1
|
Ge L, Yang Y, Yang Y, Chen Y, Tao N, Zhang L, Zhao C, Zhang X. DMD mutations in pediatric patients with phenotypes of Duchenne/Becker muscular dystrophy. Open Med (Wars) 2024; 19:20240916. [PMID: 39588385 PMCID: PMC11587917 DOI: 10.1515/med-2024-0916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/26/2023] [Accepted: 02/05/2024] [Indexed: 11/27/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are common X-inherited neuromuscular diseases. The genetic diagnosis has been used as the diagnostic choice for DMD/BMD. The study subjects consisted of 37 patients from Southwest China. Peripheral blood was collected for the extraction of genomic DNA. DMD mutation was sequenced using the next-generation sequencing approach. The detected mutation was validated using the multiplex ligation-dependent probe amplification or Sanger sequencing methods. Variation annotation and pathogenicity prediction were performed using the online databases. Pathogenic mutations were identified 3 splicing site, 7 single nucleotide, 1 indel, 23 deletion, and 3 duplication mutations. Novel DMD variants were discovered, including two novel splicing variations (c.1890 + 1G>T; c.1923 + 1G>A), one missense mutation (c.1946G>T), one nonsense mutation (c.7441G>T), one indel mutation (INDEL EX20), and one duplication mutation (DUP EX75-78). The current study provides mutation information of DMD for the genetic diagnosis of DMD/BMD.
Collapse
Affiliation(s)
- Liping Ge
- Department of Endosecretory Genetic and Metabolic Diseases, Kunming Children’s Hospital, Kunming650000, China
| | - Yang Yang
- Department of Endosecretory Genetic and Metabolic Diseases, Kunming Children’s Hospital, Kunming650000, China
| | - Yanfei Yang
- The Special Wards, Kunming Children’s Hospital, Kunming650000, Yunnan Province, China
| | - Yanfei Chen
- Department of Cardiovascular Internal Medicine, Kunming Children’s Hospital, Yunnan Province, Kunming650000, China
| | - Na Tao
- Department of Endosecretory Genetic and Metabolic Diseases, Kunming Children’s Hospital, Kunming650000, China
| | - Liping Zhang
- Medical Department, Kunming Children’s Hospital, Kunming650000, China
| | - Canmiao Zhao
- Department of Endosecretory Genetic and Metabolic Diseases, Kunming Children’s Hospital, Kunming650000, China
| | - Xing Zhang
- Department of Cardiovascular Internal Medicine, Kunming Children’s Hospital, Yunnan Province, Kunming650000, China
| |
Collapse
|
2
|
Piñol-Jurado P, Verdú-Díaz J, Fernández-Simón E, Domínguez-González C, Hernández-Lain A, Lawless C, Vincent A, González-Chamorro A, Villalobos E, Monceau A, Laidler Z, Mehra P, Clark J, Filby A, McDonald D, Rushton P, Bowey A, Alonso Pérez J, Tasca G, Marini-Bettolo C, Guglieri M, Straub V, Suárez-Calvet X, Díaz-Manera J. Imaging mass cytometry analysis of Becker muscular dystrophy muscle samples reveals different stages of muscle degeneration. Sci Rep 2024; 14:3365. [PMID: 38336890 PMCID: PMC10858026 DOI: 10.1038/s41598-024-51906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Becker muscular dystrophy (BMD) is characterised by fiber loss and expansion of fibrotic and adipose tissue. Several cells interact locally in what is known as the degenerative niche. We analysed muscle biopsies of controls and BMD patients at early, moderate and advanced stages of progression using Hyperion imaging mass cytometry (IMC) by labelling single sections with 17 markers identifying different components of the muscle. We developed a software for analysing IMC images and studied changes in the muscle composition and spatial correlations between markers across disease progression. We found a strong correlation between collagen-I and the area of stroma, collagen-VI, adipose tissue, and M2-macrophages number. There was a negative correlation between the area of collagen-I and the number of satellite cells (SCs), fibres and blood vessels. The comparison between fibrotic and non-fibrotic areas allowed to study the disease process in detail. We found structural differences among non-fibrotic areas from control and patients, being these latter characterized by increase in CTGF and in M2-macrophages and decrease in fibers and blood vessels. IMC enables to study of changes in tissue structure along disease progression, spatio-temporal correlations and opening the door to better understand new potential pathogenic pathways in human samples.
Collapse
Affiliation(s)
- Patricia Piñol-Jurado
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - José Verdú-Díaz
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Esther Fernández-Simón
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Cristina Domínguez-González
- Neuromuscular Disorders Unit, Neurology Department, imas12 Research Institute, Hospital Universitario, 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Aurelio Hernández-Lain
- Neuropathology Unit, imas12 Research Institute, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Conor Lawless
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Amy Vincent
- Faculty of Medical Sciences, Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Alejandro González-Chamorro
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Elisa Villalobos
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Alexandra Monceau
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Zoe Laidler
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Priyanka Mehra
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - James Clark
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Andrew Filby
- Newcastle University Biosciences Institute and Innovation Methodology and Application Research Theme, Newcastle University, Newcastle Upon Tyne, UK
| | - David McDonald
- Newcastle University Biosciences Institute and Innovation Methodology and Application Research Theme, Newcastle University, Newcastle Upon Tyne, UK
| | - Paul Rushton
- Department of Orthopaedic Spine Surgery, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Andrew Bowey
- Department of Orthopaedic Spine Surgery, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Jorge Alonso Pérez
- Neuromuscular Disease Unit, Neurology Department, Hospital Universitario Nuestra Señora de Candelaria, Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Tenerife, Spain
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IBB SANT PAU), Barcelona, Spain
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain.
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IBB SANT PAU), Barcelona, Spain.
| |
Collapse
|
3
|
Shelton GD, Tucciarone F, Guo LT, Coghill LM, Lyons LA. Precision medicine using whole genome sequencing identifies a novel dystrophin (DMD) variant for X-linked muscular dystrophy in a cat. J Vet Intern Med 2024; 38:135-144. [PMID: 38180235 PMCID: PMC10800237 DOI: 10.1111/jvim.16971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Muscular dystrophies (MDs) are a large, heterogeneous group of degenerative muscle diseases. X-linked dystrophin-deficient MD in cats is the first genetically characterized cat model for a human disease and a few novel forms have been identified. HYPOTHESIS/OBJECTIVES Muscular dystrophy was suspected in a young male domestic shorthair cat. Clinical, molecular, and genetic techniques could provide a definitive diagnosis. ANIMALS A 1-year-old male domestic shorthair cat presented for progressive difficulty walking, macroglossia and dysphagia beginning at 6 months of age. The tongue was thickened, protruded with constant ptyalism, and thickening and rigidity of the neck and shoulders were observed. METHODS A complete neurological examination, baseline laboratory evaluation and biopsies of the trapezius muscle were performed with owner consent. Indirect immunofluorescence staining of muscle cryosections was performed using several monoclonal and polyclonal antibodies against dystrophy-associated proteins. DNA was isolated for genomic analyses by whole genome sequencing and comparison to DNA variants in the 99 Lives Cat Genome Sequencing dataset. RESULTS AND CLINICAL IMPORTANCE Aspartate aminotransferase (687 IU/L) and creatine kinase (24 830 IU/L) activities were increased and mild hypokalemia (3.7 mmol/L) was present. Biopsy samples from the trapezius muscle confirmed a degenerative and regenerative myopathy and protein alterations identified by immunohistochemistry resulted in a diagnosis of a in dystrophin-deficient form of X-linked MD. A stop gain variant (c.4849C>T; p.Gln1617Ter) dystrophin was identified by genome sequencing. Precision/genomic medicine efforts for the domestic cat and in veterinary medicine support disease variant and animal model discovery and provide opportunities for targeted treatments for companion animals.
Collapse
Affiliation(s)
- G. Diane Shelton
- Department of Pathology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Ling T. Guo
- Department of Pathology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Lyndon M. Coghill
- Department of Veterinary Pathobiology, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Leslie A. Lyons
- Department of Veterinary Pathobiology, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
4
|
Saad FA, Siciliano G, Angelini C. Advances in Dystrophinopathy Diagnosis and Therapy. Biomolecules 2023; 13:1319. [PMID: 37759719 PMCID: PMC10526396 DOI: 10.3390/biom13091319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Dystrophinopathies are x-linked muscular disorders which emerge from mutations in the Dystrophin gene, including Duchenne and Becker muscular dystrophy, and dilated cardiomyopathy. However, Duchenne muscular dystrophy interconnects with bone loss and osteoporosis, which are exacerbated by glucocorticoids therapy. Procedures for diagnosing dystrophinopathies include creatine kinase assay, haplotype analysis, Southern blot analysis, immunological analysis, multiplex PCR, multiplex ligation-dependent probe amplification, Sanger DNA sequencing, and next generation DNA sequencing. Pharmacological therapy for dystrophinopathies comprises glucocorticoids (prednisone, prednisolone, and deflazacort), vamorolone, and ataluren. However, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and β-blockers are the first-line to prevent dilated cardiomyopathy in dystrophinopathy patients. Duchenne muscular dystrophy gene therapy strategies involve gene transfer, exon skipping, exon reframing, and CRISPR gene editing. Eteplirsen, an antisense-oligonucleotide drug for skipping exon 51 from the Dystrophin gene, is available on the market, which may help up to 14% of Duchenne muscular dystrophy patients. There are various FDA-approved exon skipping drugs including ExonDys-51 for exon 51, VyonDys-53 and Viltolarsen for exon 53 and AmonDys-45 for exon 45 skipping. Other antisense oligonucleotide drugs in the pipeline include casimersen for exon 45, suvodirsen for exon 51, and golodirsen for exon 53 skipping. Advances in the diagnosis and therapy of dystrophinopathies offer new perspectives for their early discovery and care.
Collapse
Affiliation(s)
- Fawzy A. Saad
- Department of Gene Therapy, Saad Pharmaceuticals, Juhkentali 8, 10132 Tallinn, Estonia
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Pisa University School of Medicine, Via Paradisa 2, 56100 Pisa, Italy;
| | - Corrado Angelini
- Department of Neurosciences, Padova University School of Medicine, Via Giustiniani 5, 35128 Padova, Italy;
| |
Collapse
|
5
|
Ueda J, Saito S. Evaluation of Cardiac Function in Young Mdx Mice Using MRI with Feature Tracking and Self-Gated Magnetic Resonance Cine Imaging. Diagnostics (Basel) 2023; 13:diagnostics13081472. [PMID: 37189573 DOI: 10.3390/diagnostics13081472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to evaluate cardiac function in a young mouse model of Duchenne muscular dystrophy (mdx) using cardiac magnetic resonance imaging (MRI) with feature tracking and self-gated magnetic resonance cine imaging. Cardiac function was evaluated in mdx and control mice (C57BL/6JJmsSlc mice) at 8 and 12 weeks of age. Preclinical 7-T MRI was used to capture short-axis, longitudinal two-chamber view and longitudinal four-chamber view cine images of mdx and control mice. Strain values were measured and evaluated from cine images acquired using the feature tracking method. The left ventricular ejection fraction was significantly less (p < 0.01 each) in the mdx group at both 8 (control, 56.6 ± 2.3% mdx, 47.2 ± 7.4%) and 12 weeks (control, 53.9 ± 3.3% mdx, 44.1 ± 2.7%). In the strain analysis, all strain value peaks were significantly less in mdx mice, except for the longitudinal strain of the four-chamber view at both 8 and 12 weeks of age. Strain analysis with feature tracking and self-gated magnetic resonance cine imaging is useful for assessing cardiac function in young mdx mice.
Collapse
Affiliation(s)
- Junpei Ueda
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 560-0871, Osaka, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 560-0871, Osaka, Japan
- Department of Advanced Medical Technologies, National Cardiovascular and Cerebral Research Center, Suita 564-8565, Osaka, Japan
| |
Collapse
|
6
|
Dystrophin ( DMD) Missense Variant in Cats with Becker-Type Muscular Dystrophy. Int J Mol Sci 2023; 24:ijms24043192. [PMID: 36834603 PMCID: PMC9964367 DOI: 10.3390/ijms24043192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Muscular dystrophy due to dystrophin deficiency in humans is phenotypically divided into a severe Duchenne and milder Becker type. Dystrophin deficiency has also been described in a few animal species, and few DMD gene variants have been identified in animals. Here, we characterize the clinical, histopathological, and molecular genetic aspects of a family of Maine Coon crossbred cats with clinically mild and slowly progressive muscular dystrophy. Two young adult male littermate cats exhibited abnormal gait and muscular hypertrophy with macroglossia. Serum creatine kinase activities were highly increased. Histopathologically, dystrophic skeletal muscle exhibited marked structural changes including atrophic, hypertrophic, and necrotic muscle fibers. Immunohistochemistry showed irregularly reduced expression of dystrophin but the staining of other muscle proteins such as β- and γ-sarcoglycans as well as desmin was also diminished. Whole genome sequencing of one affected cat and genotyping of the littermate found both to be hemizygous mutant at a single DMD missense variant (c.4186C>T). No other protein-changing variants in candidate genes for muscular dystrophy were detected. In addition, one clinically healthy male littermate was hemizygous wildtype, while the queen and one female littermate were clinically healthy, but heterozygous. The predicted amino acid exchange (p.His1396Tyr) resides in a conserved central rod spectrin domain of dystrophin. Various protein modeling programs did not predict major disruption of the dystrophin protein by this substitution, but the altered charge of the region may still affect protein function. This study represents the first genotype-to-phenotype correlation of Becker-type dystrophin deficiency in companion animals.
Collapse
|
7
|
Viggiano E, Picillo E, Passamano L, Onore ME, Piluso G, Scutifero M, Torella A, Nigro V, Politano L. Spectrum of Genetic Variants in the Dystrophin Gene: A Single Centre Retrospective Analysis of 750 Duchenne and Becker Patients from Southern Italy. Genes (Basel) 2023; 14:214. [PMID: 36672955 PMCID: PMC9859256 DOI: 10.3390/genes14010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Dystrophinopathies are X-linked recessive muscle disorders caused by mutations in the dystrophin (DMD) gene that include deletions, duplications, and point mutations. Correct diagnosis is important for providing adequate patient care and family planning, especially at this time when mutation-specific therapies are available. We report a large single-centre study on the spectrum of DMD gene variants observed in 750 patients analyzed for suspected Duchenne (DMD) or Becker (BMD) muscular dystrophy, over the past 30 years, at the Cardiomyology and Medical Genetics of the University of Campania. We found 534 (71.21%) large deletions, 73 (9.73%) large duplications, and 112 (14.93%) point mutations, of which 44 (5.9%) were small ins/del causing frame-shifts, 57 (7.6%) nonsense mutations, 8 (1.1%) splice site and 3 (0.4%) intronic mutations, and 31 (4.13%) non mutations. Moreover, we report the prevalence of the different types of mutations in patients with DMD and BMD according to their decade of birth, from 1930 to 2020, and correlate the data to the different techniques used over the years. In the most recent decades, we observed an apparent increase in the prevalence of point mutations, probably due to the use of Next-Generation Sequencing (NGS). In conclusion, in southern Italy, deletions are the most frequent variation observed in DMD and BMD patients followed by point mutations and duplications, as elsewhere in the world. NGS was useful to identify point mutations in cases of strong suspicion of DMD/BMD negative on deletions/duplications analyses. In the era of personalized medicine and availability of new causative therapies, a collective effort is necessary to enable DMD and BMD patients to have timely genetic diagnoses and avoid late implementation of standard of care and late initiation of appropriate treatment.
Collapse
Affiliation(s)
- Emanuela Viggiano
- Department of Prevention, Hygiene and Public Health Service, ASL Roma 2, 00157 Rome, Italy
| | - Esther Picillo
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Luigia Passamano
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Maria Elena Onore
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Giulio Piluso
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Marianna Scutifero
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Annalaura Torella
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Vincenzo Nigro
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| |
Collapse
|
8
|
Fang H, Deng X, Disteche CM. X-factors in human disease: Impact of gene content and dosage regulation. Hum Mol Genet 2021; 30:R285-R295. [PMID: 34387327 DOI: 10.1093/hmg/ddab221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The gene content of the X and Y chromosomes has dramatically diverged during evolution. The ensuing dosage imbalance within the genome of males and females has led to unique chromosome-wide regulatory mechanisms with significant and sex-specific impacts on X-linked gene expression. X inactivation or silencing of most genes on one X chromosome chosen at random in females profoundly affects the manifestation of X-linked diseases, as males inherit a single maternal allele, while females express maternal and paternal alleles in a mosaic manner. An additional complication is the existence of genes that escape X inactivation and thus are ubiquitously expressed from both alleles in females. The mosaic nature of X-linked gene expression and the potential for escape can vary between individuals, tissues, cell types, and stages of life. Our understanding of the specialized nature of X-linked genes and of the multilayer epigenetic regulation that influence their expression throughout the organism has been helped by molecular studies conducted by tissue-specific and single-cell-specific approaches. In turn, the definition of molecular events that control X silencing has helped develop new approaches for the treatment of some X-linked disorders. This review focuses on the peculiarities of the X chromosome genetic content and epigenetic regulation in shaping the manifestation of congenital and acquired X-linked disorders in a sex-specific manner.
Collapse
Affiliation(s)
- He Fang
- Department of Laboratory Medicine and Pathology
| | | | - Christine M Disteche
- Department of Laboratory Medicine and Pathology.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
9
|
Pryce BR, Labrèche C, Hamoudi D, Abou-Hamad J, Al-Zahrani KN, Hodgins JJ, Boulanger-Piette A, Bossé S, Balog-Alvarez C, Frénette J, Ardolino M, Kornegay JN, Sabourin LA. Muscle-specific deletion of SLK/Stk2 enhances p38 activity and myogenesis in mdx mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118917. [PMID: 33259860 DOI: 10.1016/j.bbamcr.2020.118917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023]
Abstract
Duchenne's muscular dystrophy (DMD) is a severe muscle wasting disorder characterized by the loss of dystrophin expression, muscle necrosis, inflammation and fibrosis. Ongoing muscle regeneration is impaired by persistent cytokine stress, further decreasing muscle function. Patients with DMD rarely survive beyond their early 20s, with cardiac and respiratory dysfunction being the primary cause of death. Despite an increase in our understanding of disease progression as well as promising preclinical animal models for therapeutic intervention, treatment options for muscular dystrophy remain limited and novel therapeutic targets are required. Many reports suggest that the TGFβ signalling pathway is activated in dystrophic muscle and contributes to the pathology of DMD in part by impairing the differentiation of myoblasts into mature myofibers. Here, we show that in vitro knockdown of the Ste20-like kinase, SLK, can partially restore myoblast differentiation downstream of TGFβ in a Smad2/3 independent manner. In an mdx model, we demonstrate that SLK is expressed at high levels in regenerating myofibers. Muscle-specific deletion of SLK reduced leukocyte infiltration, increased myogenin and utrophin expression and enhanced differentiation. This was accompanied by resistance to eccentric contraction-induced injury in slow fiber type-enriched soleus muscles. Finally, we found that these effects were partially dependent on the upregulation of p38 signalling. Collectively, these results demonstrate that SLK downregulation can restore some aspects of disease progression in DMD.
Collapse
Affiliation(s)
- Benjamin R Pryce
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Cédrik Labrèche
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dounia Hamoudi
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de L'Université Laval, Université Laval, Quebec City, Quebec, Canada
| | - John Abou-Hamad
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Khalid N Al-Zahrani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jonathan J Hodgins
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Antoine Boulanger-Piette
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de L'Université Laval, Université Laval, Quebec City, Quebec, Canada
| | - Sabrina Bossé
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de L'Université Laval, Université Laval, Quebec City, Quebec, Canada
| | - Cindy Balog-Alvarez
- Department of Veterinary Integrative Biosciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Jérôme Frénette
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de L'Université Laval, Université Laval, Quebec City, Quebec, Canada; Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Luc A Sabourin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Mavrogeni SI. The Role of Cardiovascular Imaging in the Evaluation of Rheumatic and Neuromuscular Disorders. J Clin Med 2020; 9:jcm9113614. [PMID: 33182642 PMCID: PMC7698109 DOI: 10.3390/jcm9113614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Autoimmune rheumatic diseases (ARD) and neuromuscular disorders can affect a number of organs [...].
Collapse
Affiliation(s)
- Sophie I. Mavrogeni
- Onassis Cardiac Surgery Center, Department of Cardiology, 17674 Athens, Greece;
- Department of Pediatrics, National and Kapodistrian University of Athens, 17674 Athens, Greece
| |
Collapse
|
11
|
Meyers TA, Heitzman JA, Townsend D. DMD carrier model with mosaic dystrophin expression in the heart reveals complex vulnerability to myocardial injury. Hum Mol Genet 2020; 29:944-954. [PMID: 31976522 PMCID: PMC7158376 DOI: 10.1093/hmg/ddaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/26/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease that causes progressive muscle wasting and cardiomyopathy. This X-linked disease results from mutations of the DMD allele on the X-chromosome resulting in the loss of expression of the protein dystrophin. Dystrophin loss causes cellular dysfunction that drives the loss of healthy skeletal muscle and cardiomyocytes. As gene therapy strategies strive toward dystrophin restoration through micro-dystrophin delivery or exon skipping, preclinical models have shown that incomplete restoration in the heart results in heterogeneous dystrophin expression throughout the myocardium. This outcome prompts the question of how much dystrophin restoration is sufficient to rescue the heart from DMD-related pathology. Female DMD carrier hearts can shed light on this question, due to their mosaic cardiac dystrophin expression resulting from random X-inactivation. In this work, a dystrophinopathy carrier mouse model was derived by breeding male or female dystrophin-null mdx mice with a wild type mate. We report that these carrier hearts are significantly susceptible to injury induced by one or multiple high doses of isoproterenol, despite expressing ~57% dystrophin. Importantly, only carrier mice with dystrophic mothers showed mortality after isoproterenol. These findings indicate that dystrophin restoration in approximately half of the heart still allows for marked vulnerability to injury. Additionally, the discovery of divergent stress-induced mortality based on parental origin in mice with equivalent dystrophin expression underscores the need for better understanding of the epigenetic, developmental, and even environmental factors that may modulate vulnerability in the dystrophic heart.
Collapse
Affiliation(s)
- Tatyana A Meyers
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Jackie A Heitzman
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Dickson PE, Mittleman G. Visual Discrimination, Serial Reversal, and Extinction Learning in the mdx Mouse. Front Behav Neurosci 2019; 13:200. [PMID: 31543764 PMCID: PMC6728792 DOI: 10.3389/fnbeh.2019.00200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy and the most common neuromuscular disorder. In addition to neuromuscular consequences, some individuals with DMD experience global intellectual dysfunction and executive dysfunction of unknown mechanistic origin. The cognitive profile of the mdx mouse, the most commonly used mouse model of DMD, has been incompletely characterized and has never been assessed using the touchscreen operant conditioning paradigm. The touchscreen paradigm allows the use of protocols that are virtually identical to those used in human cognitive testing and may, therefore, provide the most translational paradigm for quantifying mouse cognitive function. In the present study, we used the touchscreen paradigm to assess the effects of the mdx mutation on visual discrimination learning, serial reversal learning, and extinction learning. To enable measuring task-dependent learning and memory processes while holding demands on sensory-driven information processing constant, we developed equally salient visual stimuli and used them on all experimental stages. Acquisition of the initial pairwise visual discrimination was facilitated in mdx mice relative to wildtype littermates; this effect was not explained by genotypic differences in impulsivity, motivation, or motor deficits. The mdx mutation had no effect on serial reversal or extinction learning. Together, findings from this study and previous studies suggest that mdx effects on cognitive function are task-specific and may be influenced by discrimination type (spatial, visual), reward type (food, escape from a non-preferred environment), sex, and genetic background.
Collapse
Affiliation(s)
| | - Guy Mittleman
- Department of Psychological Science, Ball State University, Muncie, IN, United States
| |
Collapse
|
13
|
Podkalicka P, Mucha O, Dulak J, Loboda A. Targeting angiogenesis in Duchenne muscular dystrophy. Cell Mol Life Sci 2019; 76:1507-1528. [PMID: 30770952 PMCID: PMC6439152 DOI: 10.1007/s00018-019-03006-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) represents one of the most devastating types of muscular dystrophies which affect boys already at early childhood. Despite the fact that the primary cause of the disease, namely the lack of functional dystrophin is known already for more than 30 years, DMD still remains an incurable disease. Thus, an enormous effort has been made during recent years to reveal novel mechanisms that could provide therapeutic targets for DMD, especially because glucocorticoids treatment acts mostly symptomatic and exerts many side effects, whereas the effectiveness of genetic approaches aiming at the restoration of functional dystrophin is under the constant debate. Taking into account that dystrophin expression is not restricted to muscle cells, but is present also in, e.g., endothelial cells, alterations in angiogenesis process have been proposed to have a significant impact on DMD progression. Indeed, already before the discovery of dystrophin, several abnormalities in blood vessels structure and function have been revealed, suggesting that targeting angiogenesis could be beneficial in DMD. In this review, we will summarize current knowledge about the angiogenesis status both in animal models of DMD as well as in DMD patients, focusing on different organs as well as age- and sex-dependent effects. Moreover, we will critically discuss some approaches such as modulation of vascular endothelial growth factor or nitric oxide related pathways, to enhance angiogenesis and attenuate the dystrophic phenotype. Additionally, we will suggest the potential role of other mediators, such as heme oxygenase-1 or statins in those processes.
Collapse
Affiliation(s)
- Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
14
|
Andrews JG, Lamb MM, Conway K, Street N, Westfield C, Ciafaloni E, Matthews D, Cunniff C, Pandya S, Fox DJ. Diagnostic Accuracy of Phenotype Classification in Duchenne and Becker Muscular Dystrophy Using Medical Record Data1. J Neuromuscul Dis 2019; 5:481-495. [PMID: 30320597 DOI: 10.3233/jnd-180306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dystrophinopathies are caused by mutations in DMD resulting in progressive muscle weakness. They are historically divided into the more severe Duchenne (DMD) and milder Becker (BMD) muscular dystrophy phenotypes. Classification is important for research and clinical care. The purpose of this study was to describe a multi-variable approach to classifying cases from the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet) and to assess the accuracy of the diagnostic classification scheme. We used age at loss of mobility, molecular testing results, and age at symptom onset to classify cases as having DMD or BMD and to assess sensitivity and specificity. Mobility status showed low sensitivity and high specificity for predicting DMD (65.5% and 99.3%, respectively) and BMD (62.8% and 97.7%, respectively) phenotypes. Molecular testing showed 90.9% sensitivity and 66.4% specificity for DMD; 76.3% sensitivity and 90.0% specificity for BMD. Age of onset predicted DMD with sensitivity of 73.9% and specificity of 69.0%; BMD had 99.7% specificity and 36.7% sensitivity. Mobility status, molecular test results, and age at symptom onset are important but inconsistent measures for accurately classifying individuals into DMD or BMD phenotypes. These results have implications for prognosis in newly diagnosed individuals and for classifying phenotype in clinical trials.
Collapse
Affiliation(s)
| | - Molly M Lamb
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Kristin Conway
- Department of Epidemiology, The University of Iowa, Iowa City, Iowa, USA
| | - Natalie Street
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Emma Ciafaloni
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Dennis Matthews
- Physical Medicine and Rehabilitation, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Christopher Cunniff
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
| | - Shree Pandya
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Deborah J Fox
- New York State Department of Health, Albany, New York, USA
| | | |
Collapse
|
15
|
Meyers TA, Heitzman JA, Krebsbach AM, Aufdembrink LM, Hughes R, Bartolomucci A, Townsend D. Acute AT 1R blockade prevents isoproterenol-induced injury in mdx hearts. J Mol Cell Cardiol 2019; 128:51-61. [PMID: 30664850 DOI: 10.1016/j.yjmcc.2019.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/31/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked disease characterized by skeletal muscle degeneration and a significant cardiomyopathy secondary to cardiomyocyte damage and myocardial loss. The molecular basis of DMD lies in the absence of the protein dystrophin, which plays critical roles in mechanical membrane integrity and protein localization at the sarcolemma. A popular mouse model of DMD is the mdx mouse, which lacks dystrophin and displays mild cardiac and skeletal pathology that can be exacerbated to advance the disease state. In clinical and pre-clinical studies of DMD, angiotensin signaling pathways have emerged as therapeutic targets due to their adverse influence on muscle remodeling and oxidative stress. Here we aim to establish a physiologically relevant cardiac injury model in the mdx mouse, and determine whether acute blockade of the angiotensin II type 1 receptor (AT1R) may be utilized for prevention of dystrophic injury. METHODS AND RESULTS A single IP injection of isoproterenol (Iso, 10 mg/kg) was used to induce cardiac stress and injury in mdx and wild type (C57Bl/10) mice. Mice were euthanized 8 h, 30 h, 1 week, or 1 month following the injection, and hearts were harvested for injury evaluation. At 8 and 30 h post-injury, mdx hearts showed 2.2-fold greater serum cTnI content and 3-fold more extensive injury than wild type hearts. Analysis of hearts 1 week and 1 month after injury revealed significantly higher fibrosis in mdx hearts, with a more robust and longer-lasting immune response compared to wild type hearts. In the 30-hour group, losartan treatment initiated 1 h before Iso injection protected dystrophic hearts from cardiac damage, reducing mdx acute injury area by 2.8-fold, without any significant effect on injury in wild type hearts. However, both wild type and dystrophic hearts showed a 2-fold reduction in the magnitude of the macrophage response to injury 30 h after Iso with losartan. CONCLUSIONS This work demonstrates that acute blockade of AT1R has the potential for robust injury prevention in a model of Iso-induced dystrophic heart injury. In addition to selectively limiting dystrophic cardiac damage, blocking AT1R may serve to limit the inflammatory nature of the immune response to injury in all hearts. Our findings strongly suggest that earlier adoption of angiotensin receptor blockers in DMD patients could limit myocardial damage and subsequent cardiomyopathy.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Cardiomyopathies/drug therapy
- Cardiomyopathies/genetics
- Cardiomyopathies/pathology
- Dystrophin/genetics
- Heart/drug effects
- Heart/physiopathology
- Humans
- Isoproterenol/pharmacology
- Losartan/pharmacology
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Receptor, Angiotensin, Type 1/genetics
- Sarcolemma/metabolism
- Sarcolemma/pathology
Collapse
Affiliation(s)
- Tatyana A Meyers
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jackie A Heitzman
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Aimee M Krebsbach
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA; Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lauren M Aufdembrink
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Robert Hughes
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA; Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Engineered DNA plasmid reduces immunity to dystrophin while improving muscle force in a model of gene therapy of Duchenne dystrophy. Proc Natl Acad Sci U S A 2018; 115:E9182-E9191. [PMID: 30181272 DOI: 10.1073/pnas.1808648115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In gene therapy for Duchenne muscular dystrophy there are two potential immunological obstacles. An individual with Duchenne muscular dystrophy has a genetic mutation in dystrophin, and therefore the wild-type protein is "foreign," and thus potentially immunogenic. The adeno-associated virus serotype-6 (AAV6) vector for delivery of dystrophin is a viral-derived vector with its own inherent immunogenicity. We have developed a technology where an engineered plasmid DNA is delivered to reduce autoimmunity. We have taken this approach into humans, tolerizing to myelin proteins in multiple sclerosis and to proinsulin in type 1 diabetes. Here, we extend this technology to a model of gene therapy to reduce the immunogenicity of the AAV vector and of the wild-type protein product that is missing in the genetic disease. Following gene therapy with systemic administration of recombinant AAV6-microdystrophin to mdx/mTRG2 mice, we demonstrated the development of antibodies targeting dystrophin and AAV6 capsid in control mice. Treatment with the engineered DNA construct encoding microdystrophin markedly reduced antibody responses to dystrophin and to AAV6. Muscle force in the treated mice was also improved compared with control mice. These data highlight the potential benefits of administration of an engineered DNA plasmid encoding the delivered protein to overcome critical barriers in gene therapy to achieve optimal functional gene expression.
Collapse
|
17
|
Lindberg U, Kruuse C, Witting N, Jørgensen SL, Vissing J, Rostrup E, Larsson HBW. Altered somatosensory neurovascular response in patients with Becker muscular dystrophy. Brain Behav 2018; 8:e00985. [PMID: 30106246 PMCID: PMC5991560 DOI: 10.1002/brb3.985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/12/2018] [Accepted: 03/31/2018] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Patients with dystrophinopathies show low levels of neuronal nitric oxide synthase (nNOS), due to reduced or absent dystrophin expression, as nNOS is attached to the dystrophin-associated protein complex. Deficient nNOS function leads to functional ischemia during muscle activity. Dystrophin-like proteins with nNOS attached have also been identified in the brain. This suggests that a mechanism of cerebral functional ischemia with attenuation of normal activation-related vascular response may cause changes in brain function. METHODS The aim of this study was to investigate whether the brain response of patients with Becker muscular dystrophy (BMD) is dysfunctional compared to that of healthy controls. To investigate a potential change in brain activation response in patients with BMD, median nerve somatosensory evoked stimulation, with stimulation durations of 2, 4, and 10 s, was performed while recording electroencephalography and blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. RESULTS Results in 14 male patients with BMD (36.2 ± 9.9 years) were compared with those of 10 healthy controls (34.4 ± 10.9 years). Compared to controls, the patients with BMD showed sustained cortical electrical activity and a significant smaller BOLD activation in contralateral primary somatosensory cortex and bilaterally in secondary somatosensory cortex. In addition, significant activation differences were found after long duration (10 s) stimuli in thalamus. CONCLUSION An altered neurovascular response in patients with BMD may increase our understanding of neurovascular coupling and the pathogenesis related to dystrophinopathy and nNOS.
Collapse
Affiliation(s)
- Ulrich Lindberg
- Functional Imaging UnitDepartment of Clinical PhysiologyNuclear Medicine and PETRigshospitalet GlostrupUniversity of CopenhagenGlostrupDenmark
- Lundbeck Foundation Center for Neurovascular signalling (LUCENS)Rigshospitalet GlostrupUniversity of CopenhagenGlostrupDenmark
| | - Christina Kruuse
- Lundbeck Foundation Center for Neurovascular signalling (LUCENS)Rigshospitalet GlostrupUniversity of CopenhagenGlostrupDenmark
- Neurovascular Research UnitDepartment of NeurologyHerlev Gentofte HospitalUniversity of CopenhagenHerlevDenmark
| | - Nanna Witting
- Copenhagen Neuromuscular CenterDepartment of NeurologyRigshospitaletUniversity of CopenhagenDenmark
| | - Stine Lundgaard Jørgensen
- Lundbeck Foundation Center for Neurovascular signalling (LUCENS)Rigshospitalet GlostrupUniversity of CopenhagenGlostrupDenmark
- Neurovascular Research UnitDepartment of NeurologyHerlev Gentofte HospitalUniversity of CopenhagenHerlevDenmark
| | - John Vissing
- Copenhagen Neuromuscular CenterDepartment of NeurologyRigshospitaletUniversity of CopenhagenDenmark
| | - Egill Rostrup
- Functional Imaging UnitDepartment of Clinical PhysiologyNuclear Medicine and PETRigshospitalet GlostrupUniversity of CopenhagenGlostrupDenmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging UnitDepartment of Clinical PhysiologyNuclear Medicine and PETRigshospitalet GlostrupUniversity of CopenhagenGlostrupDenmark
- Lundbeck Foundation Center for Neurovascular signalling (LUCENS)Rigshospitalet GlostrupUniversity of CopenhagenGlostrupDenmark
| |
Collapse
|
18
|
Rodrigues M, Echigoya Y, Fukada SI, Yokota T. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy. J Neuromuscul Dis 2018; 3:29-48. [PMID: 27854202 PMCID: PMC5271422 DOI: 10.3233/jnd-150113] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models.
Collapse
Affiliation(s)
- Merryl Rodrigues
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada.,Muscular Dystrophy Canada Research Chair, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Humanizing the mdx mouse model of DMD: the long and the short of it. NPJ Regen Med 2018; 3:4. [PMID: 29479480 PMCID: PMC5816599 DOI: 10.1038/s41536-018-0045-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common fatal heritable myopathy, with cardiorespiratory failure occurring by the third decade of life. There is no specific treatment for DMD cardiomyopathy, in large part due to a lack of understanding of the mechanisms underlying the cardiac failure. Mdx mice, which have the same dystrophin mutation as human patients, are of limited use, as they do not develop early dilated cardiomyopathy as seen in patients. Here we summarize the usefulness of the various commonly used DMD mouse models, highlight a model with shortened telomeres like humans, and identify directions that warrant further investigation.
Collapse
|
20
|
Immortalized Muscle Cell Model to Test the Exon Skipping Efficacy for Duchenne Muscular Dystrophy. J Pers Med 2017; 7:jpm7040013. [PMID: 29035327 PMCID: PMC5748625 DOI: 10.3390/jpm7040013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 01/25/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder that most commonly results from mutations disrupting the reading frame of the dystrophin (DMD) gene. Among the therapeutic approaches employed, exon skipping using antisense oligonucleotides (AOs) is one of the most promising strategies. This strategy aims to restore the reading frame, thus producing a truncated, yet functioning dystrophin protein. In 2016, the Food and Drug Administration (FDA) conditionally approved the first AO-based drug, eteplirsen (Exondys 51), developed for DMD exon 51 skipping. An accurate and reproducible method to quantify exon skipping efficacy is essential for evaluating the therapeutic potential of different AOs sequences. However, previous in vitro screening studies have been hampered by the limited proliferative capacity and insufficient amounts of dystrophin expressed by primary muscle cell lines that have been the main system used to evaluate AOs sequences. In this paper, we illustrate the challenges associated with primary muscle cell lines and describe a novel approach that utilizes immortalized cell lines to quantitatively evaluate the exon skipping efficacy in in vitro studies.
Collapse
|
21
|
Van Ry PM, Fontelonga TM, Barraza-Flores P, Sarathy A, Nunes AM, Burkin DJ. ECM-Related Myopathies and Muscular Dystrophies: Pros and Cons of Protein Therapies. Compr Physiol 2017; 7:1519-1536. [PMID: 28915335 DOI: 10.1002/cphy.c150033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Extracellular matrix (ECM) myopathies and muscular dystrophies are a group of genetic diseases caused by mutations in genes encoding proteins that provide critical links between muscle cells and the extracellular matrix. These include structural proteins of the ECM, muscle cell receptors, enzymes, and intracellular proteins. Loss of adhesion within the myomatrix results in progressive muscle weakness. For many ECM muscular dystrophies, symptoms can occur any time after birth and often result in reduced life expectancy. There are no cures for the ECM-related muscular dystrophies and treatment options are limited to palliative care. Several therapeutic approaches have been explored to treat muscular dystrophies including gene therapy, gene editing, exon skipping, embryonic, and adult stem cell therapy, targeting genetic modifiers, modulating inflammatory responses, or preventing muscle degeneration. Recently, protein therapies that replace components of the defective myomatrix or enhance muscle and/or extracellular matrix integrity and function have been explored. Preclinical studies for many of these biologics have been promising in animal models of these muscle diseases. This review aims to summarize the ECM muscular dystrophies for which protein therapies are being developed and discuss the exciting potential and possible limitations of this approach for treating this family of devastating genetic muscle diseases. © 2017 American Physiological Society. Compr Physiol 7:1519-1536, 2017.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Apurva Sarathy
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA.,Departamento de Biologia Animal, Centro de Ecologia, Evolucao e Alteracoes Ambientais, Faculdade de Ciencias, Universidade de Lisboa, Lisbon, Portugal
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
22
|
Cardiac profile of asymptomatic children with Becker and Duchenne muscular dystrophy under treatment with steroids and with/without perindopril. BMC Cardiovasc Disord 2017; 17:197. [PMID: 28738778 PMCID: PMC5525273 DOI: 10.1186/s12872-017-0627-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To evaluate cardiovascular function in boys with Duchenne (DMD) and Becker (BMD) muscular dystrophy, using cardiac magnetic resonance (CMR). METHODS This is a single point cross sectional study of twenty-four boys with genetically ascertained DMD, and 10 with BMD, aged 10.5 ± 1.5 years (range 9-13), were prospectively evaluated by a 1.5 T system and compared with those of age-sex matched controls. The DMD patients were divided in 2 groups. Group A (N = 12) were under treatment with both deflazacort and perindopril, while Group B (n = 12) were under treatment with deflazacort, only. BMD patients did not take any medication. Biventricular function was assessed using a standard SSFP sequence. Late gadolinium enhancement (LGE) was assessed from T1 images taken 15 min after injection of 0.2 mg/Kg gadolinium DTPA using a 3D-T1-TFE sequence. RESULTS Group A and BMDs were asymptomatic with normal ECG, 24 h ECG recording and echocardiogram. Group B were asymptomatic but 6/12 had abnormal ECG and mildly impaired LVEF. Their 24 h ECG recording revealed supraventricular and ventricular extrasystoles (all at 12-13 yrs). LV indices in Group A and BMD did not differ from those of controls. However, LV indices in Group B were significantly impaired compared with controls, Group A and BMDs (p < 0.001). An epicardial LGE area = 3 ± 0.5% of LV mass was identified in the posterolateral wall of LV only in 6/12 patients of Group B, but in not in any BMD or Group A. CONCLUSION Children with either BMD or DMD under treatment with both deflazacort and perindopril present preserved LV function and lack of LGE. However, further large scale multicenter studies are warranted to confirm these data, including further CMR mapping approaches.
Collapse
|
23
|
Lindberg U, Witting N, Jørgensen SL, Vissing J, Rostrup E, Larsson HBW, Kruuse C. Effects of Sildenafil on Cerebrovascular Reactivity in Patients with Becker Muscular Dystrophy. Neurotherapeutics 2017; 14:182-190. [PMID: 27485237 PMCID: PMC5233618 DOI: 10.1007/s13311-016-0467-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Patients suffering from Becker muscular dystrophy (BMD) have dysfunctional dystrophin proteins and are deficient in neuronal nitric oxide synthase (nNOS) in muscles. This causes functional ischemia and contributes to muscle wasting. Similar functional ischemia may be present in brains of patients with BMD, who often have mild cognitive impairment, and nNOS may be important for the regulation of the microvascular circulation in the brain. We hypothesized that treatment with sildenafil, a phosphodiesterase type 5 inhibitor that potentiates nitric oxide responses, would augment both the blood oxygen level-dependent (BOLD) response and cerebral blood flow (CBF) in patients with BMD. Seventeen patients (mean ± SD age 38.5 ± 10.8 years) with BMD were included in this randomized, double-blind, placebo-controlled, crossover trial. Twelve patients completed the entire study. Effects of sildenafil were assessed by 3 T magnetic resonance (MR) scanning, evoked potentials, somatosensory task-induced BOLD functional MR imaging, regional and global perfusion, and angiography before and after 4 weeks of sildenafil, 20 mg (Revatio in gelatine capsules, oral, 3 times daily), or placebo treatment. Sildenafil increased the event-related sensory and visual BOLD response compared with placebo (p < 0.01). However, sildenafil did not alter CBF, measured by MR phase contrast mapping, or the arterial diameter of the middle cerebral artery, measured by MR angiography. We conclude that nNOS may play a role in event-related neurovascular responses. Further studies in patients with BMD may help clarify the roles of dystrophin and nNOS in neurovascular coupling in general, and in patients with BMD in particular.
Collapse
Affiliation(s)
- Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
- Lundbeck Foundation Center for Neurovascular signalling (LUCENS), Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Nanna Witting
- Copenhagen Neuromuscular Center and Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stine Lundgaard Jørgensen
- Lundbeck Foundation Center for Neurovascular signalling (LUCENS), Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center and Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
- Lundbeck Foundation Center for Neurovascular signalling (LUCENS), Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Christina Kruuse
- Lundbeck Foundation Center for Neurovascular signalling (LUCENS), Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark.
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Herlev, Denmark.
| |
Collapse
|
24
|
Mitochondria mediate cell membrane repair and contribute to Duchenne muscular dystrophy. Cell Death Differ 2016; 24:330-342. [PMID: 27834955 PMCID: PMC5299714 DOI: 10.1038/cdd.2016.127] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/02/2016] [Accepted: 09/28/2016] [Indexed: 12/31/2022] Open
Abstract
Dystrophin deficiency is the genetic basis for Duchenne muscular dystrophy (DMD), but the cellular basis of progressive myofiber death in DMD is not fully understood. Using two dystrophin-deficient mdx mouse models, we find that the mitochondrial dysfunction is among the earliest cellular deficits of mdx muscles. Mitochondria in dystrophic myofibers also respond poorly to sarcolemmal injury. These mitochondrial deficits reduce the ability of dystrophic muscle cell membranes to repair and are associated with a compensatory increase in dysferlin-mediated membrane repair proteins. Dysferlin deficit in mdx mice further compromises myofiber cell membrane repair and enhances the muscle pathology at an asymptomatic age for dysferlin-deficient mice. Restoring partial dystrophin expression by exon skipping improves mitochondrial function and offers potential to improve myofiber repair. These findings identify that mitochondrial deficit in muscular dystrophy compromises the repair of injured myofibers and show that this repair mechanism is distinct from and complimentary to the dysferlin-mediated repair of injured myofibers.
Collapse
|
25
|
McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 2015; 8:195-213. [PMID: 25740330 PMCID: PMC4348559 DOI: 10.1242/dmm.018424] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.
Collapse
Affiliation(s)
- Joe W McGreevy
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mark A McIntosh
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
26
|
Sachs F. Mechanical transduction by ion channels: A cautionary tale. World J Neurol 2015; 5:74-87. [PMID: 28078202 PMCID: PMC5221657 DOI: 10.5316/wjn.v5.i3.74] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/23/2014] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
Mechanical transduction by ion channels occurs in all cells. The physiological functions of these channels have just begun to be elaborated, but if we focus on the upper animal kingdom, these channels serve the common sensory services such as hearing and touch, provide the central nervous system with information on the force and position of muscles and joints, and they provide the autonomic system with information about the filling of hollow organs such as blood vessels. However, all cells of the body have mechanosensitive channels (MSCs), including red cells. Most of these channels are cation selective and are activated by bilayer tension. There are also K+ selective MSCs found commonly in neurons where they may be responsible for both general anesthesia and knockout punches in the boxing ring by hyperpolarizing neurons to reduce excitability. The cationic MSCs are typically inactive under normal mechanical stress, but open under pathologic stress. The channels are normally inactive because they are shielded from stress by the cytoskeleton. The cationic MSCs are specifically blocked by the externally applied peptide GsMtx4 (aka, AT-300). This is the first drug of its class and provides a new approach to many pathologies since it is nontoxic, non-immunogenic, stable in a biological environment and has a long pharmacokinetic lifetime. Pathologies involving excessive stress are common. They produce cardiac arrhythmias, contraction in stretched dystrophic muscle, xerocytotic and sickled red cells, etc. The channels seem to function primarily as “fire alarms”, providing feedback to the cytoskeleton that a region of the bilayer is under excessive tension and needs reinforcing. The eukaryotic forms of MSCs have only been cloned in recent years and few people have experience working with them. “Newbies” need to become aware of the technology, potential artifacts, and the fundamentals of mechanics. The most difficult problem in studying MSCs is that the actual stimulus, the force applied to the channel, is not known. We don’t have direct access to the channels themselves but only to larger regions of the membrane as seen in patches. Cortical forces are shared by the bilayer, the cytoskeleton and the extracellular matrix. How much of an applied stimulus reaches the channel is unknown. Furthermore, many of these channels exist in spatial domains where the forces within a domain are different from forces outside the domain, although we often hope they are proportional. This review is intended to be a guide for new investigators who want to study mechanosensitive ion channels.
Collapse
|
27
|
Zhu Y, Romitti PA, Caspers Conway KM, Kim S, Zhang Y, Yang M, Mathews KD. Genitourinary health in a population-based cohort of males with Duchenne and Becker Muscular dystrophies. Muscle Nerve 2015; 52:22-7. [PMID: 25297835 DOI: 10.1002/mus.24486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/08/2014] [Accepted: 10/07/2014] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Genitourinary (GU) health among patients with Duchenne and Becker muscular dystrophies (DBMD) has not been explored using population-based data. METHODS Medical records of 918 males ascertained by the Muscular Dystrophy Surveillance, Tracking, and Research Network were reviewed for documentation of GU-related hospitalizations and prescribed medications. Percentages of males who received these medical interventions were calculated, and hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated for associations with sociodemographics (study site, race/ethnicity), symptoms (early- vs. late-onset, ambulation status, scoliosis), and treatments (respiratory support, steroids). RESULTS Among the 918 males, 81 (9%) had a GU condition, with voiding dysfunction (n = 40), GU tract infection (n = 19), and kidney/ureter calculus (n = 9) most frequently seen. The Kaplan-Meier curve produced a cumulative probability of 27%. Cox regression showed GU conditions were more common when males were non-ambulatory (HR 2.7, 95% CI 1.3-5.6). CONCLUSIONS Our findings highlight the need for increased awareness of GU health and multidisciplinary care of DBMD patients.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Epidemiology, The University of Iowa, S416 CPHB, 145 North Riverside Drive, Iowa City, Iowa, 52242, USA
| | - Paul A Romitti
- Department of Epidemiology, The University of Iowa, S416 CPHB, 145 North Riverside Drive, Iowa City, Iowa, 52242, USA
| | - Kristin M Caspers Conway
- Department of Epidemiology, The University of Iowa, S416 CPHB, 145 North Riverside Drive, Iowa City, Iowa, 52242, USA
| | - Sunkyung Kim
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ying Zhang
- Department of Biostatistics, Indiana University, Indianapolis, Indiana, USA
| | - Michele Yang
- Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | | |
Collapse
|
28
|
Altamirano F, Perez CF, Liu M, Widrick J, Barton ER, Allen PD, Adams JA, Lopez JR. Whole body periodic acceleration is an effective therapy to ameliorate muscular dystrophy in mdx mice. PLoS One 2014; 9:e106590. [PMID: 25181488 PMCID: PMC4152333 DOI: 10.1371/journal.pone.0106590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/30/2014] [Indexed: 12/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca2+ and Na+ overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca2+ and Na+ overload, diminished abnormal sarcolemmal Ca2+ entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway.
Collapse
Affiliation(s)
- Francisco Altamirano
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Claudio F. Perez
- Department of Anesthesiology Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Liu
- Department of Physiology, Perleman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey Widrick
- Division of Genetics and Program in Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elisabeth R. Barton
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Paul D. Allen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Department of Anesthesiology Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, Florida, United States of America
| | - Jose R. Lopez
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Department of Anesthesiology Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The most encouraging recent advances regarding pharmacological agents for treating Duchenne muscular dystrophy (DMD) are summarized. Emphasis is given to compounds acting downstream of dystrophin, the protein lacking in DMD, on cellular pathways leading to pathological consequences. The author highlights the progress that may have the greatest potential for clinical use in DMD. RECENT FINDINGS Modifying the transcripts of the mutated gene by exon skipping has led to expression of shortened dystrophins in DMD patients. Currently, the most promising potential drugs are the exon-skipping agents eteplirsen and drisapersen. Biglycan and SMTC1100 upregulate utrophin. The steroid receptor modulating compounds VBP15 and tamoxifen, and specific antioxidants appear promising agents for symptomatic therapy. SUMMARY The past 18 months have seen a strong increase in the number of exciting reports on novel therapeutic agents for DMD. Exon-skipping agents have been fine-tuned to improve tissue delivery and stability. Impressive discoveries regarding pathogenic events in cellular signalling have revealed targets that were unknown in the context of DMD, thus enabling approaches that limit inflammation, fibrosis and necrosis. The targets are nuclear hormone receptors, NADPH-oxidases and Ca channels. Inhibition of NF-KB, transforming growth factor-alpha (TGF-α) and transforming growth factor-beta (TGF-β)/myostatin production or action are also promising routes in counteracting the complex pathogenesis of DMD.
Collapse
|
30
|
Filamentous structures in skeletal muscle: anchors for the subsarcolemmal space. Med Mol Morphol 2014; 48:1-12. [PMID: 24519712 DOI: 10.1007/s00795-014-0070-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/25/2013] [Indexed: 10/25/2022]
Abstract
In skeletal muscle fibers, intermediate filaments and actin filaments provide structural support to the myofibrils and the sarcolemma. For many years, it was poorly understood from ultrastructural observations that how these filamentous structures were kept anchored. The present study was conducted to determine the architecture of filamentous anchoring structures in the subsarcolemmal space and the intermyofibrils. The diaphragms (Dp) of adult wild type and mdx mice (mdx is a model for Duchenne muscular dystrophy) were subjected to tension applied perpendicular to the long axis of the muscle fibers, with or without treatment with 1% Triton X-100 or 0.03% saponin. These experiments were conducted to confirm the presence and integrity of the filamentous anchoring structures. Transmission electron microscopy revealed that these structures provide firm transverse connections between the sarcolemma and peripheral myofibrils. Most of the filamentous structures appeared to be inserted into subsarcolemmal densities, forming anchoring connections between the sarcolemma and peripheral myofibrils. In some cases, actin filaments were found to run longitudinally in the subsarcolemmal space to connect to the sarcolemma or in some cases to connect to the intermyofibrils as elongated thin filaments. These filamentous anchoring structures were less common in the mdx Dp. Our data suggest that the transverse and longitudinal filamentous structures form an anchoring system in the subsarcolemmal space and the intermyofibrils.
Collapse
|
31
|
Ennen JP, Verma M, Asakura A. Vascular-targeted therapies for Duchenne muscular dystrophy. Skelet Muscle 2013; 3:9. [PMID: 23618411 PMCID: PMC3651321 DOI: 10.1186/2044-5040-3-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/25/2013] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy and an X-linked recessive, progressive muscle wasting disease caused by the absence of a functional dystrophin protein. Dystrophin has a structural role as a cytoskeletal stabilization protein and protects cells against contraction-induced damage. Dystrophin also serves a signaling role through mechanotransduction of forces and localization of neuronal nitric oxide synthase (nNOS), which produces nitric oxide (NO) to facilitate vasorelaxation. In DMD, the signaling defects produce inadequate tissue perfusion caused by functional ischemia due to a diminished ability to respond to shear stress induced endothelium-dependent dilation. Additionally, the structural defects seen in DMD render myocytes with an increased susceptibility to mechanical stress. The combination of both defects is necessary to generate myocyte damage, which induces successive rounds of myofiber degeneration and regeneration, loss of calcium homeostasis, chronic inflammatory response, fibrosis, and myonecrosis. In individuals with DMD, these processes inevitably cause loss of ambulation shortly after the first decade and an abbreviated life with death in the third or fourth decade due to cardio-respiratory anomalies. There is no known cure for DMD, and although the culpable gene has been identified for more than twenty years, research on treatments has produced few clinically relevant results. Several recent studies on novel DMD therapeutics are vascular targeted and focused on attenuating the inherent functional ischemia. One approach improves vasorelaxation capacity through pharmaceutical inhibition of either phosphodiesterase 5 (PDE5) or angiotensin-converting enzyme (ACE). Another approach increases the density of the underlying vascular network by inducing angiogenesis, and this has been accomplished through either direct delivery of vascular endothelial growth factor (VEGF) or by downregulating the VEGF decoy-receptor type 1 (VEGFR-1 or Flt-1). The pro-angiogenic approaches also seem to be pro-myogenic and could resolve the age-related decline in satellite cell (SC) quantity seen in mdx models through expansion of the SC juxtavascular niche. Here we review these four vascular targeted treatment strategies for DMD and discuss mechanisms, proof of concept, and the potential for clinical relevance associated with each therapy.
Collapse
Affiliation(s)
- James P Ennen
- Stem Cell Institute, University of Minnesota Medical School, McGuire Translational Research Facility, Room 4-220, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
32
|
Kostrominova TY, Reiner DS, Haas RH, Ingermanson R, McDonough PM. Automated methods for the analysis of skeletal muscle fiber size and metabolic type. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:275-332. [PMID: 24016528 DOI: 10.1016/b978-0-12-407694-5.00007-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It is of interest to quantify the size, shape, and metabolic subtype of skeletal muscle fibers in many areas of biomedical research. To do so, skeletal muscle samples are sectioned transversely to the length of the muscle and labeled for extracellular or membrane proteins to delineate the fiber boundaries and additionally for biomarkers related to function or metabolism. The samples are digitally photographed and the fibers "outlined" for quantification of fiber cross-sectional area (CSA) using pointing devices interfaced to a computer, which is tedious, prone to error, and can be nonobjective. Here, we review methods for characterizing skeletal muscle fibers and describe new automated techniques, which rapidly quantify CSA and biomarkers. We discuss the applications of these methods to the characterization of mitochondrial dysfunctions, which underlie a variety of human afflictions, and we present a novel approach, utilizing images from the online Human Protein Atlas to predict relationships between fiber-specific protein expression, function, and metabolism.
Collapse
|
33
|
Presynaptic dystroglycan-pikachurin complex regulates the proper synaptic connection between retinal photoreceptor and bipolar cells. J Neurosci 2012; 32:6126-37. [PMID: 22553019 DOI: 10.1523/jneurosci.0322-12.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dystroglycan (DG) is a key component of the dystrophin-glycoprotein complex (DGC) at the neuromuscular junction postsynapse. In the mouse retina, the DGC is localized at the presynapse of photoreceptor cells, however, the function of presynaptic DGC is poorly understood. Here, we developed and analyzed retinal photoreceptor-specific DG conditional knock-out (DG CKO) mice. We found that the DG CKO retina showed a reduced amplitude and a prolonged implicit time of the ERG b-wave. Electron microscopic analysis revealed that bipolar dendrite invagination into the photoreceptor terminus is perturbed in the DG CKO retina. In the DG CKO retina, pikachurin, a DG ligand in the retina, is markedly decreased at photoreceptor synapses. Interestingly, in the Pikachurin(-/-) retina, the DG signal at the ribbon synaptic terminus was severely reduced, suggesting that pikachurin is required for the presynaptic accumulation of DG at the photoreceptor synaptic terminus, and conversely DG is required for pikachurin accumulation. Furthermore, we found that overexpression of pikachurin induces formation and clustering of a DG-pikachurin complex on the cell surface. The Laminin G repeats of pikachurin, which are critical for its oligomerization and interaction with DG, were essential for the clustering of the DG-pikachurin complex as well. These results suggest that oligomerization of pikachurin and its interaction with DG causes DG assembly on the synapse surface of the photoreceptor synaptic terminals. Our results reveal that the presynaptic interaction of pikachurin with DG at photoreceptor terminals is essential for both the formation of proper photoreceptor ribbon synaptic structures and normal retinal electrophysiology.
Collapse
|
34
|
Baum BJ, Yates JR, Srivastava S, Wong DTW, Melvin JE. Scientific frontiers: emerging technologies for salivary diagnostics. Adv Dent Res 2012; 23:360-8. [PMID: 21917746 DOI: 10.1177/0022034511420433] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Saliva, a biofluid historically well-studied biochemically and physiologically, has entered the post-genomic 'omics' era, where its proteomic, genomic, and microbiome constituents have been comprehensively deciphered. The translational path of these salivary constituents has begun toward a variety of personalized individual medical applications, including early detection of cancer. Salivary diagnostics is a late-comer, but it is catching up where dedicated resources, like the Salivaomics Knowledge Base (SKB), now have taken center stage in the dissemination of the diagnostic potentials of salivary biomarkers and other translational and clinical utilities.
Collapse
Affiliation(s)
- B J Baum
- Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
35
|
Saini-Chohan HK, Mitchell RW, Vaz FM, Zelinski T, Hatch GM. Delineating the role of alterations in lipid metabolism to the pathogenesis of inherited skeletal and cardiac muscle disorders: Thematic Review Series: Genetics of Human Lipid Diseases. J Lipid Res 2011; 53:4-27. [PMID: 22065858 DOI: 10.1194/jlr.r012120] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As the specific composition of lipids is essential for the maintenance of membrane integrity, enzyme function, ion channels, and membrane receptors, an alteration in lipid composition or metabolism may be one of the crucial changes occurring during skeletal and cardiac myopathies. Although the inheritance (autosomal dominant, autosomal recessive, and X-linked traits) and underlying/defining mutations causing these myopathies are known, the contribution of lipid homeostasis in the progression of these diseases needs to be established. The purpose of this review is to present the current knowledge relating to lipid changes in inherited skeletal muscle disorders, such as Duchenne/Becker muscular dystrophy, myotonic muscular dystrophy, limb-girdle myopathic dystrophies, desminopathies, rostrocaudal muscular dystrophy, and Dunnigan-type familial lipodystrophy. The lipid modifications in familial hypertrophic and dilated cardiomyopathies, as well as Barth syndrome and several other cardiac disorders associated with abnormal lipid storage, are discussed. Information on lipid alterations occurring in these myopathies will aid in the design of improved methods of screening and therapy in children and young adults with or without a family history of genetic diseases.
Collapse
Affiliation(s)
- Harjot K Saini-Chohan
- Department of Pharmacology and Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Kalman L, Leonard J, Gerry N, Tarleton J, Bridges C, Gastier-Foster JM, Pyatt RE, Stonerock E, Johnson MA, Richards CS, Schrijver I, Ma T, Miller VR, Adadevoh Y, Furlong P, Beiswanger C, Toji L. Quality assurance for Duchenne and Becker muscular dystrophy genetic testing: development of a genomic DNA reference material panel. J Mol Diagn 2011; 13:167-74. [PMID: 21354051 DOI: 10.1016/j.jmoldx.2010.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/29/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022] Open
Abstract
Duchenne and Becker muscular dystrophies (DMD/BMD) are allelic X-linked recessive disorders that affect approximately 1 in 3500 and 1 in 20,000 male individuals, respectively. Approximately 65% of patients with DMD have deletions, 7% to 10% have duplications, and 25% to 30% have point mutations in one or more of the 79 exons of the dystrophin gene. Most clinical genetics laboratories test for deletions, and some use technologies that can detect smaller mutations and duplications. Reference and quality control materials for DMD/BMD diagnostic and carrier genetic testing are not commercially available. To help address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing and the DMD/BMD patient communities and the Coriell Cell Repositories, have characterized new and existing cell lines to create a comprehensive DMD/BMD reference material panel. Samples from 31 Coriell DMD cell lines from male probands and female carriers were analyzed using the Affymetrix SNP Array 6.0 and Multiplex Ligation-Dependent Probe Amplification (MRC-Holland BV, Amsterdam, the Netherlands), a multiplex PCR assay, and DNA sequence analysis. Identified were 16 cell lines with deletions, 9 with duplications, and 4 with point mutations distributed throughout the dystrophin gene. There were no discordant results within assay limitations. These samples are publicly available from Coriell Institute for Medical Research (Camden, NJ) and can be used for quality assurance, proficiency testing, test development, and research, and should help improve the accuracy of DMD testing.
Collapse
Affiliation(s)
- Lisa Kalman
- Division of Laboratory Science and Standards, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Veerapandiyan A, Shashi V, Jiang YH, Gallentine WB, Schoch K, Smith EC. Pseudometabolic presentation of dystrophinopathy due to a missense mutation. Muscle Nerve 2011; 42:975-9. [PMID: 21104870 DOI: 10.1002/mus.21823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exercise intolerance with myalgia, muscle stiffness, and recurrent rhabdomyolysis due to mutations in the DMD gene can mimic metabolic myopathies leading to delayed or inaccurate diagnoses. In this retrospective chart review, we report 3 unrelated boys with exertional myalgia, muscle stiffness, myoglobinuria, and normal neurological examination due to an identical point mutation in the DMD gene: a hemizygous T-to-C change in exon 15 (c.1724T>C) resulting in an amino acid substitution of leucine to proline at codon 575. Two of the 3 boys had normal dystrophin immunostaining and Western blot analysis in muscle. This missense mutation has been reported twice before, with at least 1 patient exhibiting rhabdomyolysis. Our report, however, is the first to describe in detail the clinical findings associated with this specific mutation. Further studies and clinical reports are needed to better understand the pathogenicity of the mutation.
Collapse
Affiliation(s)
- Aravindhan Veerapandiyan
- Swami Clinic, Jayam Diabetic Center, Nalladai Road, Sembanarkoil, Nagai Dt., Tamilnadu 609309, India
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Ameen V, Robson LG. Experimental models of duchenne muscular dystrophy: relationship with cardiovascular disease. Open Cardiovasc Med J 2010; 4:265-77. [PMID: 21258567 PMCID: PMC3024556 DOI: 10.2174/1874192401004010265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 09/28/2010] [Accepted: 10/04/2010] [Indexed: 01/15/2023] Open
Abstract
Almost every boy that has Duchenne Muscular Dystrophy (DMD) will develop cardiac problems. Whereas, it used to be respiratory problems that was the main cause of death in these DMD boys; with the advent of better respiratory care it is now the cardiac involvement that is becoming the most common cause of their death. Once the heart is affected, there is progressive deterioration in the function of the heart over time. The main problem is the death of the cardiomyocytes. The cause of the cardiomyocyte death is due to the loss of dystrophin, this makes the sarcolemma more susceptible to damage, and leads to a cascade of calcium influx, calcium activated proteases and ultimately the death of the cardiomyocyte. The dead cardiomyocytes are replaced by fibrotic tissue, which results in a dilated cardiomyopathy (DCM) developing, which begins in the base of the left ventricle and progresses to involve the entire left ventricle. The treatments used for the DMD cardiomyopathy are based on ones designed for other forms of cardiac weakness and include ACE-inhibitors and β-blockers. New therapies based around the pathophysiology in DMD are now being introduced. This review will look at the pathophysiology of the cardiac problems in DMD and how the various animal models that are available can be used to design new treatment options for DMD boys.
Collapse
Affiliation(s)
- Venus Ameen
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Blizard Institute of Cell and Molecular Science, Turner Street, London E1 2AD, UK
| | | |
Collapse
|
40
|
Anand A, Vinish M, Prabhakar S. A case of manifesting carrier with DMD phenotype. ACTA MEDICA (HRADEC KRÁLOVÉ) 2010; 52:167-70. [PMID: 20369712 DOI: 10.14712/18059694.2016.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A case of a 35-year old female with a history of proximal weakness in lower limbs and bulkiness of both calves manifesting before ten years of age was reported. Clinical findings were suggestive of muscular dystrophy. Genetic analysis using polymerase chain reaction (PCR), single strand conformation polymorphism (SSCP) and direct sequencing revealed several point mutations, which account for dystrophin dysfunction and DMD type pathogenesis.
Collapse
Affiliation(s)
- Akshay Anand
- Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | | | | |
Collapse
|
41
|
Minciacchi D, Del Tongo C, Carretta D, Nosi D, Granato A. Alterations of the cortico-cortical network in sensori-motor areas of dystrophin deficient mice. Neuroscience 2010; 166:1129-39. [DOI: 10.1016/j.neuroscience.2010.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 02/09/2023]
|
42
|
Guanine analogues enhance antisense oligonucleotide-induced exon skipping in dystrophin gene in vitro and in vivo. Mol Ther 2010; 18:812-8. [PMID: 20087314 DOI: 10.1038/mt.2009.320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Exon skipping has demonstrated great potential for treating Duchenne muscular dystrophy (DMD) and other diseases. We have developed a drug-screening system using C2C12 myoblasts expressing a reporter green fluorescent phosphate (GFP), with its reading frame disrupted by the insertion of a targeted dystrophin exon. A library of 2,000 compounds (Spectrum collection; Microsource Discovery System) was screened to identify drugs capable of skipping targeted dystrophin exons or enhancing the exon-skipping effect by specific antisense oligomers. The 6-thioguanine (6TG) was effective for inducing skipping of both human dystrophin exon 50 (hDysE50) and mouse dystrophin exon 23 (mDysE23) in the cell culture systems and increased exon skipping efficiency (more than threefolds) when used in combination with phosphorodiamidate morpholino oligomers (PMO) in both myoblasts and myotubes. Guanine and its analogues were unable to induce detectable skipping of exon 23 when used alone but enhanced PMO-induced exon skipping significantly (approximately two times) in the muscles of dystrophic mdx mouse in vivo. Our results demonstrate that small-molecule compounds could enhance specific exon skipping synergistically with antisense oligomers for experimental therapy to human diseases.
Collapse
|
43
|
Zhang W, ten Hove M, Schneider JE, Stuckey DJ, Sebag-Montefiore L, Bia BL, Radda GK, Davies KE, Neubauer S, Clarke K. Abnormal cardiac morphology, function and energy metabolism in the dystrophic mdx mouse: an MRI and MRS study. J Mol Cell Cardiol 2008; 45:754-60. [PMID: 18929569 DOI: 10.1016/j.yjmcc.2008.09.125] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 09/09/2008] [Accepted: 09/12/2008] [Indexed: 11/18/2022]
Abstract
Patients with muscular dystrophy have abnormal cardiac function and decreased high-energy phosphate metabolism. Here, we have determined whether the 8 month old mdx mouse, an animal model of muscular dystrophy, also has abnormal cardiac function and energetics. In vivo cardiac MRI revealed 33% and 104% larger right ventricular end-diastolic and end-systolic volumes, respectively, and 17% lower right ventricular ejection fractions in mdx mice compared with controls. Evidence of left ventricular diastolic dysfunction included 18% lower peak filling rates in mdx mouse hearts. Abnormal cardiac function was accompanied by necrosis and lower citrate synthase activity in the mdx mouse heart, suggesting decreased mitochondrial content. Decreased mitochondrial numbers were associated with 38% lower phosphocreatine concentration, 22% lower total creatine, 36% higher cytosolic free ADP concentration and 1.3 kJ/mol lower free-energy available from ATP hydrolysis in whole isolated, perfused mdx mouse hearts than in controls. Transsarcolemmal creatine uptake was 12% lower in mdx mouse hearts. We conclude that the absence of dystrophin in adult mdx mouse heart, as in the heart of human patient, is associated with right ventricular dilatation, left ventricular diastolic dysfunction and abnormal energy metabolism.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Muntoni F, Mateddu A, Marrosu MG, Cau M, Congiu R, Melis MA, Cao A, Cianchetti C. Variable dystrophin expression in different muscles of a Duchenne muscular dystrophy carrier. Clin Genet 2008; 42:35-8. [PMID: 1355417 DOI: 10.1111/j.1399-0004.1992.tb03133.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The majority of Duchenne muscular dystrophy (DMD) female carriers show dystrophin immunostaining abnormalities, although a significant proportion of clinically non-manifesting carriers are normal following this analysis. We had the opportunity to study dystrophin immunostaining in two different muscles, the vastus lateralis and the rectus abdominis of a possible DMD carrier. While the vastus showed normal dystrophin immunostaining, pathological staining was detected in her rectus abdominis. These findings seem to indicate that dystrophin expression can vary in different muscle groups of a DMD carrier. The implications of these findings in DMD carrier detection and possible dystrophin function are discussed.
Collapse
Affiliation(s)
- F Muntoni
- Instituto di Neuropsichiatria Infantile, Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Regions downstream from the WW domain of dystrophin are important for binding to postsynaptic densities in the brain. Neuromuscul Disord 2008; 18:382-8. [PMID: 18378139 DOI: 10.1016/j.nmd.2008.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 12/17/2007] [Accepted: 02/07/2008] [Indexed: 11/23/2022]
Abstract
In order to investigate the mechanism of dystrophin localization in the central nervous system (CNS), we generated adenovirus vectors that contained minidystrophin or truncated minidystrophin cDNA. We infected a primary neuronal culture derived from mdx mouse hippocampus with these viruses. Minidystrophin was observed along the plasma membrane as punctate dots or very short segments. In double immunofluorescence staining with anti-dystrophin and anti-postsynaptic density-95 antibodies, we observed that these proteins entirely colocalized. On the other hand, the truncated minidystrophin, which has deleted WW, cysteine-rich and C-terminal domains, was homogenously expressed in cytoplasm, neurites and axons. These findings suggest that a binding site to postsynaptic densities exists in the region extending from the WW domain to the C-terminal domain of dystrophin and that this site is necessary for binding to membrane.
Collapse
|
46
|
Asai A, Sahani N, Kaneki M, Ouchi Y, Martyn JJ, Yasuhara SE. Primary role of functional ischemia, quantitative evidence for the two-hit mechanism, and phosphodiesterase-5 inhibitor therapy in mouse muscular dystrophy. PLoS One 2007; 2:e806. [PMID: 17726536 PMCID: PMC1950086 DOI: 10.1371/journal.pone.0000806] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 07/25/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Duchenne Muscular Dystrophy (DMD) is characterized by increased muscle damage and an abnormal blood flow after muscle contraction: the state of functional ischemia. Until now, however, the cause-effect relationship between the pathogenesis of DMD and functional ischemia was unclear. We examined (i) whether functional ischemia is necessary to cause contraction-induced myofiber damage and (ii) whether functional ischemia alone is sufficient to induce the damage. METHODOLOGY/PRINCIPAL FINDINGS In vivo microscopy was used to document assays developed to measure intramuscular red blood cell flux, to quantify the amount of vasodilatory molecules produced from myofibers, and to determine the extent of myofiber damage. Reversal of functional ischemia via pharmacological manipulation prevented contraction-induced myofiber damage in mdx mice, the murine equivalent of DMD. This result indicates that functional ischemia is required for, and thus an essential cause of, muscle damage in mdx mice. Next, to determine whether functional ischemia alone is enough to explain the disease, the extent of ischemia and the amount of myofiber damage were compared both in control and mdx mice. In control mice, functional ischemia alone was found insufficient to cause a similar degree of myofiber damage observed in mdx mice. Additional mechanisms are likely contributing to cause more severe myofiber damage in mdx mice, suggestive of the existence of a "two-hit" mechanism in the pathogenesis of this disease. CONCLUSIONS/SIGNIFICANCE Evidence was provided supporting the essential role of functional ischemia in contraction-induced myofiber damage in mdx mice. Furthermore, the first quantitative evidence for the "two-hit" mechanism in this disease was documented. Significantly, the vasoactive drug tadalafil, a phosphodiesterase 5 inhibitor, administered to mdx mice ameliorated muscle damage.
Collapse
Affiliation(s)
- Akihiro Asai
- Department of Anesthesiology and Critical Care, Shriners Hospital for Children, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nita Sahani
- Department of Anesthesiology and Critical Care, Shriners Hospital for Children, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Masao Kaneki
- Department of Anesthesiology and Critical Care, Shriners Hospital for Children, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yasuyoshi Ouchi
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - J.A. Jeevendra Martyn
- Department of Anesthesiology and Critical Care, Shriners Hospital for Children, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shingo Egusa Yasuhara
- Department of Anesthesiology and Critical Care, Shriners Hospital for Children, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Percival JM, Gregorevic P, Odom GL, Banks GB, Chamberlain JS, Froehner SC. rAAV6-microdystrophin rescues aberrant Golgi complex organization in mdx skeletal muscles. Traffic 2007; 8:1424-39. [PMID: 17714427 DOI: 10.1111/j.1600-0854.2007.00622.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Muscular dystrophies are a diverse group of severe degenerative muscle diseases. Recent interest in the role of the Golgi complex (GC) in muscle disease has been piqued by findings that several dystrophies result from mutations in putative Golgi-resident glycosyltransferases. Given this new role of the Golgi in sarcolemmal stability, we hypothesized that abnormal Golgi distribution, regulation and/or function may constitute part of the pathology of other dystrophies, where the primary defect is independent of Golgi function. Thus, we investigated GC organization in the dystrophin-deficient muscles of mdx mice, a mouse model for Duchenne muscular dystrophy. We report aberrant organization of the synaptic and extrasynaptic GC in skeletal muscles of mdx mice. The GC is mislocalized and improperly concentrated at the surface and core of mdx myofibers. Golgi complex localization is disrupted after the onset of necrosis and normal redistribution is impaired during regeneration of mdx muscle fibers. Disruption of the microtubule cytoskeleton may account in part for aberrant GC localization in mdx myofibers. Golgi complex distribution is restored to wild type and microtubule cytoskeleton organization is significantly improved by recombinant adeno-associated virus 6-mediated expression of DeltaR4-R23/DeltaCT microdystrophin showing a novel mode of microdystrophin functionality. In summary, GC distribution abnormalities are a novel component of mdx skeletal muscle pathology rescued by microdystrophin expression.
Collapse
MESH Headings
- Animals
- Dependovirus
- Dystrophin/biosynthesis
- Dystrophin/genetics
- Dystrophin/physiology
- Genetic Vectors
- Golgi Apparatus/genetics
- Golgi Apparatus/metabolism
- Golgi Apparatus/pathology
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
Collapse
Affiliation(s)
- Justin M Percival
- Department of Physiology and Biophysics, University of Washington, Box 357290, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Lansman JB, Franco-Obregón A. MECHANOSENSITIVE ION CHANNELS IN SKELETAL MUSCLE: A LINK IN THE MEMBRANE PATHOLOGY OF MUSCULAR DYSTROPHY. Clin Exp Pharmacol Physiol 2006; 33:649-56. [PMID: 16789935 DOI: 10.1111/j.1440-1681.2006.04393.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Mechanosensitive (MS) channels are expressed abundantly in skeletal muscle at all stages of development. In recordings from membrane patches, MS channels are constitutively active at the resting potential. The channels are selective for cations and have a large single-channel conductance (approximately 25 pS in physiological saline) and a high Ca2+ permeability (relative permeability of Ca2+ to K+ (PCa/PK) = 7). 2. Mechanosensitive channel activity recorded from the surface of myotubes from dystrophic mdx mice was substantially greater than the activity recorded from wild-type myotubes. Increased channel activity in the mutant results from the induction in a subpopulation of channels of a novel MS gating mode characterized by markedly prolonged channel openings and inactivation in response to membrane stretch. 3. Membrane stretch or a strong depolarization causes an irreversible switch to the stretch-inactivated gating mode in mdx myotubes. A stretch-induced shift in MS channel gating mode may contribute to stretch-induced elevations in [Ca2+]i during the early stages of disease pathogenesis. 4. Abnormalities of MS channel behaviour are also detected in recordings from patches on flexor digitorum brevis fibres acutely isolated from mdx mice. Mechanosensitive channel opening probability is higher in mdx fibres at all developmental stages. In addition, channel numbers are persistently elevated during postnatal development, failing to undergo a normal process of downregulation during the first 3 postnatal weeks. 5. Two distinct mechanisms may contribute to elevations of [Ca2+]i in dystrophin-deficient skeletal muscle: (i) a membrane stress-dependent switch of MS channels into to a prolonged opening mode; and (ii) a loss of developmental downregulation leading to persistent MS channel expression during postnatal muscle development.
Collapse
Affiliation(s)
- Jeffry B Lansman
- Department of Cellular and Molecular Pharmacology, UCSF School of Medicine, San Francisco, California 94143-0450, USA.
| | | |
Collapse
|
49
|
Gaedigk R, Law DJ, Fitzgerald-Gustafson KM, McNulty SG, Nsumu NN, Modrcin AC, Rinaldi RJ, Pinson D, Fowler SC, Bilgen M, Burns J, Hauschka SD, White RA. Improvement in survival and muscle function in an mdx/utrn−/− double mutant mouse using a human retinal dystrophin transgene. Neuromuscul Disord 2006; 16:192-203. [PMID: 16487708 DOI: 10.1016/j.nmd.2005.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
Duchenne muscular dystrophy is a progressive muscle disease characterized by increasing muscle weakness and death by the third decade. mdx mice exhibit the underlying muscle disease but appear physically normal with ordinary lifespans, possibly due to compensatory expression of utrophin. In contrast, double mutant mice (mdx/utrn(-/-)), deficient for both dystrophin and utrophin die by approximately 3 months and suffer from severe muscle weakness, growth retardation, and severe spinal curvature. The capacity of human retinal dystrophin (Dp260) to compensate for the missing 427 kDa muscle dystrophin was tested in mdx/utrn(-/-) mice. Functional outcomes were assessed by histology, EMG, MRI, mobility, weight and longevity. MCK-driven transgenic expression of Dp260 in mdx/utrn(-/-) mice converts their disease course from a severe, lethal muscular dystrophy to a viable, mild myopathic phenotype. This finding is relevant to the design of exon-skipping therapeutic strategies since Dp260 lacks dystrophin exons 1-29.
Collapse
Affiliation(s)
- Roger Gaedigk
- Department of Medical Research, Children's Mercy Hospitals & Clinics, Pediatric Research Building 4th Floor, 2401 Gillham, Kansas City, MO 64108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Draviam RA, Wang B, Li J, Xiao X, Watkins SC. Mini-dystrophin efficiently incorporates into the dystrophin protein complex in living cells. J Muscle Res Cell Motil 2006; 27:53-67. [PMID: 16496225 DOI: 10.1007/s10974-006-9055-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 01/03/2006] [Indexed: 11/27/2022]
Abstract
Dystrophin is a critical muscle cell structural protein which when deficient results in Duchenne muscular dystrophy. Recently miniature versions of the dystrophin gene have been constructed that ameliorate the pathology in mouse models. To characterize mini-dystrophin's incorporation into the dystrophin protein complex in living cells, two fusion proteins were constructed where mini-dystrophin is fused to the N- or C-terminus of an enhanced green fluorescent protein reporter gene. Both fusion proteins correctly localize at the plasma membrane in vitro and in vivo. Live cell microscopy establishes that mini-dystrophin translocates directly to the PM of differentiating muscle cells, within 4 h of expression. Latrunculin A treatment, actin and beta-dystroglycan binding domain deletion constructs, and co-immunoprecipitation assays demonstrate that mini-dystrophin is firmly anchored to the sarcolemma primarily through its connections to beta-dystroglycan, mimicking effects seen with wild type dystrophin. Furthermore, point mutations made within the putative beta-dystroglycan anchoring ZZ domain of mini-dystrophin result in an ablation of beta-dystroglycan binding and a nuclear translocation of the protein. These results demonstrate that mini-dystrophin is efficiently bound and incorporated into the dystrophin protein complex, via beta-dystroglycan in living cells, similarly to the full length dystrophin protein.
Collapse
MESH Headings
- Actins/metabolism
- Active Transport, Cell Nucleus/physiology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line
- Cell Membrane/metabolism
- Dystroglycans/metabolism
- Dystrophin/genetics
- Dystrophin/metabolism
- Green Fluorescent Proteins/metabolism
- Humans
- Macromolecular Substances/metabolism
- Molecular Weight
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Protein Binding/physiology
- Protein Structure, Tertiary/physiology
- Protein Transport/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sarcolemma/metabolism
- Thiazolidines/pharmacology
Collapse
Affiliation(s)
- Romesh A Draviam
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. romesh@ pitt.edu
| | | | | | | | | |
Collapse
|