1
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
2
|
Chemical Stimulation of Rodent and Human Cortical Synaptosomes: Implications in Neurodegeneration. Cells 2021; 10:cells10051174. [PMID: 34065927 PMCID: PMC8151714 DOI: 10.3390/cells10051174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022] Open
Abstract
Synaptic plasticity events, including long-term potentiation (LTP), are often regarded as correlates of brain functions of memory and cognition. One of the central players in these plasticity-related phenomena is the α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR). Increased levels of AMPARs on postsynaptic membranes thus constitute a biochemical measure of LTP. Isolated synaptic terminals (synaptosomes) are an excellent ex vivo tool to monitor synaptic physiology in healthy and diseased brains, particularly in human research. We herein describe three protocols for chemically-induced LTP (cLTP) in synaptosomes from both rodent and human brain tissues. Two of these chemical stimulation protocols are described for the first time in synaptosomes. A pharmacological block of synaptosomal actin dynamics confirmed the efficiency of the cLTP protocols. Furthermore, the study prototypically evaluated the deficiency of cLTP in cortical synaptosomes obtained from human cases of early-onset Alzheimer’s disease (EOAD) and frontotemporal lobar degeneration (FLTD), as well as an animal model that mimics FLTD.
Collapse
|
3
|
Rampérez A, Bartolomé-Martín D, García-Pascual A, Sánchez-Prieto J, Torres M. Photoconversion of FM1-43 Reveals Differences in Synaptic Vesicle Recycling and Sensitivity to Pharmacological Disruption of Actin Dynamics in Individual Synapses. ACS Chem Neurosci 2019; 10:2045-2059. [PMID: 30763065 DOI: 10.1021/acschemneuro.8b00712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The cycling of synaptic vesicles ensures that neurons can communicate adequately through their synapses on repeated occasions when activity is sustained, and several steps in this cycle are modulated by actin. The effects of pharmacological stabilization of actin with jasplakinolide or its depolymerization with latrunculin A was assessed on the synaptic vesicle cycle at individual boutons of cerebellar granule cells, using FM1-43 imaging to track vesicle recycling and its photoconversion to specifically label recycled organelles. Remarkable differences in the recycling capacity of individual boutons are evident, and their dependence on the actin cytoskeleton for recycling is clear. Disrupting actin dynamics causes a loss of functional boutons, and while this indicates that exo/endocytotic cycling in boutons is fully dependent on such events, this dependence is only partial in other boutons. Indeed, exocytosis and vesicle trafficking are impaired significantly by stabilizing or depolymerizing actin, whereas repositioning recycled vesicles at the active zone seems to be dependent on actin polymerization alone. These findings support the hypothesis that different steps of synaptic vesicle cycling depend on actin dynamics and that such dependence varies among individual boutons.
Collapse
Affiliation(s)
- Alberto Rampérez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - David Bartolomé-Martín
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Angeles García-Pascual
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Jose Sánchez-Prieto
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Magdalena Torres
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| |
Collapse
|
4
|
Tikiyani V, Li L, Sharma P, Liu H, Hu Z, Babu K. Wnt Secretion Is Regulated by the Tetraspan Protein HIC-1 through Its Interaction with Neurabin/NAB-1. Cell Rep 2018; 25:1856-1871.e6. [PMID: 30428353 PMCID: PMC6258899 DOI: 10.1016/j.celrep.2018.10.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/25/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The aberrant regulation of Wnt secretion is implicated in various neurological diseases. However, the mechanisms of Wnt release are still largely unknown. Here we describe the role of a C. elegans tetraspan protein, HIC-1, in maintaining normal Wnt release. We show that HIC-1 is expressed in cholinergic synapses and that mutants in hic-1 show increased levels of the acetylcholine receptor AChR/ACR-16. Our results suggest that HIC-1 maintains normal AChR/ACR-16 levels by regulating normal Wnt release from presynaptic neurons, as hic-1 mutants show an increase in secreted Wnt from cholinergic neurons. We further show that HIC-1 affects Wnt secretion by modulating the actin cytoskeleton through its interaction with the actin-binding protein NAB-1. In summary, we describe a protein, HIC-1, that functions as a neuromodulator by affecting postsynaptic AChR/ACR-16 levels by regulating presynaptic Wnt release from cholinergic motor neurons.
Collapse
Affiliation(s)
- Vina Tikiyani
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India
| | - Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), University of Queensland, Upland Road 79, St. Lucia, QLD 4072, Australia
| | - Pallavi Sharma
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), University of Queensland, Upland Road 79, St. Lucia, QLD 4072, Australia
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), University of Queensland, Upland Road 79, St. Lucia, QLD 4072, Australia
| | - Kavita Babu
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
5
|
Disruption of Coordinated Presynaptic and Postsynaptic Maturation Underlies the Defects in Hippocampal Synapse Stability and Plasticity in Abl2/Arg-Deficient Mice. J Neurosci 2017; 36:6778-91. [PMID: 27335408 DOI: 10.1523/jneurosci.4092-15.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/13/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Immature glutamatergic synapses in cultured neurons contain high-release probability (Pr) presynaptic sites coupled to postsynaptic sites bearing GluN2B-containing NMDA receptors (NMDARs), which mature into low-Pr, GluN2B-deficient synapses. Whether this coordinated maturation of high-Pr, GluN2B(+) synapses to low-Pr, GluN2B-deficient synapses actually occurs in vivo, and if so, what factors regulate it and what role it might play in long-term synapse function and plasticity are unknown. We report that loss of the integrin-regulated Abl2/Arg kinase in vivo yields a subpopulation of "immature" high-Pr, GluN2B(+) hippocampal synapses that are maintained throughout late postnatal development and early adulthood. These high-Pr, GluN2B(+) synapses are evident in arg(-/-) animals as early as postnatal day 21 (P21), a time that precedes any observable defects in synapse or dendritic spine number or structure in arg(-/-) mice. Using focal glutamate uncaging at individual synapses, we find only a subpopulation of arg(-/-) spines exhibits increased GluN2B-mediated responses at P21. As arg(-/-) mice age, these synapses increase in proportion, and their associated spines enlarge. These changes coincide with an overall loss of spines and synapses in the Arg-deficient mice. We also demonstrate that, although LTP and LTD are normal in P21 arg(-/-) slices, both forms of plasticity are significantly altered by P42. These data demonstrate that the integrin-regulated Arg kinase coordinates the maturation of presynaptic and postsynaptic compartments in a subset of hippocampal synapses in vivo, and this coordination is critical for NMDAR-dependent long-term synaptic stability and plasticity. SIGNIFICANCE STATEMENT Synapses mature in vitro from high-release probability (Pr) GluN2B(+) to low-Pr, GluN2B(-), but it is unknown why this happens or whether it occurs in vivo High-Pr, GluN2B(+) synapses persist into early adulthood in Arg-deficient mice in vivo and have elevated NMDA receptor currents and increased structural plasticity. The persistence of these high-Pr, GluN2B(+) synapses is associated with a net synapse loss and significant disruption of normal synaptic plasticity by early adulthood. Together, these observations suggest that the maturation of high-Pr, GluN2B(+) synapses to predominantly low-Pr, GluN2B(-) synapses may be essential to preserving a larger dynamic range for plasticity while ensuring that connectivity is distributed among a greater number of synapses for optimal circuit function.
Collapse
|
6
|
Caesar M, Felk S, Aasly JO, Gillardon F. Changes in actin dynamics and F-actin structure both in synaptoneurosomes of LRRK2(R1441G) mutant mice and in primary human fibroblasts of LRRK2(G2019S) mutation carriers. Neuroscience 2014; 284:311-324. [PMID: 25301747 DOI: 10.1016/j.neuroscience.2014.09.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/13/2022]
Abstract
Converging evidence suggests that the Parkinson's disease-linked leucine-rich repeat kinase 2 (LRRK2) modulates cellular function by regulating actin dynamics. In the present study we investigate the role of LRRK2 in functional synaptic terminals of adult LRRK2-knockout and LRRK2(R1441G)-transgenic mice as well as in primary fibroblasts of LRRK2(G2019S) mutation carriers. We show that lack of LRRK2 decreases and overexpression of mutant LRRK2 age-dependently increases the effect of the actin depolymerizing agent Latrunculin A (LatA) on the synaptic cytoskeleton. Similarly, endogenous mutant LRRK2 increases sensitivity to LatA in primary fibroblasts. Under basal conditions however, these fibroblasts show an increase in F-actin bundles and a decrease in filopodial length which can be rescued by LatA treatment. Our data suggest that LRRK2 alters actin dynamics and F-actin structure both in brain neurons and skin fibroblasts. We hypothesize that increased F-actin bundling represents a compensatory mechanism to protect F-actin from the depolymerizing effect of mutant LRRK2 under basal conditions. Our data further indicate that LRRK2-dependent changes in the cytoskeleton might have functional consequences on postsynaptic NMDA receptor localization.
Collapse
Affiliation(s)
- M Caesar
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany.
| | - S Felk
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - J O Aasly
- St. Olav's University Hospital, Department of Neurology, Trondheim, Norway
| | - F Gillardon
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany.
| |
Collapse
|
7
|
Wolf M, Zimmermann AM, Görlich A, Gurniak CB, Sassoè-Pognetto M, Friauf E, Witke W, Rust MB. ADF/Cofilin Controls Synaptic Actin Dynamics and Regulates Synaptic Vesicle Mobilization and Exocytosis. Cereb Cortex 2014; 25:2863-75. [PMID: 24770705 DOI: 10.1093/cercor/bhu081] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Actin is a regulator of synaptic vesicle mobilization and exocytosis, but little is known about the mechanisms that regulate actin at presynaptic terminals. Genetic data on LIMK1, a negative regulator of actin-depolymerizing proteins of the ADF/cofilin family, suggest a role for ADF/cofilin in presynaptic function. However, synapse physiology is fully preserved upon genetic ablation of ADF in mice, and n-cofilin mutant mice display defects in postsynaptic plasticity, but not in presynaptic function. One explanation for this phenomenon is overlapping functions of ADF and n-cofilin in presynaptic physiology. Here, we tested this hypothesis and genetically removed ADF together with n-cofilin from synapses. In double mutants for ADF and n-cofilin, synaptic actin dynamics was impaired and more severely affected than in single mutants. The resulting cytoskeletal defects heavily affected the organization, mobilization, and exocytosis of synaptic vesicles in hippocampal CA3-CA1 synapses. Our data for the first time identify overlapping functions for ADF and n-cofilin in presynaptic physiology and vesicle trafficking. We conclude that n-cofilin is a limiting factor in postsynaptic plasticity, a function which cannot be substituted by ADF. On the presynaptic side, the presence of either ADF or n-cofilin is sufficient to control actin remodeling during vesicle release.
Collapse
Affiliation(s)
- Michael Wolf
- Department of Biology, Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Anika-Maria Zimmermann
- Department of Biology, Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Andreas Görlich
- Department of Biology, Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany Current address: Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | - Marco Sassoè-Pognetto
- Department of Anatomy, Pharmacology and Forensic Medicine and National Institute of Neuroscience-Italy, University of Turin, Turin 10126, Italy
| | - Eckhard Friauf
- Animal Physiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Walter Witke
- Institute of Genetics, University of Bonn, Bonn 53115, Germany
| | - Marco B Rust
- Department of Biology, Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany Institute of Physiological Chemistry, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
8
|
Bleckert A, Photowala H, Alford S. Dual pools of actin at presynaptic terminals. J Neurophysiol 2012; 107:3479-92. [PMID: 22457456 DOI: 10.1152/jn.00789.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated actin's function in vesicle recycling and exocytosis at lamprey synapses and show that FM1-43 puncta and phalloidin-labeled filamentous actin (F-actin) structures are colocalized, yet recycling vesicles are not contained within F-actin clusters. Additionally, phalloidin also labels a plasma membrane-associated cortical actin. Injection of fluorescent G-actin revealed activity-independent dynamic actin incorporation into presynaptic synaptic vesicle clusters but not into cortical actin. Latrunculin-A, which sequesters G-actin, dispersed vesicle-associated actin structures and prevented subsequent labeled G-actin and phalloidin accumulation at presynaptic puncta, yet cortical phalloidin labeling persisted. Dispersal of presynaptic F-actin structures by latrunculin-A did not disrupt vesicle clustering or recycling or alter the amplitude or kinetics of excitatory postsynaptic currents (EPSCs). However, it slightly enhanced release during repetitive stimulation. While dispersal of presynaptic actin puncta with latrunculin-A failed to disperse synaptic vesicles or inhibit synaptic transmission, presynaptic phalloidin injection blocked exocytosis and reduced endocytosis measured by action potential-evoked FM1-43 staining. Furthermore, phalloidin stabilization of only cortical actin following pretreatment with latrunculin-A was sufficient to inhibit synaptic transmission. Conversely, treatment of axons with jasplakinolide, which induces F-actin accumulation but disrupts F-actin structures in vivo, resulted in increased synaptic transmission accompanied by a loss of phalloidin labeling of cortical actin but no loss of actin labeling within vesicle clusters. Marked synaptic deficits seen with phalloidin stabilization of cortical F-actin, in contrast to the minimal effects of disruption of a synaptic vesicle-associated F-actin, led us to conclude that two structurally and functionally distinct pools of actin exist at presynaptic sites.
Collapse
Affiliation(s)
- Adam Bleckert
- Dept. of Biological Sciences, Univ. of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
9
|
Yamada H, Padilla-Parra S, Park SJ, Itoh T, Chaineau M, Monaldi I, Cremona O, Benfenati F, De Camilli P, Coppey-Moisan M, Tramier M, Galli T, Takei K. Dynamic interaction of amphiphysin with N-WASP regulates actin assembly. J Biol Chem 2009; 284:34244-56. [PMID: 19759398 DOI: 10.1074/jbc.m109.064204] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amphiphysin 1, an endocytic adaptor concentrated at synapses that couples clathrin-mediated endocytosis to dynamin-dependent fission, was also shown to have a regulatory role in actin dynamics. Here, we report that amphiphysin 1 interacts with N-WASP and stimulates N-WASP- and Arp2/3-dependent actin polymerization. Both the Src homology 3 and the N-BAR domains are required for this stimulation. Acidic liposome-triggered, N-WASP-dependent actin polymerization is strongly impaired in brain cytosol of amphiphysin 1 knock-out mice. FRET-FLIM analysis of Sertoli cells, where endogenously expressed amphiphysin 1 co-localizes with N-WASP in peripheral ruffles, confirmed the association between the two proteins in vivo. This association undergoes regulation and is enhanced by stimulating phosphatidylserine receptors on the cell surface with phosphatidylserine-containing liposomes that trigger ruffle formation. These results indicate that actin regulation is a key function of amphiphysin 1 and that such function cooperates with the endocytic adaptor role and membrane shaping/curvature sensing properties of the protein during the endocytic reaction.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
PKC-induced intracellular trafficking of Ca(V)2 precedes its rapid recruitment to the plasma membrane. J Neurosci 2008; 28:2601-12. [PMID: 18322103 DOI: 10.1523/jneurosci.4314-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of protein kinase C (PKC) potentiates secretion in Aplysia peptidergic neurons, in part by inducing new sites for peptide release at growth cone terminals. The mechanisms by which ion channels are trafficked to such sites are, however, not well understood. We now show that PKC activation rapidly recruits new Ca(V)2 subunits to the plasma membrane, and that recruitment is blocked by latrunculin B, an inhibitor of actin polymerization. In contrast, inhibition of microtubule polymerization selectively prevents the appearance of Ca(V)2 subunits only at the distal edge of the growth cone. In resting neurons, Ca(V)2-containing organelles reside in the central region of growth cones, but are absent from distal lamellipodia. After activation of PKC, these organelles are transported on microtubules to the lamellipodium. The ability to traffic to the most distal sites of channel insertion inside the lamellipodium does, therefore, not require intact actin but requires intact microtubules. Only after activation of PKC do Ca(V)2 channels associate with actin and undergo insertion into the plasma membrane.
Collapse
|
11
|
Jeannotte AM, Sidhu A. Regulated interactions of the norepineprhine transporter by the actin and microtubule cytoskeletons. J Neurochem 2008; 105:1668-82. [PMID: 18331289 DOI: 10.1111/j.1471-4159.2008.05258.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One role of the actin cytoskeleton is to maintain the structural morphology and activity of the pre-synaptic terminal. We sought to determine if the actin cytoskeleton plays a role in regulating interactions between the norepinephrine transporter (NET) and alpha-Synuclein (alpha-Syn), two proteins expressed in the pre-synaptic terminal. In cells transfected with either 0.5 microg/mL or 3 microg/mL of alpha-Syn and 1 microg/mL of NET DNA, treatment with cytochalasin D, an actin depolymerizing agent, caused a dose-dependent decrease and increase, respectively, in [3H]-NE uptake. Protein interactions between NET, beta-actin, and alpha-Syn were modified, along with levels of surface transporters. Treatment of primary brainstem neurons and frontal cortex synaptosomes with cytochalasin D caused a 115% and 28% increase, respectively, in NET activity. Depolymerization of both actin and microtubules did not alter NET activity in cells with 0.5 microg/mL alpha-Syn, but caused an increase in [3H]-NE uptake in cells transfected with 3 microg/mL of alpha-Syn and primary neurons. This is the first direct demonstration of NET activity being regulated via actin and modulated by interactions with alpha-Syn.
Collapse
Affiliation(s)
- Alexis M Jeannotte
- Interdisciplinary Program in Neuroscience, Department of Biochemistry and Molecular and Cell Biology, Georgetown University, Washington, DC 20007, USA
| | | |
Collapse
|
12
|
Srinivasan G, Kim JH, von Gersdorff H. The pool of fast releasing vesicles is augmented by myosin light chain kinase inhibition at the calyx of Held synapse. J Neurophysiol 2008; 99:1810-24. [PMID: 18256166 DOI: 10.1152/jn.00949.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic strength is determined by release probability and the size of the readily releasable pool of docked vesicles. Here we describe the effects of blocking myosin light chain kinase (MLCK), a cytoskeletal regulatory protein thought to be involved in myosin-mediated vesicle transport, on synaptic transmission at the mouse calyx of Held synapse. Application of three different MLCK inhibitors increased the amplitude of the early excitatory postsynaptic currents (EPSCs) in a stimulus train, without affecting the late steady-state EPSCs. A presynaptic locus of action for MLCK inhibitors was confirmed by an increase in the frequency of miniature EPSCs that left their average amplitude unchanged. MLCK inhibition did not affect presynaptic Ca(2+) currents or action potential waveform. Moreover, Ca(2+) imaging experiments showed that [Ca(2+)](i) transients elicited by 100-Hz stimulus trains were not altered by MLCK inhibition. Studies using high-frequency stimulus trains indicated that MLCK inhibitors increase vesicle pool size, but do not significantly alter release probability. Accordingly, when AMPA-receptor desensitization was minimized, EPSC paired-pulse ratios were unaltered by MLCK inhibition, suggesting that release probability remains unaltered. MLCK inhibition potentiated EPSCs even when presynaptic Ca(2+) buffering was greatly enhanced by treating slices with EGTA-AM. In addition, MLCK inhibition did not affect the rate of recovery from short-term depression. Finally, developmental studies revealed that EPSC potentiation by MLCK inhibition starts at postnatal day 5 (P5) and remains strong during synaptic maturation up to P18. Overall, our data suggest that MLCK plays a crucial role in determining the size of the pool of synaptic vesicles that undergo fast release at a CNS synapse.
Collapse
Affiliation(s)
- Geetha Srinivasan
- The Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | |
Collapse
|
13
|
Jensen V, Walaas SI, Hilfiker S, Ruiz A, Hvalby Ø. A delayed response enhancement during hippocampal presynaptic plasticity in mice. J Physiol 2007; 583:129-43. [PMID: 17569738 PMCID: PMC2277251 DOI: 10.1113/jphysiol.2007.131300] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High frequency afferent stimulation of chemical synapses often induces short-term increases in synaptic efficacy, due to increased release probability and/or increased supply of readily releasable synaptic vesicles. This may be followed by synaptic depression, often caused by vesicle depletion. We here describe an additional, novel type of delayed and transient response enhancement phase which occurred during prolonged stimulation at 5-20 Hz frequency of excitatory glutamatergic synapses in slices from the adult mouse CA1 hippocampal region. This second enhancement phase, which was most clearly defined at physiological temperatures and essentially absent at 24 degrees C, was dependent on the presence of F-actin filaments and synapsins I and/or II, and could not be ascribed to changes in presynaptic action potentials, inhibitory neurotransmission or glutamate receptor desensitization. Time course studies showed that the delayed response phase interrupted the synaptic decay 3-4 s after stimulus train initiation and continued, when examined at 5-10 Hz frequencies, for approximately 75 stimuli before decay. The novel response enhancement, probably deriving from a restricted pool of synaptic vesicles, may allow maintenance of synaptic efficacy during prolonged periods of excitatory synaptic activity.
Collapse
Affiliation(s)
- Vidar Jensen
- Molecular Neurobiology Research Group (MONERG), PO Box 1104, Faculty of Medicine, University of Oslo, N-0317 Blindern, Oslo, Norway
| | | | | | | | | |
Collapse
|
14
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Abstract
In skeletal muscle and adipose tissue, insulin-stimulated glucose uptake is dependent upon translocation of the insulin-responsive glucose transporter GLUT4 from intracellular storage compartments to the plasma membrane. This insulin-induced redistribution of GLUT4 protein is achieved through a series of highly organized membrane trafficking events, orchestrated by insulin receptor signals. Recently, several key molecules linking insulin receptor signals and membrane trafficking have been identified, and emerging evidence supports the importance of subcellular compartmentalization of signaling components at the right time and in the right place. In addition, the translocation of GLUT4 in adipocytes requires insulin stimulation of dynamic actin remodeling at the inner surface of the plasma membrane (cortical actin) and in the perinuclear region. This results from at least two independent insulin receptor signals, one leading to the activation of phosphatidylinositol (PI) 3-kinase and the other to the activation of the Rho family small GTP-binding protein TC10. Thus, both spatial and temporal regulations of actin dynamics, both beneath the plasma membrane and around endomembranes, by insulin receptor signals are also involved in the process of GLUT4 translocation.
Collapse
Affiliation(s)
- Makoto Kanzaki
- TUBERO/Tohoku University Biomedical Engineering Research Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Mazzochi C, Bubien JK, Smith PR, Benos DJ. The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin. J Biol Chem 2005; 281:6528-38. [PMID: 16356937 DOI: 10.1074/jbc.m509386200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of the amiloride-sensitive epithelial sodium channel (ENaC) is modulated by F-actin. However, it is unknown if there is a direct interaction between alpha-ENaC and actin. We have investigated the hypothesis that the actin cytoskeleton directly binds to the carboxyl terminus of alpha-ENaC using a combination of confocal microscopy, co-immunoprecipitation, and protein binding studies. Confocal microscopy of Madin-Darby canine kidney cell monolayers stably transfected with wild type, rat isoforms of alpha-, beta-, and gamma-ENaC revealed co-localization of alpha-ENaC with the cortical F-actin cytoskeleton both at the apical membrane and within the subapical cytoplasm. F-actin was found to co-immunoprecipitate with alpha-ENaC from whole cell lysates of this cell line. Gel overlay assays demonstrated that F-actin specifically binds to the carboxyl terminus of alpha-ENaC. A direct interaction between F-actin and the COOH terminus of alpha-ENaC was further corroborated by F-actin co-sedimentation studies. This is the first study to report a direct and specific biochemical interaction between F-actin and ENaC.
Collapse
Affiliation(s)
- Christopher Mazzochi
- Department of Physiology and Biophysics and Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
17
|
Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 2004; 25:177-204. [PMID: 15082519 DOI: 10.1210/er.2003-0011] [Citation(s) in RCA: 309] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the discovery of insulin roughly 80 yr ago, much has been learned about how target cells receive, interpret, and respond to this peptide hormone. For example, we now know that insulin activates the tyrosine kinase activity of its cell surface receptor, thereby triggering intracellular signaling cascades that regulate many cellular processes. With respect to glucose homeostasis, these include the function of insulin to suppress hepatic glucose production and to increase glucose uptake in muscle and adipose tissues, the latter resulting from the translocation of the glucose transporter 4 (GLUT4) to the cell surface membrane. Although simple in broad outline, elucidating the molecular intricacies of these receptor-signaling pathways and membrane-trafficking processes continues to challenge the creative ingenuity of scientists, and many questions remain unresolved, or even perhaps unasked. The identification and functional characterization of specific molecules required for both insulin signaling and GLUT4 vesicle trafficking remain key issues in our pursuit of developing specific therapeutic agents to treat and/or prevent this debilitating disease process. To this end, the combined efforts of numerous research groups employing a range of experimental approaches has led to a clearer molecular picture of how insulin regulates the membrane trafficking of GLUT4.
Collapse
Affiliation(s)
- Robert T Watson
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
18
|
Neco P, Giner D, del Mar Francés M, Viniegra S, Gutiérrez LM. Differential participation of actin- and tubulin-based vesicle transport systems during secretion in bovine chromaffin cells. Eur J Neurosci 2003; 18:733-42. [PMID: 12924999 DOI: 10.1046/j.1460-9568.2003.02801.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of cytoskeletal elements in vesicle transport occurring during exocytosis was examined in adrenal medullary bovine chromaffin cells maintained in culture. Amperometric determination of depolarization-dependent catecholamine release from individual intact cells treated with actin or myosin inhibitors showed alterations in the fast and slow phases of secretion when compared with untreated cells. In contrast, microtubule disassemblers or stabilizers have a moderate effect on secretion, only affecting the release of slow secretory components. In experiments using confocal dynamic microscopy we have observed the drastic effect of actin and myosin inhibitors in abolishing vesicle movement throughout the cytoplasm, and the inhibition of granule mobility in deep perinuclear regions caused by the microtubule stabilizers. Following loss of mobility, vesicles were associated with filaments of F-actin or microtubules. In addition, the mobility of cortical vesicles was affected by actin-myosin inhibitors but not by microtubule inhibitors. The study of cortical cytoskeleton in living cells showed vesicles associated with dense tubular F-actin structures, with microtubules appearing as low density networks. These findings suggest that the distribution and density of both cytoskeletal elements in the cortical region may influence the recruitment of vesicle pools during secretion.
Collapse
Affiliation(s)
- Patricia Neco
- Instituto de Neurociencias, Centro Mixto CSIC-Universidad Miguel Hernández, Campus de San Juan, 03550 Alicante, Spain
| | | | | | | | | |
Collapse
|
19
|
Abstract
Depletion and replenishment of pools of synaptic vesicles are important determinants of short-term synaptic plasticity, but the underlying molecular mechanisms are not yet clear. As a first step toward understanding the process of vesicle recruitment, we have applied various specific agents directly to the presynaptic terminal of the calyx of Held synapse. Here we show that the nonhydrolyzable ATP analog ATP-gammaS retards the recovery from vesicle pool depletion, as does latrunculin A. Phalloidin has no effects on recovery, suggesting that dynamic actin reorganization is not necessary. Unexpectedly, neither N-ethylmaleimide nor staurosporine affected the recovery, calling into question the role of N-ethylmaleimide-sensitive factor and protein kinases. The results suggest that intact actin polymerization is involved in vesicle recruitment.
Collapse
|
20
|
Messina S, Onofri F, Bongiorno-Borbone L, Giovedì S, Valtorta F, Girault JA, Benfenati F. Specific interactions of neuronal focal adhesion kinase isoforms with Src kinases and amphiphysin. J Neurochem 2003; 84:253-65. [PMID: 12558988 DOI: 10.1046/j.1471-4159.2003.01519.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that activates Src family kinases via SH2- and SH3-mediated interactions. Specific FAK isoforms (FAK+), responsive to depolarization and neurotransmitters, are enriched in neurons. We analyzed the interactions of endogenous FAK+ and recombinant FAK+ isoforms containing amino acid insertions (boxes 6,7,28) with an array of SH3 domains and the c-Src SH2/SH3 domain tandem. Endogenous FAK+ bound specifically to the SH3 domains of c-Src (but not n-Src), Fyn, Yes, phosphtidylinositol-3 kinase, amphiphysin II, amphiphysin I, phospholipase Cgamma and NH2-terminal Grb2. The inclusion of boxes 6,7 was associated with a significant decrease in the binding of FAK+ to the c-Src and Fyn SH3 domains, and a significant increase in the binding to the Src SH2 domain, as a consequence of the higher phosphorylation of Tyr-397. The novel interaction with the amphiphysin SH3 domain, involving the COOH-terminal proline-rich region of FAK, was confirmed by coimmunoprecipitation of the two proteins and a closely similar response to stimuli affecting the actin cytoskeleton. Moreover, an impairment of endocytosis was observed in synaptosomes after internalization of a proline-rich peptide corresponding to the site of interaction. The data account for the different subcellular distribution of FAK and Src kinases and the specific regulation of the transduction pathways linked to FAK activation in the brain and implicate FAK in the regulation of membrane trafficking in nerve terminals.
Collapse
Affiliation(s)
- Samantha Messina
- Department of Experimental Medicine, Section of Human Physiology, University of Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Kanzaki M, Watson RT, Hou JC, Stamnes M, Saltiel AR, Pessin JE. Small GTP-binding protein TC10 differentially regulates two distinct populations of filamentous actin in 3T3L1 adipocytes. Mol Biol Cell 2002; 13:2334-46. [PMID: 12134073 PMCID: PMC117317 DOI: 10.1091/mbc.01-10-0490] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
TC10 is a member of the Rho family of small GTP-binding proteins that has previously been implicated in the regulation of insulin-stimulated GLUT4 translocation in adipocytes. In a manner similar to Cdc42-stimulated actin-based motility, we have observed that constitutively active TC10 (TC10/Q75L) can induce actin comet tails in Xenopus oocyte extracts in vitro and extensive actin polymerization in the perinuclear region when expressed in 3T3L1 adipocytes. In contrast, expression of TC10/Q75L completely disrupted adipocyte cortical actin, which was specific for TC10, because expression of constitutively active Cdc42 was without effect. The effect of TC10/Q75L to disrupt cortical actin was abrogated after deletion of the amino terminal extension (DeltaN-TC10/Q75L), whereas this deletion retained the ability to induce perinuclear actin polymerization. In addition, alteration of perinuclear actin by expression of TC10/Q75L, a dominant-interfering TC10/T31N mutant or a mutant N-WASP protein (N-WASP/DeltaVCA) reduced the rate of VSV G protein trafficking to the plasma membrane. Furthermore, TC10 directly bound to Golgi COPI coat proteins through a dilysine motif in the carboxyl terminal domain consistent with a role for TC10 regulating actin polymerization on membrane transport vesicles. Together, these data demonstrate that TC10 can differentially regulate two types of filamentous actin in adipocytes dependent on distinct functional domains and its subcellular compartmentalization.
Collapse
Affiliation(s)
- Makoto Kanzaki
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
22
|
Bongiorno-Borbone L, Onofri F, Giovedì S, Ferrari R, Girault JA, Benfenati F. The translocation of focal adhesion kinase in brain synaptosomes is regulated by phosphorylation and actin assembly. J Neurochem 2002; 81:1212-22. [PMID: 12068069 DOI: 10.1046/j.1471-4159.2002.00906.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Focal adhesion kinase (FAK) and the related proline-rich tyrosine kinase 2 (PYK2) are non-receptor protein tyrosine kinases that transduce extracellular signals through the activation of Src family kinases and are highly enriched in neurones. To further elucidate the regulation of FAK and PYK2 in nervous tissue, we investigated their distribution in brain subcellular fractions and analysed their translocation between membrane and cytosolic compartments. We have found that FAK and PYK2 are present in a small membrane-associated pool and a larger cytosolic pool in various neuronal compartments including nerve terminals. In intact nerve terminals, inhibition of Src kinases inhibited the membrane association of FAK, but not of PYK2, whereas tyrosine phosphatase inhibition sharply increased the membrane association of both FAK and PYK2. Disruption of the actin cytoskeleton was followed by a decrease in the membrane-associated pool of FAK, but not of PYK2. For both kinases, a significant correlation was found between autophosphorylation and membrane association. The data indicate that FAK and PYK2 are present in nerve terminals and that the membrane association of FAK is regulated by both phosphorylation and actin assembly, whereas that of PKY2 is primarily dependent on its phosphorylation state.
Collapse
Affiliation(s)
- Lucilla Bongiorno-Borbone
- Department of Experimental Medicine, Section of Human Physiology, University of Genova, Viale Benedetto, Genova, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Kanzaki M, Watson RT, Khan AH, Pessin JE. Insulin stimulates actin comet tails on intracellular GLUT4-containing compartments in differentiated 3T3L1 adipocytes. J Biol Chem 2001; 276:49331-6. [PMID: 11606595 DOI: 10.1074/jbc.m109657200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Incubation of isolated GLUT4-containing vesicles with Xenopus oocyte extracts resulted in a guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) and sodium orthovanadate stimulation of actin comet tails. The in vitro actin-based GLUT4 vesicle motility was inhibited by both latrunculin B and a dominant-interfering N-WASP mutant, N-WASP/Delta VCA. Preparations of gently sheared (broken) 3T3L1 adipocytes also displayed GTP gamma S and sodium orthovanadate stimulation of actin comet tails on GLUT4 intracellular compartments. Furthermore, insulin pretreatment of intact adipocytes prior to gently shearing also resulted in a marked increase in actin polymerization and actin comet tailing on GLUT4 vesicles. In addition, the insulin stimulation of actin comet tails was completely inhibited by Clostridum difficile toxin B, demonstrating a specific role for a Rho family member small GTP-binding protein. Expression of N-WASP/Delta VCA in intact cells had little effect on adipocyte cortical actin but partially inhibited insulin-stimulated GLUT4 translocation. Taken together, these data demonstrate that insulin can induce GLUT4 vesicle actin comet tails that are necessary for the efficient translocation of GLUT4 from intracellular storage sites to the plasma membrane.
Collapse
Affiliation(s)
- M Kanzaki
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
24
|
Kanzaki M, Pessin JE. Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J Biol Chem 2001; 276:42436-44. [PMID: 11546823 DOI: 10.1074/jbc.m108297200] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rhodamine-labeled phalloidin staining of morphologically differentiated 3T3L1 adipocytes demonstrated that F-actin predominantly exists juxtaposed to and lining the inner face of the plasma membrane (cortical actin) with a smaller amount of stress fiber and/or ruffling actin confined to the cell bottom in contact with the substratum. The extent of cortical actin disruption with various doses of either latrunculin B or Clostridium difficile toxin B (a Rho family small GTP-binding protein toxin) directly correlated with the inhibition of insulin-stimulated glucose uptake and GLUT4 translocation. The dissolution of the cortical actin network had no significant effect on proximal insulin receptor signaling events including insulin receptor autophosphorylation, tyrosine phosphorylation of insulin receptor substrate and Cbl, or serine/threonine phosphorylation of Akt. Surprisingly, however, stabilization of F-actin with jasplakinolide also resulted in a dose-dependent inhibition of insulin-stimulated glucose uptake and GLUT4 translocation. In vivo time-lapse confocal fluorescent microscopy of actin-yellow fluorescent protein demonstrated that insulin stimulation initially results in cortical actin remodeling followed by an increase in polymerized actin in the peri-nuclear region. Importantly, the insulin stimulation of cortical actin rearrangements was completely blocked by treatment of the cells with latrunculin B, C. difficile toxin B, and jasplakinolide. Furthermore, expression of the dominant-interfering TC10/T31N mutant completely disrupted cortical actin and prevents any insulin-stimulated actin remodeling. Together, these data demonstrate that cortical actin, but not stress fibers, lamellipodia, or filopodia, plays an important regulatory role in insulin-stimulated GLUT4 translocation. In addition, cortical F-actin does not function in a static manner (e.g. barrier or scaffold), but insulin-stimulated dynamic cortical actin remodeling is necessary for the GLUT4 translocation process.
Collapse
Affiliation(s)
- M Kanzaki
- Department of Physiology and Biophysics, the University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
25
|
Wenk MR, Pellegrini L, Klenchin VA, Di Paolo G, Chang S, Daniell L, Arioka M, Martin TF, De Camilli P. PIP kinase Igamma is the major PI(4,5)P(2) synthesizing enzyme at the synapse. Neuron 2001; 32:79-88. [PMID: 11604140 DOI: 10.1016/s0896-6273(01)00456-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Disruption of the presynaptically enriched polyphosphoinositide phosphatase synaptojanin 1 leads to an increase of clathrin-coated intermediates and of polymerized actin at endocytic zones of nerve terminals. These changes correlate with elevated levels of PI(4,5)P(2) in neurons. We report that phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma), a major brain PI(4)P 5-kinase, is concentrated at synapses. Synaptojanin 1 and PIPKIgamma antagonize each other in the recruitment of clathrin coats to lipid membranes. Like synaptojanin 1 and other proteins involved in endocytosis, PIPKIgamma undergoes stimulation-dependent dephosphorylation. These results implicate PIPKIgamma in the synthesis of a PI(4,5)P(2) pool that acts as a positive regulator of clathrin coat recruitment and actin function at the synapse.
Collapse
Affiliation(s)
- M R Wenk
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Synapsin controls both reserve and releasable synaptic vesicle pools during neuronal activity and short-term plasticity in Aplysia. J Neurosci 2001. [PMID: 11404405 DOI: 10.1523/jneurosci.21-12-04195.2001] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotransmitter release is a highly efficient secretory process exhibiting resistance to fatigue and plasticity attributable to the existence of distinct pools of synaptic vesicles (SVs), namely a readily releasable pool and a reserve pool from which vesicles can be recruited after activity. Synaptic vesicles in the reserve pool are thought to be reversibly tethered to the actin-based cytoskeleton by the synapsins, a family of synaptic vesicle-associated phosphoproteins that have been shown to play a role in the formation, maintenance, and regulation of the reserve pool of synaptic vesicles and to operate during the post-docking step of the release process. In this paper, we have investigated the physiological effects of manipulating synapsin levels in identified cholinergic synapses of Aplysia californica. When endogenous synapsin was neutralized by the injection of specific anti-synapsin antibodies, the amount of neurotransmitter released per impulse was unaffected, but marked changes in the secretory response to high-frequency stimulation were observed, including the disappearance of post-tetanic potentiation (PTP) that was substituted by post-tetanic depression (PTD), and increased rate and extent of synaptic depression. Opposite changes on post-tetanic potentiation were observed when synapsin levels were increased by injecting exogenous synapsin I. Our data demonstrate that the presence of synapsin-dependent reserve vesicles allows the nerve terminal to release neurotransmitter at rates exceeding the synaptic vesicle recycling capacity and to dynamically change the efficiency of release in response to conditioning stimuli (e.g., post-tetanic potentiation). Moreover, synapsin-dependent regulation of the fusion competence of synaptic vesicles appears to be crucial for sustaining neurotransmitter release during short periods at rates faster than the replenishment kinetics and maintaining synchronization of quanta in evoked release.
Collapse
|
27
|
Hwang SJ, Pagliardini S, Boukhelifa M, Parast MM, Otey CA, Rustioni A, Valtschanoff JG. Palladin is expressed preferentially in excitatory terminals in the rat central nervous system. J Comp Neurol 2001. [DOI: 10.1002/cne.1062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Walaas SI, Sefland I. Modulation of calcium-evoked [3H]noradrenaline release from permeabilized cerebrocortical synaptosomes by the MARCKS protein, calmodulin and the actin cytoskeleton. Neurochem Int 2000; 36:581-93. [PMID: 10771116 DOI: 10.1016/s0197-0186(99)00159-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In order to examine intracellular modulation of CNS catecholamine release, cerebrocortical synaptosomes were prelabeled with [3H]noradrenaline and permeabilized with streptolysin-O in the absence or presence of Ca(2+). Plasma membrane permeabilization allowed efflux of cytosol and left a compartmentalized pool of [3H]noradrenaline intact, approximately 10% of which was released by addition of 10(-5) M Ca(2+). Addition of activators or inhibitors of protein kinase C, as well as inhibitors of Ca(2+)-calmodulin kinase II or calcineurin, failed to change Ca(2+)-induced noradrenaline release. Evoked release from permeabilized synaptosomes deficient in the vesicle-associated phosphoprotein synapsin I was also unchanged. In contrast, addition of a synthetic 'active domain' peptide from the myristoylated, alanine-rich C-kinase substrate (MARCKS) protein increased, while addition of calmodulin decreased Ca(2+)-induced release from the permeabilized synaptosomes, the latter effect being reversed by a peptide inhibitor of calcineurin. Moreover, addition of the actin-destabilizing agent DNase I, as well as antibodies to MARCKS, appeared to increase spontaneous, Ca(2+)-independent release from noradrenergic vesicles. These results indicate that the MARCKS protein may modulate release from permeabilized noradrenergic synaptosomes, possibly by modulating calmodulin levels and/or the actin cytoskeleton.
Collapse
Affiliation(s)
- S I Walaas
- Neurochemical Laboratory, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1115-Blindern, N-0317, Oslo, Norway.
| | | |
Collapse
|
29
|
Abstract
Here we review evidence that actin and its binding partners are involved in the release of neurotransmitters at synapses. The spatial and temporal characteristics of neurotransmitter release are determined by the distribution of synaptic vesicles at the active zones, presynaptic sites of secretion. Synaptic vesicles accumulate near active zones in a readily releasable pool that is docked at the plasma membrane and ready to fuse in response to calcium entry and a secondary, reserve pool that is in the interior of the presynaptic terminal. A network of actin filaments associated with synaptic vesicles might play an important role in maintaining synaptic vesicles within the reserve pool. Actin and myosin also have been implicated in the translocation of vesicles from the reserve pool to the presynaptic plasma membrane. Refilling of the readily releasable vesicle pool during intense stimulation of neurotransmitter release also implicates synapsins as reversible links between synaptic vesicles and actin filaments. The diversity of actin binding partners in nerve terminals suggests that actin might have presynaptic functions beyond synaptic vesicle tethering or movement. Because most of these actin-binding proteins are regulated by calcium, actin might be a pivotal participant in calcium signaling inside presynaptic nerve terminals. However, there is no evidence that actin participates in fusion of synaptic vesicles.
Collapse
Affiliation(s)
- F Doussau
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
30
|
Abstract
LIM kinase 1 (LIMK1) is a cytoplasmic protein kinase that is highly expressed in neurons. In transfected cells, LIMK1 binds to the cytoplasmic tail of neuregulins and regulates the breakdown of actin filaments. To identify potential functions of LIMK1 in vivo, we have determined the subcellular distribution of LIMK1 protein within neurons of the rat by using immunomicroscopy. At neuromuscular synapses in the adult hindlimb, LIMK1 was concentrated in the presynaptic terminal. However, little LIMK1 immunoreactivity was detected at neuromuscular synapses before the 2nd week after birth, and most motoneuron terminals were not strongly LIMK1 immunoreactive until the 3rd week after birth. Thus, LIMK1 accumulation at neuromuscular synapses coincided with their maturation. In contrast, SV2, like many other presynaptic terminal proteins, can be readily detected at neuromuscular synapses in the embryo. Similar to its late accumulation at developing synapses, LIMK1 accumulation at regenerating neuromuscular synapses occurred long after these synapses first formed. In the adult ventral spinal cord, LIMK1 was concentrated in a subset of presynaptic terminals. LIMK1 gradually accumulated at spinal cord synapses postnatally, reaching adult levels only after P14. This study is the first to implicate LIMK1 in the function of presynaptic terminals. The concentration of LIMK1 in adult, but not nascent, presynaptic terminals suggests a role for this kinase in regulating the structural or functional characteristics of mature synapses.
Collapse
Affiliation(s)
- J Y Wang
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
31
|
Kuhn TB, Meberg PJ, Brown MD, Bernstein BW, Minamide LS, Jensen JR, Okada K, Soda EA, Bamburg JR. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and Rho family GTPases. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1097-4695(200008)44:2<126::aid-neu4>3.0.co;2-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Wang X, Kibschull M, Laue MM, Lichte B, Petrasch-Parwez E, Kilimann MW. Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J Cell Biol 1999; 147:151-62. [PMID: 10508862 PMCID: PMC2164979 DOI: 10.1083/jcb.147.1.151] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurotransmitter exocytosis is restricted to the active zone, a specialized area of the presynaptic plasma membrane. We report the identification and initial characterization of aczonin, a neuron-specific 550-kD protein concentrated at the presynaptic active zone and associated with a detergent-resistant cytoskeletal subcellular fraction. Analysis of the amino acid sequences of chicken and mouse aczonin indicates an organization into multiple domains, including two pairs of Cys(4) zinc fingers, a polyproline tract, and a PDZ domain and two C2 domains near the COOH terminus. The second C2 domain is subject to differential splicing. Aczonin binds profilin, an actin-binding protein implicated in actin cytoskeletal dynamics. Large parts of aczonin, including the zinc finger, PDZ, and C2 domains, are homologous to Rim or to Bassoon, two other proteins concentrated in presynaptic active zones. We propose that aczonin is a scaffolding protein involved in the organization of the molecular architecture of synaptic active zones and in the orchestration of neurotransmitter vesicle trafficking.
Collapse
Affiliation(s)
- Xiaolu Wang
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Mark Kibschull
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Michael M. Laue
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Beate Lichte
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | - Manfred W. Kilimann
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
33
|
Abstract
The role of actin filaments in synaptic function has been studied in the CA1 region of the rat hippocampal slice. Bath application (2 hr) of the actin polymerization inhibitor latrunculin B did not substantially affect the shape of dendrites or spines. However, this and other drugs that affect actin did affect synaptic function. Bath-applied latrunculin B reduced the synaptic response. Several lines of evidence indicate that a component of this effect is presynaptic. To specifically test for a postsynaptic role for actin, latrunculin B or phalloidin, an actin filament stabilizer, was perfused into the postsynaptic neuron. The magnitude of long-term potentiation (LTP) was decreased at times when baseline transmission was not yet affected. Longer applications produced a decrease in baseline AMPA receptor (AMPAR)-mediated transmission. The magnitude of the NMDA receptor-mediated transmission was unaffected, indicating a specific effect on the AMPAR. These results suggest that postsynaptic actin filaments are involved in a dynamic process required to maintain AMPAR-mediated transmission and to enhance it during LTP.
Collapse
|
34
|
The optically determined size of exo/endo cycling vesicle pool correlates with the quantal content at the neuromuscular junction of Drosophila larvae. J Neurosci 1999. [PMID: 10024343 DOI: 10.1523/jneurosci.19-05-01557.1999] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
According to the current theory of synaptic transmission, the amplitude of evoked synaptic potentials correlates with the number of synaptic vesicles released at the presynaptic terminals. Synaptic vesicles in presynaptic boutons constitute two distinct pools, namely, exo/endo cycling and reserve pools (). We defined the vesicles that were endocytosed and exocytosed during high K+ stimulation as the exo/endo cycling vesicle pool. To determine the role of exo/endo cycling vesicle pool in synaptic transmission, we estimated the quantal content electrophysiologically, whereas the pool size was determined optically using fluorescent dye FM1-43. We then manipulated the size of the pool with following treatments. First, to change the state of boutons of nerve terminals, motoneuronal axons were severed. With this treatment, the size of exo/endo cycling vesicle pool decreased together with the quantal content. Second, we promoted the FM1-43 uptake using cyclosporin A, which inhibits calcineurin activities and enhances endocytosis. Cyclosporin A increased the total uptake of FM1-43, but neither the size of exo/endo cycling vesicle pool nor the quantal content changed. Third, we increased the size of exo/endo cycling vesicle pool by forskolin, which enhances synaptic transmission. The forskolin treatment increased both the size of exo/endo cycling vesicle pool and the quantal content. Thus, we found that the quantal content was closely correlated with the size of exo/endo cycling vesicle pool but not necessarily with the total uptake of FM1-43 fluorescence by boutons. The results suggest that vesicles in the exo/endo cycling pool primarily participate in evoked exocytosis of vesicles.
Collapse
|
35
|
Walaas SI. Regulation of calcium-dependent [3H]noradrenaline release from rat cerebrocortical synaptosomes by protein kinase C and modulation of the actin cytoskeleton. Neurochem Int 1999; 34:221-33. [PMID: 10355489 DOI: 10.1016/s0197-0186(99)00007-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects that active phorbol esters, staurosporine, and changes in actin dynamics, might have on Ca2+ -dependent exocytosis of [3H]-labelled noradrenaline, induced by either membrane-depolarizing agents or a Ca2+ ionophore, have been examined in isolated nerve terminals in vitro. Depolarization-induced openings of voltage-dependent Ca2+ channels with 30 mM KCl or 1 mM 4-aminopyridine induced limited exocytosis of [3H]noradrenaline, presumably from a readily releasable vesicle pool. Application of the Ca2+ ionophore calcimycin (10 microM) induced more extensive [3H]noradrenaline release, presumably from intracellular reserve vesicles. Stimulation of protein kinase C with phorbol 12-myristate,13-acetate increased release evoked by all secretagogues. Staurosporine (1 microM) had no effect on depolarization-induced release, but decreased ionophore-induced release and reversed all effects of the phorbol ester. When release was induced by depolarization, internalization of the actin-destabilizing agent DNAase I into the synaptosomes gave a slight increase in [3H]NA release and strongly increased the potentiating effect of the phorbol ester. In contrast, when release was induced by the Ca2+ ionophore, DNAase I had no effect, either in the absence or presence of phorbol ester. The results indicate that depolarization of noradrenergic rat synaptosomes induces Ca2+ -dependent release from a releasable pool of staurosporine-insensitive vesicles. Activation of protein kinase C increases this release by staurosporine-sensitive mechanisms, and destabilization of the actin cytoskeleton further increases this effect of protein kinase C. In contrast, ionophore-induced noradrenaline release originates from a pool of staurosporine-sensitive vesicles, and although activation of protein kinase C increases release from this pool, DNAase I has no effect and also does not change the effect of protein kinase C. The results support the existence of two functionally distinct pools of secretory vesicles in noradrenergic CNS nerve terminals, which are regulated in distinct ways by protein kinase C and the actin cytoskeleton.
Collapse
Affiliation(s)
- S I Walaas
- Department Group of Basic Medical Sciences, University of Oslo, Norway.
| |
Collapse
|
36
|
Benfenati F, Onofri F, Giovedí S. Protein-protein interactions and protein modules in the control of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 1999; 354:243-57. [PMID: 10212473 PMCID: PMC1692491 DOI: 10.1098/rstb.1999.0376] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Information transfer among neurons is operated by neurotransmitters stored in synaptic vesicles and released to the extracellular space by an efficient process of regulated exocytosis. Synaptic vesicles are organized into two distinct functional pools, a large reserve pool in which vesicles are restrained by the actin-based cytoskeleton, and a quantitatively smaller releasable pool in which vesicles approach the presynaptic membrane and eventually fuse with it on stimulation. Both synaptic vesicle trafficking and neurotransmitter release depend on a precise sequence of events that include release from the reserve pool, targeting to the active zone, docking, priming, fusion and endocytotic retrieval of synaptic vesicles. These steps are mediated by a series of specific interactions among cytoskeletal, synaptic vesicle, presynaptic membrane and cytosolic proteins that, by acting in concert, promote the spatial and temporal regulation of the exocytotic machinery. The majority of these interactions are mediated by specific protein modules and domains that are found in many proteins and are involved in numerous intracellular processes. In this paper, the possible physiological role of these multiple protein-protein interactions is analysed, with ensuing updating and clarification of the present molecular model of the process of neurotransmitter release.
Collapse
Affiliation(s)
- F Benfenati
- Department of Neuroscience, University of Roma Tor Vergata, Italy
| | | | | |
Collapse
|
37
|
Job C, Lagnado L. Calcium and protein kinase C regulate the actin cytoskeleton in the synaptic terminal of retinal bipolar cells. J Cell Biol 1998; 143:1661-72. [PMID: 9852158 PMCID: PMC2132988 DOI: 10.1083/jcb.143.6.1661] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The organization of filamentous actin (F-actin) in the synaptic pedicle of depolarizing bipolar cells from the goldfish retina was studied using fluorescently labeled phalloidin. The amount of F-actin in the synaptic pedicle relative to the cell body increased from a ratio of 1.6 +/- 0.1 in the dark to 2.1 +/- 0.1 after exposure to light. Light also caused the retraction of spinules and processes elaborated by the synaptic pedicle in the dark. Isolated bipolar cells were used to characterize the factors affecting the actin cytoskeleton. When the electrical effect of light was mimicked by depolarization in 50 mM K+, the actin network in the synaptic pedicle extended up to 2.5 micrometer from the plasma membrane. Formation of F-actin occurred on the time scale of minutes and required Ca2+ influx through L-type Ca2+ channels. Phorbol esters that activate protein kinase C (PKC) accelerated growth of F-actin. Agents that inhibit PKC hindered F-actin growth in response to Ca2+ influx and accelerated F-actin breakdown on removal of Ca2+. To test whether activity-dependent changes in the organization of F-actin might regulate exocytosis or endocytosis, vesicles were labeled with the fluorescent membrane marker FM1-43. Disruption of F-actin with cytochalasin D did not affect the continuous cycle of exocytosis and endocytosis that was stimulated by maintained depolarization, nor the spatial distribution of recycled vesicles within the synaptic terminal. We suggest that the actions of Ca2+ and PKC on the organization of F-actin regulate the morphology of the synaptic pedicle under varying light conditions.
Collapse
Affiliation(s)
- C Job
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
38
|
Micheva KD, Vallée A, Beaulieu C, Herman IM, Leclerc N. beta-Actin is confined to structures having high capacity of remodelling in developing and adult rat cerebellum. Eur J Neurosci 1998; 10:3785-98. [PMID: 9875357 DOI: 10.1046/j.1460-9568.1998.00391.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons undergo complex morphological changes during differentiation and in cases of plasticity. A major determinant of cell morphology is the actin cytoskeleton, which in neurons is comprised of two actin isoforms, non-muscle gamma- and beta-actin. To better understand their respective roles during differentiation and plasticity, their cellular and subcellular localization was examined in developing and adult cerebellar cortex. It was observed that gamma-actin is expressed at a constant level throughout development, while the level of beta-actin expression rapidly decreases with age. At the light microscopic level, gamma-actin staining is ubiquitous and the only developmental change observed is a relative reduction of its concentration in cell bodies and white matter. In contrast, beta-actin staining almost completely disappears from the cytoplasm of cell bodies, primary dendrites and axons. In young cerebellar cultures, gamma-actin is found in the cell body, neurites and growth cones, while beta-actin is mainly found in growth cones, as previously reported in other primary neuronal culture systems [Kaech et al. (1997), J. Neuroscience, 17, 9565-9572; Bassell et al., (1998), J. Neuroscience, 18, 251-265]. Electron microscopy of post-embedding immunogold-labelled tissue confirms the widespread distribution of gamma-actin, and also reveals an increased concentration of gamma-actin in dendritic spines in the adult. During development, beta-actin accumulation is observed in actively growing structures, e.g., growth cones, filopodia, cell bodies and axonal tracts. In the adult cerebellar cortex, beta-actin is preferentially found in dendritic spines, structures which are known to retain their capacity for morphological modifications in the adult brain. This differential subcellular localization and developmental regulation of the two actin isoforms point to their different roles in neurons.
Collapse
Affiliation(s)
- K D Micheva
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
39
|
Kuromi H, Kidokoro Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 1998; 20:917-25. [PMID: 9620696 DOI: 10.1016/s0896-6273(00)80473-0] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a temperature-sensitive Drosophila mutant, shibire, synaptic vesicles are completely depleted in nerve terminals after stimulation at 34 degrees C, but upon returning to 22 degrees C, endocytosis resumes. In this study, synaptic vesicles in the boutons of nerve terminals at the mutant neuromuscular junction were loaded with a fluorescent dye, FM1-43, during vesicle reformation at 22 degrees C after complete depletion at 34 degrees C. We found two distinct pools of synaptic vesicles, namely an exo/endo cycling pool, located in the periphery of the bouton, and a reserve pool, located in its center. Cytochalasin D treatment eliminated the reserve pool and reduced synaptic transmission evoked by high frequency stimulation. Thus, the reserve pool may play a crucial role for sustaining high frequency synaptic transmission.
Collapse
Affiliation(s)
- H Kuromi
- Institute for Behavioral Sciences, Gunma University School of Medicine, Maebashi, Japan
| | | |
Collapse
|
40
|
Nakane H, Yao H, Ibayashi S, Kitazono T, Ooboshi H, Uchimura H, Fujishima M. Protein kinase C modulates ischemia-induced amino acids release in the striatum of hypertensive rats. Brain Res 1998; 782:290-6. [PMID: 9519275 DOI: 10.1016/s0006-8993(97)01331-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of protein kinase C (PKC) in mediating the ischemia-induced release of amino acids in the striatum was studied using an in vivo brain dialysis technique in the striatum of spontaneously hypertensive rats (SHRs). Using HPLC combined with fluorescence detection methods, we investigated the concentrations of amino acids in the dialysates produced by 20 min of transient forebrain ischemia. We studied the effects of an inhibitor of PKC, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H7) and another isoquinoline analog (HA1004) with less inhibitory effect on the C kinase in ischemia-induced amino acids release. Bilateral carotid artery occlusion caused a marked reduction in the striatal blood flow by 91 +/- 6%. The extent of the cerebral blood flow (CBF) reduction were essentially the same among H7-, HA1004-, and the vehicle-treated groups. Forebrain ischemia produced a marked increase in glutamate (21-fold of the basal concentration), aspartate (19-fold) and taurine (16-fold). Pretreatment with H7 markedly attenuated the ischemia-in-duced release of these three amino acids to 3, 3 and 4-fold of the basal values, respectively. Increase of gamma-aminobutyric acid (GABA) was also attenuated by H7 (vehicle; 2.46 +/- 1.26 microM, H7; 0.62 +/- 0.75 mM). HA1004 did not affect the release of glutamate, aspartate or GABA during ischemia. The ischemia-induced release of taurine was significantly inhibited by HA1004 but the effect was much smaller than that of H7. These results thus indicate that PKC plays a major role in the ischemia-induced release of amino acids in the striatum of SHR.
Collapse
Affiliation(s)
- H Nakane
- Second Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Bernstein BW, DeWit M, Bamburg JR. Actin disassembles reversibly during electrically induced recycling of synaptic vesicles in cultured neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 53:236-51. [PMID: 9473683 DOI: 10.1016/s0169-328x(97)00319-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have studied depolarization-induced regulation of actin assembly in exocytotically active areas of dissociated chick sympathetic neurons. Active areas were identified with the fluorescent dye FM1-43 which labels synaptic vesicles that recycle in these regions. Exocytosis (electrically stimulated) was monitored in real time through depletion of FM1-43 fluorescence. To study depolarization-induced disassembly of actin in the FM1-43-stained regions, the cells were fixed after different periods of depolarization and stained with rhodamine phalloidin, which binds preferentially to the filamentous form of actin. In active regions, actin disassembles and reassembles during continuous 2 min depolarization. Actin disassembly that occurs after the first 25 s of depolarization was detected by a reduction in rhodamine phalloidin staining and confirmed by correlative electron microscopy. Immunogold staining revealed that actin is abundant throughout resting terminals. In some experiments, actin filaments were stabilized by loading cells with unlabelled phalloidin before stimulating secretion. Stabilizing the filaments does not alter the initial release but strongly reduces the release rate at later stages. These data are consistent with a model in which partial disassembly of actin filaments is necessary for facilitating the transport of vesicles within the terminal and reassembly is necessary for limiting that movement.
Collapse
Affiliation(s)
- B W Bernstein
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| | | | | |
Collapse
|
42
|
Carbajal ME, Vitale ML. The cortical actin cytoskeleton of lactotropes as an intracellular target for the control of prolactin secretion. Endocrinology 1997; 138:5374-84. [PMID: 9389523 DOI: 10.1210/endo.138.12.5565] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We investigated the role of cortical actin filaments (F-actin) in the regulation of PRL secretion in cultured normal anterior pituitary cells. F-actin dynamics were evaluated by fluorescence microscopy, and PRL secretion from attached cells was measured by the reverse hemolytic plaque assay. F-actin localized to the periphery of lactotropes. PRL-releasing factors such as TRH, vasoactive intestinal peptide (VIP), and forskolin, or removal of the PRL-inhibiting factor dopamine (DA) from cultures chronically exposed to DA, caused fragmentation, i.e. focal disassembly of cortical F-actin. Basal, VIP-, and DA withdrawal-induced cortical F-actin disassembly were dependent on extracellular Ca2+ whereas TRH- and forskolin-induced disassembly were not. Short-term (5 min) treatment of cells with the F-actin-disrupting agent cytochalasin D (CD) enhanced basal PRL secretion but did not further stimulate TRH- or VIP-induced PRL secretion. The results support the existence of a causal link between F-actin disassembly and increased PRL secretion. On the other hand, exposure of cultures to DA decreased the percentage of cells showing cortical F-actin disassembly within minutes. Longer treatments (2-4 h) caused stabilization of cortical actin filaments as revealed by the protection vis-a-vis the depolymerizing effect of CD. The protective effect was specific for lactotropes and was evident with DA concentrations as low as 50 nM. Chronic exposure of the cells to DA blocked CD- and TRH-evoked actin disassembly and PRL secretion while VIP-induced effects were partially inhibited. Stabilization of F-actin with the marine sponge venom, jasplakinolide, also decreased basal and stimulated PRL secretion. In conclusion, our results suggest that, first, the cortical actin cytoskeleton of lactotropes is an integrator of the multiple factors regulating PRL secretion directly on the lactotrope, and second, the tonic inhibition of PRL secretion is mediated, at least in part, by DA-induced stabilization of cortical F-actin.
Collapse
Affiliation(s)
- M E Carbajal
- Département d'Anatomie, Faculté de Médecine, Université de Montréal, Québec, Canada
| | | |
Collapse
|
43
|
The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J Neurosci 1997. [PMID: 9334393 DOI: 10.1523/jneurosci.17-21-08178.1997] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium influx through NMDA receptors and voltage-dependent calcium channels (VDCC) mediates an array of physiological processes in neurons and may also contribute to neuronal degeneration and death in neurodegenerative conditions such as stroke and severe epileptic seizures. Gelsolin is a Ca2+-activated actin-severing protein that is expressed in neurons, wherein it may mediate motility responses to Ca2+ influx. Primary hippocampal neurons cultured from mice lacking gelsolin exhibited decreased actin filament depolymerization and enhanced Ca2+ influx after exposure to glutamate. Whole-cell patch-clamp analyses showed that currents through NMDA receptors and VDCC were enhanced in hippocampal neurons lacking gelsolin, as a result of decreased current rundown; kainate-induced currents were similar in neurons containing and lacking gelsolin. Vulnerability of cultured hippocampal neurons to glutamate toxicity was greater in cells lacking gelsolin. Seizure-induced damage to hippocampal pyramidal neurons was exacerbated in adult gelsolin-deficient mice. These findings identify novel roles for gelsolin in controlling actin-mediated feedback regulation of Ca2+ influx and in neuronal injury responses. The data further suggest roles for gelsolin and the actin cytoskeleton in both physiological and pathophysiological events that involve activation of NMDA receptors and VDCC.
Collapse
|
44
|
Marinovich M, Viviani B, Galli CL. Actin modifications and calcium homoeostasis in neurotoxicity. The case of organotin salts. Toxicol In Vitro 1997; 11:499-503. [PMID: 20654341 DOI: 10.1016/s0887-2333(97)00076-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cytoskeleton is a major constituent of the neuronal cytoplasm; it controls cell shape and plays important roles in regulating various physiological processes. In neurons, actin filaments are involved in the growth of the neurite and the neurotransmitter release. Recent findings suggest that actin filaments play a role in modulating [Ca(2+)](i) responses to neurotoxic insults. The physiological functioning of the neural cell is critically dependent on the intracellular distribution of calcium. An increase of cytosolic free calcium can activate a number of intracellular reactions, including neurotransmitter release, protein phosphorylation, protease activity, and, eventually, cell death. Many neurotoxic agents with diverse mechanisms have been reported to affect mechanisms associated with calcium. Among these are organotin compounds: they can both raise the cytosolic and synaptosomal [Ca(2+)](i) concentrations and interfere with the [Ca(2+)](i) response evoked by different agonists. Furthermore, some of these compounds cause actin depolymerization. The interference of triethyltin (TET)-a compound inducing myelin vacuolization and brain oedema-with Ca(2+) homoeostasis and actin polymerization results in an adverse effect on neurotransmitter release in different neural cell lines. However, another neurotoxic organotin compound (trimethyltin, TMT) induces apoptosis in neural cells through the activation of a Ca(2+)-dependent pathway. In conclusion, the identification of the key changes in actin and Ca(2+) homoeostasis could give early information on neural cell perturbation resulting in altered functionality or even cell death.
Collapse
Affiliation(s)
- M Marinovich
- Laboratory of Toxicology, Institute of Pharmacological Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | | | | |
Collapse
|
45
|
Shorte SL. N-methyl-D-aspartate evokes rapid net depolymerization of filamentous actin in cultured rat cerebellar granule cells. J Neurophysiol 1997; 78:1135-43. [PMID: 9307140 DOI: 10.1152/jn.1997.78.2.1135] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Filamentous actin (F-actin) was measured in cultured rat cerebellum granule neurons with the use of fluorescently labeled phallotoxin as a site-specific probe for F-actin, and fluorescence microscopy. The averaged apparent intensity of soma-associated F-actin-derived fluorescence (F(app)) was measured from fixed cells after incubation in either 1) normal Krebs solution containing 2 mM extracellular calcium ([Ca2+]ex) or 2) normal Krebs solution plus N-methyl-D-aspartate (NMDA) for 2 min immediately before fixation. NMDA (10, 50, and 100 microM) decreased F(app) to 63 +/- 5% (mean +/- SE), 53 +/- 4%, and 47 +/- 2%, respectively, of that measured from control cells. This effect was mimicked by treatment of cells with ionomycin. The ability of NMDA to reduce the F(app) in the presence of [Ca2+]ex was abolished when cells were maintained in [Ca2+]ex-free medium. Cells first treated with NMDA for 2 min and then left in normal medium for 30 min before fixation gave F(app) fluorescence similar to control values (91 +/- 12%). However, if the F-actin polymerization inhibitor cytochalasin D was added to cells immediately after NMDA was removed, the F(app) did not recover with time (36 +/- 3%). Cells treated for 30 min with cytochalasin D alone showed a small reduction in staining (approximately 20%). It is concluded that the actin polymerization state of rat cerebellar granule neurons is sensitive to changes in intracellular calcium, and that NMDA receptor activation evokes an initial rapid depolymerization of F-actin.
Collapse
Affiliation(s)
- S L Shorte
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 29, Laboratoire de Neurobiologie et Physiopathologie du Développement, Hôpital de Port-Royal, Paris, France
| |
Collapse
|
46
|
Prekeris R, Terrian DM. Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J Biophys Biochem Cytol 1997; 137:1589-601. [PMID: 9199173 PMCID: PMC2137828 DOI: 10.1083/jcb.137.7.1589] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Brain myosin V is a member of a widely distributed class of unconventional myosins that may be of central importance to organelle trafficking in all eukaryotic cells. Molecular constituents that target this molecular motor to organelles have not been previously identified. Using a combination of immunopurification, extraction, cross-linking, and coprecipitation assays, we demonstrate that the tail domain of brain myosin V forms a stable complex with the synaptic vesicle membrane proteins, synaptobrevin II and synaptophysin. While myosin V was principally bound to synaptic vesicles during rest, this putative transport complex was promptly disassembled upon the depolarization-induced entry of Ca2+ into intact nerve endings. Coimmunoprecipitation assays further indicate that Ca2+ disrupts the in vitro binding of synaptobrevin II to synaptophysin in the presence but not in the absence of Mg2+. We conclude that hydrophilic forces reversibly couple the myosin V tail to a biochemically defined class of organelles in brain nerve terminals.
Collapse
Affiliation(s)
- R Prekeris
- Department of Anatomy and Cell Biology, East Carolina University School of Medicine, Greenville, North Carolina 27858, USA
| | | |
Collapse
|
47
|
Rogalski-Wilk AA, Cohen RS. Glyceraldehyde-3-phosphate dehydrogenase activity and F-actin associations in synaptosomes and postsynaptic densities of porcine cerebral cortex. Cell Mol Neurobiol 1997; 17:51-70. [PMID: 9118209 DOI: 10.1023/a:1026377004261] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Glyceraldehyde-3-phosphate dehydrogenase (G3PD) is a glycolytic enzyme that has also been implicated in a wide variety of functions within neurons. Because of the well-documented role of G3PD as an actin-binding protein, we sought evidence for a G3PD-actin complex in synaptosomes and postsynaptic densities (PSDs). 2. We have shown G3PD association with 0.5-microgram synaptosomal particles by immunofluorescence as similarly demonstrated for actin (Toh et al., Nature 264:648-650, 1976). An immunoblot analysis also showed G3PD and actin to be enriched in synaptosomes. Further analysis of subcellular fractions from synaptosomes showed the PSD but not the synaptosomal plasma membranes to be enriched in G3PD and actin. 3. Highest levels of G3PD catalytic activity were found in synaptosomes and PSDs. Although synaptosomes showed significant activity for phosphoglycerate kinase (PGK), an enzyme in sequence with G3PD for ATP production in the glycolytic pathway, no such activity was detected in the PSD fraction. 4. Our studies indicate that a G3PD-actin complex may exist at the synapse. A physical association of G3PD with endogenous F-actin in synaptosomes and PSDs was demonstrated by combined phalloidin shift velocity sedimentation/immunoblot studies. By this approach, synaptosomal G3PD-actin complexes were also found to be significantly less dense than the PSD G3PD-actin complexes. 5. G3PD and PGK catalytic activity in synaptosomes suggests a role in glycolysis, as well as actin binding, in the presynaptic terminals. On the other hand, the high levels of G3PD activity in PSDs but lack of PGK activity suggests that G3PD is involved in nonglycolytic functions, such as actin binding and actin filament network organization.
Collapse
Affiliation(s)
- A A Rogalski-Wilk
- Department of Anatomy and Cell Biology, University of Illinois at Chicago 60612, USA
| | | |
Collapse
|
48
|
Abstract
Thyroid hormones play an important role in the growth and development of the brain. Central to the proper integration of neuronal circuitry is the ability of the growing neurite to interpret guidance cues during its migration. The action cytoskeleton is especially rich in the growth cone, and is a likely target for thyroid hormone regulation. This brief review summarizes work showing that thyroxine, but not T3, dynamically regulates the polymerization of the actin cytoskeleton in astrocytes. The ability of T4 to enhance actin polymerization, without directly affecting gene expression, has a profound effect on the ability of the cell to interact with laminin, the major extracellular matrix protein in the developing brain. T4 also regulates the formation of key cell contacts with extracellular matrix guidance cues. These processes are likely to participate in thyroid hormone's regulation of brain development.
Collapse
Affiliation(s)
- J L Leonard
- Molecular Endocrinology Laboratory, University of Massachusetts Medical School, Worcester 01655, USA
| | | |
Collapse
|
49
|
Traffic of dynamin within individual Drosophila synaptic boutons relative to compartment-specific markers. J Neurosci 1996. [PMID: 8757257 DOI: 10.1523/jneurosci.16-17-05443.1996] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic terminals contain several specialized compartments, which have been described by electron microscopy. We show in an identified Drosophila neuromuscular synapse that several of these compartments-synaptic vesicle clusters, presynaptic plasma membrane, presynaptic cytosol, and axonal cytoskeleton-labeled by specific reagents may be resolved from one another by laser scanning confocal microscopy. Using a panel of compartment-specific markers and Drosophila shibire(ts1) mutants to trap an intermediate stage in synaptic vesicle recycling, we have examined the localization and redistribution of dynamin within single synaptic varicosities at the larval neuromuscular junction. Our results suggest that dynamin is not a freely diffusible molecule in resting nerve terminals; rather, it appears localized to synaptic sites by association with yet uncharacterized presynaptic components. In shi(ts1) nerve terminals depleted of synaptic vesicles, dynamin is quantitatively redistributed to the plasma membrane. It is not, however, distributed uniformly over presynaptic plasmalemma; instead, fluorescence images show "hot spots" of dynamin on the plasma membrane of vesicle-depleted nerve terminals. We suggest that these dynamin-rich domains may mark the active zones for synaptic vesicle endocytosis first described at the frog neuromuscular junction.
Collapse
|
50
|
Wang XH, Zheng JQ, Poo MM. Effects of cytochalasin treatment on short-term synaptic plasticity at developing neuromuscular junctions in frogs. J Physiol 1996; 491 ( Pt 1):187-95. [PMID: 9011610 PMCID: PMC1158769 DOI: 10.1113/jphysiol.1996.sp021206] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The role of actin microfilaments in synaptic transmission was tested by monitoring spontaneous and evoked transmitter release from developing neuromuscular synapses in Xenopus nerve-muscle cultures, using whole-cell recording of synaptic currents in the absence and presence of microfilament-disrupting agents cytochalasins B and D. 2. Treatment with cytochalasins resulted in disruption of microfilament networks in the growth cone and the presynaptic nerve terminal of spinal neurons in Xenopus nerve-muscle cultures, as revealed by rhodamine-phalloidin staining. 3. The same cytochalasin treatment did not significantly affect the spontaneous or evoked synaptic currents during low-frequency stimulation at 0.05 Hz in these Xenopus cultures. Synaptic depression induced by high-frequency (5 Hz) stimulation, however, was reduced by this treatment. Paired-pulse facilitation for short interpulse intervals was also increased by the treatment. 4. These results indicate that disruption of microfilaments alters short-term changes in transmitter release induced by repetitive activity, without affecting normal synaptic transmission at low frequency. 5. Our results support the notion that actin microfilaments impose a barrier for mobilization of synaptic vesicles from the reserve pool, but do not affect the exocytosis of immediately available synaptic vesicles at the active zone.
Collapse
Affiliation(s)
- X H Wang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|