1
|
Sato S, Teramura Y, Ogawa Y, Shimizu E, Otake M, Hori K, Kamata T, Shu Y, Seta Y, Kuramochi A, Asai K, Shimizu S, Negishi K, Hirayama M. Conditioned media of stem cells from human exfoliated deciduous teeth contain factors related to extracellular matrix organization and promotes corneal epithelial wound healing. Regen Ther 2025; 29:148-161. [PMID: 40170802 PMCID: PMC11960544 DOI: 10.1016/j.reth.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 04/03/2025] Open
Abstract
This study aimed to investigate the therapeutic potential of cell-free conditioned media (CM) from human mesenchymal stem cells (hMSCs), specifically stem cells from human exfoliated deciduous teeth (SHED), for treating ocular surface diseases. The proteomes of various hMSC-CMs were compared using cytokine array and liquid chromatography-mass spectrometry (LC-MS). Bioinformatic analysis identified key biological pathways associated with SHED-CM, immortalized SHED-CM (IM-SHED-CM), and a fractionated component of IM-SHED-CM in which low weight molecules (less than 3.5kD) were depleted. Corneal epithelial wound healing models were constructed by epithelial scraping and treated with eye drops derived from SHED-CM. For the migration assay, the human corneal epithelial cells were wounded and then incubated with SHED-CM. SHED-CM, IM-SHED-CM, and >3.5 kD fractionated component eyedrops were administered to a chronic graft-versus-host disease (cGVHD) mouse model with sever corneal epithelial damages. SHED-CM, IM-SHED-CM, and >3.5 kD fractionated component of IM-SHED-CM were enriched in factors involved in epithelial wound healing, particularly extracellular matrix (ECM) organization. Both in vitro and in vivo assays demonstrated that SHED-CM significantly enhanced corneal epithelial wound healing. Furthermore, SHED-CM-derived eye drops reduced corneal epithelial damage, inflammatory cell infiltration, and oxidative stress in the corneal epithelium and maintained the expression of limbal stem cell markers in the cGVHD mouse model. These findings suggest that SHED-CM eye drops could be a novel treatment for corneal epithelial damage, highlighting the role of bioactive factors in promoting wound healing and offering an alternative to cell-based MSC therapies for corneal wound healing.
Collapse
Affiliation(s)
- Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuji Teramura
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
- Master's/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Otake
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Keigo Hori
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Takamitsu Kamata
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Yujing Shu
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Yasuhiro Seta
- Hitonowa Medical, K. PLAZA 2F, 1-7 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Akiko Kuramochi
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shota Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
2
|
Fanti F, Sergi M, Compagnone D. LC-MS/MS based analytical strategies for the detection of lipid peroxidation products in biological matrices. J Pharm Biomed Anal 2025; 256:116681. [PMID: 39847924 DOI: 10.1016/j.jpba.2025.116681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Oxidative stress (OS) arises mainly from exposure to reactive oxygen species (ROS) such as superoxide anion, hydroxyl radical, and hydrogen peroxide. These molecules can cause significant damage to proteins, DNA, and lipids, leading to various diseases. Cells fight ROS with detoxifying enzymes; however, an imbalance can cause damage leading to ischemic conditions, heart disease progression, and neurological disorders such as Alzheimer's disease. Accurate assessment of OS levels is then crucial and oxidized lipidic products are considered relevant OS biomarkers. In fact, lipids are particularly prone to ROS attack, leading to lipid peroxidation, cell membrane damage, and toxic by-products affecting DNA, proteins, and low-density lipoproteins. This review reports on recent advances in LC-MS/MS approaches for OS lipidic biomarkers, focusing on overcoming analytical challenges. 3 different classes of biomarkers have been reported, malondialdehyde, isoprostanes and oxidised sterols. For each class, the main analytical challenges with a particular focus on derivatisation procedure, sensitivity, matrix effect, ionisation have been described and discussed. The recent advancements of the LC-MS-MS procedures move towards simpler approaches, reducing errors and improving the reliability of the measurement thus enabling a comprehensive and robust OS assessment.
Collapse
Affiliation(s)
- Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy.
| |
Collapse
|
3
|
Oruk S, Ergul Erkec O, Huyut Z, Acikgoz E. Neuroprotective effects of ghrelin in cuprizone-induced rat model of multiple sclerosis. Metab Brain Dis 2025; 40:176. [PMID: 40214860 PMCID: PMC11991981 DOI: 10.1007/s11011-025-01603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Multiple sclerosis (MS) is an inflammatory central nervous system disease characterized by demyelination and axonal loss and is the main cause of non-traumatic neurological disability in young adults. Although there are several treatment approaches to manage the disease, there is no definitive cure for multiple sclerosis. Inflammation and oxidative stress are known to play important roles in the pathophysiology of MS. Ghrelin, a peptide secreted by the stomach, is reported to have neuroprotective properties through several pathways, including attenuating oxidative stress and inflammation. In the present study cuprizone (CPZ)-induced model of MS was used in Wistar albino rats to study the possible anti-inflammatory, antioxidant and neuroprotective effects of ghrelin. Rats were randomly divided into six groups: Control groups (Control35 and Control-S42), demyelination group, remyelination group, remyelination + ghrelin (20 µg/kg) group and remyelination + ghrelin (40 µg/kg) group. Y maze test was performed on the rats on their last day of the experiment. Oxidative stress and inflammatory parameters were investigated in brain using commercial kits by enzyme-linked immunosorbent assay (ELISA). Luxol fast blue (LFB) and hematoxylen&eosin (H&E) staining were performed in brain tissues. CPZ leads to a significant decrease in glutathione peroxidase (GSH-Px) levels and myelin content and a significant increase in malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-ɑ), interleukin- 6 (IL- 6) levels, the number of lymphatic cells and inflammatory cells. A significant increase in the antioxidant parameter levels and a significant decrease in MDA levels were found in the ghrelin treated groups (p < 0.05). CPZ leads to irregular, fragmented, demyelinating nerve fibers. A more significant remyelination was observed in the ghrelin treated groups compared to the other groups (p < 0.05). In conclusion, ghrelin treatment showed neuroprotective and antioxidant properties and reduced demyelination in the CPZ-induced rat model of multiple sclerosis.
Collapse
Affiliation(s)
- Sezai Oruk
- Department of Medical Physiology, Institute of Health Sciences, Van Yuzuncu Yil University, Van, Turkey
| | - Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
4
|
Eissa H, Abdelsalam EM, Mokbel SA, Elhadedy NH, Khalil RM, AbdElfattah AAM, Abdel Ghaffar DM, El Nashar EM, Hassan AH, Al-Zahrani NS, Aldahhan RA, Yassin NAE. Vitamin D supplementation as a prophylactic therapy in the management of pre-eclampsia: Focus on VEGF, Ki67, oxidative stress markers in correlation to placental ultra structure. Life Sci 2025:123605. [PMID: 40194761 DOI: 10.1016/j.lfs.2025.123605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Pre-eclampsia (PE) is a progressive hypertension condition that manifests in the second or third trimester of pregnancy and causes significant proteinuria. A lack of vitamin D (Vit. D) is linked to different pregnancy problems, including impaired placental development. Vitamin D has been shown to enhance fetal growth and lower the incidence of PE. AIM OF THE WORK To better understand the pathophysiological mechanisms behind the PE disease and the therapeutic approaches used to manage it, this study examines the role of Vit. D in placental ischemia and its regulatory effects in Nitro L-arginine Methyl Ester (L-NAME) animal model of PE. METHODS Fifty female rats in the estrus stage were mated with 30 male rats. Thirty female rats were pregnant and divided into three equal groups: control, Preeclampsia group (PE); using L-NAME for induction of PE, and Vit. D group from 7th day then induction by L-NAME at 10th day till end of pregnancy. Mean arterial Bp, proteinuria, oxidative stress markers, histological structure and immunohistochemical expression of Ki67 and VEGF, Morphometric study, and transmission electron microscopy(TEM) were assessed. The results of the current study suggested that, Vit. D supplementation could lower blood pressure, reduce oxidative stress, and restore angiogenic balance through vascular endothelial growth factor (VEGF) and Ki67. CONCLUSION For the first time, we conclude that vitamin D supplementation may not only have direct effects on blood pressure regulation and angiogenic hemostasis but also recover placental function, actually contributing to the prevention or management of PE.
Collapse
Affiliation(s)
- Hanan Eissa
- Department of Clinical Pharmacology, Mansoura University, Mansoura, Egypt.
| | | | - Somaia A Mokbel
- Department of Clinical Pharmacology, Mansoura University, Mansoura, Egypt.
| | - Nada H Elhadedy
- Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Rania M Khalil
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Amany AbdElfattah Mohamed AbdElfattah
- Department of Medical Histology & Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, King Salman International University, South Sinai, Egypt.
| | - Dalia M Abdel Ghaffar
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Eman Mohamad El Nashar
- Department of Anatomy, College Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Alshehri Hanan Hassan
- Endocrinology and Diabetes Section, Internal Medicine Department, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
| | - Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam 31541, Saudi Arabia.
| | | |
Collapse
|
5
|
Sun S, Tian R, Alford A, Yin D, Shi R. An analog of phenelzine demonstrates effective acrolein scavenging and neuroprotection without monoamine oxidase inhibition in a rat SCI model. Neuroscience 2025; 574:54-64. [PMID: 40189130 DOI: 10.1016/j.neuroscience.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Oxidative stress is widely recognized as a critical factor in the functional deficits after spinal cord injury (SCI). Oxidative stress and lipid peroxidation-derived aldehydes such as acrolein are known to play a key role in SCI pathology and have therefore emerged as valuable therapeutic targets. This study introduces a novel phenelzine analogue (PhzA), designed to retain the acrolein scavenging capability of phenelzine (Phz) while removing its undesirable monoamine oxidase (MAO) inhibition effects through structure-based modification. Using a rat model of contusion SCI, we showed that PhzA significantly reduced acrolein levels in both the acute and chronic stages of SCI with minimal MAO inhibition. In addition, PhzA reduced excessive microglial and astrocytic activation, dampening inflammation and gliosis. Furthermore, PhzA-treated rats exhibited significant improvements in motor function and reduction in mechanical hypersensitivity for up to 28 days post-injury compared to untreated rats. These findings further underscore the crucial role of aldehydes in SCI pathology and strengthen the notion that acrolein could serve as an effective therapeutic target for mitigating post-SCI neurodegeneration. These results also indicate that the expansion of acrolein-scavenging drug discovery through structure-based modification of existing repurposed drugs, such as with Phz, is a viable strategy with the benefit of a likely accelerated path towards clinical application. This effort may also benefit a range of neuronal diseases and injuries beyond SCI where acrolein is implicated, advancing the health of millions of patients.
Collapse
Affiliation(s)
- Siyuan Sun
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, USA; Center for Paralysis Research, Purdue University, West Lafayette, IN, USA
| | - Ran Tian
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, USA; Center for Paralysis Research, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA
| | - Anna Alford
- Center for Paralysis Research, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA
| | - David Yin
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, USA; West Lafayette Junior/Senior High School, West Lafayette, IN, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, USA; Center for Paralysis Research, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Feng C, Zhang L, Zhou X, Lu S, Guo R, Song C, Zhang X. Redox imbalance drives magnetic property and function changes in mice. Redox Biol 2025; 81:103561. [PMID: 40020452 PMCID: PMC11910372 DOI: 10.1016/j.redox.2025.103561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
The magnetic properties of substances directly determine their response to an externally applied magnetic field, which are closely associated with magnetoreception, magnetic resonance imaging (MRI), and magnetic bioeffects. However, people's understanding of the magnetic properties of living organisms remains limited. In this study, we utilized NRF2 (nuclear factor erythroid 2-related factor 2) deficient mice to investigate the contribution of redox (oxidation-reduction) homeostasis, in which the key process is the transfer of electron, a direct target of magnetic field and origin of paramagnetism. Our results show that the NRF2-/- mice exhibit significantly altered systemic redox state, accompanied by increased magnetic susceptibility, particularly in the liver and spleen. Further analyses reveal that the levels of paramagnetic reactive oxygen species (ROS) in these tissues are markedly elevated compared to wild-type mice. Moreover, the concentrations of Fe2+ and Fe3+ are significantly elevated in NRF2-/- mice, which are directly correlated with the increased magnetic susceptibility. The disrupted redox balance in NRF2-/- mice not only exacerbates oxidative stress and iron deposition, but also induces impairment to the liver and spleen. The findings highlight the combined effects of ROS and iron metabolism in driving magnetic susceptibility changes, providing valuable theoretical insights for further research into magnetic bioeffects and organ-specific sensitivity to magnetic fields.
Collapse
Affiliation(s)
- Chuanlin Feng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaoyuan Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230039, China
| | - Shiyu Lu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Ruowen Guo
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Song
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Xin Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230039, China.
| |
Collapse
|
7
|
Han L, Zhai W. Mechanisms and preventive measures of ALDH2 in ischemia‑reperfusion injury: Ferroptosis as a novel target (Review). Mol Med Rep 2025; 31:105. [PMID: 40017132 DOI: 10.3892/mmr.2025.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Ischemia‑reperfusion injury (IRI) refers to tissue or organ damage that occurs following a period of inadequate blood supply (ischemia) followed by restoration of blood flow (reperfusion) within a short time frame. This phenomenon is prevalent in clinical conditions such as cardiovascular and cerebrovascular disease, organ transplantation and stroke. Despite its frequency, effective therapeutic strategies to mitigate IRI remain elusive in clinical practice, underscoring the need for a deeper understanding of its molecular mechanisms. Aldehyde dehydrogenase 2 (ALDH2), a key enzyme in alcohol metabolism, serves a role in alleviating oxidative stress and cell damage during IRI by modulating oxidative stress, decreasing apoptosis and inhibiting inflammatory responses. ALDH2 exerts protective effects by detoxifying reactive aldehydes, thereby preventing lipid peroxidation and maintaining cellular homeostasis. Furthermore, ferroptosis, a regulated form of cell death driven by iron accumulation and subsequent lipid peroxidation, is a key process in IRI. However, the precise role of ALDH2 in modulating ferroptosis during IRI remains incompletely understood. Although there is an interaction between ALDH2 activity and ferroptosis, the underlying mechanisms have yet to be clarified. The present review examines the role of ALDH2 and ferroptosis in IRI and the potential regulatory influence of ALDH2 on ferroptosis mechanisms, as well as potential targeting of ALDH2 and ferroptosis for IRI treatment and prevention. By elucidating the complex interplay between ALDH2 and ferroptosis, the present review aims to provide new insights for the development of innovative therapeutic strategies to mitigate ischemic tissue damage and improve clinical outcomes.
Collapse
Affiliation(s)
- Liang Han
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Wen Zhai
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
8
|
Jiang C, Yan Y, Long T, Xu J, Chang C, Kang M, Wang X, Chen Y, Qiu J. Ferroptosis: a potential therapeutic target in cardio-cerebrovascular diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05262-7. [PMID: 40148662 DOI: 10.1007/s11010-025-05262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Cardio-cerebrovascular diseases (CCVDs) are the leading cause of global mortality, yet effective treatment options remain limited. Ferroptosis, a novel form of regulated cell death, has emerged as a critical player in various CCVDs, including atherosclerosis, myocardial infarction, ischemia-reperfusion injury, cardiomyopathy, and ischemic/hemorrhagic strokes. This review highlights the core mechanisms of ferroptosis, its pathological implications in CCVDs, and the therapeutic potential of targeting this process. Additionally, it explores the role of Chinese herbal medicines (CHMs) in mitigating ferroptosis, offering novel therapeutic strategies for CCVDs management. Ferroptosis is regulated by several key pathways. The GPX4-GSH-System Xc- axis is central to ferroptosis execution, involving GPX4 using GSH to neutralize lipid peroxides, with system Xc- being crucial for GSH synthesis. The NAD(P)H/FSP1/CoQ10 axis involves FSP1 regenerating CoQ10 via NAD(P)H, inhibiting lipid peroxidation independently of GPX4. Lipid peroxidation, driven by PUFAs and enzymes like ACSL4 and LPCAT3, and iron metabolism, regulated by proteins like TfR1 and ferritin, are also crucial for ferroptosis. Inhibiting ferroptosis shows promise in managing CCVDs. In atherosclerosis, ferroptosis inhibitors reduce iron accumulation and lipid peroxidation. In myocardial infarction, inhibitors protect cardiomyocytes by preserving GPX4 and SLC7A11 levels. In ischemia-reperfusion injury, targeting ferroptosis reduces myocardial and cerebral damage. In diabetic cardiomyopathy, Nrf2 activators alleviate oxidative stress and iron metabolism irregularities. CHMs offer natural compounds that mitigate ferroptosis. They possess antioxidant properties, chelate iron, and modulate signaling pathways like Nrf2 and AMPK. For example, Salvia miltiorrhiza and Astragalus membranaceus reduce oxidative stress, while some CHMs chelate iron, reducing its availability for ferroptosis. In conclusion, ferroptosis plays a pivotal role in CCVDs, and targeting it offers novel therapeutic avenues. CHMs show promise in reducing ferroptosis and improving patient outcomes. Future research should explore combination therapies and further elucidate the molecular interactions in ferroptosis.
Collapse
Affiliation(s)
- Chenlong Jiang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Yang Yan
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Jiawei Xu
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Cuicui Chang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Meili Kang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Xuanqi Wang
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| | - Yuhua Chen
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China.
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China.
- School of Life and Health Science, Hainan University, No. 58 People's Avenue, Haikou, 570100, Hainan, China.
| | - Junlin Qiu
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| |
Collapse
|
9
|
Rorsman HO, Müller MA, Liu PZ, Sanchez LG, Kempf A, Gerbig S, Spengler B, Miesenböck G. Sleep pressure accumulates in a voltage-gated lipid peroxidation memory. Nature 2025:10.1038/s41586-025-08734-4. [PMID: 40108451 DOI: 10.1038/s41586-025-08734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
Voltage-gated potassium (KV) channels contain cytoplasmically exposed β-subunits1-5 whose aldo-keto reductase activity6-8 is required for the homeostatic regulation of sleep9. Here we show that Hyperkinetic, the β-subunit of the KV1 channel Shaker in Drosophila7, forms a dynamic lipid peroxidation memory. Information is stored in the oxidation state of Hyperkinetic's nicotinamide adenine dinucleotide phosphate (NADPH) cofactor, which changes when lipid-derived carbonyls10-13, such as 4-oxo-2-nonenal or an endogenous analogue generated by illuminating a membrane-bound photosensitizer9,14, abstract an electron pair. NADP+ remains locked in the active site of KVβ until membrane depolarization permits its release and replacement with NADPH. Sleep-inducing neurons15-17 use this voltage-gated oxidoreductase cycle to encode their recent lipid peroxidation history in the collective binary states of their KVβ subunits; this biochemical memory influences-and is erased by-spike discharges driving sleep. The presence of a lipid peroxidation sensor at the core of homeostatic sleep control16,17 suggests that sleep protects neuronal membranes against oxidative damage. Indeed, brain phospholipids are depleted of vulnerable polyunsaturated fatty acyl chains after enforced waking, and slowing the removal of their carbonylic breakdown products increases the demand for sleep.
Collapse
Affiliation(s)
- H Olof Rorsman
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Max A Müller
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-Universität, Giessen, Germany
| | - Patrick Z Liu
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | | | - Anissa Kempf
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Biozentrum, Universität Basel, Basel, Switzerland
| | - Stefanie Gerbig
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-Universität, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-Universität, Giessen, Germany
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Zhang J, Lu N, Hou S, Sun S, Jia R, Wu D. The acute toxicity of tripropyl phosphate and tributyl phosphate to Microcystis aeruginosa. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:118. [PMID: 40085181 DOI: 10.1007/s10653-025-02411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
The mass production and applications of tripropyl phosphate (TPrP) and tributyl phosphate (TBP) have facilitated their widespread distribution in aquatic environments, thereby posing a threat to the ecosystem. Here, the acute toxicity of TPrP and TBP to Microcystis aeruginosa and the underlying mechanisms were investigated. The results demonstrate that both TPrP and TBP can significantly inhibit the growth and reduce cell viability of M. aeruginosa with increasing concentrations and exposure time. Moreover, the treatment with TPrP and TBP result in a notable reduction in the content of chlorophyll a. The content of dissolved organic carbon (DOC) is down-regulated at lower concentrations, and shows a gradual increase with increasing concentrations of TPrP or TBP. Meanwhile, minor discrepancies have been observed in the proportions of DOC components through excitation-emission-matrix (EEM) spectra. The exposure of TPrP and TBP results in the production of excessive reactive oxygen species (ROS) and the increase of antioxidant enzymatic activities, including superoxide dismutase (SOD) and catalase (CAT). TPrP, but not TBP, has been demonstrated to enhance the MDA level, indicating a significant effect on membrane lipid peroxidation. The differences in the respective toxicity mechanisms and biological effects can be attributed to the alkyl chain lengths and physicochemical properties inherent to each compound. Consequently, the study not only offers insights into the acute effects of the two alkyl organophosphate esters on M. aeruginosa, but also provides a scientific basis and framework for assessing their ecological risk in aquatic environments.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Shandong Provincial Water Supply and Drainage Monitoring Center, Middle Aoti Road, Jinan, 250100, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Fengming Road, Jinan, 250101, China
| | - Nannan Lu
- Shandong Provincial Water Supply and Drainage Monitoring Center, Middle Aoti Road, Jinan, 250100, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Shuguo Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Fengming Road, Jinan, 250101, China
| | - Shaohua Sun
- Shandong Provincial Water Supply and Drainage Monitoring Center, Middle Aoti Road, Jinan, 250100, China
| | - Ruibao Jia
- Shandong Provincial Water Supply and Drainage Monitoring Center, Middle Aoti Road, Jinan, 250100, China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Fengming Road, Jinan, 250101, China
| |
Collapse
|
11
|
Li G, Cheng H, Qiao C, Feng J, Yan P, Yang R, Song J, Sun J, Zhao Y, Zhang Z. Root-zone oxygen supply mitigates waterlogging stress in tomato by enhancing root growth, photosynthetic performance, and antioxidant capacity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109744. [PMID: 40088584 DOI: 10.1016/j.plaphy.2025.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Water-air coupled oxygen supply to the root zone can significantly enhance crop yield and quality under non-waterlogged conditions. However, its impact on crops subjected to waterlogging-induced hypoxia remains unclear. In this study, tomatoes were chosen as the model crop due to their economic value and sensitivity to waterlogged conditions. Two tomato cultivars, "Micro-Tom" and "Omanda-3," were subjected to waterlogging and treated with varying levels of water-air coupled oxygen supply. The results demonstrated that supplying 25 mL or 50 mL of air per plant to the root zone significantly improved biomass compared to waterlogged plants without additional oxygen. Notably, root dry weight increased by over 73.0% in both varieties. Root morphological analysis revealed that oxygen supply in the root zone greatly promoted root growth, with marked increases in surface area (149.7%), root length (181.2%), fork number (198.4%), and tip number (165.4%). Furthermore, photosynthesis and antioxidant assays showed substantial increases in the leaf net photosynthetic rate, transpiration rate, stomatal conductance, as well as catalase and peroxidase activity in response to oxygen supply. Consequently, fruit yield increased by 86.2% in Micro-Tom and 24.3% in Omanda-3. In conclusion, oxygen supplementation through the water-air coupling technique effectively enhanced root growth, photosynthesis, and antioxidant capacity in waterlogged tomato plants, alleviating hypoxic stress and associated yield losses. These findings offer a theoretical basis and practical recommendations for managing waterlogged farmland in diverse agricultural contexts.
Collapse
Affiliation(s)
- Geng Li
- School of Life Sciences, Ludong University, Yantai, Shandong 264000, China
| | - Hongyu Cheng
- School of Life Sciences, Ludong University, Yantai, Shandong 264000, China
| | - Changhong Qiao
- School of Life Sciences, Ludong University, Yantai, Shandong 264000, China
| | - Jie Feng
- School of Life Sciences, Ludong University, Yantai, Shandong 264000, China
| | - Ping Yan
- School of Life Sciences, Ludong University, Yantai, Shandong 264000, China
| | - Runya Yang
- School of Life Sciences, Ludong University, Yantai, Shandong 264000, China.
| | - Jianqiang Song
- School of Life Sciences, Ludong University, Yantai, Shandong 264000, China
| | - Junna Sun
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong 264000, China
| | - Ying Zhao
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong 264000, China
| | - Zhenhua Zhang
- School of Hydraulic and Civil Engineering, Ludong University, Yantai, Shandong 264000, China.
| |
Collapse
|
12
|
Flor AC, Wolfgeher DJ, Kron SJ. Noncanonical inhibition of topoisomerase II alpha by oxidative stress metabolites. Redox Biol 2025; 80:103504. [PMID: 39879737 PMCID: PMC11810846 DOI: 10.1016/j.redox.2025.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
During its catalytic cycle, the homodimeric ATPase topoisomerase II alpha (TOP2A) cleaves double stranded DNA and remains covalently bound to 5' ends via tyrosine phosphodiester bonds. After passing a second, intact duplex through, TOP2A rejoins the break and releases from the DNA. Thereby, TOP2A can relieve strain accumulated during transcription, replication and chromatin remodeling and disentangle sister chromatids for mitosis. Chemotherapy agents such as etoposide are poisons that trap TOP2A mid-cycle, covalently bound to cleaved DNA, leaving behind DNA double strand breaks and activating DNA damage response. While etoposide has been proposed to stabilize the TOP2A-DNA cleavage complex (TOP2Acc) via interfacial inhibition, we have elucidated a complementary mechanism mediated by the ability of etoposide and other TOP2A poisons to induce oxidative stress. Consequently, lipid peroxidation and accumulation of lipid-derived electrophiles such as 4-hydroxynonenal (HNE) results in covalent modification of TOP2A, both blocking ATPase activity and trapping TOP2Acc. HNE modifies multiple sites on human TOP2A in vitro, including alkylating Cys216 in the ATPase domain in a DNA-dependent fashion. Taken together, our data suggest an underappreciated role for TOP2A as a redox sensor in tumor cells, connecting oxidative stress to DNA damage signaling and thereby creating a target for redox-active drugs.
Collapse
Affiliation(s)
- Amy C Flor
- University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Donald J Wolfgeher
- University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Stephen J Kron
- University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
13
|
Tang M, Wu Y, Olnood CG, Gao Y, Wang F, Zhang Z, Peng C, Zhou X, Huang C, Xiong X, Yin Y. Effects of peroxidized lipids on intestinal morphology, antioxidant capacity and gut microbiome in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:430-443. [PMID: 40034456 PMCID: PMC11875184 DOI: 10.1016/j.aninu.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 03/05/2025]
Abstract
This study investigated the effect of peroxidized lipids on piglets' growth performance, intestinal morphology, inflammatory reactions, oxidative stress in the liver, duodenum, jejunum, ileum, and colon, and ileal microbiota. Twenty piglets (Duroc × [Landrace × Yorkshire]; age = 21 d old, BW = 6.5 ± 1 kg) were randomly assigned to two groups with 10 replicates per group and one piglet per replicate. The control group was fed 6% fresh soybean oil and the peroxidized soybean oil (PSO) group fed 6% PSO. The experimental feeding period lasted 24 d. The study found no impact on ADFI, ADG and gain to feed ratio (P > 0.05). However, the PSO group increased the diarrhea index and the serum levels of lactate dehydrogenase triglycerides, cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol (P < 0.05), along with decreased concentrations of alanine aminotransferase and blood urea nitrogen (P < 0.05). For oxidative enzymes, PSO increased the concentration of F2-isoprostane in urine (P = 0.032), malondialdehyde (MDA) in the duodenum (P = 0.001) and jejunum (P = 0.004), decreased thiobarbituric acid reactive substances (TBARS) in the liver (P = 0.001) but increased TBARS in duodenum (P = 0.001), and carbonylated proteins in the duodenum (P = 0.003). For antioxidant enzymes, PSO decreased superoxide dismutase (SOD) in the liver (P = 0.001), colon (P = 0.002), and jejunum (P = 0.015), along with glutathione peroxidase (GSH-Px) in the liver (P = 0.008) and NAD(P)H:quinone oxidoreductase 1 (NQO1) in ileum (P = 0.001). For inflammatory reactions, PSO increased interleukin (IL)-1β concentrations in the duodenum and colon, and IL-10 in the jejunum, while decreasing IL-4 concentration in the duodenum (P < 0.05). For intestinal morphology and ileal microbiota, PSO increased ileal crypt depth, while decreasing the crypt-to-villus ratio (P < 0.05). Peroxidized soybean oil increased the relative abundance of Prevotella, Clostridium_sensu_stricto_1, Clostridium_sensu_stricto_6, Pasteurella and Klebsiella (P < 0.05). In conclusion, this study revealed that PSO worsened diarrhea, increasing the ileal crypt depth and the relative abundance of harmful microbiota, and induced oxidative stress and inflammation in the intestines and liver, primarily in the jejunum and ileum.
Collapse
Affiliation(s)
- Mengxuan Tang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuliang Wu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
| | | | - Yundi Gao
- Sichuan Synlight Biotech Ltd., Chengdu 610041, China
| | - Fei Wang
- Sichuan Synlight Biotech Ltd., Chengdu 610041, China
| | - Zicheng Zhang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Can Peng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
| | - Xihong Zhou
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
| | - Chunxia Huang
- School of Stomatology, Changsha Medical University, Changsha 410219, China
| | - Xia Xiong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
- School of Stomatology, Changsha Medical University, Changsha 410219, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
14
|
Zhang Y, Zhao M, Sun Y, Li H. Theoretical investigation of the mechanism, kinetics and subsequent degradation products of the NO 3 radical initiated oxidation of acrolein. Sci Rep 2025; 15:6282. [PMID: 39979450 PMCID: PMC11842826 DOI: 10.1038/s41598-025-90856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
The explicit reaction mechanism and dynamics of acrolein (CH2 = CHCHO) with NO3 were studied using quantum chemistry methods. We examined the potential energy surface (PES) for H-abstraction reactions by NO3 and NO3 addition to the unsaturated carbon atoms in the CH2 = CHCHO molecule. The PES analysis and thermochemical calculations reveal that NO3-addition reactions and H-abstraction reactions are in competition with each other. The subsequent reactions of IM1 (CH2ONO2CHCHO), IM2 (CH2CHONO2CHO) and h-P3 were detailed investigated. The computed total rate constant increase with the temperature raising from 200 to 3000 K, and the rate constant is 1.43 × 10- 15 cm3 molecule- 1 s- 1 at 298 K, which is consistent with the experimental values. The lifetime of Acrolein oxidized by NO3 radicals is estimated to be 14.20 days. Our theoretical investigations are of significant in understanding the oxidation process of unsaturated aldehyde by NO3.
Collapse
Affiliation(s)
- Yunju Zhang
- Key Laboratory of Photoinduced Functional Materials, Key Laboratory of Inorganic Materials Preparation and Synthesis, Mianyang Normal University, Mianyang, 621000, PR China.
| | - Meilian Zhao
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine Liutai, Avenue, Wenjiang District, Chengdu, PR China
| | - Yuxi Sun
- Key Laboratory of Photoinduced Functional Materials, Key Laboratory of Inorganic Materials Preparation and Synthesis, Mianyang Normal University, Mianyang, 621000, PR China
| | - Huirong Li
- Key Laboratory of Photoinduced Functional Materials, Key Laboratory of Inorganic Materials Preparation and Synthesis, Mianyang Normal University, Mianyang, 621000, PR China.
| |
Collapse
|
15
|
Chancellor A, Constantin D, Berloffa G, Yang Q, Nosi V, Loureiro JP, Colombo R, Jakob RP, Joss D, Pfeffer M, De Simone G, Morabito A, Schaefer V, Vacchini A, Brunelli L, Montagna D, Heim M, Zippelius A, Davoli E, Häussinger D, Maier T, Mori L, De Libero G. The carbonyl nucleobase adduct M 3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells. Immunity 2025; 58:431-447.e10. [PMID: 39701104 DOI: 10.1016/j.immuni.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
The major histocompatibility complex (MHC) class I-related molecule MHC-class-I-related protein 1 (MR1) presents metabolites to distinct MR1-restricted T cell subsets, including mucosal-associated invariant T (MAIT) and MR1T cells. However, self-reactive MR1T cells and the nature of recognized antigens remain underexplored. Here, we report a cell endogenous carbonyl adduct of adenine (8-(9H-purin-6-yl)-2-oxa-8-azabicyclo[3.3.1]nona-3,6-diene-4,6-dicarbaldehyde [M3Ade]) sequestered in the A' pocket of MR1. M3Ade induced in vitro MR1-mediated stimulation of MR1T cell clones that bound MR1-M3Ade tetramers. MR1-M3Ade tetramers identified heterogeneous MR1-reactive T cells ex vivo in healthy donors, individuals with acute myeloid leukemia, and tumor-infiltrating lymphocytes from non-small cell lung adenocarcinoma and hepatocarcinoma. These cells displayed phenotypic, transcriptional, and functional diversity at distinct differentiation stages, indicating their adaptive nature. They were also polyclonal, with some preferential T cell receptor (TCRαβ) pair usage. Thus, M3Ade is an MR1-presented self-metabolite that enables stimulation and tracking of human-MR1T cells from blood and tissue, aiding our understanding of their roles in health and disease.
Collapse
Affiliation(s)
- Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| | - Daniel Constantin
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Qinmei Yang
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Michael Pfeffer
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Giulia De Simone
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Aurelia Morabito
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Laura Brunelli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniela Montagna
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia and Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Markus Heim
- Hepatology Laboratory, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Enrico Davoli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
16
|
Ullah S, Feng F, Zhao M, Zhang J, Shao Q. Effect of dietary supplementation of lauric acid on growth performance, digestive enzymes, serum immune and antioxidant parameters, and intestinal morphology in black sea bream. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:43. [PMID: 39918627 DOI: 10.1007/s10695-025-01457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025]
Abstract
An eight-week feeding trial was conducted to examine the impact of dietary supplementation with lauric acid (LA) on juvenile black sea bream. A basal diet was formulated containing 19.9% fish meal, while five additional diets were prepared, each supplemented with varying levels of LA: LA1 (0.01%), LA2 (0.02%), LA3 (0.04%), LA4 (0.08%), and LA5 (0.16%), denoted as LA1 through LA5, respectively. Triplicate tanks were randomly allocated to each diet, each containing 20 fish with an initial weight of 1.55 ± 0.02 g. At the conclusion of the trial, the LA3 group exhibited significantly greater final body weight (FBW), weight gain (WG), specific growth rate (SGR), and protein efficiency ratio (PER) compared to the other groups (P < 0.05), while the feed conversion ratio (FCR) was markedly higher in the control group. No significant differences were detected among the groups in terms of initial body weight (IBW), muscle fiber index (MFI), protein productive value (PPV), condition factor (CF), hepatosomatic index (HSI), intraperitoneal fat (IPF), viscerosomatic index (VSI), and survival rate (SR) (P > 0.05). No significant variations were observed among the groups in the proximate compositions of the dorsal muscle and whole body (p > 0.05). Furthermore, no significant differences were observed in serum immune and antioxidant parameters in the midgut and hindgut and digestive enzyme activity (P > 0.05) among the treatment groups. However, the LA3 group demonstrated significantly higher levels of serum immune response markers IgM, C3, and C4 compared to the other groups, while malondialdehyde (MDA) levels were significantly elevated in the control group relative to the others. The LA3 group demonstrated significantly increased fore-intestinal villus height, crypt depth, villus height-to-crypt depth ratio, and goblet cell count per villus compared to the other groups (P < 0.05).
Collapse
Affiliation(s)
- Sami Ullah
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450001, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Fengqin Feng
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450001, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qingjun Shao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ocean Academy, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
17
|
Wang W, Chen J, Zhan L, Zou H, Wang L, Guo M, Gao H, Xu J, Wu W. Iron and ferroptosis in kidney disease: molecular and metabolic mechanisms. Front Immunol 2025; 16:1531577. [PMID: 39975561 PMCID: PMC11835690 DOI: 10.3389/fimmu.2025.1531577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Maintaining iron homeostasis is necessary for kidney functioning. There is more and more research indicating that kidney disease is often caused by iron imbalance. Over the past decade, ferroptosis' role in mediating the development and progression of renal disorders, such as acute kidney injury (renal ischemia-reperfusion injury, drug-induced acute kidney injury, severe acute pancreatitis induced acute kidney injury and sepsis-associated acute kidney injury), chronic kidney disease (diabetic nephropathy, renal fibrosis, autosomal dominant polycystic kidney disease) and renal cell carcinoma, has come into focus. Thus, knowing kidney iron metabolism and ferroptosis regulation may enhance disease therapy. In this review, we discuss the metabolic and molecular mechanisms of iron signaling and ferroptosis in kidney disease. We also explore the possible targets of ferroptosis in the therapy of renal illness, as well as their existing limitations and future strategies.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingdi Chen
- Department of orthopedics, The Airborne Military Hospital, Wuhan, Hubei, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Handong Zou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengmeng Guo
- The First Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Hang Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
18
|
dos Anjos MM, de Paula GR, Yokomizo DN, Costa CB, Bertozzi MM, Verri WA, Alfieri AA, Morotti F, Seneda MM. Effect of Alpha-Lipoic Acid on the Development, Oxidative Stress, and Cryotolerance of Bovine Embryos Produced In Vitro. Vet Sci 2025; 12:120. [PMID: 40005881 PMCID: PMC11860579 DOI: 10.3390/vetsci12020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress (OS) induced by an imbalance in reactive oxygen species (ROS) levels in vitro impairs embryonic development. Here, we assessed the effects of alpha-lipoic acid (ALA) in in vitro production media on OS reduction, embryonic development, and cryotolerance of bovine embryos. We evaluated the effects of adding different concentrations of ALA (2.5, 5, 10, and 25 μM) to in vitro maturation (IVM) or in vitro culture (IVC) medium on embryonic development. We also determined the effects of adding ALA (25 μM) to the IVM and IVC medium in the same routine on the development and quality of embryos, ROS levels, and cryotolerance. Embryos were produced in vitro using conventional protocols for each treatment. The inclusion of ALA in the IVM and IVC media did not affect the development or quality of embryos; however, it reduced ROS levels in grade II embryos and increased hatching after 12 h on day 7 in grade I embryos and on day 8 in grade II embryos after warming. These findings prompt questions regarding the potential of ALA in improving embryo metabolism, considering the initial embryo recovery in the first few hours of embryo warming.
Collapse
Affiliation(s)
- Mariana Moreira dos Anjos
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (M.M.d.A.); (G.R.d.P.); (D.N.Y.); (C.B.C.); (F.M.)
| | - Gabriela Rodrigues de Paula
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (M.M.d.A.); (G.R.d.P.); (D.N.Y.); (C.B.C.); (F.M.)
| | - Deborah Nakayama Yokomizo
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (M.M.d.A.); (G.R.d.P.); (D.N.Y.); (C.B.C.); (F.M.)
| | - Camila Bortoliero Costa
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (M.M.d.A.); (G.R.d.P.); (D.N.Y.); (C.B.C.); (F.M.)
| | - Mariana Marques Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (M.M.B.)
| | - Waldiceu Aparecido Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (M.M.B.)
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, University of Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Fábio Morotti
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (M.M.d.A.); (G.R.d.P.); (D.N.Y.); (C.B.C.); (F.M.)
| | - Marcelo Marcondes Seneda
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (M.M.d.A.); (G.R.d.P.); (D.N.Y.); (C.B.C.); (F.M.)
| |
Collapse
|
19
|
Wang YN, Liu S. The role of ALDHs in lipid peroxidation-related diseases. Int J Biol Macromol 2025; 288:138760. [PMID: 39674477 DOI: 10.1016/j.ijbiomac.2024.138760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Lipid peroxidation presents the oxidative degradation of polyunsaturated fatty acids lincited by reactive species. Excessive accumulation of lipid peroxidation byproducts, including 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA), causes protein dysfunction and various illnesses. Aldehyde dehydrogenases (ALDHs) catalyze the metabolism of both endogenous and exogenous aldehydes. These enzymes participate in detoxification and intermediary metabolism. Contemporary research has affirmed the involvement of both enzymatic and non-enzymatic pathways of ALDHs in modulating the evolution of diseases associated with lipid peroxidation. This review provides an overview of the biological functions and clinical implications concerning the enzymatic and non-enzymatic pathways of ALDHs in diseases related to lipid peroxidation, such as, non-alcoholic fatty liver disease (NAFLD), atherosclerosis, and type 2 diabetes (T2DM). Furthermore, the activators or inhibitors of ALDHs represent a promising therapeutic strategy for lipid peroxidation-related diseases.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Shiyue Liu
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
20
|
Dos Anjos Melo DF, Silva MAC, de Oliveira NRL, de Oliveira Neto JR, de Souza Lino Júnior R, Cruz AC, da Cunha LC. New insight on the acute CCl 4-induced hepatotoxicity model in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03824-6. [PMID: 39878816 DOI: 10.1007/s00210-025-03824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
The CCl4-induced hepatotoxicity model is a traditional preclinical assay applied to evaluate potential hepatoprotective compounds. However, several studies have used it with inappropriate dose and exposure time, generating both weak response or irreversible liver injury, as well as lack of representative liver and plasma biomarkers. Therefore, this study aims to determine the best dose and exposure time of CCl4 in Wistar rats, permitting a proper evaluation of potential hepatoprotective effect. Thus, CCl4-intraperitoneal doses of 0.5, 1.0, and 2.0 mL/kg were first evaluated 24 h post-exposure, and then with the best dose achieved, it was also assessed at 6 and 12 h post-exposure. The determination of the main hepatotoxicity biomarkers, including malondialdehyde (MDA), aspartate transaminase (AST), and alanine transaminase (ALT), and histopathological analyses were performed. The results suggest that 6h CCl4 post-exposure is too short to induce ideal liver injury, and at 24 h, a suggestive rat free-radical scavenger mechanism seems to revert CCl4-initiated damage. According to these data, the ideal acute CCl4-induced hepatotoxicity model was established at a dose of 2.0 mL/kg and 12 h post-exposure in Wistar rats, which demonstrated a significant increase of liver MDA levels without irreversible injury, permitting a proper and reliable evaluation of potential hepatoprotective compounds.
Collapse
Affiliation(s)
- Dorcas Fernandes Dos Anjos Melo
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil
- University Center of Goiatuba (UniCerrado), Goiatuba, GO, Brazil
| | - Marina Alves Coelho Silva
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil
| | - Naiara Raica Lopes de Oliveira
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil.
| | - Jerônimo Raimundo de Oliveira Neto
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil
| | - Ruy de Souza Lino Júnior
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Alessandro Carvalho Cruz
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil
| | - Luiz Carlos da Cunha
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil
| |
Collapse
|
21
|
Ma C, Zhang W, Jing J, Wang Z, Sheng N, An Z, Zhang J. Enalomics: A Mass Spectrometry-Based Approach for Profiling, Identifying, and Semiquantifying Enals in Biological Samples. Anal Chem 2025; 97:1507-1516. [PMID: 39748299 DOI: 10.1021/acs.analchem.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Human cells generate a bulk of aldehydes during lipid peroxidation (LPO), influencing critical cellular processes, such as oxidative stress, protein modification, and DNA damage. Enals, highly reactive α,β-unsaturated aldehydic metabolites, are implicated in various human pathologies, especially neurodegenerative disorders, cancer, and cardiovascular diseases. Despite their importance, endogenous enals remain poorly characterized, primarily due to their instability and low abundance. Herein, we introduced "enalomics," a mass spectrometry (MS)-based approach for profiling, identifying, and semiquantifying enals in biological samples. Derivatization with 2,4-dinitrophenylhydrazine and treatment with ascorbic acid stabilized enals in biological matrices and provided a unique MS fragment ([M-H-47]-) for reliable enal identification. Utilizing precursor ion scanning, dynamic multiple reaction monitoring, high-resolution MS, and mathematical correlations between retention times and carbon numbers of enals, we identified 157 enals (127 newly reported) with tissue-specific profiles in rats and 29 enals (24 newly reported) in human plasma. To the best of our knowledge, this represents the comprehensive analysis of enals, i.e., "enalomics," in biological samples. Enalomics demonstrated significant alterations in enal metabolism in rats with myocardial injury, highlighting the potential of medium- and short-chain plasma enals as sensitive diagnostic biomarkers. Further application of enalomics in patients with myocardial infarction (MI) identified 14 plasma diagnostic biomarkers. Receiver operating characteristic curves showed good discrimination (area under curve ≥ 0.8603, p ≤ 0.0043). This research advances the understanding of LPO products and emphasizes the roles of enals in human diseases, offering good prospects for early screening, diagnosis, and clinical interventions targeting LPO products in MI patients.
Collapse
Affiliation(s)
- Congyu Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Wen Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P. R. China
| | - Jialong Jing
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Ning Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Zhuoling An
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P. R. China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
22
|
Alatawi AD, Venkatesan K, Asseri K, Paulsamy P, Alqifari SF, Ahmed R, Nagoor Thangam MM, Sirag N, Qureshi AA, Elsayes HA, Faried Bahgat Z, Bahnsawy NSM, Prabahar K, Dawood BMAE. Targeting Ferroptosis in Rare Neurological Disorders Including Pediatric Conditions: Innovations and Therapeutic Challenges. Biomedicines 2025; 13:265. [PMID: 40002678 PMCID: PMC11853599 DOI: 10.3390/biomedicines13020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Ferroptosis, characterized by iron dependency and lipid peroxidation, has emerged as a key mechanism underlying neurodegeneration in rare neurological disorders. These conditions, often marked by significant therapeutic gaps and high unmet medical needs, present unique challenges for intervention development. This review examines the involvement of ferroptosis in rare neurological disease pathogenesis, focusing on its role in oxidative damage and neuronal dysfunction. We explore recent pharmacological advancements, including iron chelators, lipid peroxidation blockers, and antioxidant-based strategies, designed to target ferroptosis. While these approaches show promise, challenges such as disease heterogeneity, limited diagnostic tools, and small patient cohorts hinder progress. Furthermore, we discuss the translational and regulatory barriers to implementing ferroptosis-based therapies in clinical practice. By addressing these obstacles and fostering innovative solutions, this review underscores the potential of ferroptosis-targeting strategies to revolutionize treatment paradigms for rare neurological disorders.
Collapse
Affiliation(s)
- Ahmed D. Alatawi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Krishnaraju Venkatesan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Khalid Asseri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Premalatha Paulsamy
- College of Nursing, Mahalah Branch for Girls, King Khalid University, Abha 62521, Saudi Arabia;
| | - Saleh F. Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (K.P.)
| | - Rehab Ahmed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (N.S.)
| | | | - Nizar Sirag
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (N.S.)
| | - Absar A. Qureshi
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Hala Ahmed Elsayes
- Department of Psychiatric and Mental Health Nursing, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Psychiatric and Mental Health, Faculty of Nursing, Tanta University, Tanta 31527, Egypt
| | - Zeinab Faried Bahgat
- Department of Medical-Surgical Nursing, Faculty of Nursing, Tanta University, Tanta 31527, Egypt;
- Department of Medical-Surgical Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| | - Nesren S. M. Bahnsawy
- Department of Pediatric Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
- Department of Pediatric Nursing, Faculty of Nursing, Cairo University, Giza 12613, Egypt
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (K.P.)
| | - Basma Mahmoud Abd Elhamid Dawood
- Department of Pediatric Nursing, Faculty of Nursing, Tanta University, Tanta 31527, Egypt;
- Department of Pediatric Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
23
|
Angali KA, Farhadi M, Neisi A, Cheraghian B, Ahmadi M, Takdastan A, Dargahi A. The effect of consuming bread contaminated with heavy metals on cardiovascular disease and calculating its risk assessment. Sci Rep 2025; 15:2710. [PMID: 39837925 PMCID: PMC11751297 DOI: 10.1038/s41598-025-86240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Heavy metals (HMs) may cause the generation of reactive oxygen species (ROS), which results in oxidative stress and eventually leads to an increase in cardiovascular diseases (CVD). The Hoveyzeh Cohort Study Center provided clinical data for cardiovascular cases. The collection of samples was done randomly. The association between CVD and HMs has been evaluated utilizing seven machine-learning techniques. The results showed that the effect coefficient (β) of bread consumption in the incidence of heart disease is 4.6908 × 10-02. Consumption of bread contaminated with chromium (P value < 0.0217), cadmium (P value < 2.95 × 10-6) and arsenic (P value < 1.15 × 10-07) is significantly related to cardiovascular incidence. Each unit of bread consumption increases As intake by 0.494 (β = 4.940 × 10-01) and CVD incidence by 11.9% (OR = 1.1190). Bread consumption increases Cd intake by 0.479 (β = 4.799 × 10-1) and cardiovascular disease incidence by 11.97% (OR = 1.1197) per unit. The findings indicated that bread intake in the study region is not correlated with non-carcinogenic or carcinogenic risks, since the cancer risk and incremental lifetime cancer risk for both groups were below 1*10^-6. In the present investigation, bread had HMs included As, Cd, Cr, and Pb higher than the limit declared by WHO. The results of the present study showed that bread is a mediating factor (between HMs and the incidence of CVD).
Collapse
Affiliation(s)
- Kambiz Ahmadi Angali
- Department of Biostatistics and Epidemiology, School of Health, Social Determinants of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Farhadi
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Abdolkazem Neisi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolah Dargahi
- Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| |
Collapse
|
24
|
Borén J, Packard CJ, Binder CJ. Apolipoprotein B-containing lipoproteins in atherogenesis. Nat Rev Cardiol 2025:10.1038/s41569-024-01111-0. [PMID: 39743565 DOI: 10.1038/s41569-024-01111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Apolipoprotein B (apoB) is the main structural protein of LDLs, triglyceride-rich lipoproteins and lipoprotein(a), and is crucial for their formation, metabolism and atherogenic properties. In this Review, we present insights into the role of apoB-containing lipoproteins in atherogenesis, with an emphasis on the mechanisms leading to plaque initiation and growth. LDL, the most abundant cholesterol-rich lipoprotein in plasma, is causally linked to atherosclerosis. LDL enters the artery wall by transcytosis and, in vulnerable regions, is retained in the subendothelial space by binding to proteoglycans via specific sites on apoB. A maladaptive response ensues. This response involves modification of LDL particles, which promotes LDL retention and the release of bioactive lipid products that trigger inflammatory responses in vascular cells, as well as adaptive immune responses. Resident and recruited macrophages take up modified LDL, leading to foam cell formation and ultimately cell death due to inadequate cellular lipid handling. Accumulation of dead cells and cholesterol crystallization are hallmarks of the necrotic core of atherosclerotic plaques. Other apoB-containing lipoproteins, although less abundant, have substantially greater atherogenicity per particle than LDL. These lipoproteins probably contribute to atherogenesis in a similar way to LDL but might also induce additional pathogenic mechanisms. Several targets for intervention to reduce the rate of atherosclerotic lesion initiation and progression have now been identified, including lowering plasma lipoprotein levels and modulating the maladaptive responses in the artery wall.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Wang X, Wang X, Zhao Z, Wang Q, Zhu X, Ou Q, Xu JY, Lu L, Gao F, Wang J, Bi Y, Xu GT, Jin C, Tian H. DNA-Dependent Protein Kinase Catalytic Subunit Prevents Ferroptosis in Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 2025; 66:50. [PMID: 39841110 PMCID: PMC11756607 DOI: 10.1167/iovs.66.1.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose The purpose of this study was to investigate the activated core kinases involved in the DNA damage responses (DDR) during ferroptosis of retinal pigment epithelial (RPE) cells in vitro and their regulatory effects on ferroptosis. Methods Ferroptosis was induced by erastin in induced RPE (iRPE) cells derived from human umbilical cord mesenchymal stem cells (hUCMSCs), hUCMSCs, and induced pluripotent stem cell-derived RPE (iPSC-RPE) cells. CCK8 was employed to measure the cell viability. Calcein/PI staining was used to detect the ferroptotic cells. The γ-H2AX, 8-oxoG, and phosphorylated DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were determined through immunostaining. The phosphorylation of DNA-PKcs and ERK1/2 was determined by Western blotting. Lipid peroxides were detected by BODIPY581/591-C11 staining. Results The iRPE cells exhibited a stronger ability to resist ferroptosis compared to hUCMSCs. Ferroptosis induced DNA damage in cells, and DNA-PKcs was rapidly phosphorylated in iRPE cells on the treatment of erastin. In addition, inhibition of DNA-PKcs phosphorylation promoted ferroptosis in iRPE cells, suggesting that DNA-PKcs prevents ferroptosis. Meanwhile, DNA-PKcs inhibited ERK1/2 phosphorylation only at the early stage of ferroptosis induction, whereas ERK1/2 phosphorylation played a protective role in iRPE cells. Furthermore, erastin inducing DNA-PKcs phosphorylation and inhibition of its phosphorylation promoting ferroptosis were also verified in iPSC-RPE cells. Conclusions The present study elucidates that the key DDR kinase DNA-PKcs is activated and plays protective role during ferroptosis in RPE cells in vitro, which will provide new research targets and strategies for inhibiting ferroptosis in RPE cells.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xi Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Zhenzhen Zhao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Qian Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoman Zhu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yanlong Bi
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
26
|
Baldriche-Acosta J, Uribe-Ramírez M, Narváez-Morales J, De Vizcaya-Ruiz A, Barbier OC, Aztatzi-Aguilar OG. Urinary oxidative stress biomarkers in nephrotoxicity induced by PM 2.5 in a rat model. Inhal Toxicol 2025; 37:31-40. [PMID: 39801041 DOI: 10.1080/08958378.2025.2450393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025]
Abstract
OBJECTIVE The present study evaluated urinary oxidative stress (OxS) biomarkers to explain the extrapulmonary effect of renal function decline due to subchronic inhalation exposure to particles smaller than 2.5 μm, as well as the correlation of the biomarkers with the particles' endotoxin content. MATERIALS AND METHODS Adult male Sprague-Dawley rats were exposed to subchronic inhalation of particles smaller than 2.5 μm (8 weeks, 4 days/week, 5 h/day). The control group was exposed to filtered air. MiniVol and HiVol samplers were used to estimate the concentration and collected particles, respectively. Biomarkers were assessed in weekly urine samples harvested by the metabolic cage. The OxS biomarkers assessed were methylglyoxal, non-esterified fatty acids, malondialdehyde, advanced oxidative protein products, arginase, myeloperoxidase, glutathione S-transferase, and gamma-glutamyl transferase, all of which were evaluated by colorimetric assays. Creatinine was evaluated by the Jaffe reaction, and cystatin-C (Cys-C) and neutrophil gelatinase-associated lipocalin-2 were quantified using Luminex technology. Endotoxin content was analyzed with the Limulus Amebocyte Lysate Pyrochrome Chromogenic Test Kit. RESULTS AND DISCUSSION Subchronic exposure to PM2.5 increased OxS biomarkers in urine. Endotoxin content showed a positive correlation with the urinary OxS biomarkers evaluated. Additionally, urinary OxS biomarkers correlated with creatinine and the early kidney damage biomarkers Cys-C and neutrophil gelatinase-associated lipocalin-2, where the strongest and positive correlations were observed with the latter two biomarkers. CONCLUSIONS Inhalation of environmental airborne particles smaller than 2.5 μm increased urinary OxS biomarkers, correlated with endotoxin content and early kidney damage biomarkers. This finding corroborates the extrapulmonary nephrotoxic effect of inhaled particles.
Collapse
Affiliation(s)
- Jessica Baldriche-Acosta
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Andrea De Vizcaya-Ruiz
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, USA
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
27
|
McGraw KE, Domingo-Relloso A, Riggs DW, Medgyesi DN, Neupane R, Stingone JA, Sanchez TR. Exposure to Volatile Organic Compounds and Blood Pressure in NHANES 2011 to 2018. Hypertension 2025; 82:136-148. [PMID: 39534964 PMCID: PMC11655251 DOI: 10.1161/hypertensionaha.124.23695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Volatile organic compounds (VOCs) are ubiquitous environmental pollutants. Exposure to VOCs is associated with cardiovascular disease risk factors, including elevated blood pressure in susceptible populations. However, research in the general population, particularly among nonsmoking adults, is limited. We hypothesized that higher VOC exposure is associated with higher blood pressure and hypertension, among nonsmokers. METHODS We included 4 cycles of data (2011-2018) of nonsmoking adults (n=4430) from the National Health and Nutrition Examination Survey. Urinary VOC metabolites were measured by ultraperformance liquid chromatography-mass spectrometry, adjusted for urine dilution, and log-transformed. We estimated mean differences in blood pressure using linear models and prevalence ratio of stage 2 hypertension using modified Poisson models with robust standard errors. Models were adjusted for age, sex, race and ethnicity, education, body mass index, estimated glomerular filtration rate, and National Health and Nutrition Examination Survey cycle. RESULTS Participants were 54% female, with a median age of 48 years, 32.3% had hypertension, and 7.9% had diabetes. The mean differences (95% CI) in systolic blood pressure were 1.61 (0.07-3.15) and 2.46 (1.01-3.92) mm Hg when comparing the highest with the lowest quartile of urinary acrolein (N-acetyl-S-[2-carboxyethyl]-L-cysteine) and 1,3-butadiene (N-acetyl-S-[3,4-dihydroxybutyl]-L-cysteine) metabolites. The prevalence ratios for hypertension were 1.06 (95% CI, 1.02-1.09) and 1.05 (95% CI, 1.01-1.09) when comparing the highest with lowest quartiles of urinary acrolein (N-acetyl-S-[2-carboxyethyl]-L-cysteine) and 1,3-butadiene (N-acetyl-S-[3,4-dihydroxybutyl]-L-cysteine), respectively. CONCLUSIONS Exposure to VOCs may be a relevant yet understudied environmental contributor to cardiovascular disease risk in the nonsmoking, US population.
Collapse
Affiliation(s)
- Katlyn E. McGraw
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Arce Domingo-Relloso
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Daniel W. Riggs
- Christina Lee Browne Envirome Institute, University of Louisville, 322 W Muhammad Ali Blvd, Louisville, KY 40202
| | - Danielle N. Medgyesi
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Raghavee Neupane
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S University Dr, Fort Lauderdale, FL 33328
| | - Jeanette A. Stingone
- Columbia University Mailman School of Public Health, Department of Epidemiology, 722 W 168th St, New York, NY 10032
| | - Tiffany R. Sanchez
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| |
Collapse
|
28
|
Waga M, Nakade K. Light wavelengths that induce oxidation of oxymyoglobin in meat. Meat Sci 2025; 219:109664. [PMID: 39288547 DOI: 10.1016/j.meatsci.2024.109664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Light wavelengths that induce meat discoloration and the photoreceptors in the meat were studied. We investigated the effects of the light wavelength on the oxidation rate of myoglobin (Mb) by exposing Mb extracts or model solutions containing Mb to light at specific wavelengths with a bandwidth of 5 nm using a fluorescence spectrophotometer. The wavelengths examined comprised 385, 415, 445, 460, 490, 525, 555, 580, 605, 630,660, and 750 nm. In the Mb extracts, Mb oxidation was induced through exposure to the light at 445 and 580-605 nm; Mb was insensitive to light at 445 nm. Mitochondria, containing cytochrome a and cytochrome a3 with absorption peaks at 448 and 600 nm, and riboflavin with fluorescence at 450 nm were studied as 445 nm receptors. Mitochondria significantly oxidized Mb via cytochrome c oxidation through complex IV activity; however, no 445 nm-specific photo sensitivity effects were observed. In contrast, riboflavin increased the Mb oxidation rate induced via exposure to the light at 450 nm in a concentration-dependent manner (minimum concentration: 38.4 μg L-1). While native mitochondria did not show 445 nm-specific photosensitivity effects on Mb, supernatants of heated mitochondria conferred 445 nm-wavelength sensitivity to Mb. Riboflavin concentration in this supernatant was 182 ± 60 μg L-1. The Mb photosensitivity spectrum with 473 μg L-1 riboflavin had two peaks at 445 nm and 580 nm, which were similar to those of Mb extract. These results suggest that mitochondrial damage affects the meat discoloration through the release of cytochrome c and riboflavin.
Collapse
Affiliation(s)
- Masahiro Waga
- Central Research Institute, Itoham Yonekyu Holdings, Inc, Moriya, Japan.
| | - Koji Nakade
- Central Research Institute, Itoham Yonekyu Holdings, Inc, Moriya, Japan
| |
Collapse
|
29
|
Jahan I, Islam MM, Nakamura T, Nakamura Y, Munemasa S, Mano J, Murata Y. Reactive carbonyl species function downstream of reactive oxygen species in chitosan-induced stomatal closure. PHYSIOLOGIA PLANTARUM 2025; 177:e70094. [PMID: 39887342 PMCID: PMC11783587 DOI: 10.1111/ppl.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
An elicitor, chitosan (CHT), induces stomatal closure in plants, which is accompanied by salicylhydroxamic acid (SHAM)-sensitive peroxidases-mediated reactive oxygen species (ROS) production in guard cells. Reactive carbonyl species (RCS) function downstream of ROS in abscisic acid (ABA) and methyl jasmonate (MeJA) signalling in guard cells. However, the involvement of RCS in CHT-induced stomatal closure is still unknown. In this study, we used transgenic tobacco (Nicotiana tabacum) plants overexpressing Arabidopsis thaliana 2-alkenal reductase (AER-OE tobacco) and Arabidopsis wild-type (WT) plants to investigate whether RCS is involved in CHT-induced stomatal closure. Chitosan-induced stomatal closure was inhibited in the tobacco AER-OE plants. In the WT tobacco and Arabidopsis plants, CHT-induced stomatal closure was inhibited by RCS scavengers, carnosine and pyridoxamine. Chitosan significantly increased RCS production in the WT tobacco and Arabidopsis, but in the tobacco AER-OE plants, chitosan did not increase significantly RCS accumulation. Moreover, neither the application of RCS scavengers to both WT plants nor scavenging RCS by AER-OE affected the CHT-induced ROS accumulation. However, treatment with a peroxidase inhibitor, SHAM, significantly inhibited CHT-induced RCS accumulation in WT tobacco and Arabidopsis plants. Taken together, these results suggest that RCS acts downstream of ROS production in CHT signalling in guard cells of A. thaliana and N. tabacum.
Collapse
Affiliation(s)
- Israt Jahan
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Md. Moshiul Islam
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
- Department of AgronomyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Jun'ichi Mano
- Science Research CenterYamaguchi UniversityYamaguchiJapan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| |
Collapse
|
30
|
Monroe TB, Hertzel AV, Dickey DM, Hagen T, Santibanez SV, Berdaweel IA, Halley C, Puchalska P, Anderson EJ, Camell CD, Robbins PD, Bernlohr DA. Lipid peroxidation products induce carbonyl stress, mitochondrial dysfunction, and cellular senescence in human and murine cells. Aging Cell 2025; 24:e14367. [PMID: 39394673 PMCID: PMC11709094 DOI: 10.1111/acel.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/14/2024] Open
Abstract
Lipid enals are electrophilic products of lipid peroxidation that induce genotoxic and proteotoxic stress by covalent modification of DNA and proteins, respectively. As lipid enals accumulate to substantial amounts in visceral adipose during obesity and aging, we hypothesized that biogenic lipid enals may represent an endogenously generated, and therefore physiologically relevant, senescence inducers. To that end, we identified that 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal (4-HHE) or 4-oxo-2-nonenal (4-ONE) initiate the cellular senescence program of IMR90 fibroblasts and murine adipose stem cells. In such cells, lipid enals induced accumulation of γH2AX foci, increased p53 signaling, enhanced expression of p21Cip1, and upregulated the expression and secretion of numerous cytokines, chemokines, and regulatory factors independently from NF-κB activation. Concomitantly, lipid enal treatment resulted in covalent modification of mitochondrial proteins, reduced mitochondrial spare respiratory capacity, altered nucleotide pools, and increased the phosphorylation of AMP kinase. Lipid-induced senescent cells upregulated BCL2L1 (Bcl-xL) and BCL2L2 (Bcl-w). and were resistant to apoptosis while pharmacologic inhibition of BAX/BAK macropores attenuated lipid-induced senescence. In situ, the 4-HNE scavenger L-carnosine ameliorated the development of the cellular senescence, while in visceral fat of obese C57BL/6J mice, L-carnosine reduced the abundance of 4-HNE-modified proteins and blunted the expression of senescence biomarkers CDKN1A (p21Cip1), PLAUR, BCL2L1, and BCL2L2. Taken together, the results suggest that lipid enals are endogenous regulators of cellular senescence and that biogenic lipid-induced senescence (BLIS) may represent a mechanistic link between oxidative stress and age-dependent pathologies.
Collapse
Affiliation(s)
- T. Blake Monroe
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Deborah M. Dickey
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Thomas Hagen
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Simon Vergara Santibanez
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Islam A. Berdaweel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowaUSA
- Present address:
Department of Clinical Pharmacy and Pharmacy Practice, College of PharmacyYarmouk UniversityIrbidJordan
| | - Catherine Halley
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Patrycja Puchalska
- Department of MedicineUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Ethan J. Anderson
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowaUSA
| | - Christina D. Camell
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
- Institute for the Biology of Aging and MetabolismUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Paul D. Robbins
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
- Institute for the Biology of Aging and MetabolismUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| |
Collapse
|
31
|
Zhu D, Zheng X, Dong H, Liu X, Hu X, Chen M, Liu X, Shao Y. Effects of storage on volatile organic components and physiological properties of different storage-tolerant rice varieties. Food Chem X 2025; 25:102134. [PMID: 39844964 PMCID: PMC11751419 DOI: 10.1016/j.fochx.2024.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025] Open
Abstract
The effects of storage on rice flavor among different rice varieties have not been well studied. To address this gap, we analyzed volatile organic components (VOCs) identified by gas chromatography-ion mobility spectrometry (GC-IMS) and related physicochemical properties of different storage-tolerant rice varieties during storage. The results showed that VOCs of four rice varieties significantly changed after 6 months of storage; OPLS-DA analysis classified the four rice varieties into two groups. There were fewer (N81 and JH1) and more significant changes (N84 and ZJ96) after storage, and the hexanal and 2-pentylfuran were considered the key VOCs for flavor changes during storage. Lipoxygenase (LOX) activity first increased and then decreased, while antioxidant activities decreased during storage. Under these conditions, oleic and linoleic acids were hydrolyzed. These results provide a better understanding of rice flavor changes after storage between different storable rice varieties.
Collapse
Affiliation(s)
- Dawei Zhu
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Xin Zheng
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Huiyin Dong
- Department of Food Science, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xingquan Liu
- Department of Food Science, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xianqiao Hu
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Mingxue Chen
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Xin Liu
- Seed Management Station of Zhejiang Province, Hangzhou 310006, China
| | - Yafang Shao
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
32
|
Li SH, Huang WT, Chen YH, Lu HI, Lo CM, Tsai HT, Chen CH. Aldo-keto reductase family 1 member B10 prevents esophageal squamous cell carcinoma from reactive carbonyl species-induced cell death and promotes its progression. Cancer Cell Int 2024; 24:425. [PMID: 39710692 DOI: 10.1186/s12935-024-03623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
INTRODUCTION Chronic alcohol consumption and tobacco usage are major risk factors for esophageal squamous cell carcinoma (ESCC). Excessive tobacco and alcohol consumption lead to oxidative stress and the generation of reactive carbonyl species (RCS) which induce DNA damage and cell apoptosis. This phenomenon contributes to cell damage and carcinogenesis in various organs including ESCC. However, it also raises an important question on how ESCC cells evade RCS-induced apoptosis and grow rapidly under these conditions. Therefore, we hypothesize that some enzymes produced by ESCC cells are capable of catabolizing RCS, preventing ESCC neoplastic cells from undergoing RCS-induced apoptosis, potentially contributing to ESCC progression. METHODS To identify significant gene clusters involved in the metabolism of RCS in ESCC, we used an Agilent SurePrint G3 Human V2 GE 8 × 60 K microarray kit to analyze differentially expressed genes between nine paired ESCC tissues and adjacent normal esophageal tissues taken from areas distant from the tumor site. Bioinformatics analysis using gene ontology (GO) was performed to categorize these genes. To validate the findings, immunohistochemical staining in specimens from 169 surgically resected ESCC patients was performed and then correlated with treatment outcomes. Furthermore, the identified signaling pathway and its biological effects were investigated in ESCC cell lines in vitro and 4-nitroquinoline 1-oxide (4-NQO)-induced-ESCC murine model in vivo. RESULTS Interestingly, we found that one of the significantly altered 57 GO molecular function domain terms (GO:0004033 aldo-keto reductase activity; P = 0.021) between nine paired ESCC tumors and adjacent normal tissue specimens was associated with the RCS metabolism. Among significant genes within this domain, AKR1B10 (aldo-keto reductase family 1 member B10; P = 0.006) was identified as the most significantly altered gene. Immunohistochemical analysis revealed that AKR1B10 expression was higher in ESCC cells than in adjacent normal esophageal epithelium. In addition, AKR1B10 expression was independently significantly associated with a poorer prognosis in 169 ESCC patients. Enzyme-linked immunosorbent assay results further demonstrated that blood AKR1B10 concentrations were significantly higher in 72 ESCC patients than in 24 healthy controls. In vitro experiments revealed that inhibiting endogenous AKR1B10 enhanced the cytotoxicity of 4-hydroxy trans-2-nonenal, a type of RCS. In a 4-NQO-induced-ESCC murine model, oleanolic acid, an AKR1B10 inhibitor, significantly reduced the incidence of esophageal tumors. CONCLUSIONS Our findings suggested that AKR1B10 is an independent adverse prognosticator for patients with ESCC, and could prevent ESCC neoplastic cells from undergoing RCS-induced apoptosis, and promote ESCC progression. Therefore, AKR1B10 signaling could be a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Hao Chen
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-I Lu
- Department of Thoracic & Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Ming Lo
- Department of Thoracic & Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-Ting Tsai
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Taichung City, 407219, Taiwan
| | - Chang-Han Chen
- Department of Applied Chemistry, Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Taiwan.
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Taichung City, 407219, Taiwan.
| |
Collapse
|
33
|
Mishra L, Mishra M. Ribose-induced advanced glycation end products reduce the lifespan in Drosophila melanogaster by changing the redox state and down-regulating the Sirtuin genes. Biogerontology 2024; 26:28. [PMID: 39702854 DOI: 10.1007/s10522-024-10172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Advanced Glycation End (AGE) products are one such factor that accumulates during aging and age-related diseases. However, how exogenous AGE compounds cause aging is an area that needs to be explored. Specifically, how an organ undergoes aging and aging-related phenomena that need further investigation. The intestine is the most exposed area to food substances. How AGEs affect the intestine in terms of aging need to be explored. Drosophila melanogaster, a well-known model organism, is used to decode aging and age-associated phenomena. In this study, we fed Ribose induced Advanced Glycation End products (Rib-AGE) to D. melanogaster to study the aging mechanism. The Rib-AGE-induced aging was checked in Drosophila. We found a series of changes in Rib-AGE-fed flies. Reactive oxygen species (ROS) and nitric oxide species (NOs) were higher in the Rib-AGE-fed flies, and the antioxidant level was lower. The intestinal permeability was altered. The microorganism load was higher inside the gut. The structural arrangement of the gut's microfilament was found to be damaged, and the nuclear shape was found to be irregular. Cell death within the gut was elevated in comparison to control. The food intake was found to be reduced. The relative mRNA expression of the Sirtuin 2 and Sirtuin 6 gene of D. melanogaster was downregulated in Rib-AGE-fed flies compared to the control. All these findings strongly suggest that Rib-AGE accelerates aging and age-related disorders in D. melanogaster.
Collapse
Affiliation(s)
- Lokanath Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India.
| |
Collapse
|
34
|
Wonisch W, Tatzber F, Lindschinger M, Falk A, Resch U, Mörkl S, Zarkovic N, Cvirn G. Overview of Clinical Relevance of Antibodies Against Oxidized Low-Density Lipoprotein (oLAb) Within Three Decades by ELISA Technology. Antioxidants (Basel) 2024; 13:1560. [PMID: 39765889 PMCID: PMC11672888 DOI: 10.3390/antiox13121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
One of the most prominent actions of oxidative stress is the attack of free radicals on poylyunsaturated fatty acids (PUFAs), initiating a chain reaction to modify these PUFAs and generate oxidized modifications on all biomolecules. In the last quarter of the 20th century, intensive research was carried out to identify antibodies against such modifications. In the mid-1990s, the first enzyme-linked immunosorbent assay (ELISA) was introduced to the market, significantly accelerating research activities and knowledge gain. During this pioneering period, the main focus was on cardiovascular diseases, cancer, diabetes, and other diseases associated with oxidative stress. Subsequently, a standard range of these antibodies against oxidized LDL (oLAb) was determined in the population. Furthermore, the impact of exhaustive physical activity and diet on oLAb titers, and the correlation between newborns and mothers after delivery, as well as nutritional intake in newborns, were evaluated. Subsequently, the harmful effects of smoking and many other areas regarding oLAb titer were published, resulting in novel approaches for prognostic and therapeutic options, in particular through studies with antioxidants, which were able to influence oLAb significantly. This review presents an overview of the research activities obtained with this ELISA over the past three decades.
Collapse
Affiliation(s)
- Willibald Wonisch
- Otto Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, 8010 Graz, Styria, Austria;
| | - Franz Tatzber
- Omnignostica Ltd., 3421 Höflein an der Donau, Lower Austria, Austria
| | - Meinrad Lindschinger
- Institute of Nutritional and Metabolic Diseases, Outpatient Clinic Laßnitzhöhe, 8301 Laßnitzhöhe, Styria, Austria; (M.L.); (A.F.)
| | - Andreas Falk
- Institute of Nutritional and Metabolic Diseases, Outpatient Clinic Laßnitzhöhe, 8301 Laßnitzhöhe, Styria, Austria; (M.L.); (A.F.)
- BioNanoNet Forschungsgesellschaft mbH (BNN), 8010 Graz, Styria, Austria
| | - Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Vienna, Austria;
| | - Sabrina Mörkl
- Department of Medical Psychology, Psychosomatics and Psychotherapy, Medical University of Graz, 8036 Graz, Styria, Austria;
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia;
| | - Gerhard Cvirn
- Otto Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, 8010 Graz, Styria, Austria;
| |
Collapse
|
35
|
Wei S, Mao Y, Sokolova IM, Li Z, Li L, Khalid MS, Tu Z, Zhong Z, Hu M, Wang Y. Extreme heat event influences the toxic impacts of nano-TiO 2 with different crystal structures in mussel Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176916. [PMID: 39454788 DOI: 10.1016/j.scitotenv.2024.176916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The wide use of nano‑titanium dioxide (nano-TiO2) and its ubiquitous emission into aquatic environments are threatening environmental health. Ambient temperature can affect the aggregation state of nano-TiO2 in seawater, thus influencing the intake and physiological effects on marine species. We studied the physiological effects of mixed nano-TiO2 (a mixture of anatase and rutile crystals with an average particle size of 25 nm, P25) on mussels. Subsequently, we investigated the oxidative stress, immunotoxicity, neurotoxicity, and detoxification in Mytilus coruscus exposed to two different crystal structures of nano-TiO2 (anatase and rutile) at 100 μg/L concentration under marine heatwaves (MHWs, 28 °C). MHWs and nano-TiO2 exposure induced neurotoxicity and immune damage and caused dysregulation of redox balance in the gills. Moreover, MHWs exposure disturbed the glutathione system and detoxification function of mussels, resulting in enhanced toxicity of nano-TiO2 under co-exposure. Anatase exposure significantly impaired the antioxidant system and downregulated the relative expression of antioxidant-related genes (Nrf2 and Bcl-2), HSP-90, and immune parameters under MHWs, while producing higher ROS levels compared to rutile. Based on integrated biomarker response (IBR), mussels co-exposed to anatase and MHW showed the highest value (19.29). However, there was no significant difference in bioaccumulation of titanium between anatase (6.07 ± 0.47 μg/g) and rutile (5.3 ± 0.44 μg/g) exposures under MHWs. These results indicate that MHWs would elevate the potential hazard of nanoparticles to marine organisms.
Collapse
Affiliation(s)
- Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yiran Mao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Zhuoqing Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Malik Shahzaib Khalid
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhen Zhong
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
36
|
Zhang Z, Xiao T, Hall MR, Crodian JS, Alford AK, Kimbrough A, Shi R. Temporal differential effects of post-injury alcohol consumption in a mouse model of blast-induced traumatic brain injury. Neuroscience 2024; 562:239-251. [PMID: 39369945 PMCID: PMC11769080 DOI: 10.1016/j.neuroscience.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Traumatic brain injury is a prevalent condition that affects millions worldwide with no clear understanding or effective therapeutic management available. Military soldiers have a high risk of exposure to blast-induced traumatic brain injury (bTBI). Furthermore, alcohol drinking is common in this population, and studies have shown that post-TBI alcohol exposure can result in memory loss. Hence, it is possible that alcohol could contribute to the overall pathological outcome of brain trauma. However, such a possibility has not been explored in detail. Here, we combined a mild bTBI (mbTBI) model with the drinking-in-the-dark (DID) paradigm to investigate the pathological synergy between mbTBI and alcohol consumption by examining brain oxidative stress levels and behavioral alterations in mice. The results revealed the anxiolytic and short-term memory improvement effects of post-trauma alcohol drinking examined at an early timepoint post mbTBI. However, extended alcohol drinking for up to three weeks post mbTBI impaired long-term memory and was accompanied by intensified oxidative stress in brain regions associated with memory and anxiety. These findings, as well as those from previous in vitro TBI/alcohol studies, suggest a pathological synergy of physical force and post-impact alcohol exposure. This knowledge could potentially aid in establishing guidelines for TBI victims to avoid further injury to their brains as well as to help maximize their recovery following TBI.
Collapse
Affiliation(s)
- Zaiyang Zhang
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States
| | - Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States
| | - Mekyna R Hall
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States
| | - Jennifer S Crodian
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States
| | - Anna K Alford
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States; The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
37
|
Borkum JM. Cluster Headache and Hypoxia: Breathing New Life into an Old Theory, with Novel Implications. Neurol Int 2024; 16:1691-1716. [PMID: 39728749 DOI: 10.3390/neurolint16060123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Cluster headache is a severe, poorly understood disorder for which there are as yet virtually no rationally derived treatments. Here, Lee Kudrow's 1983 theory, that cluster headache is an overly zealous response to hypoxia, is updated according to current understandings of hypoxia detection, signaling, and sensitization. It is shown that the distinctive clinical characteristics of cluster headache (circadian timing of attacks and circannual patterning of bouts, autonomic symptoms, and agitation), risk factors (cigarette smoking; male gender), triggers (alcohol; nitroglycerin), genetic findings (GWAS studies), anatomical substrate (paraventricular nucleus of the hypothalamus, solitary tract nucleus/NTS, and trigeminal nucleus caudalis), neurochemical features (elevated levels of galectin-3, nitric oxide, tyramine, and tryptamine), and responsiveness to treatments (verapamil, lithium, melatonin, prednisone, oxygen, and histamine desensitization) can all be understood in terms of hypoxic signaling. Novel treatment directions are hypothesized, including repurposing pharmacological antagonists of hypoxic signaling molecules (HIF-2; P2X3) for cluster headache, breath training, physical exercise, high-dose thiamine, carnosine, and the flavonoid kaempferol. The limits of current knowledge are described, and a program of basic and translational research is proposed.
Collapse
Affiliation(s)
- Jonathan M Borkum
- Department of Psychology, University of Maine, 301 Williams Hall, Orono, ME 04469-5742, USA
| |
Collapse
|
38
|
Li A, Dong L, Li X, Yi J, Ma J, Zhou J. ALDH3A1-mediated detoxification of reactive aldehydes contributes to distinct muscle responses to denervation and Amyotrophic Lateral Sclerosis progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626422. [PMID: 39677625 PMCID: PMC11642873 DOI: 10.1101/2024.12.02.626422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Different muscles exhibit varied susceptibility to degeneration in Amyotrophic Lateral Sclerosis (ALS), a fatal neuromuscular disorder. Extraocular muscles (EOMs) are particularly resistant to ALS progression and exploring the underlying molecular nature may deliver great therapeutic value. Reactive aldehyde 4-hydroxynonenal (HNE) is implicated in ALS pathogenesis and ALDH3A1 is an inactivation-resistant intracellular detoxifier of 4-HNE protecting eyes against UV-induced oxidative stress. Here we detected prominently higher levels of ALDH3A1 in mouse EOMs than other muscles under normal physiological conditions. In an ALS mouse model (hSOD1G93A) reaching end-stage, ALDH3A1 expression was sustained at high level in EOMs, whereas substantial upregulation of ALDH3A1 occurred in soleus and diaphragm. The upregulation was less pronounced in extensor digitorum longus (EDL) muscle, which endured the most severe pathological remodeling as demonstrated by unparalleled upregulation of a denervation marker ANKRD1 expression. Interestingly, sciatic nerve transection in wildtype mice induced ALDH3A1 and ANKRD1 expression in an inverse manner over muscle type and time. Adeno-associated virus enforced overexpression of ALDH3A1 protected myotubes from 4-HNE-induced DNA fragmentation, plasma membrane leakage and restored MG53-mediated membrane repair. Our data indicate that ALDH3A1 may contribute to distinct muscle resistance to ALS through detoxifying reactive aldehydes.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Jianjie Ma
- Department of Surgery, Division of Surgical Sciences, University of Virginia, Charlottesville, VA, 22903, USA
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| |
Collapse
|
39
|
Almasi D, Kazemi S, Asghari MH, Hosseini SM, Moghadamnia AA. Ameliorative effect of Melatonin on 5-Fluorouracil-induced reproductive toxicity in male rats. Daru 2024; 32:675-687. [PMID: 39312086 PMCID: PMC11554997 DOI: 10.1007/s40199-024-00537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/30/2024] [Indexed: 11/12/2024] Open
Abstract
5-Fluorouracil (5-FU) is an antimetabolite chemotherapeutic agent that can cause oxidative stress and complications in normal organs, including the reproductive system. This study was conducted to investigate the effect of melatonin (MEL) on 5-FU-induced reproductive toxicity in male rats. Male Wistar rats weighing 180 ± 20 g were divided into five groups: control, 5-FU (50 mg/kg), 5-FU + MEL (2.5, 5 & 10 mg/kg). The testes and prostates were removed, and histopathological aspects, biochemical markers, and gene expression were investigated. The effect of 5-FU on the normal TM4 cell line (murine testicular Sertoli line) and co-treatment of 5-FU and MEL were studied using MTT assay. Results showed that MEL prevented cell death in the TM4 cell line induced by 5-FU. MEL also reduced edema, hyperemia, and vacuolization in testis and prostate tissues induced by 5-FU. Additionally, MEL increased the activity of antioxidant enzymes and reduced the levels of MDA (p < 0.0001) and MPO (p < 0.0001). The levels of testosterone (p < 0.01) and the number of spermatocytes and spermatogonia (p < 0.0001) were increased in groups receiving 5-FU with MEL compared to 5-FU alone. The prostate-specific antigen (PSA) level in prostate samples was lower in the groups receiving 5-FU with MEL compared to the 5-FU group. Furthermore, the genes expression of COX-2 and TNF-α in testis tissues was reduced in the presence of MEL. in conclusion, the antioxidant property of MEL can protect the male reproductive system against 5-FU toxicity, as evidenced by the improved histopathological and biochemical parameters, as well as the reduced gene expression of COX-2 and TNF- α genes.
Collapse
Affiliation(s)
- Darya Almasi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hossien Asghari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
40
|
Du M, Song M, Wu D, Zhang Y, Song H, Lv H, Ke A, Du H, Zhao S. Novel fluorescent nanoplatform for all-in-one sensing and removal of acrolein: An ultrasensitive probe to evaluate its removal efficiency. Food Chem 2024; 460:140667. [PMID: 39094348 DOI: 10.1016/j.foodchem.2024.140667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
As a highly toxic aldehyde, acrolein is widely found in diet and environment, and can be produced endogenously, posing a serious threat to human health. Herein, we designed a novel fluorescent nanoplatform integrating carbon dots‑manganese dioxide (CDs-MnO2) and glutathione (GSH) for all-in-one sensing and removal of acrolein. By converting Mn4+ to free Mn2+, GSH inhibited the inner filter effect (IFE) of MnO2 nanosheets, and the Michael addition of acrolein with GSH inhibited the GSH-induced Mn4+ conversion, forming an "off-on-off" fluorescence response of CDs. The developed fluorescent nanoplatform exhibited high sensitivity (LOD was 0.067 μM) and selectivity for the simultaneous detection and removal of acrolein. The combination of CDs-MnO2 hydrogels with smartphones realized the point-of-care detection of acrolein, yielding satisfactory results (recovery rates varied between 97.01-104.65%, and RSD ranged from 1.42 to 4.16%). Moreover, the capability of the nanoplatform was investigated for on-site evaluating acrolein scavengers' efficacy, demonstrating excellent potential for practical application.
Collapse
Affiliation(s)
- Man Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Meimei Song
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Die Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yue Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Haiwen Song
- Hebei Lansheng Biotechnology Co., LTD., Shijiazhuang 052260, China.
| | - Haijun Lv
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Aibing Ke
- Hebei Lansheng Biotechnology Co., LTD., Shijiazhuang 052260, China
| | - Hongxia Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shuchun Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
41
|
Koorehpaz K, Eslami M, Farrokhi-Ardabili F. Comparison of Cholesterol Carriers and Substitution of Fructose and Glycerol With Trehalose on Frozen/Thawed ATP Content, DNA Integrity and Kinematics Variables of Ram Spermatozoa. Reprod Domest Anim 2024; 59:e14748. [PMID: 39614672 DOI: 10.1111/rda.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
Current study was aimed to assess the β-cyclodextrin (βCD) and methyl-β-cyclodextrin (MβCD) on delivery of cholesterol, and substitution of fructose and glycerol with trehalose on the ram semen cryosurvival. Samples were collected, diluted with Tris-citric acid-LDL extender, pooled, and used. In experiment I, βCD and MβCD carriers were used and compared to deliver the cholesterol (at 0, 0.5, 1, 1.5, 2, and 4 mg/mL). In the experiment II, trehalose (0, 7, 14, 21, and 28 mM) was substituted with fructose (28, 21, 14, 7, 0 mM, respectively). In the experiment III, the best cholesterol/carrier dose groups from the first experiment, were selected to be evaluated with the fructose/trehalose (14/14 mM) combination compared to fructose (28 mM) alone. The concentration of glycerol in the above-mentioned experiments was set at 4.5%. In the experiment IV, the effect of lowering glycerol (4% vs. 4.5%) was assessed using selected cholesterol/carrier groups. Kinematics, chromatin integrity, ATP contents, malondialdehyde amounts and viability were evaluated. Cholesterol (especially at 1.5 and 2 mg/mL) improved the kinematics and ATP levels using both carriers. The optimised amounts of trehalose (14 mM)/fructose(14 mM) reduced peroxidation and DNA fragmentation levels. Co-administration of optimised levels of cholesterol with trehalose/fructose did not show extra beneficial effects compared to each of them. Trehalose could not protect the spermatozoa at lower amounts of glycerol (4% vs. 4.5%). In conclusion, either the optimised levels of cholesterol (using βCD or MβCD carriers) or substitution of half of the fructose with the trehalose alone could lead to improvement in quality of frozen/thawed ram semen.
Collapse
Affiliation(s)
- Kave Koorehpaz
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mohsen Eslami
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | |
Collapse
|
42
|
Yamashima T. 4-Hydroxynonenal from Mitochondrial and Dietary Sources Causes Lysosomal Cell Death for Lifestyle-Related Diseases. Nutrients 2024; 16:4171. [PMID: 39683565 DOI: 10.3390/nu16234171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Excessive consumption of vegetable oils such as soybean and canolla oils containing ω-6 polyunsaturated fatty acids is considered one of the most important epidemiological factors leading to the progression of lifestyle-related diseases. However, the underlying mechanism of vegetable-oil-induced organ damage is incompletely elucidated. Since proopiomelanocortin (POMC) neurons in the hypothalamus are related to the control of appetite and energy expenditure, their cell degeneration/death is crucial for the occurrence of obesity. In patients with metabolic syndrome, saturated fatty acids, especially palmitate, are used as an energy source. Since abundant reactive oxygen species are produced during β-oxidation of the palmitate in mitochondria, an increased amount of 4-hydroxy-2-nonenal (4-HNE) is endogenously generated from linoleic acids constituting cardiolipin of the inner membranes. Further, due to the daily intake of deep-fried foods and/or high-fat diets cooked using vegetable oils, exogenous 4-HNE being generated via lipid peroxidation during heating is incorporated into the blood. By binding with atheromatous and/or senile plaques, 4-HNE inactivates proteins via forming hybrid covalent chemical addition compounds and causes cellular dysfunction and tissue damage by the specific oxidation carbonylation. 4-HNE overstimulates G-protein-coupled receptors to induce abnormal Ca2+ mobilization and µ-calpain activation. This endogenous and exogenous 4-HNE synergically causes POMC neuronal degeneration/death and obesity. Then, the resultant metabolic disorder facilitates degeneration/death of hippocampal neurons, pancreatic β-cells, and hepatocytes. Hsp70.1 is a molecular chaperone which is crucial for both protein quality control and the stabilization of lysosomal limiting membranes. Focusing on the monkey hippocampus after ischemia, previously we formulated the 'calpain-cathepsin hypothesis', i.e., that calpain-mediated cleavage of carbonylated Hsp70.1 is a trigger of programmed neuronal death. This review aims to report that in diverse organs, lysosomal cell degeneration/death occurs via the calpain-cathepsin cascade after the consecutive injections of synthetic 4-HNE in monkeys. Presumably, 4-HNE is a root substance of lysosomal cell death for lifestyle-related diseases.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Takara-machi 13-1, Kanazawa 920-8040, Japan
| |
Collapse
|
43
|
Li S, Liu W, Chen X, Chen Z, Shi J, Hua J. From Hypoxia to Oxidative Stress: Antioxidants' Role to Reduce Male Reproductive Damage. Reprod Sci 2024:10.1007/s43032-024-01746-x. [PMID: 39557807 DOI: 10.1007/s43032-024-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia is one of the main reasons causing male reproductive damage for people living in high altitude. Pathological evidences have been presented both in humans and animal models. Spermatogenesis disruption, worse sperm parameters, hormone disorder and erectile dysfunction are emblematic of male reproductive impairments brought by hypoxia. Among many mechanisms impairing male reproductive systems, oxidative stress is always a field of interest to explore. Although previous reviews have discussed about hypoxia or oxidative stress and antioxidants on male fertility respectively, no one has elucidated the concrete role of oxidative stress in hypoxia and correlating antioxidants that can ameliorate the negative effects. In this review, we firstly introduce hypoxia etiology and describe specific damage of hypoxia on male reproductive functions. Then, we emphasized interplays between hypoxia and oxidative stress as well as negative influences brought by oxidative stress. Finally, we listed antioxidants for oxidative stress and hypoxia-induced reproductive damage and discussed their controversial experimental effects for male infertility.
Collapse
Affiliation(s)
- Siyao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhaoyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingtian Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
44
|
Angali KA, Farhadi M, Neisi A, Cheraghian B, Ahmadi M, Takdastan A, Dargahi A, Angali ZA. Carcinogenic and non-carcinogenic risks caused by rice contamination with heavy metals and their effect on the prevalence of cardiovascular disease (Using machine learning). Food Chem Toxicol 2024; 194:115085. [PMID: 39521240 DOI: 10.1016/j.fct.2024.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The safety and health of food products are essential in the food industry, and the risk of contamination from various contaminants must be evaluated. Exposure to HMs from the environment (especially food) causes various adverse effects on the body and increases the risk of cardiovascular disease (CVD). MATERIAL AND METHOD Volunteers in the study comprised both healthy individuals and those with CVD. Patients were chosen using a cohort database of CVD individuals. A random choice of samples was conducted. Medical information (individuals with CVD) related to the participants was obtained from the Hoveyzeh Cohort Study Center. CVD-HM relationships were assessed using various machine-learning techniques. RESULT Based on the results of the GAM statistics approach, the baseline levels (β) of As, Cd, and Cr in rice have been calculated to be 1.05, 1.19, and 1.11, respectively. Based on the investigation's results, rice acts as a mediator between high-magnitude actions and the prevalence of CVD. Eating rice increases the probability of CVD by 0.18 and raises As eating by 0.494. The results showed that rice consumption in the research area is not associated with non-carcinogenic and carcinogenic risk (CRs and ILCRs for both categories were less than 1∗10-6). CONCLUSION There was neither a carcinogenic nor non-carcinogenic threat to adults or children and many hazardous HMs existed at the accepted thresholds. A notable relationship was seen between rice contaminated with HM and CVD.
Collapse
Affiliation(s)
- Kambiz Ahmadi Angali
- Department of Biostatistics and Epidemiology, School of Health, Social Determinants of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Farhadi
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Educational Development Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Abdolkazem Neisi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolah Dargahi
- Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Zahra Ahmadi Angali
- Department of Mathematics, Seattle University, 901 12th Ave, Seattle, WA, 98122, USA
| |
Collapse
|
45
|
Fadaei R, Bernstein AC, Jenkins AN, Pickens AG, Zarrow JE, Alli-Oluwafuyi AM, Tallman KA, Davies SS. N-Aldehyde-Modified Phosphatidylethanolamines generated by lipid peroxidation are robust substrates of N-Acyl Phosphatidylethanolamine Phospholipase D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621135. [PMID: 39554116 PMCID: PMC11565945 DOI: 10.1101/2024.10.30.621135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
N-acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) hydrolyzes phosphatidylethanolamines (PE) where the headgroup nitrogen has been enzymatically modified with acyl chains of four carbons or longer (N-acyl-PEs or NAPEs). The nitrogen headgroup of PE can also be non-enzymatically modified by reactive lipid aldehydes, thus forming N-aldehyde modified-PEs (NALPEs). Some NALPEs such as N-carboxyacyl-PEs are linked to PE via amide bonds similar to NAPEs, but others are linked by imine, pyrrole, or lactam moieties. Whether NAPE-PLD can hydrolyze NALPEs was unknown. We therefore characterized the major NALPE species formed during lipid peroxidation of arachidonic acid and linoleic acid and generated various NALPEs for characterization of their sensitivity to NAPE-PLD hydrolysis by reacting synthesized aldehydes with PE. We found that NAPE-PLD could act on NALPEs of various lengths and linkage types including those derived from PE modified by malondialdehyde (N-MDA-PE), butane dialdehyde (N-BDA-PE), 4-hydroxynonenal (N-HNE-PE), 4-oxo-nonenal (N-ONE-PE), 9-keto-12-oxo-dodecenoic acid (N-KODA-PE), and 15-E2-isolevuglandin (N-IsoLG-PE). To assess the relative preference of NAPE-PLD for various NALPEs versus its canonical NAPE substrates, we generated a substrate mixture containing roughly equimolar concentrations of the seven NALPEs as well as two NAPEs (N-palmitoyl-PE and N-linoleoyl-PE) and measured their rate of hydrolysis. Several NALPE species, including the N-HNE-PE pyrrole species, were hydrolyzed at a similar rate as N-linoleoyl-PE and many of the other NALPEs showed intermediate rates of hydrolysis. These results significantly expand the substrate repertoire of NAPE-PLD and suggest that it may play an important role in clearing products of lipid peroxidation in addition to its established role in the biosynthesis of N-acyl-ethanolamines.
Collapse
Affiliation(s)
- Reza Fadaei
- Department of Pharmacology, Vanderbilt University. Nashville, TN, USA, 37232
| | | | - Andrew N. Jenkins
- Department of Cell Biology and Physiology, and Brigham Young University. Provo, UT, 84602
| | - Allison G. Pickens
- Department of Plant and Wildlife Sciences, Brigham Young University. Provo, UT, 84602
| | - Jonah E. Zarrow
- Department of Pharmacology, Vanderbilt University. Nashville, TN, USA, 37232
| | | | - Keri A. Tallman
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Sean S. Davies
- Department of Pharmacology, Vanderbilt University. Nashville, TN, USA, 37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA, 37235
| |
Collapse
|
46
|
Kalyanaraman B, Cheng G, Hardy M. The role of short-chain fatty acids in cancer prevention and cancer treatment. Arch Biochem Biophys 2024; 761:110172. [PMID: 39369836 PMCID: PMC11784870 DOI: 10.1016/j.abb.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Short-chain fatty acids (SCFAs) are microbial metabolites in the gut that may play a role in cancer prevention and treatment. They affect the metabolism of both normal and cancer cells, regulating various cellular energetic processes. SCFAs also inhibit histone deacetylases, which are targets for cancer therapy. The three main SCFAs are acetate, propionate, and butyrate, which are transported into cells through specific transporters. SCFAs may enhance the efficacy of chemotherapeutic agents and modulate immune cell metabolism, potentially reprogramming the tumor microenvironment. Although SCFAs and SCFA-generating microbes enhance therapeutic efficacy of several forms of cancer therapy, published data also support the opposing viewpoint that SCFAs mitigate the efficacy of some cancer therapies. Therefore, the relationship between SCFAs and cancer is more complex, and this review discusses some of these aspects. Clearly, further research is needed to understand the role of SCFAs, their mechanisms, and applications in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
47
|
Domengé O, Deloux R, Revet G, Mazière L, Pillet-Michelland E, Commin L, Bonnefont-Rebeix C, Simon A, Mougenot N, Cavagnino A, Baraibar M, Saulnier N, Crépet A, Delair T, Agbulut O, Montembault A. Bio-functionalized hydrogel patches of chitosan for the functional recovery of infarcted myocardial tissue. Int J Biol Macromol 2024; 281:136400. [PMID: 39389478 DOI: 10.1016/j.ijbiomac.2024.136400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The aim of this work was to assess the potential benefits of the enrichment of a chitosan hydrogel patch with secretome and its epicardial implantation in a murine model of chronic ischemia, focusing on the potential to restore the functional capacity of the heart. Thus, a hydrogel with a final polymer concentration of 3 % was prepared from chitosan with an acetylation degree of 24 % and then bio-functionalized with a secretome produced by mesenchymal stromal cells. The identification of proteins in the secretomes showed the presence of several proteins known to have beneficial effects on cardiac muscle repair. Then chitosan hydrogels were immersed in secretome. The protein incorporation in the hydrogel and their release over time were studied, demonstrating the ability of the gel to retain and then deliver proteins (around 40 % was released in the first 6 h, and then a plateau was reached). Moreover, mechanical analysis exhibited that the patches remained suturable after enrichment. Finally, bio-functionalized hydrogel patches were sutured onto the surface of the infarcted myocardium in rat. Thirty days after, the presence of enriched hydrogels induced a reversion of cardiac function which seems to come mainly from an improvement of left ventricle systolic performance and contractility.
Collapse
Affiliation(s)
- O Domengé
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - R Deloux
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - G Revet
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - L Mazière
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - E Pillet-Michelland
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - L Commin
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - C Bonnefont-Rebeix
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - A Simon
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - N Mougenot
- Sorbonne Universite, UMS28 Plateforme d'Expérimentation Cœur, Muscles, Vaisseaux, 91 Bd de l'Hôpital, F-75013 Paris, France
| | - A Cavagnino
- Société OxiProteomics, 2 rue Antoine Etex, 94000 Créteil, France
| | - M Baraibar
- Société OxiProteomics, 2 rue Antoine Etex, 94000 Créteil, France
| | - N Saulnier
- Vetbiobank, 1 Avenue Bourgelat, 69280 Marcy-l'Étoile, France
| | - A Crépet
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - T Delair
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - O Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France.
| | - A Montembault
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France.
| |
Collapse
|
48
|
Bannon ST, Decker ST, Erol ME, Fan R, Huang YT, Chung S, Layec G. Mitochondrial free radicals contribute to cigarette smoke condensate-induced impairment of oxidative phosphorylation in the skeletal muscle in situ. Free Radic Biol Med 2024; 224:325-334. [PMID: 39178923 PMCID: PMC11975403 DOI: 10.1016/j.freeradbiomed.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Oxidative stress plays a critical role in cellular dysfunction associated with cigarette smoke exposure and aging. Some chemicals from tobacco smoke have the potential to amplify mitochondrial ROS (mROS) production, which, in turn, may impair mitochondrial respiratory function. Accordingly, the present study tested the hypothesis that a mitochondria-targeted antioxidant (MitoTEMPO, MT) would attenuate the inhibitory effects of cigarette smoke on skeletal muscle respiratory capacity of middle-aged mice. Specifically, mitochondrial oxidative phosphorylation was assessed using high-resolution respirometry in permeabilized fibers from the fast-twitch gastrocnemius muscle of middle-aged C57Bl/6J mice. Before the assessment of respiration, tissues were incubated for 1hr with a control buffer (CON), cigarette smoke condensate (2 % dilution, SMOKE), or MitoTEMPO (10 μM) combined with cigarette smoke condensate (MT + SMOKE). Cigarette smoke condensate (CSC) decreased maximal-ADP stimulated respiration (CON: 60 ± 15 pmolO2.s-1.mg-1 and SMOKE: 33 ± 8 pmolO2.s-1.mg-1; p = 0.0001), and this effect was attenuated by MT (MT + SMOKE: 41 ± 7 pmolO2.s-1.mg-1; p = 0.02 with SMOKE). Complex-I specific respiration was inhibited by CSC, with no significant effect of MT (p = 0.35). Unlike CON, the addition of glutamate (ΔGlutamate) had an additive effect on respiration in fibers exposed to CSC (CON: 0.9 ± 1.1 pmolO2.s-1.mg-1 and SMOKE: 5.4 ± 3.7 pmolO2.s-1.mg-1; p = 0.008) and MT (MT + SMOKE: 8.2 ± 3.8 pmolO2.s-1.mg-1; p ≤ 0.01). Complex-II specific respiration was inhibited by CSC but was partially restored by MT (p = 0.04 with SMOKE). Maximal uncoupled respiration induced by FCCP was inhibited by CSC, with no significant effect of MT. These findings underscore that mROS contributes to cigarette smoke condensate-induced inhibition of mitochondrial respiration in fast-twitch gastrocnemius muscle fibers of middle-aged mice thus providing a potential target for therapeutic treatment of smoke-related diseases. In addition, this study revealed that CSC largely impaired muscle respiratory capacity by decreasing metabolic flux through mitochondrial pyruvate transporter (MPC) and/or the enzymes upstream of α-ketoglutarate in the Krebs cycle.
Collapse
Affiliation(s)
- Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; Diabetes and Metabolism Research Center, University of Utah, UT, USA
| | - Muhammet Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA
| | - Rong Fan
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Yu-Ting Huang
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA.
| |
Collapse
|
49
|
Ji Y, Wang R, Wang Y, Tan D, Wang Y, Wu Y, Cui H, Zhang Y, Wang S. Thermal-induced interactions between soy protein isolate and malondialdehyde: Effects on protein digestibility, structure, and formation of advanced lipoxidation end products. Food Res Int 2024; 196:115075. [PMID: 39614563 DOI: 10.1016/j.foodres.2024.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 12/01/2024]
Abstract
Thermally processed lipid- and protein-rich foods have sparked widespread concern since they may degrade food nutrition and even risk food safety. This study investigated soy protein isolate (SPI) alterations of digestibility and structure, as well as the formation of potentially hazardous chemicals, i.e., advanced lipoxidation end products (ALEs), after interacting with malondialdehyde (MDA, a lipid oxidation product) under high-temperature cooking conditions (100-180 °C, up to 60 min). In-vitro protein digestion of the SPI-MDA mixtures suggested that their room-temperature interactions damaged SPI digestibility, and increasing the temperature and the duration of the thermal treatment exacerbated the adverse effects. Protein oxidation, covalent aggregation of subunits, and changes in secondary and tertiary structures were revealed using thiol quantification, gel electrophoresis, fluorescence spectroscopy, and circular dichroism (CD) spectra, which could explain reduced protein digestibility. High-resolution mass spectrometry (HRMS) identified seven non-crosslinked ALEs and two crosslinked ALEs. Increased MDA concentrations promoted the generation of ALEs. Moreover, the acrolein-derived ALEs with reactive carbonyl groups were prone to further reacting into crosslinked ALEs, potentially responsible for the subunit aggregation.
Collapse
Affiliation(s)
- Yazhou Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Ruican Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuanyifei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dongfei Tan
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences (TAAS), Tianjin 300192, China
| | - Yaya Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Haoxin Cui
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
50
|
Liu PY, Liaw J, Soutter F, Ortiz JJ, Tomley FM, Werling D, Gundogdu O, Blake DP, Xia D. Multi-omics analysis reveals regime shifts in the gastrointestinal ecosystem in chickens following anticoccidial vaccination and Eimeria tenella challenge. mSystems 2024; 9:e0094724. [PMID: 39287379 PMCID: PMC11494932 DOI: 10.1128/msystems.00947-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Coccidiosis, caused by Eimeria parasites, significantly impacts poultry farm economics and animal welfare. Beyond its direct impact on health, Eimeria infection disrupts enteric microbial populations leading to dysbiosis and increases vulnerability to secondary diseases such as necrotic enteritis, caused by Clostridium perfringens. The impact of Eimeria infection or anticoccidial vaccination on host gastrointestinal phenotypes and enteric microbiota remains understudied. In this study, the metabolomic profiles and microbiota composition of chicken caecal tissue and contents were evaluated concurrently during a controlled experimental vaccination and challenge trial. Cobb500 broilers were vaccinated with a Saccharomyces cerevisiae-vectored anticoccidial vaccine and challenged with 15,000 Eimeria tenella oocysts. Assessment of caecal pathology and quantification of parasite load revealed correlations with alterations to caecal microbiota and caecal metabolome linked to infection and vaccination status. Infection heightened microbiota richness with increases in potentially pathogenic species, while vaccination elevated beneficial Bifidobacterium. Using a multi-omics factor analysis, data on caecal microbiota and metabolome were integrated and distinct profiles for healthy, infected, and recovering chickens were identified. Healthy and recovering chickens exhibited higher vitamin B metabolism linked to short-chain fatty acid-producing bacteria, whereas essential amino acid and cell membrane lipid metabolisms were prominent in infected and vaccinated chickens. Notably, vaccinated chickens showed distinct metabolites related to the enrichment of sphingolipids, important components of nerve cells and cell membranes. Our integrated multi-omics model revealed latent biomarkers indicative of vaccination and infection status, offering potential tools for diagnosing infection, monitoring vaccination efficacy, and guiding the development of novel treatments or controls.IMPORTANCEAdvances in anticoccidial vaccines have garnered significant attention in poultry health management. However, the intricacies of vaccine-induced alterations in the chicken gut microbiome and its subsequent impact on host metabolism remain inadequately explored. This study delves into the metabolic and microbiotic shifts in chickens post-vaccination, employing a multi-omics integration analysis. Our findings highlight a notable synergy between the microbiome composition and host-microbe interacted metabolic pathways in vaccinated chickens, differentiating them from infected or non-vaccinated cohorts. These insights pave the way for more targeted and efficient approaches in poultry disease control, enhancing both the efficacy of vaccines and the overall health of poultry populations.
Collapse
Affiliation(s)
- Po-Yu Liu
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - José Jaramillo Ortiz
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Fiona M. Tomley
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Dirk Werling
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Damer P. Blake
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Dong Xia
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|