:221-42. [PMID: 16370141 DOI: 10.1007/0-387-26274-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Amelia Diaz-Casares
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Abstract
The rate of identification of genes for hearing has clearly outpaced the rate of determination of the functions of these genes' products. The use of transgenic and knock-out mouse models is a powerful approach to the elucidation of gene function in the ear. A large number of gene-targeted mice with auditory defects have recently been created and characterized, and nine independent mouse lines in which Cre recombinase activity begins to be expressed during early embryonic development of the ear or is specifically expressed in hair cells during postnatal development will be useful for ear-specific gene manipulation when combined with mouse lines that have loxP sites flanking the genes of interest. Existing gene-trapped embryonic stem (ES) cells and existing targeting constructs are readily available; new targeting constructs can easily be created by modifying bacterial artificial chromosomes and using them to directly transfect and screen ES cells; and N-ethyl-N-nitrosourea mutagenesis of ES cells can create point mutations in specific genes. To minimize variation in hearing phenotypes and avoid undesired hearing defects, mutant mice in the common gene-targeting background strains (129 and C57BL/6) should be transferred into congenic CBA/CaJ, a strain with "gold standard" normal hearing. Valuable mutant strains can be maintained, distributed, and cryopreserved in one of four NIH-sponsored Mutant Mouse Regional Resource Centers. Targeting hearing genes in mice will provide unprecedented opportunities for collaboration and new directions in the hearing research community.
Collapse
Affiliation(s)
- Jiangang Gao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | | | |
Collapse
|
22
|
Löwenheim H. Regenerative Medicine for Diseases of the Head and Neck: Principles ofIn vivoRegeneration. DNA Cell Biol 2003; 22:571-92. [PMID: 14577910 DOI: 10.1089/104454903322405464] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The application of endogenous regeneration in regenerative medicine is based on the concept of inducing regeneration of damaged or lost tissues from residual tissues in situ. Therefore, endogenous regeneration is also termed in vivo regeneration as opposed to mechanisms of ex vivo regeneration which are applied, for example, in the field of tissue engineering. The basic science foundation for mechanisms of endogenous regeneration is provided by the field of regenerative biology. The ambitious vision for the application of endogenous regeneration in regenerative medicine is stimulated by investigations in the model organisms of regenerative biology, most notably hydra, planarians and urodeles. These model organisms demonstrate remarkable regenerative capabilities, which appear to be conserved over large phylogenetical stretches with convincing evidence for a homologue origin of an endogenous regenerative capability. Although the elucidation of the molecular and cellular mechanisms of these endogenous regenerative phenomena is still in its beginning, there are indications that these processes have potential to become useful for human benefit. Such indications also exist for particular applications in diseases of the head and neck region. As such epimorphic regeneration without blastema formation may be relevant to regeneration of sensorineural epithelia of the inner ear or the olphactory epithelium. Complex tissue lesions of the head and neck as they occur after trauma or tumor resections may be approached on the basis of relevant mechanisms in epimorphic regeneration with blastema formation.
Collapse
Affiliation(s)
- H Löwenheim
- Department of Otolaryngology-Head & Neck Surgery, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
23
|
Hume CR, Kirkegaard M, Oesterle EC. ErbB expression: the mouse inner ear and maturation of the mitogenic response to heregulin. J Assoc Res Otolaryngol 2003; 4:422-43. [PMID: 14690060 PMCID: PMC3202727 DOI: 10.1007/s10162-002-3008-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2002] [Accepted: 03/26/2003] [Indexed: 10/26/2022] Open
Abstract
In humans, hair cell loss often leads to hearing and balance impairments. Hair cell replacement is vigorous and spontaneous in avians and nonmammalian vertebrates. In mammals, in contrast, it occurs at a very low rate, or not at all, presumably because of a very low level of supporting cell proliferation following injury. Heregulin (HRG), a member of the epidermal growth factor (EGF) family of growth factors, is reported to be a potent mitogen for neonatal rat vestibular sensory epithelium, but its effects in adults are unknown. We report here that HRG-alpha stimulates cell proliferation in organotypic cultures of neonatal, but not adult, mouse utricular sensory epithelia. Our findings support the idea that the proliferative capabilities of the adult mammalian vestibular sensory epithelia differ significantly from that seen in neonatal animals. Immunohistochemistry reveals that HRG-binding receptors (erbBs 2-4) and erbB1 are widely expressed in vestibular and auditory sensory epithelia in neonatal and adult mouse inner ear. The distribution of erbBs in the neonatal and adult mouse ear is consistent with the EGF receptor/ligand family regulating diverse cellular processes in the inner ear, including cell proliferation and differentiation.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Antibodies
- Cell Division/drug effects
- ErbB Receptors/immunology
- ErbB Receptors/metabolism
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/metabolism
- Mice
- Mitogens/pharmacology
- Neuregulin-1/pharmacology
- Organ Culture Techniques
- Organ of Corti/cytology
- Organ of Corti/physiology
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/immunology
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-4
- Regeneration/drug effects
- Saccule and Utricle/cytology
- Saccule and Utricle/physiology
- Vestibule, Labyrinth/cytology
- Vestibule, Labyrinth/physiology
Collapse
Affiliation(s)
- Clifford R. Hume
- Department of Otolaryngology–Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| | - Mette Kirkegaard
- Department of Otolaryngology–Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth C. Oesterle
- Department of Otolaryngology–Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Bao H, Wong WH, Goldberg JM, Eatock RA. Voltage-gated calcium channel currents in type I and type II hair cells isolated from the rat crista. J Neurophysiol 2003; 90:155-64. [PMID: 12843307 DOI: 10.1152/jn.00244.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When studied in vitro, type I hair cells in amniote vestibular organs have a large, negatively activating K+ conductance. In type II hair cells, as in nonvestibular hair cells, outwardly rectifying K+ conductances are smaller and more positively activating. As a result, type I cells have more negative resting potentials and smaller input resistances than do type II cells; large inward currents fail to depolarize type I cells above -60 mV. In nonvestibular hair cells, afferent transmission is mediated by voltage-gated Ca2+ channels that activate positive to -60 mV. We investigated whether Ca2+ channels in type I cells activate more negatively so that quantal transmission can occur near the reported resting potentials. We used the perforated patch method to record Ca2+ channel currents from type I and type II hair cells isolated from the rat anterior crista (postnatal days 4-20). The activation range of the Ca2+ currents of type I hair cells differed only slightly from that of type II cells or nonvestibular hair cells. In 5 mM external Ca2+, currents in type I and type II cells were half-maximal at -41.1 +/- 0.5 (SE) mV (n = 10) and -37.2 +/- 0.2 mV (n = 10), respectively. In physiological external Ca2+ (1.3 mM), currents in type I cells were half-maximal at -46 +/- 1 mV (n = 8) and just 1% of maximal at -72 mV. These results lend credence to suggestions that type I cells have more positive resting potentials in vivo, possibly through K+ accumulation in the synaptic cleft or inhibition of the large K+ conductance. Ca2+ channel kinetics were also unremarkable; in both type I and type II cells, the currents activated and deactivated rapidly and inactivated only slowly and modestly even at large depolarizations. The Ca2+ current included an L-type component with relatively low sensitivity to dihydropyridine antagonists, consistent with the alpha subunit being CaV1.3 (alpha1D). Rat vestibular epithelia and ganglia were probed for L-type alpha-subunit expression with the reverse transcription-polymerase chain reaction. The epithelia expressed CaV1.3 and the ganglia expressed CaV1.2 (alpha1C).
Collapse
Affiliation(s)
- Hong Bao
- The Bobby R. Alford Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
25
|
Abstract
The discovery of hair cell regeneration in the inner ear of birds provides new optimism that there may be a treatment for hearing and balance disorders. In this review we describe the process of hair cell regeneration in birds; including restoration of function, recovery of perception and what is currently known about molecular events, such as growth factors and signalling systems. We examine some of the key recent findings in both birds and mammals.
Collapse
Affiliation(s)
- Olivia Bermingham-McDonogh
- Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology-HNS, University of Washington Medical School, Box 357923, Seattle, Washington 98195-7923, USA.
| | | |
Collapse
|
26
|
Alsina B, Giraldez F, Varela-Nieto I. Growth Factors and Early Development of Otic Neurons: Interactions between Intrinsic and Extrinsic Signals. Curr Top Dev Biol 2003; 57:177-206. [PMID: 14674481 DOI: 10.1016/s0070-2153(03)57006-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Berta Alsina
- DCEXS-Universitat Pomepu Fabra, Dr Aiguader 80, 08003 Barcelona, Spain
| | | | | |
Collapse
|
27
|
Abstract
Cell lines have provided important experimental tools that have enhanced our understanding of neural and sensory function. They are particularly valuable in inner ear research because the auditory and vestibular systems are small, complex, and encased in several layers of bone. Organotypic cultures provide an invaluable experimental resource but require repeated microdissection and culture, and remain complex in terms of cell types and states of differentiation. A number of laboratories have established cell lines that offer a range of potential applications to hearing research. This review describes the advances that have already been made with these lines and the potential applications that they offer in the future. The majority of the cell lines are immortalized with a conditionally expressed, temperature sensitive variant of the SV40 tumor antigen. We discuss the value of these cells in developmental studies.
Collapse
Affiliation(s)
- Marcelo N Rivolta
- Department of Biomedical Science, Institute of Molecular Physiology, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, United Kingdom.
| | | |
Collapse
|
28
|
Camarero G, Villar MA, Contreras J, Fernández-Moreno C, Pichel JG, Avendaño C, Varela-Nieto I. Cochlear abnormalities in insulin-like growth factor-1 mouse mutants. Hear Res 2002; 170:2-11. [PMID: 12208536 DOI: 10.1016/s0378-5955(02)00447-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) modulates inner ear cell proliferation, differentiation and survival in culture. Its function in human hearing was first evidenced by a report of a boy with a homozygous deletion of the Igf-1 gene, who showed severe sensorineural deafness [Woods et al., New Engl. J. Med. 335 (1996) 1363-1367]. To better understand the in vivo role of IGF-1 during inner ear differentiation and maturation, we studied the cochleae of Igf-1 gene knockout mice by performing morphometric stereological analyses, immunohistochemistry and electron microscopy on postnatal days 5 (P5), P8 and P20. At P20, but not at P5, the volumes of the cochlea and cochlear ganglion were significantly reduced in mutant mice, although the reduction was less severe than whole body dwarfism. A significant decrease in the number and average size of auditory neurons was also evident at P20. IGF-1-deficient cochlear neurons showed increased apoptosis, along with altered expression of neurofilament 200 kDa and vimentin. The eighth nerve, the cochlear ganglion and the fibers innervating the sensory cells of the organ of Corti of the P20 mouse mutants presented increased expression of vimentin, whereas the expression of neurofilament was decreased. In addition, the myelin sheath was severely affected in ganglion neurons. In conclusion, IGF-1 deficit in mice severely affects postnatal survival, differentiation and maturation of the cochlear ganglion cells.
Collapse
Affiliation(s)
- Guadalupe Camarero
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Cristobal R, Popper P, Lopez I, Micevych P, De Vellis J, Honrubia V. In vivo and in vitro localization of brain-derived neurotrophic factor, fibroblast growth factor-2 and their receptors in the bullfrog vestibular end organs. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 102:83-99. [PMID: 12191497 DOI: 10.1016/s0169-328x(02)00202-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The inner ear sensory epithelia of vertebrates are composed mainly of supporting cells and hair cells (HCs). Brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF-2) are trophins that are believed to play an essential role in the development and innervation of inner ear epithelia. Both trophins also may play a crucial role in the maintenance and regeneration of hair cells in the adult vertebrate ear. In the bullfrog vestibular system, hair cells are produced throughout life, and the epithelia regenerates following ototoxicity. The expression of BDNF and FGF-2 in the vestibular organs of the adult bullfrog was investigated at a cellular level both in histological sections and in vitro in dissociated cell cultures. In histological sections of the crista ampullaris, in situ hybridization and immunocytochemical techniques demonstrated that HCs express both BDNF and its receptor trkB, while the supporting cells express the receptor trkB alone. Following dissociation and in vitro cell culture no changes in the pattern of BDNF and trkB receptor were observed. Immunocytochemical studies demonstrated that in vivo hair cells express FGF-2 and the receptors FGFR-1 and FGFR-2 while supporting cells do not express either molecule. Following dissociation, HCs continue to express FGF-2 and its two receptors, while supporting cells upregulate the expression of FGF-2 and its receptor FGFR-2. These data confirm the potential role of BDNF and FGF-2 trophic regulation of the sensory epithelia of the adult inner ear. The findings suggest that BDNF has a role in the maintenance of the vestibular epithelia while FGF-2 may regulate the proliferation of supporting cells.
Collapse
MESH Headings
- Animals
- Autocrine Communication/physiology
- Brain-Derived Neurotrophic Factor/metabolism
- Cell Communication/physiology
- Cells, Cultured
- Fibroblast Growth Factor 2/metabolism
- Hair Cells, Vestibular/cytology
- Hair Cells, Vestibular/metabolism
- Immunohistochemistry
- Labyrinth Supporting Cells/cytology
- Labyrinth Supporting Cells/metabolism
- Rana catesbeiana/anatomy & histology
- Rana catesbeiana/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, trkB/metabolism
- Receptors, Fibroblast Growth Factor/metabolism
- Vestibule, Labyrinth/cytology
- Vestibule, Labyrinth/metabolism
Collapse
Affiliation(s)
- Ricardo Cristobal
- Victor Goodhill Ear Center, Division of Head and Neck Surgery, University of California, Los Angeles School of Medicine, CHS, Room 62-129, 10833 Le Conte Ave., Los Angeles, CA 90095-1624, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.
Collapse
|
31
|
Abstract
Insulin-like growth factor-1 (IGF-1) has been shown to play a key role during embryonic and postnatal development of the CNS, but its effect on a sensory organ has not been studied in vivo. Therefore, we examined cochlear growth, differentiation, and maturation in Igf-1 gene knock-out mice at postnatal days 5 (P5), P8, and P20 by using stereological methods and immunohistochemistry. Mutant mice showed reduction in size of the cochlea and cochlear ganglion. An immature tectorial membrane and a significant decrease in the number and size of auditory neurons were also evident at P20. IGF-1-deficient cochlear neurons showed increased caspase-3-mediated apoptosis, along with aberrant expression of the early neural markers nestin and Islet 1/2. Cochlear ganglion and fibers innervating the sensory cells of the organ of Corti presented decreased levels of neurofilament and myelin P(0) in P20 mouse mutants. In addition, an abnormal synaptophysin expression in the somata of cochlear ganglion neurons and sensory hair cells suggested the persistence of an immature pattern of synapses distribution in the organ of Corti of these animals. These results demonstrate that lack of IGF-1 in mice severely affects postnatal survival, differentiation, and maturation of the cochlear ganglion cells and causes abnormal innervation of the sensory cells in the organ of Corti.
Collapse
|
32
|
Witte MC, Montcouquiol M, Corwin JT. Regeneration in avian hair cell epithelia: identification of intracellular signals required for S-phase entry. Eur J Neurosci 2001; 14:829-38. [PMID: 11576187 DOI: 10.1046/j.0953-816x.2001.01695.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Balance epithelia in birds closely resemble their mammalian counterparts, but their cells turnover rapidly and they quickly regenerate hair cells, leading to functional recovery from damage that would be permanent for a mammal. We isolated and cultured sheets of the chicken's utricular epithelium in bromo-deoxyuridine and specific inhibitors of different intracellular signalling pathways to identify signals that influence turnover and regeneration. Synthesis (S-phase) entry was effectively blocked by inhibition of PI3-K, TOR or MAPK, and significantly decreased by inhibitors of PKC. Comparisons indicate that activated PI3-K and TOR are required for S-phase entry in both avian and mammalian balance epithelia, but activation of the MAPK pathway appears to have a more significant role in avian utricles than in mammals. The dissimilarities in the requirements for these signalling pathways do not appear sufficient to explain the marked difference in regenerative capacity between the ears of birds and mammals.
Collapse
Affiliation(s)
- M C Witte
- Department of Otolaryngology, School of Medicine, University of Virginia, HSC Box 396, Cobb Hall, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
33
|
Abstract
In the ears of mammals, hair cell loss results in permanent hearing and balance deficits, whereas in fish, amphibians, and birds, the production of replacement hair cells can restore those modalities. In avian ears, continuous exposures to forskolin trigger cell proliferation and the regeneration of hair cells, so we investigated the effect of forskolin on sensory epithelia cultured from the ears of mammals. Continuous 72 hr exposures to forskolin failed to induce proliferation in neonatal rat utricles, but brief (</=1 hr) exposures to forskolin or Br-cAMP did. Proliferation occurred only in media that contained serum. Forskolin also augmented the mitogenic effects of glial growth factor 2. The S-phase entry induced by forskolin was blocked by monensin and bafilomycin, two compounds that can inhibit the recycling of membrane receptors. The results are consistent with the hypothesis that in mammalian vestibular epithelia elevated cAMP induces S-phase entry by increasing the number of growth factor receptors at the plasma membrane.
Collapse
|
34
|
Matsunaga T, Davis JG, Greene MI. Adult rat otic placode-derived neurons and sensory epithelium express all four erbB receptors: a role in regulating vestibular ganglion neuron viability. DNA Cell Biol 2001; 20:307-19. [PMID: 11445002 DOI: 10.1089/10445490152122424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The erbB receptor family consists of erbB1/epidermal growth factor receptor, erbB2/neu, erbB3, and erbB4, all of which have been implicated in cell proliferation, differentiation, and survival in several tissues. In the nervous system, these family members can function in a trophic capacity for certain subpopulations of neurons and some types of non-neuronal cells. Vestibular sensory epithelial cells and vestibular ganglion neurons are derived from ectodermal otic placode and are essential components of the peripheral vestibular system, the sensory system for balance. Recent studies in mammals suggest that certain ligands of the epidermal growth factor receptor can induce proliferation of vestibular sensory epithelial cells. We now show that vestibular ganglion neurons and vestibular sensory epithelial cells express all four erbB receptors in adult rats. Cultured vestibular ganglion neurons also expressed all four erbB family members and were therefore used to analyze the effects of modulating erbB signaling on differentiated vestibular ganglion neurons. Transforming growth factor-alpha (a ligand for epidermal growth factor receptor) and sensory and motor neuron-derived factor (a ligand for erbB3 and erbB4) promoted vestibular ganglion neuron viability, whereas epidermal growth factor (another ligand for epidermal growth factor receptor) did not. Glial growth factor 2 (another ligand for erbB3 and erbB4) and an antibody that blocks erbB2/neu-mediated signaling inhibited vestibular ganglion neuron viability. Collectively, these observations indicate that erbB signaling regulates the viability of differentiated otic placode-derived cells in mammals and suggest that exogenous modulation of erbB signaling in peripheral vestibular tissues may prove therapeutically useful in peripheral vestibular disorders.
Collapse
MESH Headings
- Animals
- Cell Survival
- Cells, Cultured
- ErbB Receptors/biosynthesis
- ErbB Receptors/genetics
- ErbB Receptors/physiology
- Fluorescent Antibody Technique
- Ganglia, Sensory/cytology
- Ganglia, Sensory/metabolism
- Neurons/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
- Receptor, ErbB-3/biosynthesis
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/physiology
- Receptor, ErbB-4
- Reverse Transcriptase Polymerase Chain Reaction
- Saccule and Utricle/metabolism
- Signal Transduction
- Vestibule, Labyrinth/cytology
- Vestibule, Labyrinth/growth & development
- Vestibule, Labyrinth/metabolism
Collapse
Affiliation(s)
- T Matsunaga
- Department of Pathology & Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
35
|
Carnicero E, Garrido JJ, Alonso MT, Schimmang T. Roles of fibroblast growth factor 2 during innervation of the avian inner ear. J Neurochem 2001; 77:786-95. [PMID: 11331407 DOI: 10.1046/j.1471-4159.2001.00283.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The importance of individual members of the fibroblast growth factor gene family during innervation of the vertebrate inner ear is not clearly defined. Here we address the role of fibroblast growth factor 2 (FGF-2 or basic FGF) during development of the chicken inner ear. We found that FGF-2 stimulated survival of isolated cochlear and vestibular neurons during distinct phases of inner ear innervation. The potential neurotrophic role of FGF-2 was confirmed by its expression in the corresponding sensory epithelia and the detection of one of its high-affinity receptors in inner ear neurons. Finally, we have analysed the potential of the amplicon system based on defective herpes simplex virus type 1 (HSV-1) vectors to express FGF-2 in cochlear neurons. Overexpression of FGF-2 in cochlear neurons resulted in neuronal differentiation demonstrating the presence of biologically active growth factor. This study underlines the potential of FGF-2 to control innervation and development of sensory epithelia in the avian inner ear. Furthermore, amplicon vectors may provide a useful tool to analyse gene function in isolated neurons of the vertebrate inner ear.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Chick Embryo
- Chickens
- Cochlea/embryology
- Cochlea/innervation
- Ear, Inner/embryology
- Ear, Inner/innervation
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/pharmacology
- Fibroblast Growth Factor 2/physiology
- Gene Expression
- Genetic Vectors
- Herpesvirus 1, Human/genetics
- Immunohistochemistry
- Neurons, Afferent/chemistry
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Receptor Protein-Tyrosine Kinases/analysis
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/analysis
- Transfection
- Vestibule, Labyrinth/embryology
- Vestibule, Labyrinth/innervation
Collapse
Affiliation(s)
- E Carnicero
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Cientificas, Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Medicina, Valladolid, Spain
| | | | | | | |
Collapse
|
36
|
Intracellular signals that control cell proliferation in mammalian balance epithelia: key roles for phosphatidylinositol-3 kinase, mammalian target of rapamycin, and S6 kinases in preference to calcium, protein kinase C, and mitogen-activated protein kinase. J Neurosci 2001. [PMID: 11160436 DOI: 10.1523/jneurosci.21-02-00570.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In fish, amphibians, and birds, the loss of hair cells can evoke S-phase entry in supporting cells and the production of new cells that differentiate as replacement hair cells and supporting cells. Recent investigations have shown that supporting cells from mammalian vestibular epithelia will proliferate in limited numbers after hair cells have been killed. Exogenous growth factors such as glial growth factor 2 enhance this proliferation most potently when tested on vestibular epithelia from neonates. In this study, the intracellular signaling pathways that underlie the S-phase entry were surveyed by culturing epithelia in the presence of pharmacological inhibitors and activators. The results demonstrate that phosphatidylinositol 3-kinase is a key element in the signaling cascades that lead to the proliferation of cells in mammalian balance epithelia in vitro. Protein kinase C, mammalian target of rapamycin, mitogen-activated protein kinase, and calcium were also identified as elements in the signaling pathways that trigger supporting cell proliferation.
Collapse
|
37
|
Oesterle EC, Bhave SA, Coltrera MD. Basic fibroblast growth factor inhibits cell proliferation in cultured avian inner ear sensory epithelia. J Comp Neurol 2000; 424:307-26. [PMID: 10906705 DOI: 10.1002/1096-9861(20000821)424:2<307::aid-cne9>3.0.co;2-m] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Postembryonic production of inner ear hair cells occurs after insult in nonmammalian vertebrates. Recent studies suggest that the fibroblast family of growth factors may play a role in stimulating cell proliferation in mature inner ear sensory epithelium. Effects of acidic fibroblast growth factor (FGF-1) and basic fibroblast growth factor (FGF-2) were tested on progenitor cell division in cultured auditory and vestibular sensory epithelia taken from posthatch chickens. The effects of heparin, a glycosaminoglycan that often potentiates the effects of the FGFs, were also assessed. Tritiated-thymidine autoradiographic techniques and 5-bromo-2;-deoxyuridine (BrdU) immunocytochemistry were used to identify cells synthesizing DNA. The terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-biotin nick-end-label (TUNEL) method was used to identify apoptotic cells. TUNEL and overall counts of sensory epithelial cell density were used to assess possible cytotoxic effects of the growth factors. FGF-2 inhibited DNA synthesis in vestibular and auditory sensory epithelia and was not cytotoxic at the concentrations employed. FGF-1 did not significantly alter sensory epithelial cell proliferation. Heparin by itself inhibited DNA synthesis in the vestibular sensory epithelia and failed to potentiate the effects of FGF-1 or FGF-2. Heparin was not cytotoxic at the concentrations employed. Results presented here suggest that FGF-2 may be involved in inhibiting cell proliferation or stimulating precursor cell differentiation in avian inner ear sensory epithelia.
Collapse
Affiliation(s)
- E C Oesterle
- Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology-HNS, University of Washington, Seattle, Washington 98195-7923, USA.
| | | | | |
Collapse
|
38
|
Zine A, Nyffeler M, de Ribaupierre F. Spatial expression patterns of epidermal growth factor receptor gene transcripts in the postnatal mammalian cochlea. Hear Res 2000; 141:19-27. [PMID: 10713492 DOI: 10.1016/s0378-5955(99)00203-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent in vitro studies demonstrated that members of the epidermal growth factor (EGF) family are involved in hair cell replacement in the postnatal mammalian organ of Corti (OC) after ototoxic damage. This suggests a role for the EGF receptor (EGFR) in this process. We examined the expression of EGFR mRNA within the normal postnatal day 3 (P3) and adult rat cochlear epithelium by RT-PCR and examined its cellular localization with non-radioactive in situ hybridization in P3 and adult cochleae. RT-PCR demonstrated that EGFR mRNA is expressed in P3 and adult cochlear epithelium. In situ hybridization localized high levels of EGFR transcripts in the OC, spiral ganglion, Kölliker's organ and detectable levels in the supporting cells and the stria vascularis of P3 cochlea. In the adult cochlea, EGFR transcripts were detected only in the spiral ganglion. Our results support that the EGFR is implicated in the differentiation of several cochlear cell types and in the response of OC to ototoxic damage of the P3 rat. In the adult, it may participate in the maintenance of the mature neurons and its absence in the OC may contribute to the lack of regenerative responses in the adult cochlea.
Collapse
Affiliation(s)
- A Zine
- Institute of Physiology, Universtiy of Lausanne, 7 Rue du Bugnon, CH-1005, Lausanne, Switzerland
| | | | | |
Collapse
|
39
|
Differentiation of mammalian vestibular hair cells from conditionally immortal, postnatal supporting cells. J Neurosci 1999. [PMID: 10531448 DOI: 10.1523/jneurosci.19-21-09445.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We provide evidence from a newly established, conditionally immortal cell line (UB/UE-1) that vestibular supporting cells from the mammalian inner ear can differentiate postnatally into more than one variant of hair cell. A clonal supporting cell line was established from pure utricular sensory epithelia of H2k(b)tsA58 transgenic mice 2 d after birth. Cell proliferation was dependent on conditional expression of the immortalizing gene, the "T" antigen from the SV40 virus. Proliferating cells expressed cytokeratins, and patch-clamp recordings revealed that they all expressed small membrane currents with little time-dependence. They stopped dividing within 2 d of being transferred to differentiating conditions, and within a week they formed three defined populations expressing membrane currents characteristic of supporting cells and two kinds of neonatal hair cell. The cells expressed several characteristic features of normal hair cells, including the transcription factor Brn3.1, a functional acetylcholine receptor composed of alpha9 subunits, and the cytoskeletal proteins myosin VI, myosin VIIa, and fimbrin. Immunofluorescence labeling and electron microscopy showed that the cells formed complex cytoskeletal arrays on their upper surfaces with structural features resembling those at the apices of normal hair cells. The cell line UB/UE-1 provides a valuable in vitro preparation in which the expression of numerous structural and physiological components can be initiated or upregulated during early stages of mammalian hair cell commitment and differentiation.
Collapse
|
40
|
Pickles JO, van Heumen WR, Claxton C. A tyrosine kinase screen of mouse vestibular maculae. Hear Res 1999; 136:100-4. [PMID: 10511629 DOI: 10.1016/s0378-5955(99)00114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Receptor tyrosine kinases allow extracellular signals to influence intracellular events, while other tyrosine kinases are involved in intracellular signalling. They may therefore be involved in the development, maintenance and repair of the sensory epithelia of the inner ear, since these are believed to be affected by inter- and intracellular signalling. In order to analyse possible tyrosine kinases expressed in sensory areas of the inner ear, a reverse transcription polymerase chain reaction screen of microdissected sensory epithelia was undertaken, using primers targeted at conserved sequences in tyrosine kinase domains. Tissue was taken from the maculae of the mouse vestibular organs, and consisted mainly of hair cells and their supporting cells. Of 80 clones sequenced, 49 coded for tyrosine kinases, and 11 for other known molecules. Further analysis of one of the sequences, for FGF receptor 4, showed a novel variant, expressed in the inner ear and elsewhere, with a variation in the intracellular domain which suggests differential activation of known signalling pathways. Other clones coded for tyrosine kinases expected to be involved in cell surface and intracellular signalling. The technique forms a powerful tool for analysing a range of the tyrosine kinases expressed, and provides a starting point for the analysis of cell-cell signalling in the inner ear.
Collapse
Affiliation(s)
- J O Pickles
- Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, University of Queensland, Brisbane, Qld., Australia.
| | | | | |
Collapse
|
41
|
Romand R, Chardin S. Effects of growth factors on the hair cells after ototoxic treatment of the neonatal mammalian cochlea in vitro. Brain Res 1999; 825:46-58. [PMID: 10216172 DOI: 10.1016/s0006-8993(99)01211-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The aim of this study was to test the possible regenerative potential of several molecules and growth factors such as retinoic acid (RA), insulin, epidermal growth factor (EGF) and transforming growth factors alpha (TGFalpha) and beta (TGFbeta) on the neonatal cochlea in vitro after neomycin intoxication. Our studies show that cochlear sensory epithelium behaves differently while maintained in various culture conditions, although we did not observe regeneration whatever the molecules or growth factors tested. The ototoxic action of neomycin in vitro produced a specific death of hair cells, except in the apical region. Organ of Corti of rats 3 days after birth always presented two regions that responded differently to the antibiotic: a widespread scar region extending from the basal cochlea up to the beginning of the apical turn, where most hair cells had disappeared, and a second region called the resistance region localized in the apex, and which was more or less developed depending on culture conditions. The length of the resistance region was modulated by molecules or growth factors added to the feeding solution suggesting that some of them could produce a protective action on hair cells against neomycin. Slight protection effects may be found with RA and insulin, however, the most definite protection results from the combination of insulin with TGFalpha as shown by the large increase in the length of the resistance region compared to organ of Corti treated with antibiotic alone. The tested molecules and growth factors did not promote cochlear hair cell regeneration in vitro after neomycin treatment, however some of them may offer a protective action against ototoxicity.
Collapse
Affiliation(s)
- R Romand
- Laboratoire de Neurobiologie, Université Blaise Pascal-Clermont II, 63177 Aubière Cedex, France.
| | | |
Collapse
|
42
|
Kuntz A, Oesterle E. Transforming growth factor ? with insulin stimulates cell proliferation in vivo in adult rat vestibular sensory epithelium. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980928)399:3<413::aid-cne9>3.0.co;2-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Staecker H, Van De Water TR. Factors controlling hair-cell regeneration/repair in the inner ear. Curr Opin Neurobiol 1998; 8:480-7. [PMID: 9751665 DOI: 10.1016/s0959-4388(98)80035-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Damaged hair cells in the avian basilar papilla are replaced by regenerative proliferation of supporting cells and transdifferentiation of supporting cells into hair cells. In the mammalian vestibular system, transdifferentiation and, possibly, the repair of damaged hair cells appear to play significant roles. Several growth factors have been found to be associated with the regeneration/repair process: insulin, insulin-like growth factor 1 (IGF-1), and fibroblast growth factors are important for avian inner ear regeneration/repair, whereas epidermal growth factor, transforming growth factor alpha, insulin, IGF-1, and IGF-2 are important for regeneration/repair in the mammalian labyrinth. Increasing evidence suggests that regeneration/repair of mammalian auditory hair cells is possible during the early neonatal period and may exist to a very limited degree at later times.
Collapse
Affiliation(s)
- H Staecker
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston 02114, USA
| | | |
Collapse
|
44
|
Malgrange B, Rogister B, Lefebvre PP, Mazy-Servais C, Welcher AA, Bonnet C, Hsu RY, Rigo JM, Van De Water TR, Moonen G. Expression of growth factors and their receptors in the postnatal rat cochlea. Neurochem Res 1998; 23:1133-8. [PMID: 9704604 DOI: 10.1023/a:1020724506337] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RT-PCR was used to assay for growth factors and receptors from seven different protein families in cochlea tissues of the juvenile rat. There was a broad representation of the growth factor families in all the cochlea tissues examined, though the organ of Corti and stria vascularis expressed a greater variety than the spiral ganglion. This broad expression suggests that a variety of known growth factors play significant roles in the development, maintenance, and repair of the inner ear. The results of this survey serve as a basis for the design of future in vitro experiments that will address the ability of growth factors to protect hair cells from damage and to evoke a repair-regeneration response by injured hair cells.
Collapse
Affiliation(s)
- B Malgrange
- Department of Human Physiology and Pathophysiology, University of Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stone JS, Oesterle EC, Rubel EW. Recent insights into regeneration of auditory and vestibular hair cells. Curr Opin Neurol 1998; 11:17-24. [PMID: 9484612 DOI: 10.1097/00019052-199802000-00004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in hair cell regeneration are progressing at a rapid rate. This review will highlight and critique recent attempts to understand some of the cellular and molecular mechanisms underlying hair cell regeneration in non-mammalian vertebrates and efforts to induce regeneration in the mammalian inner ear sensory epithelium.
Collapse
Affiliation(s)
- J S Stone
- Department of Otolaryngology, University of Washington School of Medicine, Seattle, USA
| | | | | |
Collapse
|
46
|
Affiliation(s)
- J T Corwin
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | |
Collapse
|