1
|
St Clair SL, Walters AGB, Crowther CA, Dalziel SR, Eagleton C, Gamble GD, McKinlay CJD, Milne BJ, Harding JE. Reproductive outcomes after antenatal corticosteroids: Secondary analysis of 50-year follow-up of the Auckland steroid randomized trial. Acta Obstet Gynecol Scand 2024. [PMID: 39365094 DOI: 10.1111/aogs.14984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Antenatal corticosteroids are widely used to prevent morbidity and mortality after preterm birth, but there are ongoing concerns about the possible risk of long-term adverse effects, including perturbation of endocrine systems, with potential implications for reproduction. A small number of animal studies have suggested possible adverse effects on reproduction after antenatal exposure to corticosteroids, but there is a paucity of human data. MATERIAL AND METHODS This is a secondary cohort analysis of the 50-year follow-up of the Auckland Steroid Trial (1969-1974) comparing antenatal exposure to corticosteroids or placebo. Participants whose mothers took part in the placebo-controlled randomized trial of antenatal corticosteroids completed a questionnaire reporting reproductive outcomes at 50 years of age. The main outcome was at least one pregnancy ≥20 weeks or fathered at least one pregnancy ≥20 weeks. Additional outcomes included a number of pregnancies or fathered pregnancies ≥20 weeks, outcomes relating to female reproductive lifespan (including age at menarche and menopause), and outcomes relating to their offspring (including birthweight and gestation). RESULTS Of 917 eligible participants, 415 (45% of eligible) completed the questionnaire at a mean (SD) age of 49.3 (1.0) years. The proportion of participants who had experienced at least one pregnancy ≥20 weeks or fathered at least one pregnancy ≥20 weeks was similar in betamethasone and placebo-exposed groups (163/217 [75%] vs. 136/190 [72%]; RR 1.08, (95% CI 0.95 to 1.22); p = 0.23). Participants exposed to betamethasone had a slightly higher number of pregnancies or fathered pregnancies ≥20 weeks compared to those exposed to placebo (mean 1.89 vs. 1.60; marginal mean difference 0.20, (95% CI 0.03-0.37); p = 0.03). Other outcomes, including female reproductive lifespan and offspring-related outcomes, were similar in both randomized groups. There were also no differences in any outcomes between those born preterm and those born at term. CONCLUSIONS Antenatal exposure to corticosteroids appears to have no clinically important effect on reproductive outcomes to 50 years.
Collapse
Affiliation(s)
- Sophie L St Clair
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | | | | - Stuart R Dalziel
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
- Department of Surgery: Child and Youth Heath, University of Auckland, Auckland, New Zealand
- Children's Emergency Department, Starship Children's Hospital, Auckland, New Zealand
| | - Carl Eagleton
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Gregory D Gamble
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Christopher J D McKinlay
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Barry J Milne
- School of Social Sciences and Centre of Methods and Policy Application in the Social Sciences, University of Auckland, Auckland, New Zealand
- Department of Statistics, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Jane E Harding
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Wise LD. Rodent anogenital distance recommendations. Birth Defects Res 2024; 116:e2347. [PMID: 38822636 DOI: 10.1002/bdr2.2347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Measurement of rat anogenital distance (AGD) dates to at least 1912. Increased interest in endocrine disrupting chemicals and the use of AGD as a biomarker for fetal androgen effects have increased the number of studies with this endpoint in recent decades. A literature review revealed different landmarks, methods of measurement, and methods to adjust for body weight differences. AGD is often reported to hundredths of millimeters and as such, deserves precision in all these aspects. This paper presents recommendations for the measurement and analysis of rodent AGD. METHODS Literature and regulatory guidance documents that mentioned or measured rodent AGD were reviewed. Four adjustment methods were evaluated using available online data from three rat studies each with two generations of offspring. RESULTS Tabulation of studies reveals that species/stocks and time of data collection, but more importantly anatomical landmarks and methods of measurement have produced a variety of results which are difficult to compare. Not all studies have adjusted for test article effects on body weight (and thus size). The four adjustment methods were fairly comparable. CONCLUSION Recommendations are as follows. A microscopic method should be used to measure AGD of late rodent fetuses and early postnatal pups. The caudal edge of the genital tubercle and the cranial edge of the anus are clear and identifiable landmarks. The simplest adjustment is to divide individual AGDs by the cube root of animals' body weight. These recommendations will help ensure data consistency and accuracy, and facilitate meaningful comparisons across laboratories and chemical classes.
Collapse
Affiliation(s)
- L David Wise
- Independent Teratologist, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Sze Y, Brunton PJ. How is prenatal stress transmitted from the mother to the fetus? J Exp Biol 2024; 227:jeb246073. [PMID: 38449331 DOI: 10.1242/jeb.246073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Prenatal stress programmes long-lasting neuroendocrine and behavioural changes in the offspring. Often this programming is maladaptive and sex specific. For example, using a rat model of maternal social stress in late pregnancy, we have demonstrated that adult prenatally stressed male, but not prenatally stressed female offspring display heightened anxiety-like behaviour, whereas both sexes show hyperactive hypothalamo-pituitary-adrenal (HPA) axis responses to stress. Here, we review the current knowledge of the mechanisms underpinning dysregulated HPA axis responses, including evidence supporting a role for reduced neurosteroid-mediated GABAergic inhibitory signalling in the brains of prenatally stressed offspring. How maternal psychosocial stress is signalled from the mother to the fetuses is unclear. Direct transfer of maternal glucocorticoids to the fetuses is often considered to mediate the programming effects of maternal stress on the offspring. However, protective mechanisms including attenuated maternal stress responses and placental 11β-hydroxysteroid dehydrogenase-2 (which inactivates glucocorticoids) should limit materno-fetal glucocorticoid transfer during pregnancy. Moreover, a lack of correlation between maternal stress, circulating maternal glucocorticoid levels and circulating fetal glucocorticoid levels is reported in several studies and across different species. Therefore, here we interrogate the evidence for a role for maternal glucocorticoids in mediating the effects of maternal stress on the offspring and consider the evidence for alternative mechanisms, including an indirect role for glucocorticoids and the contribution of changes in the placenta in signalling the stress status of the mother to the fetus.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Paula J Brunton
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
- Zhejiang University-University of Edinburgh Joint Institute, Haining, Zhejiang 314400, P.R. China
| |
Collapse
|
4
|
Sexual Behavior, Profile of Steroid Hormones, and Morphology of the Medial Preoptic Nuclei in F1 Male Rat Progeny Prenatally Exposed to Low-Dose Bisphenol A. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Lanshakov DA, Sukhareva EV, Bulygina VV, Bannova AV, Shaburova EV, Kalinina TS. Single neonatal dexamethasone administration has long-lasting outcome on depressive-like behaviour, Bdnf, Nt-3, p75ngfr and sorting receptors (SorCS1-3) stress reactive expression. Sci Rep 2021; 11:8092. [PMID: 33854153 PMCID: PMC8046778 DOI: 10.1038/s41598-021-87652-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Elevated glucocorticoid level in the early postnatal period is associated with glucocorticoid therapy prescribed at preterm delivery most often has severe long-lasting neurodevelopmental and behavioural effects. Detailed molecular mechanisms of such programming action of antenatal glucocorticoids on behaviour are still poorly understood. To address this question we studied neurotrophins: Bdnf, Nt-3, Ngf and their receptors: p75ngfr, Sorcs3 expression changes after subcutaneous dexamethasone (DEX) 0.2 mg/kg injection to P2 rat pups. Neurotrophins expression level was studied in the hippocampus (HPC). Disturbances in these brain regions have been implicated in the emergence of multiple psychopathologies. p75ngfr and Sorcs3 expression was studied in the brainstem—region where monoamine neurons are located. Immunohistochemically P75NTR protein level changes after DEX were investigated in the brainstem Locus Coereleus norepinephrine neurons (NE). In the first hours after DEX administration elevation of neurotrophins expression in HPC and decline of receptor’s expression in the NE brainstem neurons were observed. Another critical time point during maturation is adolescence. Impact of elevated glucocorticoid level in the neonatal period and unpredictable stress (CMUS) at the end of adolescence on depressive-like behaviour was studied. Single neonatal DEX injection leads to decrease in depressive-like behaviour, observed in FST, independently from chronic stress. Neonatal DEX administration decreased Ntf3 and SorCS1 expression in the brainstem. Also Bdnf mRNA level in the brainstem of these animals didn’t decrease after FST. CMUS at the end of adolescence changed p75ngfr and SorCS3 expression in the brainstem in the animals that received single neonatal DEX administration.
Collapse
Affiliation(s)
- D A Lanshakov
- Laboratory of Postgenomics Neurobiology, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.
| | - E V Sukhareva
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| | - V V Bulygina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090
| | - A V Bannova
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090
| | - E V Shaburova
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| | - T S Kalinina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| |
Collapse
|
6
|
Fitzgerald E, Parent C, Kee MZL, Meaney MJ. Maternal Distress and Offspring Neurodevelopment: Challenges and Opportunities for Pre-clinical Research Models. Front Hum Neurosci 2021; 15:635304. [PMID: 33643013 PMCID: PMC7907173 DOI: 10.3389/fnhum.2021.635304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pre-natal exposure to acute maternal trauma or chronic maternal distress can confer increased risk for psychiatric disorders in later life. Acute maternal trauma is the result of unforeseen environmental or personal catastrophes, while chronic maternal distress is associated with anxiety or depression. Animal studies investigating the effects of pre-natal stress have largely used brief stress exposures during pregnancy to identify critical periods of fetal vulnerability, a paradigm which holds face validity to acute maternal trauma in humans. While understanding these effects is undoubtably important, the literature suggests maternal stress in humans is typically chronic and persistent from pre-conception through gestation. In this review, we provide evidence to this effect and suggest a realignment of current animal models to recapitulate this chronicity. We also consider candidate mediators, moderators and mechanisms of maternal distress, and suggest a wider breadth of research is needed, along with the incorporation of advanced -omics technologies, in order to understand the neurodevelopmental etiology of psychiatric risk.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Carine Parent
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Michelle Z. L. Kee
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael J. Meaney
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Developmental, behavioral and endocrine alterations in male rats at early and late postnatal life following in utero exposure to low dose di- n-butylphthalate. Toxicol Res 2020; 37:173-181. [PMID: 33868975 DOI: 10.1007/s43188-020-00050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 10/23/2022] Open
Abstract
Environmental chemical pollutants that interfere with hormonal homeostasis or hormone signaling are the relevant agents inducing congenital or postnatally developed reproductive abnormalities in human beings, wild and domestic animals. In this study, we are examining reproductive effects of prenatal exposure of male rats to a low dose di-n-butylphthalate (DBP). Wistar female rats were given intragastrically DBP at a daily dose of 100 mg/kg b.w. during 15th-21st days of pregnancy. Anogenital distance (AGD) in male offspring decreased on postnatal day (PND) 2 followed by its normalization on PND 7 and 10. There were no other visible teratogenic lesions in the newborns. The testicle descent into scrotum of control males occurred on PND 38.5 ± 0.1, while in DBP group it accelerated by 5.3 days on the average. At the age of 6 months, DBP-exposed animals exhibited double increase of blood plasma testosterone level as compared to controls, and hyperactive male sexual behavior in the presence of receptive female. The duration of latent periods of the first mount and the first intromission, as well as post-ejaculatory refractory period, have been shortened; the number of mounts with intromission and the number of ejaculations increased significantly. Histological examination of the testes indicated activation of Leydig cells. The female-type sexual behavior as evaluated by appearance of lordosis of orchidectomized and primed with estradiol and progesterone 10-month-old males in response to mount or approach of sexually active normal male was enhanced in DBP-group. Both 10-month-old and aging males (18 months), castrated and hormone-primed, displayed homosexual type of behavior. Prenatal low dose DBP caused in 18-month-old males premature atrophy of the testes and accessory sexual glands, increased number of Leydig cell adenomas, a twice decrease of plasma testosterone level and exhausting of sexual potency. We concluded that prenatal exposition of male rats to low dose DBP determines epigenetic alterations of programming of sex brain differentiation and regulation of testicular steroidogenesis that leads to reproductive disorders and accelerated aging of reproductive system.
Collapse
|
8
|
Ruiz D, Padmanabhan V, Sargis RM. Stress, Sex, and Sugar: Glucocorticoids and Sex-Steroid Crosstalk in the Sex-Specific Misprogramming of Metabolism. J Endocr Soc 2020; 4:bvaa087. [PMID: 32734132 PMCID: PMC7382384 DOI: 10.1210/jendso/bvaa087] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Early-life exposures to environmental insults can misprogram development and increase metabolic disease risk in a sex-dependent manner by mechanisms that remain poorly characterized. Modifiable factors of increasing public health relevance, such as diet, psychological stress, and endocrine-disrupting chemicals, can affect glucocorticoid receptor signaling during gestation and lead to sex-specific postnatal metabolic derangements. Evidence from humans and animal studies indicate that glucocorticoids crosstalk with sex steroids by several mechanisms in multiple tissues and can affect sex-steroid-dependent developmental processes. Nonetheless, glucocorticoid sex-steroid crosstalk has not been considered in the glucocorticoid-induced misprogramming of metabolism. Herein we review what is known about the mechanisms by which glucocorticoids crosstalk with estrogen, androgen, and progestogen action. We propose that glucocorticoid sex-steroid crosstalk is an understudied mechanism of action that requires consideration when examining the developmental misprogramming of metabolism, especially when assessing sex-specific outcomes.
Collapse
Affiliation(s)
- Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; University of Illinois at Chicago, Chicago, Illinois.,Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
9
|
van der Merwe JL, Sacco A, Toelen J, Deprest J. Long-term neuropathological and/or neurobehavioral effects of antenatal corticosteroid therapy in animal models: a systematic review. Pediatr Res 2020; 87:1157-1170. [PMID: 31822018 DOI: 10.1038/s41390-019-0712-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/12/2019] [Accepted: 11/23/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Antenatal corticosteroids (ACSs) are recommended to all women at risk for preterm delivery; currently, there is controversy about the subsequent long-term neurocognitive sequelae. This systematic review summarizes the long-term neurodevelopmental outcomes after ACS therapy in animal models. METHODS An electronic search strategy incorporating MeSH and keywords was performed using all known literature databases and in accordance with PRISMA guidance (PROSPERO CRD42019119663). RESULTS Of the 669 studies identified, eventually 64 were included. The majority of studies utilized dexamethasone at relative high dosages and primarily involved rodents. There was a high risk of bias, mostly due to lack of randomization, allocation concealment, and blinding. The main outcomes reported on was neuropathological, particularly glucocorticoid receptor expression and neuron densities, and neurobehavior. Overall there was an upregulation of glucocorticoid receptors with lower neuron densities and a dysregulation of the dopaminergic and serotonergic systems. This coincided with various adverse neurobehavioral outcomes. CONCLUSIONS In animal models, ACSs consistently lead to deleterious long-term neurocognitive effects. This may be due to the specific agents, i.e., dexamethasone, or the repetitive/higher total dosing used. ACS administration varied significantly between studies and there was a high risk of bias. Future research should be standardized in well-characterized models.
Collapse
Affiliation(s)
- Johannes L van der Merwe
- Department of Development and Regeneration, Cluster Woman and Child, Faculty of Medicine, KU Leuven, Leuven, Belgium. .,Department of Obstetrics and Gynaecology, Fetal Medicine Unit, UZ Leuven, Leuven, Belgium.
| | - Adalina Sacco
- Institute for Women's Health, University College London, London, UK
| | - Jaan Toelen
- Department of Development and Regeneration, Cluster Woman and Child, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Pediatrics, Division Woman and Child, University Hospitals Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, Fetal Medicine Unit, UZ Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, UK
| |
Collapse
|
10
|
Burgueño AL, Juárez YR, Genaro AM, Tellechea ML. Prenatal stress and later metabolic consequences: Systematic review and meta-analysis in rodents. Psychoneuroendocrinology 2020; 113:104560. [PMID: 31884321 DOI: 10.1016/j.psyneuen.2019.104560] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Numerous rodent studies have evaluated the effects of maternal stress (MS) on later in life susceptibility to Metabolic Syndrome (MetS) intermediate phenotypes with varying results. The aim of this study was to quantitatively synthesize the available data on the effects of MS on offspring obesity, estimated indirectly by body mass (BM), body fat (BF) and plasma leptin; systolic blood pressure (SBP); plasma glucose (and insulin) and blood lipid concentrations. METHODS Literature was screened and summary estimates of the effect of MS outcomes were calculated by using random-effects models. Data on the effects of exogenous corticosteroid administration (or inhibition of 11β-HSD2) during pregnancy in rodents was analysed separately to characterize the direct phenotypic effects of prenatal corticosteroid excess (PCE). RESULTS We conducted 14 separate meta-analyses and synthesized relevant data on outcomes scarcely reported in literature. Both MS and PCE were associated with low birth weight without rapid catch-up growth resulting in decreased body mass later in life. Our analysis also revealed significant and contradictory effects on offspring adiposity. Little evidence was found for effects on glucose metabolism and blood lipids. We identified increased SBP in offspring exposed to PCE; however, there is not enough data to draw any conclusion about effects of MS on SBP. CONCLUSIONS Neonatal weight proved to be decreased in offspring prenatally exposed to stress or corticosteroids, but laboratory rodents in the absence of a challenging environment did not show catch-up growth. The available evidence is inconclusive regarding the effect on adiposity revealing clear methodological and knowledge gaps. This meta-analysis also confirmed a significant positive association between PCE and SBP. Nevertheless, additional studies should address the association with MS.
Collapse
Affiliation(s)
- Adriana L Burgueño
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| | - Yamila R Juárez
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| | - Ana M Genaro
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| | - Mariana L Tellechea
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá", Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación de Endocrinología Infantil - División de Endocrinología - Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Buenos Aires, Argentina.
| |
Collapse
|
11
|
Assalin HB, Gontijo JAR, Boer PA. miRNAs, target genes expression and morphological analysis on the heart in gestational protein-restricted offspring. PLoS One 2019; 14:e0210454. [PMID: 31034522 PMCID: PMC6507319 DOI: 10.1371/journal.pone.0210454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
Gestational protein restriction was associated with low birth weight, hypertension and higher prevalence of cardiac disorders in adults. Several mechanisms, including epigenetics, could be related with the cardiovascular phenotype on protein-restricted offspring. Thus, we investigated the morphological cardiac effects of gestational protein restriction and left ventricle miRNAs and target genes expression pattern in both 12-day and 16-week old gestational protein-restricted male offspring. Pregnant Wistar rats were allocated into two groups, according to protein supply during pregnancy: NP (normal protein diet- 17%) or LP (low protein diet-6%). Dams on the gestational protein-restricted diet had lower body weight gain and higher food intake. Gestational protein-restricted offspring had low birth weight, followed by rapidly body weight recovery, hypertension, and increased myocytes cross-sectional area and collagen fraction at 16-week old age. At 12-days old, miR-184, miR-192, miR-376c, miR-380-3p, miR-380-5p, miR-451, and miR-582-3p had increased expression, and miR-547 and miR-743a had decreased expression in the gestational protein-restricted left ventricle. At 16-week old, let-7b, miR-125a-3p, miR-142-3p, miR-182 and miR-188-5p had increased expression and let-7g, miR-107, miR-127, miR-181a, miR-181c, miR-184, miR-324-5p, miR-383, miR-423-5p and miR-484 had decreased expression in gestational protein-restricted left ventricle. Target predicted gene expression analysis showed higher expression of Dnmt3a, Oxct1, Rictor and Trps1 and lower expression of Bbs1 and Calml3 in 12-day old protein-restricted offspring. 16-week old protein-restricted offspring had higher expression of Adrbk1, Bbs1, Dnmt3a, Gpr22, Inppl1, and Oxct1 genes. In conclusion, gestational protein restriction was related to offspring low birth weight, increased systolic blood pressure and morphological heart alterations that could be related to early heart miRNA expression changes that perpetuate into adulthood and which are associated with the regulation of essential genes involved in cardiovascular development, heart morphology, function, and metabolism.
Collapse
Affiliation(s)
- Heloisa Balan Assalin
- Internal Medicine Department, School of Medicine, State
University of Campinas, São Paulo, Brazil
| | | | - Patrícia Aline Boer
- Internal Medicine Department, School of Medicine, State
University of Campinas, São Paulo, Brazil
- * E-mail: ,
| |
Collapse
|
12
|
Leakey JEA, Seng JE, Barnas CR, Baker VM, Hart RW. A Mechanistic Basis for the Beneficial Effects of Caloric Restriction On Longevity and Disease: Consequences for the Interpretation of Rodent Toxicity Studies. Int J Toxicol 2016. [DOI: 10.1177/109158189801700203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caloric restriction in rodents has been repeatedly shown to increase life span while reducing the severity and retarding the onset of both spontaneous and chemically induced neoplasms. These effects of caloric restriction are associated with a spectrum of biochemical and physiological changes that characterize the organism's adaptation to reduced caloric intake and provide the mechanistic basis for caloric restriction's effect on longevity. Here, we review evidence suggesting that the primary adaptation appears to be a rhythmic hypercorticism in the absence of elevated adrenocorticotropin (ACTH) levels. This characteristic hypercorticism evokes a spectrum of responses, including reduced body temperature and increased metabolic efficiency, decreased mitogenic response coupled with increased rates of apoptosis, reduced inflammatory response, reduced oxidative damage to proteins and DNA, reduced reproductive capacity, and altered drug-metabolizing enzyme expression. The net effect of these changes is to (1) decrease growth and metabolism in peripheral tissues to spare energy for central functions, and (2) increase the organism's capacity to withstand stress and chemical toxicity. Thus, caloric restriction research has uncovered an evolutionary mechanism that provides rodents with an adaptive advantage in conditions of fluctuating food supply. During periods of abundance, body growth and fecundity are favored over endurance and longevity. Conversely, during periods of famine, reproductive performance and growth are sacrificed to ensure survival of individuals to breed in better times. This phenomena can be observed in rodent populations that are used in toxicity testing. Improvements over the last 30 years in animal husbandry and nutrition, coupled with selective breeding for growth and fecundity, have resulted in several strains now exhibiting larger animals with reduced survival and increased incidence of background lesions. The mechanistic data from caloric restriction studies suggest that these large animals will also be more susceptible to chemically induced toxicity. This creates a problem in comparing tests performed on animals of different weights and comparing data generated today with the historical database. The rational use of caloric restriction to control body weight to within preset guidelines is a possible way of alleviating this problem.
Collapse
Affiliation(s)
- Julian E. A. Leakey
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA
| | - John E. Seng
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA
| | - Crissy R. Barnas
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA, Department of Clinical Pharmacology and Geriatrics,
Northwestern University, 303 E. Superior St., Chicago, IL 60611, USA
| | - Vanessa M. Baker
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA
| | - Ronald W. Hart
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA
| |
Collapse
|
13
|
Evans NP, Bellingham M, Robinson JE. Prenatal programming of neuroendocrine reproductive function. Theriogenology 2016; 86:340-8. [PMID: 27142489 DOI: 10.1016/j.theriogenology.2016.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/24/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
It is now well recognized that the gestational environment can have long-lasting effects not only on the life span and health span of an individual but also, through potential epigenetic changes, on future generations. This article reviews the "prenatal programming" of the neuroendocrine systems that regulate reproduction, with a specific focus on the lessons learned using ovine models. The review examines the critical roles played by steroids in normal reproductive development before considering the effects of prenatal exposure to exogenous steroid hormones including androgens and estrogens, the effects of maternal nutrition and stress during gestation, and the effects of exogenous chemicals such as alcohol and environment chemicals. In so doing, it becomes evident that, to maximize fitness, the regulation of reproduction has evolved to be responsive to many different internal and external cues and that the GnRH neurosecretory system expresses a degree of plasticity throughout life. During fetal life, however, the system is particularly sensitive to change and at this time, the GnRH neurosecretory system can be "shaped" both to achieve normal sexually differentiated function but also in ways that may adversely affect or even prevent "normal function". The exact mechanisms through which these programmed changes are brought about remain largely uncharacterized but are likely to differ depending on the factor, the timing of exposure to that factor, and the species. It would appear, however, that some afferent systems to the GnRH neurons such as kisspeptin, may be critical in this regard as it would appear to be sensitive to a wide variety of factors that can program reproductive function. Finally, it has been noted that the prenatal programming of neuroendocrine reproductive function can be associated with epigenetic changes, which would suggest that in addition to direct effects on the exposed offspring, prenatal programming could have transgenerational effects on reproductive potential.
Collapse
Affiliation(s)
- Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Michelle Bellingham
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane E Robinson
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Jeje SO, Akindele OO, Balogun ME, Raji Y. Maternal treatment with dexamethasone during lactation delays male puberty and disrupts reproductive functions via hypothalamic-pituitary-gonadal axis alterations. ACTA ACUST UNITED AC 2016; 23:43-9. [PMID: 26774541 DOI: 10.1016/j.pathophys.2015.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/25/2015] [Accepted: 12/26/2015] [Indexed: 01/09/2023]
Abstract
The effects of maternal treatment with dexamethasone during lactation on pubertal timing, serum hormonal profile and sperm indices in the male offspring were assessed. Twenty lactating dams were divided into 4 groups (n=5). Group 1 was administered subcutaneously 0.02ml/100g/day normal saline at lactation days 1-21. Groups 2-4 were administered subcutaneously 100μg/kg/day dexamethasone (Dex) at lactation days 1-7, 1-14, and 1-21 respectively. Results showed that there was significant reduction in serum testosterone in the DexLD 1-7 (p<0.05), DexLD 1-14 (p<0.01) and DexLD 1-21 (p<0.001) relative to control. In addition there was a significant reduction in serum FSH and LH in the DexLD 1-7 (p<0.01), DexLD 1-14 (p<0.001) and DexLD 1-21 (p<0.001) when compared with the control. Treatment with dexamethasone during lactation significantly increased the days of preputial separation in the DexLD 1-7 (p<0.05), DexLD 1-14 (p<0.05) and DexLD 1-21 (p<0.001) relative to control. Maternal treatment with dexamethasone throughout lactation period also significantly reduced sperm counts (p<0.001), motility (p<0.01) and increased percentage abnormal sperm (p<0.001) in the offspring when compared with the control. In conclusion, maternal treatment with dexamethasone during lactation may induce delayed puberty and disrupt reproductive functions by altering activities at hypothalamic-pituitary-gonadal axis in the male offspring.
Collapse
Affiliation(s)
- S O Jeje
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria; Department of Human Physiology, Cross River University of Technology, Okuku Campus, Cross River State, Nigeria.
| | - O O Akindele
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - M E Balogun
- Department of Physiology, Faculty of Medicine, College of Health Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Y Raji
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
15
|
Lim WL, Idris MM, Kevin FS, Soga T, Parhar IS. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat. Front Endocrinol (Lausanne) 2016; 7:117. [PMID: 27630615 PMCID: PMC5005956 DOI: 10.3389/fendo.2016.00117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022] Open
Abstract
Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring's reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13-20. Confocal imaging was used to examine the spine density of EGFP-GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP-GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.
Collapse
Affiliation(s)
- Wei Ling Lim
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Marshita Mohd Idris
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Felix Suresh Kevin
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
- *Correspondence: Tomoko Soga,
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| |
Collapse
|
16
|
Reznikov AG, Nosenko ND, Tarasenko LV, Limareva AA. [CHANGES IN THE BRAIN TESTOSTERONE METABOLISM AND SEXUAL BEHAVIOR IN MALE RATS PRENATALLY EXPOSED TO METHYLDOPA AND STRESS]. ACTA ACUST UNITED AC 2015; 61:41-7. [PMID: 26552304 DOI: 10.15407/fz61.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The changes of aromatase and 5α-reductase activities were studied in preoptic area (POA) and medial basal hypothalamus of 10-days-old and sexual behavior in 3-month-old male offsprings of rats exposed daily to noradrenaline antagonist methyldopa (400 mg/kg per os) 30 minutes prior to 1-hour immobilization during the last week of pregnancy (from 15th to 21st day). Prenatal stress caused aromatase activity lowering in the POA of developing brain and feminization (appearance of lordosis) and demasculinization of sexual behavior (prolongation of latent periods to the first mounting and first intromission as well as of the first ejaculation and postejaculation refractory period) in young male offspring. Oral methyldopa used prior to pregnant females stressing prevented early effect of prenatal stress on aromatase activity in the POA and normalized the male sexual behavior in young male rats by shortening both latent period to the first ejaculation and postejaculation refractory period, and an increase of numbers of ejaculation. The data obtained indicate that brain noradrenergic system plays significant role in the mechanisms of metabolic- and behavioral disturbances developing in male rats exposed to prenatal stress.
Collapse
|
17
|
Munkhzaya M, Matsuzaki T, Iwasa T, Tungalagsuvd A, Kawami T, Kato T, Kuwahara A, Irahara M. The suppressive effect of immune stress on LH secretion is absent in the early neonatal period in rats. Int J Dev Neurosci 2015; 46:38-43. [DOI: 10.1016/j.ijdevneu.2015.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/12/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022] Open
Affiliation(s)
- Munkhsaikhan Munkhzaya
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Takeshi Iwasa
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Altankhuu Tungalagsuvd
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Takako Kawami
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Takeshi Kato
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Akira Kuwahara
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Minoru Irahara
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| |
Collapse
|
18
|
Brunton PJ. Programming the brain and behaviour by early-life stress: a focus on neuroactive steroids. J Neuroendocrinol 2015; 27:468-80. [PMID: 25688636 DOI: 10.1111/jne.12265] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
Animal studies have amply demonstrated that stress exposure during pregnancy or in early postnatal life can adversely influence brain development and have long-term 'programming' effects on future brain function and behaviour. Furthermore, a growing body of evidence from human studies supports the hypothesis that some psychiatric disorders may have developmental origins. Here, the focus is on three adverse consequences of early-life stress: dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, heightened anxiety behaviour and cognitive impairments, with review of what is known about the underlying central mechanisms. Neuroactive steroids modulate neuronal activity and play a key role in neurodevelopment. Moreover they can negatively modulate activity of the HPA axis, exert anxiolytic actions and influence cognitive performance. Thus, neuroactive steroids may provide a link between early-life stress and the resultant adverse effects on the brain and behaviour. Here, a role for neuroactive steroids, in particular the 5α-reduced/3α-hydroxylated metabolites of progesterone, testosterone and deoxycorticosterone, is discussed in the context of early-life stress. Furthermore, the impact of early-life stress on the brain's capacity to generate neurosteroids is considered and the evidence for an ability of neuroactive steroids to over-write the negative effects of early-life stress on the brain and behaviour is examined. An enhanced understanding of the influence of early-life stress on brain neurosteroid systems could aid the identification of new targets for developing treatments for stress-related conditions in humans.
Collapse
Affiliation(s)
- P J Brunton
- Division of Neurobiology, The Roslin Institute & R(D)SVS, University of Edinburgh, Midlothian, UK
| |
Collapse
|
19
|
Changes induced by prenatal stress in behavior and brain morphology: can they be prevented or reversed? ADVANCES IN NEUROBIOLOGY 2015; 10:3-25. [PMID: 25287533 DOI: 10.1007/978-1-4939-1372-5_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter presents a critical analysis of the behavioral alterations reported in the offspring of women exposed to stress and/or depression during pregnancy and the neurochemical and structural changes underlying them. Among the alterations attributed to prenatal stress in humans and experimental rats of both sexes is impaired regulation of the hypothalamic-pituitary-adrenal (HPA) axis, anxiety and exaggerated fear of novelty, and decreased social interaction. Learning and attention deficits are more prevalent in boys and male rats. Fear of novelty and anxiety are associated with enlargement of the amygdala and its corticotropin-releasing factor content, and decreased socialization, with lower oxytocin activity in the amygdala. Learning deficits are associated with a decrease in neurogenesis, dendritic complexity, and spine number in the dorsal hippocampus. Fostering prenatally stressed (PS) pups onto control mothers prevents the dysregulation of the HPA axis and heightened anxiety, indicating a role for postnatal factors in their etiology. By contrast, learning impairment and decreased socialization are not affected by this fostering procedure and are therefore prenatally mediated.In spite of their widespread use in depressed pregnant women, selective serotonin reuptake inhibitor (SSRI) antidepressants do not normalize the behavior of their children. When administered during gestation to stressed rats, SSRIs do not reduce anxiety or learning deficits in their offspring. Moreover, when given to unstressed mothers, SSRIs induce anxiety in the offspring. The detrimental effect of SSRIs may result from inhibition of the serotonin transporter exposing the brain to excess amounts of 5-hydroxytryptamine (5-HT) at a critical time during fetal development.
Collapse
|
20
|
Svechnikov K, Stukenborg JB, Savchuck I, Söder O. Similar causes of various reproductive disorders in early life. Asian J Androl 2014; 16:50-9. [PMID: 24369133 PMCID: PMC3901882 DOI: 10.4103/1008-682x.122199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
During the past few decades, scientific evidence has been accumulated concerning the possible adverse effects of the exposure to environmental chemicals on the well-being of wildlife and human populations. One large and growing group of such compounds of anthropogenic or natural origin is referred to as endocrine-disrupting chemicals (EDCs), due to their deleterious action on the endocrine system. This concern was first focused on the control of reproductive function particularly in males, but has later been expanded to include all possible endocrine functions. The present review describes the underlying physiology behind the cascade of developmental events that occur during sexual differentiation of males and the specific role of androgen in the masculinization process and proper organogenesis of the external male genitalia. The impact of the genetic background, environmental exposures and lifestyle factors in the etiology of hypospadias, cryptorchidism and testicular cancer are reviewed and the possible role of EDCs in the development of these reproductive disorders is discussed critically. Finally, the possible direct and programming effects of exposures in utero to widely use therapeutic compounds, environmental estrogens and other chemicals on the incidence of reproductive abnormalities and poor semen quality in humans are also highlighted.
Collapse
Affiliation(s)
| | | | | | - Olle Söder
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Quinn TA, Ratnayake U, Castillo-Melendez M, Moritz KM, Dickinson H, Walker DW. Adrenal steroidogenesis following prenatal dexamethasone exposure in the spiny mouse. J Endocrinol 2014; 221:347-62. [PMID: 24594617 DOI: 10.1530/joe-13-0514] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antenatal stress disturbs the development of the fetal hypothalamic-pituitary-adrenal axis and adrenal steroidogenesis. We investigated the effect of brief maternal exposure to high glucocorticoids (dexamethasone (DEX)) at mid- and late-pregnancy on adrenal structure and production of steroids in spiny mouse. Pregnant spiny mice were treated for 60 h with 125 μg/kg DEX or saline s.c. by osmotic minipump at day 20 (0.5) or 30 (0.75) of gestation. Immunohistochemical expression of steroidogenic acute regulatory-protein (StAR), 3β-hydroxysteroid dehydrogenase (3βHSD), 17-hydroxylase,17-20lyase (P450C17), and cytochromeb5 (CYTB5) was determined in adrenals on postnatal (P) day 170±20. DHEA, testosterone, and cortisol were measured by RIA. Maternal DEX at 20 days significantly reduced the expression of STAR, P450C17 (CYP17A1), and CYTB5 in the adrenal zona reticularis (ZR) of adult offspring, with greater change in male vs female offspring (P<0.05). Plasma DHEA was decreased in male offspring from DEX-treated (6.84±1.24 ng/ml) vs saline-treated (13±0.06 ng/ml; P=0.01) dams, and the DHEA:cortisol ratio was lower in males (P<0.05). Testosterone levels increased in male offspring from DEX (266.03±50.75 pg/ml) vs saline (83.47±32.3 pg/ml, P<0.05)-treated dams. DEX treatment at 0.75 gestation had no significant effect on any parameters measured. This study shows that brief exposure to excess glucocorticoid has long-term impacts on the ZR and adrenal steroidogenesis, affecting the secretion of DHEA and testosterone in male offspring, an effect produced at 0.5 but not at 0.75 gestation. DHEA is important for brain development, and its suppression in adult life might contribute to the neurobehavioral pathologies that can arise after illness and stress during pregnancy.
Collapse
Affiliation(s)
- Tracey A Quinn
- Monash Institute of Medical Research, The Ritchie Centre, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia Department of Obstetrics and Gynaecology, Monash Medical Centre, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Relevance Weighting of Tier 1 Endocrine Screening Endpoints by Rank Order. ACTA ACUST UNITED AC 2014; 101:90-113. [DOI: 10.1002/bdrb.21096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
|
23
|
Brunton PJ, Russell JA, Hirst JJ. Allopregnanolone in the brain: protecting pregnancy and birth outcomes. Prog Neurobiol 2014; 113:106-36. [PMID: 24012715 DOI: 10.1016/j.pneurobio.2013.08.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/12/2013] [Accepted: 08/25/2013] [Indexed: 01/09/2023]
Abstract
A successful pregnancy requires multiple adaptations in the mother's brain that serve to optimise foetal growth and development, protect the foetus from adverse prenatal programming and prevent premature delivery of the young. Pregnancy hormones induce, organise and maintain many of these adaptations. Steroid hormones play a critical role and of particular importance is the progesterone metabolite and neurosteroid, allopregnanolone. Allopregnanolone is produced in increasing amounts during pregnancy both in the periphery and in the maternal and foetal brain. This review critically examines a role for allopregnanolone in both the maternal and foetal brain during pregnancy and development in protecting pregnancy and birth outcomes, with particular emphasis on its role in relation to stress exposure at this time. Late pregnancy is associated with suppressed stress responses. Thus, we begin by considering what is known about the central mechanisms in the maternal brain, induced by allopregnanolone, that protect the foetus(es) from exposure to harmful levels of maternal glucocorticoids as a result of stress during pregnancy. Next we discuss the central mechanisms that prevent premature secretion of oxytocin and consider a role for allopregnanolone in minimising the risk of preterm birth. Allopregnanolone also plays a key role in the foetal brain, where it promotes development and is neuroprotective. Hence we review the evidence about disruption to neurosteroid production in pregnancy, through prenatal stress or other insults, and the immediate and long-term adverse consequences for the offspring. Finally we address whether progesterone or allopregnanolone treatment can rescue some of these deficits in the offspring.
Collapse
Affiliation(s)
- Paula J Brunton
- Division of Neurobiology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, UK.
| | - John A Russell
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Scotland, UK
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, School of Biomedical Sciences, University of Newcastle, Newcastle, N.S.W., Australia
| |
Collapse
|
24
|
Lim WL, Soga T, Parhar IS. Maternal Dexamethasone Exposure Inhibits the Gonadotropin-Releasing Hormone Neuronal Movement in the Preoptic Area of Rat Offspring. Dev Neurosci 2014; 36:95-107. [DOI: 10.1159/000360416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/06/2014] [Indexed: 11/19/2022] Open
|
25
|
Sickmann HM, Li Y, Mørk A, Sanchez C, Gulinello M. Does stress elicit depression? Evidence from clinical and preclinical studies. Curr Top Behav Neurosci 2014; 18:123-159. [PMID: 24633891 DOI: 10.1007/7854_2014_292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Exposure to stressful situations may induce or deteriorate an already existing depression. Stress-related depression can be elicited at an adolescent/adult age but evidence also shows that early adverse experiences even at the fetal stage may predispose the offspring for later development of depression. The hypothalamus-pituitary-adrenal axis (HPA-axis) plays a key role in regulating the stress response and dysregulation in the system has been linked to depression both in humans and in animal models. This chapter critically reviews clinical and preclinical findings that may explain how stress can cause depression, including HPA-axis changes and alterations beyond the HPA-axis. As stress does not elicit depression in the majority of the population, this motivated research to focus on understanding the biology underlying resilient versus sensitive subjects. Animal models of depression have contributed to a deeper understanding of these mechanisms. Findings from these models will be presented.
Collapse
Affiliation(s)
- Helle M Sickmann
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
26
|
Maternal dexamethasone exposure during pregnancy in rats disrupts gonadotropin-releasing hormone neuronal development in the offspring. Cell Tissue Res 2013; 355:409-23. [PMID: 24374911 PMCID: PMC3921457 DOI: 10.1007/s00441-013-1765-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/29/2013] [Indexed: 12/02/2022]
Abstract
The migration of gonadotropin-releasing hormone (GnRH) neurons from the olfactory placode to the preoptic area (POA) from embryonic day 13 is important for successful reproduction during adulthood. Whether maternal glucocorticoid exposure alters GnRH neuronal morphology and number in the offspring is unknown. This study determines the effect of maternal dexamethasone (DEX) exposure on enhanced green fluorescent protein (EGFP) driven by GnRH promoter neurons (TG-GnRH) in transgenic rats dual-labelled with GnRH immunofluorescence (IF-GnRH). The TG-GnRH neurons were examined in intact male and female rats at different postnatal ages, as a marker for GnRH promoter activity. Pregnant females were subcutaneously injected with DEX (0.1 mg/kg) or vehicle daily during gestation days 13–20 to examine the number of GnRH neurons in P0 male offspring. The total number of TG-GnRH neurons and TG-GnRH/IF-GnRH neuronal ratio increased from P0 and P5 stages to P47–52 stages, suggesting temporal regulation of GnRH promoter activity during postnatal development in intact rats. In DEX-treated P0 males, the number of IF-GnRH neurons decreased within the medial septum, organum vasculosom of the lamina terminalis (OVLT) and anterior hypothalamus. The percentage of TG-GnRH neurons with branched dendritic structures decreased in the OVLT of DEX-P0 males. These results suggest that maternal DEX exposure affects the number and dendritic development of early postnatal GnRH neurons in the OVLT/POA, which may lead to altered reproductive functions in adults.
Collapse
|
27
|
Brunton PJ. Effects of maternal exposure to social stress during pregnancy: consequences for mother and offspring. Reproduction 2013; 146:R175-89. [DOI: 10.1530/rep-13-0258] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A suboptimalin uteroenvironment, for example, as a result of maternal stress, can have detrimental effects on the pregnancy and long-term adverse ‘programming’ effects on the offspring. This article focuses on the effects of prenatal social stress on the mother, her pregnancy and the offspring, since these issues have ethological relevance in both animals and humans. The consequences of social stress exposure depend on when during pregnancy the stress occurs, and many of the effects on the offspring are sex specific. Social stress during early pregnancy tends to result in pregnancy loss, whereas stress exposure later in pregnancy, when the mother has already invested considerable resources in the foetuses, results in programmed offspring of low birth weight: a risk factor for various adulthood diseases. Neuroendocrine and behavioural responses to stress in the offspring are particularly sensitive to foetal programming by prenatal stress, indicated by enhanced hypothalamo-pituitary–adrenal (HPA) axis responses and increased anxiety behaviour, which result from permanent changes in the offspring's brain. The dysregulation of HPA axis function may also interfere with other systems, for example, the hypothalamic–pituitary–gonadal axis, as there is evidence for alterations in steroidogenesis, reproductive potential and impaired reproductive/social behaviours in prenatally stressed offspring. Prenatal social stress also programmes future maternal behaviour, highlighting the potential for negative phenotypes to be transmitted to future generations. The possible mechanisms through which maternal stress during pregnancy is transmitted to the foetuses and the foetal brain is programmed by prenatal stress and the potential to overwrite programming of the offspring are discussed.
Collapse
|
28
|
Wanderley MI, Saraiva KLA, César Vieira JSB, Peixoto CA, Udrisar DP. Foetal exposure to Panax ginseng extract reverts the effects of prenatal dexamethasone in the synthesis of testosterone by Leydig cells of the adult rat. Int J Exp Pathol 2013; 94:230-40. [PMID: 23672767 DOI: 10.1111/iep.12026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/11/2013] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to examine the effect of maternal exposure to Panax ginseng extract (GE) on the prenatal dexamethasone (DEXA)-induced increase in testosterone production by isolated Leydig cells in adult rats. Pregnant rats were treated with (i) GE (200 mg/kg) or vehicle on days 10-21; (ii) DEXA (100 μg/kg) or vehicle on days 14-21; or (iii) a combination of GE plus DEXA at the same doses and with the same regimen. Testosterone production was induced either by the activator of protein kinase A (dbcAMP) or substrates of steroidogenesis [22(R)-hydroxycholesterol (22(R)-OH-C)] and pregnenolone. The capacity of rat Leydig cells exposed to DEXA to synthesize testosterone induced by dbcAMP, 22(R)-OH-C or pregnenolone was increased in comparison with the control group. Combined exposure to DEXA + GE prevented the effect of DEXA on the responsiveness of Leydig cells to all inductors of testosterone synthesis, whereas GE alone did not modify the response to inductors. No modifications in testosterone production were observed under basal conditions. StAR immunoexpression in Leydig cells was not modified by prenatal exposure to DEXA, GE or DEXA + GE. P450scc and glucocorticoid receptor immunoexpression was higher in offspring exposed to DEXA in comparison with the control group. This increased expression was prevented by combined treatment with DEXA + GE. The present findings demonstrate that GE is capable of reversing the effect of DEXA on testosterone synthesis by rat Leydig cells.
Collapse
Affiliation(s)
- Maria I Wanderley
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, Brazil.
| | | | | | | | | |
Collapse
|
29
|
The role of glucocorticoid receptors in dexamethasone-induced apoptosis of neuroprogenitor cells in the hippocampus of rat pups. Mediators Inflamm 2013; 2013:628094. [PMID: 23401645 PMCID: PMC3557631 DOI: 10.1155/2013/628094] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/17/2012] [Indexed: 12/25/2022] Open
Abstract
Background. Dexamethasone (Dex) has been used to reduce inflammation in preterm infants with assistive ventilation and to prevent chronic lung diseases. However, Dex treatment results in adverse effects on the brain. Since the hippocampus contains a high density of glucocorticoid receptors (GCRs), we hypothesized that Dex affects neurogenesis in the hippocampus through inflammatory mediators. Methods. Albino Wistar rat pups first received a single dose of Dex (0.5 mg/kg) on postnatal day 1 (P1) and were sacrificed on P2, P3, P5, and P7. One group of Dex-treated pups (Dex-treated D1D2) was given mifepristone (RU486, a GCR antagonist) on P1 and sacrificed on P2. Hippocampi were isolated for western blot analysis, TUNEL, cleaved-caspase 3 staining for cell counts, and morphological assessment. Control pups received normal saline (NS). Results. Dex reduced the developmental gain in body weight, but had no effect on brain weight. In the Dex-treated D1D2 group, apoptotic cells increased in number based on TUNEL and cleaved-caspase 3 staining. Most of the apoptotic cells expressed the neural progenitor cell marker nestin. Dex-induced apoptosis in P1 pups was markedly reduced (60%) by pretreatment with RU486, indicating the involvement of GCRs. Conclusion. Early administration of Dex results in apoptosis of neural progenitor cells in the hippocampus and this is mediated through GCRs.
Collapse
|
30
|
Chen A, Kelley LD, Janušonis S. Effects of prenatal stress and monoaminergic perturbations on the expression of serotonin 5-HT4 and adrenergic β2 receptors in the embryonic mouse telencephalon. Brain Res 2012; 1459:27-34. [DOI: 10.1016/j.brainres.2012.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/21/2012] [Accepted: 04/11/2012] [Indexed: 12/13/2022]
|
31
|
Dexamethasone induces apoptosis in the developing rat amygdala in an age-, region-, and sex-specific manner. Neuroscience 2011; 199:535-47. [PMID: 22008524 DOI: 10.1016/j.neuroscience.2011.09.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/18/2011] [Accepted: 09/25/2011] [Indexed: 12/30/2022]
Abstract
Exposure to glucocorticoids (GCs) in early development can lead to long-term changes in brain function and behavior, although little is known about the underlying neural mechanisms. Perinatal exposure to GCs alters adult anxiety and neuroendocrine responses to stress. Therefore, we investigated the effects of either late gestational or neonatal exposure to the GC receptor agonist dexamethasone (DEX), on apoptosis within the amygdala, a region critical for emotional regulation. DEX was administered to timed-pregnant rat dams from gestational day 18 until parturition, or postnatal day 4-6. Offspring were sacrificed the day following the last DEX treatment, and tissue was processed for immunohistochemical detection of cleaved caspase-3, a marker for apoptotic cells. Prenatal DEX treatment significantly increased the number of cleaved caspase-3-positive cells in the amygdala of both sexes, largely due to increases within the medial and basomedial subregions. Postnatal DEX treatment also increased cleaved caspase-3 immunoreactivity within the amygdala, although effects reached significance only in the central nucleus of females. Overall, DEX induction of cleaved caspase-3 in the amygdala was greater following prenatal compared with postnatal treatment, yet in both instances, elevations in cleaved caspase-3 correlated with an increase in pro-apoptotic Bax mRNA expression. Dual-label immunohistochemistry of cleaved caspase-3 and the neuronal marker NeuN confirmed that virtually all cleaved caspase-3-positive cells in the amygdala were neurons, and a subset of these cells (primarily following postnatal treatment) expressed a GABAergic calcium-binding protein phenotype (calbindin or calretinin). Together these results indicate that early developmental GC exposure induces neuronal apoptosis within the amygdala in an age-, sex-, and region-dependent manner.
Collapse
|
32
|
Brunton PJ, Russell JA. Neuroendocrine control of maternal stress responses and fetal programming by stress in pregnancy. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1178-91. [PMID: 21216265 DOI: 10.1016/j.pnpbp.2010.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/30/2010] [Accepted: 12/31/2010] [Indexed: 02/07/2023]
Abstract
The major changes in highly dynamic neuroendocrine systems that are essential for establishing and maintaining pregnancy are outlined from studies on rodents. These changes optimise the internal environment to provide the life support system for the placenta, embryo and fetus. These include automatic prevention of further pregnancy, blood volume expansion, increased appetite and energy storage. The brain regulates these changes, in response to steroid (estrogens, progesterone) and peptide (lactogens, relaxin) hormone signals. Activation of inhibitory endogenous opioid mechanisms in the brain in late pregnancy restrains premature secretion of oxytocin, and attenuates hypothalamo-pituitary-adrenal (HPA) responses to stress. This opioid mechanism is activated by allopregnanolone, a neuroactive progesterone metabolite. The significance of reduced HPA axis responses in shifting maternal metabolic balance, and in protecting the fetuses from adverse programming of HPA axis stress responsiveness and anxious behaviour in later life is critically discussed. Experimental studies showing sex-dependent fetal programming by maternal stress or glucocorticoid exposure in late pregnancy are reviewed. The possibility of over-writing programming in offspring through neurosteroid administration is discussed. The impact of maternal stress on placental function is considered in the context of reconciling studies that show offspring programming by stress in very early or late pregnancy produce similar phenotypes in the offspring.
Collapse
Affiliation(s)
- Paula J Brunton
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH89XD, UK
| | | |
Collapse
|
33
|
Oliveira M, Leão P, Rodrigues A, Pêgo J, Cerqueira J, Sousa N. Programming Effects of Antenatal Corticosteroids Exposure in Male Sexual Behavior. J Sex Med 2011; 8:1965-74. [DOI: 10.1111/j.1743-6109.2010.02170.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Meltser I, Canlon B. Protecting the auditory system with glucocorticoids. Hear Res 2011; 281:47-55. [PMID: 21718769 DOI: 10.1016/j.heares.2011.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 01/03/2023]
Abstract
Glucocorticoids are hormones released following stress-related events and function to maintain homeostasis. Glucocorticoid receptors localize, among others, to hair cells, spiral ligament and spiral ganglion neurons. Glucocorticoid receptor-induced protection against acoustic trauma is found by i) pretreatment with glucocorticoid agonists; ii) acute restraint stress; and iii) sound conditioning. In contrast, glucocorticoid receptor antagonists exacerbate hearing loss. These findings have important clinical significance since synthetic glucocorticoids are commonly used to treat hearing loss. However, this treatment has limited success since hearing improvement is often not maintained once the treatment has ended, a fact that reduces the overall appeal for this treatment. It must be realized that despite the widespread use of glucocorticoids to treat hearing disorders, the molecular mechanisms underlying this treatment are not well characterized. This review will give insight into some physiological and biochemical mechanisms underlying glucocorticoid treatment for preventing hearing loss.
Collapse
Affiliation(s)
- Inna Meltser
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
35
|
Hougaard K, Mandrup K, Kjaer S, Bøgh I, Rosenberg R, Wegener G. Gestational chronic mild stress: Effects on acoustic startle in male offspring of rats. Int J Dev Neurosci 2011; 29:495-500. [DOI: 10.1016/j.ijdevneu.2011.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/06/2011] [Accepted: 01/20/2011] [Indexed: 11/24/2022] Open
Affiliation(s)
- K.S. Hougaard
- National Research Centre for the Working EnvironmentLersø Parkallé 105DK‐2100Copenhagen ØDenmark
| | - K.R. Mandrup
- National Food InstituteTechnical University of DenmarkMørkhøj Bygade 19DK‐2860SøborgDenmark
| | - S.L. Kjaer
- National Research Centre for the Working EnvironmentLersø Parkallé 105DK‐2100Copenhagen ØDenmark
- Centre for Psychiatric Research, Aarhus University Hospital RisskovSkovagervej 2DK‐8240RisskovDenmark
| | - I.B. Bøgh
- Veterinary Reproduction and Obstetrics, Faculty of Life SciencesUniversity of CopenhagenDyrlægevej 68DK‐1870Frederiksberg C.Denmark
| | - R. Rosenberg
- Centre for Psychiatric Research, Aarhus University Hospital RisskovSkovagervej 2DK‐8240RisskovDenmark
| | - G. Wegener
- Centre for Psychiatric Research, Aarhus University Hospital RisskovSkovagervej 2DK‐8240RisskovDenmark
| |
Collapse
|
36
|
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays a key role in the neuroendocrine response to stress. Dynamic changes in HPA axis regulation and hence HPA responsivity occur over the lifetime of an animal. This article focuses on two extremes of the spectrum. The first occurs naturally during pregnancy when stress responses are dampened. The second, at the opposite end of the scale, occurs in offspring of mothers who were exposed to stress during pregnancy and display exaggerated HPA axis stress responses. Reduced glucocorticoid output in response to stress in pregnancy may have important consequences for conserving energy supply to the foetus(es), in modulating immune system adaptations and in protecting against adverse foetal programming by glucocorticoids. Understanding the mechanisms underpinning this adaptation in pregnancy may provide insights for manipulating HPA axis responsiveness in later life, particularly in the context of resetting HPA axis hyperactivity associated with prenatal stress exposure, which may underlie several major pathologies, including cardiovascular disease, diabetes mellitus type 2, obesity, cognitive decline and mood disorders.
Collapse
Affiliation(s)
- P J Brunton
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
37
|
Brunton PJ, Russell JA. Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: sex-specific effects. J Neuroendocrinol 2010; 22:258-71. [PMID: 20136688 DOI: 10.1111/j.1365-2826.2010.01969.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Stress exposure during pregnancy can 'programme' adult behaviour and hypothalamic-pituitary-adrenal (HPA) axis stress responsiveness. In the present study, we utilised an ethologically relevant social stressor to model the type of stress that pregnant women may experience. We investigated the effects of social defeat by a resident lactating rat over 5 days during the last week of pregnancy on the pregnant intruder rat HPA axis, and on HPA responsivity to stress and anxiety-related behaviour in the adult offspring of the socially-defeated intruder rats. HPA axis responses after social defeat were attenuated in the pregnant rats compared to virgin females. In the adult offspring, systemic interleukin (IL)-1beta or restraint increased adrenocorticotrophic hormone and corticosterone secretion in male and female control rats; however, in prenatally stressed (PNS) offspring, HPA responses were greatly enhanced and peak hormone responses to IL-1beta were greater in females versus males. Male PNS rats displayed increased anxiety behaviour on the elevated plus maze; however, despite marked changes in anxiety behaviour across the oestrous cycle, there were no differences between female control and PNS rats. Investigation of possible mechanisms showed mineralocorticoid mRNA levels were reduced in the hippocampus of male and female PNS offspring, whereas glucocorticoid receptor mRNA expression was modestly reduced in the CA2 hippocampal subfield in female PNS rats only. Corticotropin-releasing hormone mRNA and glucocorticoid receptor mRNA expression in the central amygdala was greater in PNS males and females compared to controls. The data obtained in the present study indicate that prenatal social stress differentially programmes anxiety behaviour and HPA axis responses to stress in male and female offspring. Attenuated glucocorticoid feedback mechanisms in the limbic system may underlie HPA axis hyper-reactivity to stress in PNS offspring.
Collapse
Affiliation(s)
- P J Brunton
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| | | |
Collapse
|
38
|
Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev 2009; 30:883-925. [PMID: 19887492 DOI: 10.1210/er.2009-0016] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Masculinization depends on adequate production of testosterone by the fetal testis within a specific "masculinization programming window." Disorders resulting from subtle deficiencies in this process are common in humans, and environmental exposures/lifestyle could contribute causally because common therapeutic and environmental compounds can affect steroidogenesis. This evidence derives mainly from rodent studies, but because there are major species differences in regulation of steroidogenesis in the fetal testis, this may not always be a guide to potential effects in the human. In addition to direct study of the effects of compounds on steroidogenesis, information also derives from study of masculinization disorders that result from mutations in genes in pathways regulating steroidogenesis. This review addresses this issue by critically reviewing the comparative timing of production and regulation of steroidogenesis in the fetal testis of humans and of rodents and its susceptibility to disruption; where there is limited information for the fetus, evidence from effects on steroidogenesis in the adult testis is considered. There are a number of fundamental regulatory differences between the human and rodent fetal testis, most notably in the importance of paracrine vs. endocrine drives during masculinization such that inactivating LH receptor mutations block masculinization in humans but not in rodents. Other large differences involve the steroidogenic response to estrogens and GnRH analogs and possibly phthalates, whereas for other compounds there may be differences in sensitivity to disruption (ketoconazole). This comparison identifies steroidogenic targets that are either vulnerable (mitochondrial cholesterol transport, CYP11A, CYP17) or not (cholesterol uptake) to chemical interference.
Collapse
Affiliation(s)
- Hayley M Scott
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | |
Collapse
|
39
|
Drake AJ, van den Driesche S, Scott HM, Hutchison GR, Seckl JR, Sharpe RM. Glucocorticoids amplify dibutyl phthalate-induced disruption of testosterone production and male reproductive development. Endocrinology 2009; 150:5055-64. [PMID: 19819957 DOI: 10.1210/en.2009-0700] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Common male reproductive abnormalities including cryptorchidism, hypospadias, and low sperm counts may comprise a testicular dysgenesis syndrome (TDS), resulting from fetal testis dysfunction during a critical developmental period involving reduced androgen production/action. The recent increase in TDS prevalence suggests environmental/lifestyle factors may be etiologically important. The developing fetus is exposed to multimodal challenges, and we hypothesized that exposure to a combination of factors rather than single agents may be important in the pathogenesis of TDS. We experimentally induced fetal testis dysfunction in rats via treatment of pregnant females daily from embryonic day (e) 13.5 to e21.5 with vehicle, 100 or 500 mg/kg . d dibutyl phthalate (DBP), 0.1 mg/kg . d dexamethasone (Dex), or a combination of DBP + Dex. In adulthood, penile length/normality, testis weight/descent, prostate weight, and plasma testosterone levels were measured plus anogenital distance (AGD) as a measure of androgen action within the masculinization programming window. Intratesticular testosterone and steroidogenic enzyme gene expression were measured in fetal testes at e17.5. High-dose DBP reduced fetal intratesticular testosterone and steroidogenic gene expression; induced mild hypospadias (31%) and cryptorchidism (53%); and reduced penile length, AGD, and testis and prostate weight in adulthood. Dex alone had no effect except to reduce birth weight but amplified the adverse effects of 500 mg/kg . d DBP and exacerbated the effects of 100 mg/kg . d DBP. All adverse effects were highly correlated to AGD, emphasizing the etiological importance of the masculinization programming window. These findings suggest that exposure to common environmental chemicals in combination with, for example, maternal stress, may increase the risk of common male reproductive abnormalities, with implications for human populations.
Collapse
Affiliation(s)
- Amanda J Drake
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
40
|
Piffer RC, Garcia PC, Pereira OC. Adult partner preference and sexual behavior of male rats exposed prenatally to betamethasone. Physiol Behav 2009; 98:163-7. [DOI: 10.1016/j.physbeh.2009.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/28/2009] [Accepted: 05/12/2009] [Indexed: 11/26/2022]
|
41
|
Bellinger DL, Lubahn C, Lorton D. Maternal and early life stress effects on immune function: relevance to immunotoxicology. J Immunotoxicol 2009; 5:419-44. [PMID: 19404876 DOI: 10.1080/15476910802483415] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stress is triggered by a variety of unexpected environmental stimuli, such as aggressive behavior, fear, forced physical activity, sudden environmental changes, social isolation or pathological conditions. Stressful experiences during very early life (particularly, maternal stress during fetal ontogeny) can permanently alter the responsiveness of the nervous system, an effect called programming or imprinting. Programming affects the hypothalamic-pituitary-adrenocortical (HPA) axis, brain neurotransmitter systems, sympathetic nervous system (SNS), and the cognitive abilities of the offspring, which can alter neural regulation of immune function. Prenatal or early life stress may contribute to the maladaptive immune responses to stress that occur later in life. This review focuses on the effect of maternal and early life stress on immune function in the offspring across life span. It highlights potential mechanisms by which prenatal stress impacts immune functions over life span. The literature discussed in this review suggests that psychosocial stress during pre- and early postnatal life may increase the vulnerability of infants to the effects of immunotoxicants or immune-mediated diseases, with long-term consequences. Neural-immune interactions may provide an indirect route through which immunotoxicants affect the developing immune system. A developmental approach to understanding how immunotoxicants interact with maternal and early life stress-induced changes in immunity is needed, because as the body changes physiologically across life span so do the effects of stress and immunotoxicants. In early and late life, the immune system is more vulnerable to the effects of stress. Stress can mimic the effects of aging and exacerbate age-related changes in immune function. This is important because immune dysregulation in the elderly is more frequently and seriously associated with clinical impairment and death. Aging, exposure to teratogens, and psychological stress interact to increase vulnerability and put the elderly at the greatest risk for disease.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Human Anatomy and Pathology, Loma Linda University School of Medicine, Loma Linda, CA 92352, USA.
| | | | | |
Collapse
|
42
|
Hossain A, Hajman K, Charitidi K, Erhardt S, Zimmermann U, Knipper M, Canlon B. Prenatal dexamethasone impairs behavior and the activation of the BDNF exon IV promoter in the paraventricular nucleus in adult offspring. Endocrinology 2008; 149:6356-65. [PMID: 18755799 DOI: 10.1210/en.2008-0388] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal manipulations to the hypothalamic-pituitary-adrenal axis are shown to affect auditory responses to an acoustic challenge as well as behavior in adult life. To achieve these results, we examined the effect of prenatal dexamethasone (DEX) treatment in male and female adult rat offspring by assessing body and adrenal weight, anxiety using the elevated plus maze (EPM), and acoustic startle responses as well as the effects of acoustic challenge in the paraventricular nucleus (PVN). DEX male offspring had reduced adrenal gland weight in adult life and demonstrated anxiolytic-like behavior when tested on the EPM. The acoustic startle amplitude in naive DEX-treated male offspring was significantly higher compared with saline (SAL)-treated males and females and DEX-treated females. When challenged with either a glucocorticoid agonist or antagonist, the startle response of the SAL-treated males and females significantly increased or decreased in the presence of agonist and antagonist treatment, respectively, whereas DEX males and females were not affected. Acoustic challenge caused an increase in c-fos mRNA and glucocorticoid receptor nuclear translocation in the PVN of all groups. BDNF and TrkB mRNA increased in the PVN after acoustic challenge in the SAL-treated males and females but not in the DEX males or females. These findings exemplify the differential sensitivity of the developing nervous and endocrine systems to prenatal hormonal stress and demonstrate that prenatal DEX treatment elicits long-term behavioral alterations related to anxiety and auditory processing.
Collapse
Affiliation(s)
- Amzad Hossain
- Department of Physiology & Pharmacology Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Reznikov A, Nosenko N, Tarasenko L, Sinitsyn P, Polyakova L, Mishunina T. Neuroendocrine disorders in adult rats treated prenatally with hydrocortisone acetate. ACTA ACUST UNITED AC 2008; 60:489-97. [PMID: 18692998 DOI: 10.1016/j.etp.2008.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 05/02/2008] [Indexed: 12/01/2022]
Abstract
We investigated the effects of hydrocortisone acetate administered to pregnant rats over the last gestational week on some neuroendocrine characteristics in adult female and male offspring. Prenatal glucocorticoid eliminated sex dimorphism of the neurons nuclei volumes in the medial preoptic area and the suprachiasmatic nuclei. There was no elevation of blood plasma corticosterone level after noradrenaline infusion into the third brain ventricle in experimental males; meanwhile, in females adrenocortical response was augmented. Male offspring exhibited a decrease of plasma corticosterone response to an acute stress (1h restraint) that was not accompanied by post-stress changes neither in the hypothalamic noradrenaline content nor hippocampal glutamate decarboxylase activity. On the contrary, moderate augmentation of adrenocortical stress reactivity and inhibitory effect of GABAergic system were found in females. It was concluded that exposure to prenatal glucocorticoid is able to alter development of the neuroendocrine systems related to reproduction and stress responses both in males and females and resulted in modification of its sex-dimorphic features in adult life.
Collapse
Affiliation(s)
- Alexander Reznikov
- Department of Endocrinology of Reproduction and Adaptation, V.P. Komissarenko Institute of Endocrinology and Metabolism, Kiev 04114, Ukraine.
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
McArthur S, McHale E, Gillies GE. The size and distribution of midbrain dopaminergic populations are permanently altered by perinatal glucocorticoid exposure in a sex- region- and time-specific manner. Neuropsychopharmacology 2007; 32:1462-76. [PMID: 17164817 DOI: 10.1038/sj.npp.1301277] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Central dopaminergic (DA) systems appear to be particularly vulnerable to disruption by exposure to stressors in early life, but the underlying mechanisms are poorly understood. As endogenous glucocorticoids (GCs) are implicated in other aspects of neurobiological programming, this study aimed to characterize the effects of perinatal GC exposure on the cytoarchitecture of DA populations in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA). Dexamethasone was administered non-invasively to rat pups via the mothers' drinking water during embryonic days 16-19 or postnatal days 1-7, with a total oral intake circa 0.075 or 0.15 mg/kg/day, respectively; controls received normal drinking water. Analysis of tyrosine hydroxylase-immunoreactive cell counts and regional volumes in adult offspring identified notable sex differences in the shape and volume of the SNc and VTA, as well as the topographical organization and size of the DA populations. Perinatal GC treatments increased the DA population size and altered the shape of the SNc and VTA as well as the organization of the DA neurons by expanding and/or shifting them in a caudal direction. This response was sexually dimorphic and included a feminization or demasculinization of the three-dimensional cytoarchitecture in males, and subtle differences that were dependent on the window of exposure. These findings demonstrate that inappropriate perinatal exposure to GCs have enduring effects on the organization of midbrain DA systems that are critically important for normal brain function throughout life.
Collapse
Affiliation(s)
- Simon McArthur
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Imperial College, London, UK
| | | | | |
Collapse
|
46
|
Weinstock M. Gender differences in the effects of prenatal stress on brain development and behaviour. Neurochem Res 2007; 32:1730-40. [PMID: 17406975 DOI: 10.1007/s11064-007-9339-4] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 03/16/2007] [Indexed: 11/30/2022]
Abstract
An increased incidence of anxiety, depression and attention deficits in children has been linked to psychological stress during pregnancy. Subjection of a pregnant rat to stress at a time when the foetal limbic and hypothalamic pituitary adrenal (HPA) axes develop results in anxiogenic and depressive behaviour and learning and attention deficits in the offspring, which depend on its gender, intensity and timing of the maternal stress and behaviour being tested. Maternal stress increases corticosterone levels in the foetal brain, decreases foetal testosterone and brain aromatase activity in males, and alters brain catecholamine activity to that in females. Learning deficits, reductions in hippocampal neurogenesis, LTP and dendritic spine density in the prefrontal cortex are more readily seen in prenatally-stressed males, while anxiety, depression and increased response of the HPA axis to stress are more prevalent in females. Genders may differ in the sensitivity of developing brain areas to stress hormones.
Collapse
Affiliation(s)
- Marta Weinstock
- Department of Pharmacology, Hebrew University Medical Centre, Ein Kerem, Jerusalem, 91120, Israel.
| |
Collapse
|
47
|
Hauser J, Feldon J, Pryce CR. Prenatal dexamethasone exposure, postnatal development, and adulthood prepulse inhibition and latent inhibition in Wistar rats. Behav Brain Res 2006; 175:51-61. [PMID: 16956676 DOI: 10.1016/j.bbr.2006.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 07/31/2006] [Indexed: 10/24/2022]
Abstract
Prenatal stress is an important risk factor in schizophrenia, and the aetiological factors mediating this relationship are central to the neurodevelopmental hypothesis of schizophrenia. The glucocorticoid receptor (GR) agonist dexamethasone (DEX) is commonly prescribed for prenatal conditions, and results in GR activation, which is part of the stress response. To investigate animal evidence for whether prenatal DEX leads to development of schizophrenia-like phenotypes, Wistar rats were prenatally exposed to DEX (0.1mg/kg/day) between the gestational days 15 and 21, and tested in two paradigms known to be disrupted in schizophrenia patients: prepulse inhibition (PPI) and latent inhibition (LI). A cross-fostering design was used to allow dissociation of any direct prenatal effects on offspring from effects dependent on DEX exposure of the rearing dam. Pup birth weight was reduced by prenatal DEX treatment. DEX-treated dams demonstrated increased pup-directed behaviour. There were additive effects of prenatal DEX treatment and DEX treatment of rearing dam in terms of reduced body weight in adulthood. In one of two replications, PPI was increased by prenatal DEX in males only and specific to the highest prepulse intensity. There was no evidence that LI was disrupted by prenatal DEX treatment. This study does not provide support for the hypothesis that prenatal DEX exposure leads to schizophrenia-like deficits in PPI or LI, suggesting that GR prenatal programming is not a mechanism of direct relevance to the neurodevelopmental hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Jonas Hauser
- Behavioural Neurobiology Laboratory, Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland.
| | | | | |
Collapse
|
48
|
Shoener JA, Baig R, Page KC. Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic-pituitary-adrenal axis activity in adult male rats. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1366-73. [PMID: 16397092 DOI: 10.1152/ajpregu.00757.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids are essential for normal hypothalamic-pituitary-adrenal (HPA) axis activity; however, recent studies warn that exposure to excess endogenous or synthetic glucocorticoid during a specific period of prenatal development adversely affects HPA axis stability. We administered dexamethasone (DEX) to pregnant rats during the last week of gestation and investigated subsequent HPA axis regulation in adult male offspring in unrestrained and restraint-stressed conditions. With the use of real-time PCR and RIA, we examined the expression of regulatory genes in the hippocampus, hypothalamus, and pituitary, including corticotropin-releasing hormone (CRH), arginine vasopressin (AVP), glucocorticoid receptors (GR), mineralcorticoid receptors (MR), and 11-β-hydroxysteroid dehydrogenase-1 (11β-HSD-1), as well as the main HPA axis hormones, adrenal corticotropic hormone (ACTH) and corticosterone (CORT). Our results demonstrate that the DEX-exposed group exhibited an overall change in the pattern of gene expression and hormone levels in the unrestrained animals. These changes included an upregulation of CRH in the hypothalamus, a downregulation of MR with a concomitant upregulation of 11β-HSD-1 in the hippocampus, and an increase in circulating levels of both ACTH and CORT relative to unrestrained control animals. Interestingly, both DEX-exposed and control rats exhibited an increase in pituitary GR mRNA levels following a 1-h recovery from restraint stress; however, the increased expression in DEX-exposed rats was significantly less and was associated with a slower return to baseline CORT compared with controls. In addition, circulating levels of ACTH and CORT as well as hypothalamic CRH and hippocampal 11β-HSD-1 expression levels were significantly higher in the DEX-exposed group compared with controls following restraint stress. Taken together, these data demonstrate that late-gestation DEX exposure in rats is associated with persistent changes in both the modulation of HPA axis activity and the HPA axis-mediated response to stress.
Collapse
|
49
|
Hayward LS, Richardson JB, Grogan MN, Wingfield JC. Sex differences in the organizational effects of corticosterone in the egg yolk of quail. Gen Comp Endocrinol 2006; 146:144-8. [PMID: 16430891 DOI: 10.1016/j.ygcen.2005.10.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/20/2005] [Indexed: 11/18/2022]
Abstract
Previously, we found that experimentally elevated plasma corticosterone was transferred to egg yolk by female Japanese quail (Coturnix coturnix japonica), and that the chicks hatched from these eggs grew more slowly than controls and had higher responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis as adults. Here, we tested whether exposure to high yolk corticosterone was responsible for the slowed growth and elevated HPA responsiveness by manipulating the steroid content of eggs directly. Eggs were injected prior to incubation with a dose of corticosterone calculated to increase total yolk corticosterone concentration by two standard deviations. We found that elevated yolk corticosterone slowed growth in male but not female chicks and decreased the HPA responsiveness of female but not male adults, in contrast to the results of elevated corticosterone in laying females. Our results are consistent with others that demonstrate sex differences in the organizational effects of glucocorticoids. The mechanisms and adaptive value of such differences have yet to be determined.
Collapse
Affiliation(s)
- Lisa S Hayward
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
50
|
Young NA, Teskey GC, Henry LC, Edwards HE. Exogenous antenatal glucocorticoid treatment reduces susceptibility for hippocampal kindled and maximal electroconvulsive seizures in infant rats. Exp Neurol 2006; 198:303-12. [PMID: 16445912 DOI: 10.1016/j.expneurol.2005.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 10/19/2005] [Accepted: 11/18/2005] [Indexed: 10/25/2022]
Abstract
Dexamethasone (DEX) and betamethasone (BETA) are synthetic glucocorticoids used clinically to reduce morbidity and mortality in infants at risk of premature birth. While their main role is to facilitate lung development, their effect on the developing nervous system and seizure susceptibility is unclear. The present study tested the hypothesis that antenatal DEX or BETA treatment would alter seizure thresholds and spread of epileptiform activity in the brains of infant offspring. Pregnant dams received once daily injections with DEX, BETA, or vehicle on gestation days 15 to 18. Physical appearance, litter size, and weight of the pups were assessed postnatally. Seizure thresholds were determined on postnatal day 14 using electroconvulsive shock delivered through ear clips (i.e., generalized seizure) or kindling stimulation of the left hippocampus through indwelling electrodes (i.e., partial seizure). The rate of acquisition of kindled seizures was determined on postnatal days 14 and 15. Pups from dams treated with DEX and BETA were growth restricted. Antenatal BETA treatment increased seizure threshold for both models. Antenatal DEX treatment increased kindling threshold, but not electroconvulsive shock threshold. Kindling rate was unaffected by either antenatal treatment. In summary, repeated glucocorticoid treatments had adverse effects on weight, skin and litter size, raised seizure thresholds, and reduced seizure vulnerability. Although these effects are seemingly desirable with respect to seizure susceptibility, they suggest that the functional organization of the nervous system is altered with antenatal synthetic glucocorticoid treatment.
Collapse
Affiliation(s)
- Nicole A Young
- Behavioural Neuroscience Research Group, Department of Psychology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|