1
|
Liu Y, Shuai K, Sun Y, Zhu L, Wu XM. Advances in the study of axon-associated vesicles. Front Mol Neurosci 2022; 15:1045778. [PMID: 36545123 PMCID: PMC9760877 DOI: 10.3389/fnmol.2022.1045778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is the most important and difficult to study system in the human body and is known for its complex functions, components, and mechanisms. Neurons are the basic cellular units realizing neural functions. In neurons, vesicles are one of the critical pathways for intracellular material transport, linking information exchanges inside and outside cells. The axon is a vital part of neuron since electrical and molecular signals must be conducted through axons. Here, we describe and explore the formation, trafficking, and sorting of cellular vesicles within axons, as well as related-diseases and practical implications. Furthermore, with deepening of understanding and the development of new approaches, accumulating evidence proves that besides signal transmission between synapses, the material exchange and vesicular transmission between axons and extracellular environment are involved in physiological processes, and consequently to neural pathology. Recent studies have also paid attention to axonal vesicles and their physiological roles and pathological effects on axons themselves. Therefore, this review mainly focuses on these two key nodes to explain the role of intracellular vesicles and extracellular vesicles migrated from cells on axons and neurons, providing innovative strategy for future researches.
Collapse
Affiliation(s)
- Yanling Liu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ke Shuai
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yiyan Sun
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Mei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China,*Correspondence: Xiao-Mei Wu,
| |
Collapse
|
2
|
Trikash I, Kasatkina L, Lykhmus O, Skok M. Nicotinic acetylcholine receptors regulate clustering, fusion and acidification of the rat brain synaptic vesicles. Neurochem Int 2020; 138:104779. [PMID: 32474177 PMCID: PMC7256623 DOI: 10.1016/j.neuint.2020.104779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
Abstract
The brain nicotinic acetylcholine receptors (nAChRs) expressed in pre-synaptic nerve terminals regulate neurotransmitter release. However, there is no evidence for the expression of nAChRs in synaptic vesicles, which deliver neurotransmitter to synaptic cleft. The aim of this paper was to investigate the presence of nAChRs in synaptic vesicles purified from the rat brain and to study their possible involvement in vesicles life cycle. According to dynamic light scattering analysis, the antibody against extracellular domain (1-208) of α7 nAChR subunit inhibited synaptic vesicles clustering. Sandwich ELISA with nAChR subunit-specific antibodies demonstrated the presence of α4β2, α7 and α7β2nAChR subtypes in synaptic vesicles and showed that α7 and β2 nAChR subunits are co-localized with synaptic vesicle glycoprotein 2A (SV2A). Pre-incubation with either α7-selective agonist PNU282987 or nicotine did not affect synaptic vesicles clustering but delayed their Ca2+-dependent fusion with the plasma membranes. In contrast, nicotine but not PNU282987 stimulated acidification of isolated synaptic vesicles, indicating that α4β2 but not α7-containing nAChRs are involved in regulation of proton influx and neurotransmitter refilling. Treatment of rats with levetiracetam, a specific modulator of SV2A, increased the content of α7 nAChRs in synaptic vesicles accompanied by increased clustering but decreased Ca2+-dependent fusion. These data for the first time demonstrate the presence of nAChRs in synaptic vesicles and suggest an active involvement of cholinergic regulation in neurotransmitter release. Synaptic vesicles may be an additional target of nicotine inhaled upon smoking and of α7-specific drugs widely discussed as anti-inflammatory and pro-cognitive tools.
Collapse
Affiliation(s)
- Irene Trikash
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | | | - Olena Lykhmus
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, NAS of Ukraine, Kyiv, Ukraine.
| |
Collapse
|
3
|
Chung C, Raingo J. Vesicle dynamics: how synaptic proteins regulate different modes of neurotransmission. J Neurochem 2013; 126:146-54. [PMID: 23517499 DOI: 10.1111/jnc.12245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023]
Abstract
Central synapses operate neurotransmission in several modes: synchronous/fast neurotransmission (neurotransmitters release is tightly coupled to action potentials and fast), asynchronous neurotransmission (neurotransmitter release is slower and longer lasting), and spontaneous neurotransmission (where small amounts of neurotransmitter are released without being evoked by an action potential). A substantial body of evidence from the past two decades suggests that seemingly identical synaptic vesicles possess distinct propensities to fuse, thus selectively serving different modes of neurotransmission. In efforts to better understand the mechanism(s) underlying the different modes of synaptic transmission, many research groups found that synaptic vesicles used in different modes of neurotransmission differ by a number of synaptic proteins. Synchronous transmission with higher temporal fidelity to stimulation seems to require synaptotagmin 1 and complexin for its Ca²⁺ sensitivity, RIM proteins for closer location of synaptic vesicles (SV) to the voltage operated calcium channels (VGCC), and dynamin for SV retrieval. Asynchronous release does not seem to require functional synaptotagmin 1 as a calcium sensor or complexins, but the activity of dynamin is indispensible for its maintenance. On the other hand, the control of spontaneous neurotransmission remains less clear as deleting a number of essential synaptic proteins does not abolish this type of synaptic vesicle fusion. VGCC distance from the SV seems to have little control on spontaneous transmission, while there is an involvement of functional synaptic proteins including synaptotagmins and complexin. Recently, presynaptic deficits have been proposed to contribute to a number of pathological conditions including cognitive and mental disorders. In this review, we evaluate recent advances in understanding the regulatory mechanisms of synaptic vesicle dynamics and in understanding how different molecular substrates maintain selective modes of neurotransmission. We also highlight the implications of these studies in understanding pathological conditions.
Collapse
Affiliation(s)
- ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | | |
Collapse
|
4
|
Docking and fusion of synaptic vesicles in cell-free model system of exocytosis. Neurochem Int 2008; 53:401-7. [DOI: 10.1016/j.neuint.2008.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/01/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
|
5
|
Gillingwater TH, Ingham CA, Coleman MP, Ribchester RR. Ultrastructural correlates of synapse withdrawal at axotomized neuromuscular junctions in mutant and transgenic mice expressing the Wld gene. J Anat 2003; 203:265-76. [PMID: 14529044 PMCID: PMC1571169 DOI: 10.1046/j.1469-7580.2003.00214.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We carried out an ultrastructural analysis of axotomized synaptic terminals in Wld(s) and Ube4b/Nmnat (Wld) transgenic mice, in which severed distal axons are protected from Wallerian degeneration. Previous studies have suggested that axotomy in juvenile (< 2 months) Wld mice induced a progressive nerve terminal withdrawal from motor endplates. In this study we confirm that axotomy-induced terminal withdrawal occurs in the absence of all major ultrastructural characteristics of Wallerian degeneration. Pre- and post-synaptic membranes showed no signs of disruption or fragmentation, synaptic vesicle densities remained at pre-axotomy levels, the numbers of synaptic vesicles clustered towards presynaptic active zones did not diminish, and mitochondria retained their membranes and cristae. However, motor nerve terminal ultrastructure was measurably different following axotomy in Wld transgenic 4836 line mice, which strongly express Wld protein: axotomized presynaptic terminals were retained, but many were significantly depleted of synaptic vesicles. These findings suggest that the Wld gene interacts with the mechanisms regulating transmitter release and vesicle recycling.
Collapse
|
6
|
Shimizu H, Kawamura S, Ozaki K. An essential role of Rab5 in uniformity of synaptic vesicle size. J Cell Sci 2003; 116:3583-90. [PMID: 12876219 DOI: 10.1242/jcs.00676] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rab5 small GTPase is a famous regulator of endocytic vesicular transport from plasma membrane to early endosomes. In neurons, Rab5 is found not only on endocytic vesicles in cell bodies but also on synaptic vesicles in nerve terminals. However, the function of Rab5 on synaptic vesicles remains unclear. Here, we elucidate the function of Rab5 on synaptic vesicles with in vivo and in vitro experiments using Drosophila photoreceptor cells. Functional inhibition of Rab5 with Rab5N142I, a dominant negative version of Drosophila Rab5, induced enlargement of synaptic vesicles. This enlargement was, however, suppressed by enhancing synaptic vesicle recycling under light illumination. In addition, synaptic vesicles prepared from Rab5N142I-expressing flies exhibited homotypic fusion in vitro. These results indicate that Rab5 functions to keep the size of synaptic vesicles uniform by preventing their homotypic fusion. By contrast, Rab5 was not involved in the endocytic reformation of synaptic vesicles, contrary to expectation from its conventional function. Furthermore, we electrophysiologically and behaviourally showed that the function of Rab5 is essential for efficient signal transmission across synapses.
Collapse
Affiliation(s)
- Hideyuki Shimizu
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
7
|
von Kriegstein K, Schmitz F. The expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina. Cell Tissue Res 2003; 311:159-73. [PMID: 12596036 DOI: 10.1007/s00441-002-0674-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2002] [Accepted: 11/05/2002] [Indexed: 10/25/2022]
Abstract
In the present study, we generated a systematic overview of the expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina. Using indirect immunofluorescence microscopy, we analyzed the spatial and temporal distribution of 11 important membrane and membrane-associated synaptic proteins (syntaxin 1/3, SNAP-25, synaptobrevin 2, synaptogyrin, synaptotagmin I, SV2A, SV2B, Rab3A, clathrin light chains, CSP and neuroligin I) during synaptogenesis. The temporospatial distribution of these synaptic proteins was "normalized" by the simultaneous visualization of the synaptic vesicle protein synaptophysin, which served as an internal reference protein. We found that expression of various synaptic membrane proteins started at different time points and changed progressively during development. At early stages of development synaptic vesicle membrane proteins at extrasynaptic locations did not always colocalize with synaptophysin, indicating that these proteins probably do not reside in the same transport vesicles. Despite a non-synchronized onset of protein expression, clustering and colocalization of all synaptic membrane proteins at ribbon synapses roughly occurred in the same time window (between day 4 after birth, P4, and P5). Thus, the basic synaptic membrane machinery is already present in ribbon synapses before the well-known complete morphological maturation of ribbon synapses between P7 and P12. We conclude that ribbon synapse formation is a multistep process in which the concerted recruitment of synaptic membrane proteins is a relatively early event and clearly not the final step.
Collapse
Affiliation(s)
- Katharina von Kriegstein
- Department of Molecular Neurobiology, Max-Planck Institute for Experimental Medicine, Hermann-Rein-Str 3, 37075 Göttingen, Germany
| | | |
Collapse
|
8
|
Garzón M, Pickel VM. Dendritic and axonal targeting of the vesicular acetylcholine transporter to membranous cytoplasmic organelles in laterodorsal and pedunculopontine tegmental nuclei. J Comp Neurol 2000; 419:32-48. [PMID: 10717638 DOI: 10.1002/(sici)1096-9861(20000327)419:1<32::aid-cne2>3.0.co;2-o] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Autoregulation of cholinergic neurons in the laterodorsal tegmental (LDT) and pedunculopontine (PPT) nuclei has been implicated in many functions, most importantly in drug reinforcement and in the pathophysiology of schizophrenia. This autoregulation is attributed to the release of acetylcholine, but neither the storage or release sites are known. To determine these sites, we used electron microscopy for the immunocytochemical localization of antipeptide antiserum raised against the vesicular acetylcholine transporter (VAchT) that is responsible for the uptake of acetylcholine into storage vesicles. The cellular and subcellular distribution of VAchT was remarkably similar in the two regions by by using each of two methods, immunogold and immunoperoxidase. In both PPT and LDT nuclei, VAchT labeling was seen mainly on membranous organelles including the trans-Golgi network in many somata. VAchT-immunoreactive tubulovesicles resembling saccules of smooth endoplasmic reticulum were often seen near the plasma membrane in dendrites. The VAchT-containing dendrites comprised almost 50% of the labeled profiles (1027/2129) in PPT and LDT nuclei. The remaining VAchT-immunoreactive profiles were primarily small unmyelinated axons and axon terminals. In axon terminals, VAchT was densely localized to membranes of small synaptic vesicles. The VAchT-immunoreactive axon terminals formed either symmetric or asymmetric synapses. The postsynaptic targets of these axon terminals included dendrites that were with (36/110) or without (74/110) VAchT immunoreactivity. Our results suggest that dendrites, as well as axon terminals, have the potential for storage and release of acetylcholine in the LDT and PPT nuclei. The released acetylcholine is likely to play a major role in autoregulation of mesopontine cholinergic neurons.
Collapse
Affiliation(s)
- M Garzón
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
9
|
Provoda CJ, Waring MT, Buckley KM. Evidence for a primary endocytic vesicle involved in synaptic vesicle biogenesis. J Biol Chem 2000; 275:7004-12. [PMID: 10702264 DOI: 10.1074/jbc.275.10.7004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulated release of neurotransmitters at synapses is mediated by the fusion of neurotransmitter-filled synaptic vesicles with the plasma membrane. Continuous synaptic activity relies on the constant recycling of synaptic vesicle proteins into newly formed synaptic vesicles. At least two different mechanisms are presumed to mediate synaptic vesicle biogenesis at the synapse as follows: direct retrieval of synaptic vesicle proteins and lipids from the plasma membrane, and indirect passage of synaptic vesicle proteins through an endosomal intermediate. We have identified a vesicle population with the characteristics of a primary endocytic vesicle responsible for the recycling of synaptic vesicle proteins through the indirect pathway. We find that synaptic vesicle proteins colocalize in this vesicle with a variety of proteins known to recycle from the plasma membrane through the endocytic pathway, including three different glucose transporters, GLUT1, GLUT3, and GLUT4, and the transferrin receptor. These vesicles differ from "classical" synaptic vesicles in their size and their generic protein content, indicating that they do not discriminate between synaptic vesicle-specific proteins and other recycling proteins. We propose that these vesicles deliver synaptic vesicle proteins that have escaped internalization by the direct pathway to endosomes, where they are sorted from other recycling proteins and packaged into synaptic vesicles.
Collapse
Affiliation(s)
- C J Provoda
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
10
|
Blagoveshchenskaya AD, Hewitt EW, Cutler DF. Di-leucine signals mediate targeting of tyrosinase and synaptotagmin to synaptic-like microvesicles within PC12 cells. Mol Biol Cell 1999; 10:3979-90. [PMID: 10564285 PMCID: PMC25693 DOI: 10.1091/mbc.10.11.3979] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents.
Collapse
Affiliation(s)
- A D Blagoveshchenskaya
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
11
|
Ultrastructural localization of full-length trkB immunoreactivity in rat hippocampus suggests multiple roles in modulating activity-dependent synaptic plasticity. J Neurosci 1999. [PMID: 10479701 DOI: 10.1523/jneurosci.19-18-08009.1999] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotrophins acting at the trkB receptor have been shown to be important modulators of activity-dependent plasticity in the hippocampus, but the mechanisms underlying these effects are not yet well understood. To identify the cellular and subcellular targets of trkB ligands in the adult rat hippocampal formation, full-length trkB receptor immunoreactivity (trkB-IR) was localized using electron microscopy. trkB-IR was present in the glutamatergic pyramidal and granule cells. Labeling in these neurons appeared as discrete clusters and was primarily in axons, excitatory-type axon terminals, and dendritic spines and to a lesser extent in somata and dendritic shafts. trkB-IR was commonly found on the plasma membrane of dendritic spines, whereas in other subcellular regions trkB-IR was often intracellular. Labeling was strikingly dense within axon initial segments, suggesting extensive receptor trafficking. trkB-IR was not confined to pyramidal and granule cells. Dense trkB-IR was found in occasional interneuron axon initial segments, some axon terminals forming inhibitory-type synapses onto somata and dendritic shafts, and excitatory-type terminals likely to originate extrahippocampally. This suggests that trkB is contained in some GABAergic interneurons, neuromodulatory (e.g., cholinergic, dopaminergic, and noradrenergic) afferents, and/or glutamatergic afferents. These data indicate that full-length trkB receptor activation may modulate glutamatergic pathways of the trisynaptic circuit both presynaptically at axon terminals and initial segments and postsynaptically at dendritic spines and shafts. Signaling via catalytic trkB may also presynaptically affect inhibitory and modulatory neurons. A pan-trkB antibody labeled the same neuronal populations as the full-length-specific trkB antiserum, but the labels differed in density at various subcellular sites. These findings provide an ultrastructural foundation for further examining the mechanisms through which neurotrophins acting at trkB receptors contribute to synaptic plasticity.
Collapse
|
12
|
Boudier JA, Martin-Moutot N, Boudier JL, Iborra C, Takahashi M, Seagar MJ. Redistribution of presynaptic proteins during alpha-latrotoxin-induced release of neurotransmitter and membrane retrieval at the frog neuromuscular junction. Eur J Neurosci 1999; 11:3449-56. [PMID: 10564353 DOI: 10.1046/j.1460-9568.1999.00778.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcium-dependent exocytosis at the nerve terminal involves the synaptic core (SNARE) complex composed of the t-SNAREs syntaxin 1 and synaptosome-associated protein of 25 kDa (SNAP-25), and the v-SNARE vesicle-associated membrane protein (VAMP/synaptobrevin), a stable heterotrimer which can associate with the putative calcium sensor protein, synaptotagmin. The distribution of these proteins at the frog neuromuscular junction was examined by immunofluorescent staining and confocal microscopy following exocytosis induced by alpha-latrotoxin. Experiments were performed under conditions in which synaptic vesicle recycling was either maintained in balance with exocytosis, or completely blocked, or during recovery from block of endocytosis. When endocytosis was maintained, protein distribution was essentially identical to that of unstimulated nerve terminals, in which syntaxin 1 and SNAP-25 are localized to the presynaptic active zones coincident with the postsynaptic folds that contain a high density of acetylcholine receptors (AChRs). Block of endocytosis led to complete incorporation of vesicle proteins into the plasmalemma, and t-SNARE distribution was no longer restricted to active zones. Five minutes after the onset of recovery, both synaptic vesicle proteins and t-SNARE proteins were concentrated into small spots, in a similar pattern to that obtained following endocytosis of the vital styryl dye FM1-43. These findings are consistent with a model in which following sustained exocytosis, t-SNARE trafficking involves internalization and transit via a vesicular compartment before recycling to the presynaptic plasma membrane.
Collapse
Affiliation(s)
- J A Boudier
- INSESRM U464, Institut Jean Roche, Faculté de Médecine Nord, Marseille, France.
| | | | | | | | | | | |
Collapse
|
13
|
Redecker P. Synaptic-like microvesicles in mammalian pinealocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 191:201-55. [PMID: 10343394 DOI: 10.1016/s0074-7696(08)60160-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The recent deciphering of the protein composition of the synaptic vesicle membrane has led to the unexpected identification of a compartment of electron-lucent microvesicles in neuroendocrine cells which resemble neuronal synaptic vesicles in terms of molecular structure and function. These vesicles are generally referred to as synaptic-like microvesicles (SLMVs) and have been most intensively studied in pancreatic beta-cells, chromaffin cells of the adrenal medulla, and pinealocytes of the pineal gland. This chapter focuses on the present knowledge of SLMVs as now well-established constituents of mammalian pinealocytes. I review the results of morphological, immunocytochemical, and biochemical studies that were important for the characterization of this novel population of secretory vesicles in the pineal organ. The emerging concept that SLMVs serve as a device for intercellular communication within the pineal gland is outlined, and unanswered questions such as those pertaining to the physiological function and regulation of pineal SLMVs are discussed.
Collapse
Affiliation(s)
- P Redecker
- Medizinische Hochschule Hannover, Germany
| |
Collapse
|
14
|
Post-transcriptional regulation of synaptic vesicle protein expression and the developmental control of synaptic vesicle formation. J Neurosci 1999. [PMID: 9065497 DOI: 10.1523/jneurosci.17-07-02365.1997] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The regulated expression of synaptic vesicle (SV) proteins during development and the assembly of these proteins into functional SVs are critical aspects of nervous system maturation. We have examined the expression patterns of four SV proteins in embryonic hippocampal neurons developing in culture and have found that increases in the levels of these proteins result primarily from post-transcriptional regulation. Synaptotagmin I, vamp 2, and synapsin I proteins are synthesized at nearly constant rates as the neurons develop. However, these proteins are relatively unstable at early times in culture and undergo a progressive increase in half-life with time, possibly as a result of an increase in the efficiency with which they are incorporated into SVs. In contrast, synaptophysin is synthesized at a very low rate at early times in culture, and its rate of synthesis increases dramatically with time. The increase in synaptophysin synthesis is not simply the result of an increase in mRNA level, but is largely attributable to an increase in the rate of translational initiation. Despite the nearly constant rates of synthesis of synaptotagmin I, vamp 2, and synapsin I, we show that the number of SVs in these developing neurons increases, and that SV proteins are more efficiently targeted to SVs at later times in culture. Our results suggest that SV production during development is not limited by the rates of transcription of genes encoding the component proteins, thus allowing control of this process by cytoplasmic mechanisms, without signaling to the nucleus.
Collapse
|
15
|
Pickel VM, Pohorille A, Chan J, Tate SS, Nirenberg MJ. Regional and subcellular distribution of a neutral and basic amino acid transporter in forebrain neurons containing nitric oxide synthase. J Comp Neurol 1999; 404:459-72. [PMID: 9987991 DOI: 10.1002/(sici)1096-9861(19990222)404:4<459::aid-cne4>3.0.co;2-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The neutral and basic amino acid transporter (NBAT) facilitates sodium-independent transport of L-amino acids in renal and intestinal epithelial cells and has been postulated to play a similar role in neurons. In previous studies, NBAT has been detected within enteric and brainstem autonomic neurons in a distribution similar to that of constitutive nitric oxide synthase (cNOS). Furthermore, L-arginine, the required precursor for nitric oxide synthesis, is an excellent NBAT substrate. Together, these findings suggest that NBAT may play a role in the regulation of nitric oxide synthesis, through the control of precursor availability. To gain insight into the potential physiological role of NBAT in central neurons, we used an antipeptide antiserum to examine the light and electron microscopic immunocytochemical localization of NBAT in the rat forebrain and to compare this distribution with that of cNOS. Immunolabeling for NBAT was detected within perikarya and dendrite-like processes that were most numerous in the frontal and cingulate cortex, the ventral striatum, the central amygdala, and the bed nucleus of the stria terminalis. Labeled varicose axonal processes were distributed most densely in the agranular insular cortex and the paraventricular nuclei of the thalamus and hypothalamus (PVH). Electron microscopy showed that immunogold labeling for NBAT was distributed along plasmalemmal and vacuolar membranes within somata, dendrites, and axonal profiles. Many of the NBAT-containing somata and dendrites contained detectable cNOS. Our results suggest that expression of NBAT may provide specific populations of cNOS-containing forebrain neurons with a unique mechanism for regulating somatodendritic synthesis of nitric oxide.
Collapse
Affiliation(s)
- V M Pickel
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
16
|
Cao TT, Mays RW, von Zastrow M. Regulated endocytosis of G-protein-coupled receptors by a biochemically and functionally distinct subpopulation of clathrin-coated pits. J Biol Chem 1998; 273:24592-602. [PMID: 9733754 DOI: 10.1074/jbc.273.38.24592] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-2 Adrenergic receptors (B2ARs) are endocytosed by clathrin-coated pits. This process serves specialized functions in signal transduction and receptor regulation, raising the question of whether B2ARs are associated with biochemically specialized membrane vesicles during their endocytic trafficking. Here we show that B2ARs are endocytosed by a distinct subpopulation of clathrin-coated pits, which represent a limited subset of coated pits present in the plasma membrane, even in cells overexpressing both B2ARs and beta-arrestin. Coated pits mediating agonist-induced endocytosis of B2ARs differ from other coated pits mediating constitutive endocytosis of transferrin receptors in their temperature dependence for fission from the plasma membrane and in the association of their membrane coats with beta-arrestin. Endocytosis of these coated pits generates endocytic vesicles selectively enriched in B2ARs, which fuse within approximately 10 min after their formation with a common population of endosomes containing both B2ARs and transferrin receptors. These observations demonstrate, for the first time, the existence of a functionally and biochemically distinct subpopulation of clathrin-coated pits that mediate the agonist-regulated endocytosis of G-protein-coupled receptors, and they suggest a new model for the formation of compositionally specialized membrane vesicles at the earliest stage of the endocytic pathway.
Collapse
MESH Headings
- Arrestins/analysis
- Cell Fractionation
- Cell Line
- Cell Membrane/physiology
- Clathrin/physiology
- Coated Pits, Cell-Membrane/classification
- Coated Pits, Cell-Membrane/physiology
- Endocytosis
- Endosomes/physiology
- GTP-Binding Proteins/physiology
- HeLa Cells
- Humans
- Models, Biological
- Receptors, Adrenergic, beta/biosynthesis
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/physiology
- Receptors, Transferrin/biosynthesis
- Receptors, Transferrin/genetics
- Receptors, Transferrin/physiology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/metabolism
- Transfection
- beta-Arrestins
Collapse
Affiliation(s)
- T T Cao
- Program in Cell Biology, University of California, San Francisco, California 94143-0984, USA
| | | | | |
Collapse
|
17
|
Affiliation(s)
- D A Lewin
- Yale University School of Medicine, Department of Cell Biology, New Haven, CT 06520-8002, USA.
| | | |
Collapse
|
18
|
McIntosh HH, Song C, Howlett AC. CB1 cannabinoid receptor: cellular regulation and distribution in N18TG2 neuroblastoma cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 53:163-73. [PMID: 9473654 DOI: 10.1016/s0169-328x(97)00294-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to characterize cellular regulation of CB1 cannabinoid receptors, synthesis and turnover studies were performed. Metabolic labeling of N18TG2 cells with 35S-labeled amino acids was followed by immunoprecipitation from cell lysates using an affinity-purified antibody generated to the N-terminal 14-amino-acid segment of the CB1 receptor. During a 2 h labeling period, CB1 receptors were rapidly and constitutively synthesized (rate: 0.86%/min). The majority of newly synthesized CB1 cannabinoid receptors (70%) was degraded rapidly by a first-order process (t1/2=4.8 h). The remaining nascent receptors, which were degraded slowly (t1/2>24 h), may represent the pool of potentially functional receptors. Trypsin treatment of intact confluent cells, designed to cleave the extracellular antibody recognition site, did not alter the recovery of metabolically labeled immunoprecipitated CB1 receptors. This suggests that a large percentage of newly synthesized receptors was inaccessible to the protease and is probably intracellular. Immunocytochemistry revealed CB1 cannabinoid immunoreactivity both intracellularly and on the cell surface. Subcellular membrane fractions exhibited receptor binding activity on plasma membranes and nuclear-associated membranes. Only low-affinity binding was seen in the chromatin fraction. An hypothesis has been developed to explain these results and form the basis for future studies.
Collapse
Affiliation(s)
- H H McIntosh
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA.
| | | | | |
Collapse
|
19
|
West AE, Neve RL, Buckley KM. Targeting of the synaptic vesicle protein synaptobrevin in the axon of cultured hippocampal neurons: evidence for two distinct sorting steps. J Cell Biol 1997; 139:917-27. [PMID: 9362510 PMCID: PMC2139969 DOI: 10.1083/jcb.139.4.917] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/1997] [Revised: 08/19/1997] [Indexed: 02/05/2023] Open
Abstract
Synaptic vesicles are concentrated in the distal axon, far from the site of protein synthesis. Integral membrane proteins destined for this organelle must therefore make complex targeting decisions. Short amino acid sequences have been shown to act as targeting signals directing proteins to a variety of intracellular locations. To identify synaptic vesicle targeting sequences and to follow the path that proteins travel en route to the synaptic vesicle, we have used a defective herpes virus amplicon expression system to study the targeting of a synaptobrevin-transferrin receptor (SB-TfR) chimera in cultured hippocampal neurons. Addition of the cytoplasmic domain of synaptobrevin onto human transferrin receptor was sufficient to retarget the transferrin receptor from the dendrites to presynaptic sites in the axon. At the synapse, the SB-TfR chimera did not localize to synaptic vesicles, but was instead found in an organelle with biochemical and functional characteristics of an endosome. The chimera recycled in parallel with synaptic vesicle proteins demonstrating that the nerve terminal efficiently sorts transmembrane proteins into different pathways. The synaptobrevin sequence that controls targeting to the presynaptic endosome was not localized to a single, 10- amino acid region of the molecule, indicating that this targeting signal may be encoded by a more distributed structural conformation. However, the chimera could be shifted to synaptic vesicles by deletion of amino acids 61-70 in synaptobrevin, suggesting that separate signals encode the localization of synaptobrevin to the synapse and to the synaptic vesicle.
Collapse
Affiliation(s)
- A E West
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
20
|
Varoqui H, Erickson JD. Vesicular neurotransmitter transporters. Potential sites for the regulation of synaptic function. Mol Neurobiol 1997; 15:165-91. [PMID: 9396009 DOI: 10.1007/bf02740633] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neurotransmission depends on the regulated release of chemical transmitter molecules. This requires the packaging of these substances into the specialized secretory vesicles of neurons and neuroendocrine cells, a process mediated by specific vesicular transporters. The family of genes encoding the vesicular transporters for biogenic amines and acetylcholine have recently been cloned. Direct comparison of their transport characteristics and pharmacology provides information about vesicular transport bioenergetics, substrate feature recognition by each transporter, and the role of vesicular amine storage in the mechanism of action of psychopharmacologic and neurotoxic agents. Regulation of vesicular transport activity may affect levels of neurotransmitter available for neurosecretion and be an important site for the regulation of synaptic function. Gene knockout studies have determined vesicular transport function is critical for survival and have enabled further evaluation of the role of vesicular neurotransmitter transporters in behavior and neurotoxicity. Molecular analysis is beginning to reveal the sites involved in vesicular transporter function and the sites that determine substrate specificity. In addition, the molecular basis for the selective targeting of these transporters to specific vesicle populations and the biogenesis of monoaminergic and cholinergic synaptic vesicles are areas of research that are currently being explored. This information provides new insights into the pharmacology and physiology of biogenic amine and acetylcholine vesicular storage in cardiovascular, endocrine, and central nervous system function and has important implications for neurodegenerative disease.
Collapse
Affiliation(s)
- H Varoqui
- Neuroscience Center, Louisiana State University Medical Center, New Orleans 70112, USA
| | | |
Collapse
|
21
|
Marxen M, Maienschein V, Volknandt W, Zimmermann H. Immunocytochemical localization of synaptic proteins at vesicular organelles in PC12 cells. Neurochem Res 1997; 22:941-50. [PMID: 9239749 DOI: 10.1023/a:1022414607385] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The distribution of the three synaptic vesicle proteins SV2, synaptophysin and synaptotagmin, and of SNAP-25, a component of the docking and fusion complex, was investigated in PC12 cells by immunocytochemistry. Colloidal gold particle-bound secondary antibodies and a preembedding protocol were applied. Granules were labeled for SV2 and synaptotagmin but not for synaptophysin. Electron-lucent vesicles were labeled most intensively for synaptophysin but also for SV2 and to a lesser extent for synaptotagmin. The t-SNARE SNAP-25 was found at the plasma membrane but also at the surface of granules. Labeling of Golgi vesicles was observed for all antigens investigated. Also components of the endosomal pathway such as multivesicular bodies and multilamellar bodies were occasionally marked. The results suggest that the three membrane-integral synaptic vesicle proteins can have a differential distribution between electron-lucent vesicles (of which PC12 cells may possess more than one type) and granules. The membrane compartment of granules appears not to be an immediate precursor of that of electron-lucent vesicles.
Collapse
Affiliation(s)
- M Marxen
- Biozentrum der J. W. Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
22
|
The soluble N-ethylmaleimide-sensitive factor attached protein receptor complex in growth cones: molecular aspects of the axon terminal development. J Neurosci 1997. [PMID: 9006987 DOI: 10.1523/jneurosci.17-04-01460.1997] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attached protein (SNAP) receptor (SNARE) mechanisms are thought to be involved in two important processes in axonal growth cones: (1) membrane expansion for axonal growth and (2) vesicular membrane fusion for mature synaptic transmission. We investigated the localization and interactions among the proteins involved in SNARE complex formation in isolated growth cone particles (GCP) from forebrain. We demonstrated that the SNARE complex is present in GCPs morphologically without synaptic vesicles (SVs) and associated with growth cone vesicles. However, the apparently SV-free GCP was lacking in the regulatory mechanisms inhibiting SNARE complex formation proposed in SV fusion, i.e., the association of synaptotagmin with the SNARE complex, and vesicle-associated membrane protein (VAMP)-synaptophysin complex formation. The core components of the SNARE complex (syntaxin, SNAP-25, and VAMP) accumulated for several days before postnatal day 7, when SVs first appeared, and preceded the accumulation of marker proteins such as synaptophysin, SV2, and V-ATPase. Our present results suggest that the SNARE mechanism for vesicular transmitter release is not fully functional in growth cones before the appearance of SVs, but the SNARE mechanism is working for membrane expansion in growth cones, which supports our recent report. We concluded that the regulation of the SNARE complex in growth cones is different from that in mature presynaptic terminals and that this switching may be one of the key steps in development from the growth cone to the presynaptic terminal.
Collapse
|
23
|
Abstract
Pinealocytes of various mammalian species contain abundant synaptic-like microvesicles (SLMVs) which are considered the endocrine equivalent of neuronal synaptic vesicles. Although the pinealocytes may thus be a suitable cellular model for experimental in vitro studies of SLMVs, nothing is known about the presence of SLMVs in isolated pinealocytes maintained under tissue culture conditions. In the present investigation, we prepared dissociated primary cultures of gerbil pinealocytes to study the expression and distribution of protein components of synaptic vesicles/SLMVs and the presynaptic plasmalemma in pinealocytes kept in vitro. Using immunofluorescence microscopy, we found that cultured pinealocytes readily expressed all synaptic membrane proteins investigated, i.e., synaptophysin, synaptotagmin I, synaptobrevin II, syntaxin I and SNAP-25. Punctuate immunoreactivity for the vesicle-associated proteins could be detected throughout the cell bodies of pinealocytes and was also distributed into all of their processes which began to develop within the first days in culture. Outgrowing processes exhibited growth cone-like structures which were enriched in synaptic vesicle-associated proteins. After 1 week in vitro, pinealocytes had frequently formed an elaborate network of long interwoven processes. Accumulations of synaptic vesicle-associated proteins were observed in varicosities and terminal swellings of the processes. The vesicle-rich process swellings often established synaptic-like process swellings often established synaptic-like contacts with somata and processes of other pinealocytes. Some of the pinealocyte processes possessed additional axon-like properties as demonstrated by their lack of immunoreactivity for the somato-dendritic marker MAP2 and the transferrin receptor. The comparison of the staining patterns for synaptophysin and the endocytotic marker transferrin receptor by confocal laser scanning microscopy revealed a largely differential intracellular distribution of the two proteins. This may indicate that a substantial fraction of pinealocyte SLMVs by-passes the early endosomal-related recycling pathway of SLMVs. Herewith, we have shown that isolated gerbil pinealocytes maintained in primary culture can acquire morphological and neurochemical traits which closely mimick those observed in vivo. In particular, these cultures permit experimental studies of the compartment of pinealocyte SLMVs which seem to make up a major secretory pathway for paracrine intrapineal communication.
Collapse
Affiliation(s)
- P Redecker
- Department of Anatomy 1, Hannover Medical School, Germany
| | | | | | | |
Collapse
|
24
|
Trafficking of cell-surface beta-amyloid precursor protein: evidence that a sorting intermediate participates in synaptic vesicle recycling. J Neurosci 1997. [PMID: 8987743 DOI: 10.1523/jneurosci.17-01-00140.1997] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We recently demonstrated that the Alzheimer's beta-amyloid precursor protein (APP) is internalized from the axonal cell surface. In this study, we use biochemical and cell biological methods to characterize endocytotic compartments that participate in trafficking of APP in central neurons. APP is present in presynaptic clathrin-coated vesicles purified from bovine brain, together with the recycling synaptic vesicle integral membrane proteins synaptophysin, synaptotagmin, and SV2. In contrast, APP is largely excluded from synaptic vesicles purified from rat brain. In primary cerebellar macroneurons, cell-surface APP is internalized with recycling synaptic vesicle integral membrane proteins but is subsequently sorted away from synaptic vesicles and transported retrogradely to the neuronal soma. Internalized APP partially co-localizes with rab5a-containing compartments in axons and with V-ATPase-containing compartments in both axons and neuronal soma. These results provide direct biochemical evidence that an obligate sorting compartment participates in the regeneration of synaptic vesicles during exo/endocytotic recycling at nerve terminals but do not preclude concurrent "kiss-and-run" recycling. Moreover, APP is now, to our knowledge, the first demonstrated example of an axonal cell-surface protein that is internalized with recycling synaptic vesicle membrane proteins but is subsequently sorted away from synaptic vesicles.
Collapse
|
25
|
Frontal eye circuitry, rostral sensory pathways and brain organization in amphioxus larvae: evidence from 3D reconstructions. Philos Trans R Soc Lond B Biol Sci 1997. [DOI: 10.1098/rstb.1996.0022] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cells comprising the frontal eye of a 12.5 day amphioxus larva are described based on 3D reconstructions from serial electron micrographs, along with the fibre tracts and more caudal groupings of cells in the nerve cord to which the frontal eye appears to be linked. The frontal eye consists of a pigment cup, two transverse rows of receptor cells, and clusters of neurons whose close association with the medial receptor cells suggests they may function as an integral part of the eye complex. Neurites from both the receptor cells and neurons supply the ventrolateral nerve tracts, which consist mainly of axons arising from sensory cells located at the rostral tip of the larva. A core group of 3—4 rostral fibres on each side innervate two ventral giant cells located just behind the cerebral vesicle in the primary motor centre (PMC). The circuitry suggests these cells may be responsible for triggering the larval startle response. The ventrolateral tracts also include two types of axial dendrite-like fibres: (i) a single unpaired fibre, a forward continuation of the principal dendrite of the left giant cell, which is the main target for synapses from neurons in the frontal eye; and (ii) sets of paired fibres from cells in the tectum, a dorsal cortex-like structure located at the back of the cerebral vesicle through which the dorsal sensory nerves pass in transit to the PMC. Recent behavioural studies show that larvae feed in a hovering posture that maximally shades the frontal eye. They also orient to light in this position. The shape and orientation of the frontal eye suggests it could be responsible for this response. The existence of separate pathways from lateral and medial receptor cells, both directly and indirectly to the PMC, suggests the frontal eye may also be involved in modulating locomotory behaviour during hovering. The visual ‘system’ described here for amphioxus larvae is more like that of vertebrates than has previously been recognized. Specifically: (i)the medial nerve cells of the frontal eye appear to form local circuits with relay and integrative functions similar to those of the retina, involving cell types that resemble specific retinal interneurons; and (ii) output is directed to a region at the back of the posterior c.v. that resembles the vertebrate midbrain, and which may be its homologue. This region has a dorsal tectum and, like the midbrain, includes the anterior part of a ventral zone of motoneurons and reticulospinal interneurons. The morphological evidence supports the idea that the ‘brain’ of amphioxus is sufficiently like that of vertebrates to provide important clues concerning the basic organization and subdivision of the vertebrate brain.
Collapse
|
26
|
Ultrastructural localization of the vesicular monoamine transporter-2 in midbrain dopaminergic neurons: potential sites for somatodendritic storage and release of dopamine. J Neurosci 1996. [PMID: 8753875 DOI: 10.1523/jneurosci.16-13-04135.1996] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Midbrain dopaminergic neurons are known to release dopamine from somata and/or dendrites located in the substantia nigra (SN) and the ventral tegmental area (VTA). There is considerable controversy, however, about the subcellular sites for somatodendritic dopamine storage in these regions. In the present study, we used dual-labeling electron microscopic immunocytochemistry to localize the vesicular monoamine transporter-2 (VMAT2), a novel marker for sites of intracellular monoamine storage, within identified dopaminergic (tyrosine hydroxylase-containing) neurons in the rat SN and VTA. In dopaminergic perikarya, immunogold labeling for VMAT2 was localized to the Golgi apparatus, tubulovesicles that resembled smooth endoplasmic reticulum (SER), and the limiting membranes of multivesicular bodies. In dopaminergic dendrites, VMAT2 was extensively localized to tubulovesicles that resembled saccules of SER, and less frequently localized to isolated small synaptic vesicles (SSVs) or large dense-core vesicles (DCVs). In rare cases, VMAT2-immunoreactive SSVs were clustered within the cytoplasm of an SN or a VTA dendrite. Dopaminergic dendrites in the VTA contained a significantly higher number of immunogold particles for VMAT2 per unit than those in the SN. Together, these observations support the proposal that dopamine is stored in and may be released from dendritic SSVs and DCVs, but suggest that the SER is the major site of dopamine storage within midbrain dopaminergic neurons. In addition, they provide new evidence that dopaminergic dendrites in the VTA may have greater potential for reserpine-sensitive storage and release of dopamine than those in the SN.
Collapse
|
27
|
Ikin AF, Annaert WG, Takei K, De Camilli P, Jahn R, Greengard P, Buxbaum JD. Alzheimer amyloid protein precursor is localized in nerve terminal preparations to Rab5-containing vesicular organelles distinct from those implicated in the synaptic vesicle pathway. J Biol Chem 1996; 271:31783-6. [PMID: 8943215 DOI: 10.1074/jbc.271.50.31783] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In order to localize amyloid protein precursor (APP) in nerve terminals, we have immunoisolated vesicular organelles from nerve terminal preparations using antibodies to Rab5 and synaptophysin. These immunoisolates were then analyzed by electron microscopy and by immunoblotting. The synaptophysin immunoisolates represented a nearly homogeneous population of small synaptic vesicles, with less than 10% contamination by other organelles, and very little APP. In contrast, Rab5 immunoisolates contained, in addition to small synaptic vesicles, substantial numbers of large uni- and bilamellar vesicles and high levels of APP. Thus, it appears that nerve terminal APP is contained predominantly in large vesicular organelles, distinct from synaptic vesicles and from the synaptic vesicle recycling pathway.
Collapse
Affiliation(s)
- A F Ikin
- Laboratory of Molecular and Cellular Neurosciences and Zachary and Elizabeth M. Fisher Center, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Endocytosis in eukaryotic cells is characterized by the continuous and regulated formation of prolific numbers of membrane vesicles at the plasma membrane. These vesicles come in several different varieties, ranging from the actin-dependent formation of phagosomes involved in particle uptake, to smaller clathrin-coated vesicles responsible for the internalization of extracellular fluid and receptor-bound ligands. In general, each of these vesicle types results in the delivery of their contents to lysosomes for degradation. The membrane components of endocytic vesicles, on the other hand, are subject to a series of highly complex and iterative molecular sorting events resulting in their targeting to specific destinations. In recent years, much has been learned about the function of the endocytic pathway and the mechanisms responsible for the molecular sorting of proteins and lipids. This review attempts to integrate these new concepts with long-established views of endocytosis to present a more coherent picture of how the endocytic pathway is organized and how the intracellular transport of internalized membrane components is controlled. Of particular importance are emerging concepts concerning the protein-based signals responsible for molecular sorting and the cytosolic complexes responsible for the decoding of these signals.
Collapse
Affiliation(s)
- I Mellman
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8002, USA
| |
Collapse
|
29
|
Linial M, Parnas D. Deciphering neuronal secretion: tools of the trade. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:117-52. [PMID: 8652611 DOI: 10.1016/0304-4157(96)00007-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M Linial
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| | | |
Collapse
|
30
|
Jorgensen EM, Hartwieg E, Schuske K, Nonet ML, Jin Y, Horvitz HR. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 1995; 378:196-9. [PMID: 7477324 DOI: 10.1038/378196a0] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synaptotagmin, an integral membrane protein of the synaptic vesicle, binds calcium and interacts with proteins of the plasma membrane. These observations suggest several possible functions for synaptotagmin in synaptic vesicle dynamics: it could facilitate exocytosis by promoting calcium-dependent fusion, inhibit exocytosis by preventing fusion, or facilitate endocytosis of synaptic vesicles from the plasma membrane by acting as a receptor for the endocytotic proteins of the clathrin AP2 complex. Here we show that synaptic vesicles are depleted at synaptic terminals in synaptotagmin mutants of the nematode Caenorhabditis elegans. This depletion is not caused by a defect in transport or by increased synaptic vesicle release, but rather by a defect in retrieval or synaptic vesicles from the plasma membrane. Thus we propose that, as well as being involved in exocytosis, synaptotagmin functions in vesicular recycling.
Collapse
Affiliation(s)
- E M Jorgensen
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gracy KN, Pickel VM. Comparative ultrastructural localization of the NMDAR1 glutamate receptor in the rat basolateral amygdala and bed nucleus of the stria terminalis. J Comp Neurol 1995; 362:71-85. [PMID: 8576429 DOI: 10.1002/cne.903620105] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The N-methyl-D-aspartate (NMDA)-type glutamate receptor in the basolateral amygdala (BLA) has been implicated in activity-dependent plasticity important for cortically evoked acquisition of fear-potentiated startle response. We examined the ultrastructural immunoperoxidase labeling of the R1 subunit of the NMDA receptor in the BLA of adult rats to determine the potential cellular and subcellular sites mediating the effects generated by NMDA activation. The localization was compared with that seen in the bed nucleus of the stria terminalis (BNST), the major efferent pathway from the central nucleus of the amygdala, which has a more pronounced involvement in autonomic function. Electron microscopy established that in the BLA, 68.4% (n = 177) of the profiles showing NMDAR1-like immunoreactivity (NMDAR1-LI) were dendrites, and 19.8% were distal tips of astrocytic processes. In contrast, profiles containing NMDAR1-LI (n = 262) in the BNST were more equally distributed between dendrites (37.4%) and axons (38.2%). The subcellular localization of NMDAR1 immunoreactivity was, however, similar in both regions. Our findings provide the first ultrastructural evidence that glutamate may prominently act through NMDAR1 receptors to elicit postsynaptic actions on intrinsic neurons in the BLA and BNST. The results also indicate that, in the BLA, the NMDAR1 receptor plays an important role in astrocytic function, whereas the receptor is more preferentially a presynaptic modulator in axons which terminate in or pass through the BNST.
Collapse
Affiliation(s)
- K N Gracy
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
32
|
Abstract
Temperature-sensitive shibire mutants of Drosophila melanogaster become rapidly paralyzed upon a shift to the restrictive temperature, which is due to a block in synaptic vesicle endocytosis. The shibire gene encodes the GTPase dynamin. Recent studies have shown that dynamin forms rings at the neck of invaginated clathrin-coated pits, and have suggested that a conformational change in the ring, which correlates with GTP hydrolysis, plays an essential role in vesicle fission.
Collapse
Affiliation(s)
- P De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
33
|
Newman LS, McKeever MO, Okano HJ, Darnell RB. Beta-NAP, a cerebellar degeneration antigen, is a neuron-specific vesicle coat protein. Cell 1995; 82:773-83. [PMID: 7671305 DOI: 10.1016/0092-8674(95)90474-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have identified a target antigen in autoimmune cerebellar degeneration, beta-NAP, that is closely related to the beta-adaptin and beta-COP coat proteins. Beta-NAP is a nonclathrin-associated phosphoprotein expressed exclusively in neurons, from E12 through adulthood. Beta-NAP is present in the neuronal soma and nerve terminal as soluble and membrane-bound pools and is associated with a discrete set of nerve-terminal vesicles. These results establish beta-NAP as a neuron-specific vesicle coat protein. We propose a model in which beta-NAP mediates vesicle transport between the soma and the axon terminus and suggest that beta-NAP may represent a general class of coat proteins that mediates apical transport in polarized cells.
Collapse
Affiliation(s)
- L S Newman
- Laboratory of Neuro-Oncology, Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Synaptic vesicles are synthesized at a rapid rate in nerve terminals to compensate for their rapid loss during neurotransmitter release. Their biogenesis involves endocytosis of synaptic vesicle membrane proteins from the plasma membrane and requires two steps, the segregation of synaptic vesicle membrane proteins from other cellular proteins, and the packaging of those unique proteins into vesicles of the correct size. By labeling an epitope-tagged variant of a synaptic vesicle protein, VAMP (synaptobrevin), at the cell surface of the neuroendocrine cell line PC12, synaptic vesicle biogenesis could be followed with considerable precision, quantitatively and kinetically. Epitope-tagged VAMP was recovered in synaptic vesicles within a few minutes of leaving the cell surface. More efficient targeting was obtained by using the VAMP mutant, del 61-70. Synaptic vesicles did not form at 15 degrees C although endocytosis still occurred. Synaptic vesicles could be generated in vitro from a homogenate of cells labeled at 15 degrees C. The newly formed vesicles are identical to those formed in vivo in their sedimentation characteristics, the presence of the synaptic vesicle protein synaptophysin, and the absence of detectable transferrin receptor. Brain, but not fibroblast cytosol, allows vesicles of the correct size to form. Vesicle formation is time and temperature-dependent, requires ATP, is calcium independent, and is inhibited by GTP-gamma S. Thus, two key steps in synaptic vesicle biogenesis have been reconstituted in vitro, allowing direct analysis of the proteins involved.
Collapse
Affiliation(s)
- C Desnos
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0534, USA
| | | | | |
Collapse
|
35
|
Abstract
Synaptic vesicles are specialized secretory organelles which are involved in the fast, point-to-point signaling typical of synapses. They store and secrete non-peptide neurotransmitters and are continuously regenerated in nerve terminals by exoendocytotic recycling. This recycling represents a highly specialized form of the recycling pathway which occurs at the surface of all cells. Several unique properties make synaptic vesicles a powerful experimental model for studies of vesicular traffic. These unique properties include their abundance in brain, the high specialization of nerve terminals for synaptic vesicle recycling, the possibility of studying their exocytosis at the level of single events by electrophysiology and the availability of toxins which block their recycling. This lecture will summarize current information of molecular mechanisms in synaptic vesicle recycling with emphasis on recent studies carried out in my laboratory on mechanisms of vesicle reformation after exocytosis.
Collapse
Affiliation(s)
- P De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
36
|
Abstract
Despite controversies and debates, some fundamental properties of endosomes become apparent when comparing results from in vivo and in vitro strategies used to study endosomal membrane traffic. In addition, recent studies are starting to unravel the complex organization of early endosomes, in particular along the route followed by recycling receptors.
Collapse
Affiliation(s)
- J Gruenberg
- Department of Biochimie, Université de Genève, Switzerland
| | | |
Collapse
|
37
|
Garcia EP, McPherson PS, Chilcote TJ, Takei K, De Camilli P. rbSec1A and B colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. J Cell Biol 1995; 129:105-20. [PMID: 7698978 PMCID: PMC2120371 DOI: 10.1083/jcb.129.1.105] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
rbSec1 is a mammalian neuronal protein homologous to the yeast SEC1 gene product which is required for exocytosis. Mutations in Sec1 homologues in the nervous systems of C. elegans and D. melanogaster lead to defective neurotransmitter secretion. Biochemical studies have shown that recombinant rbSec1 binds syntaxin 1 but not SNAP-25 or synaptobrevin/VAMP, the two proteins which together with syntaxin 1 form the synaptic SNARE complex. In this study we have examined the subcellular localization of rbSec1 and the degree of interaction between rbSec1 and syntaxin 1 in situ. rbSec1, which we show here to be represented by two alternatively spliced isoforms, rbSec1A and B, has a widespread distribution in the axon and is not restricted to the nerve terminal. This distribution parallels the localization of syntaxin 1 and SNAP-25 along the entire axonal plasmalemma. rbSec1 is found in a soluble and a membrane-associated form. Although a pool of rbSec1 is present on the plasmalemma, the majority of membrane-bound rbSec1 is not associated with syntaxin 1. We also show that rbSec1 is not part of the synaptic SNARE complex or of the syntaxin 1/SNAP-25 complex we show to be present in non-synaptic regions of the axon. Thus, in spite of biochemical studies demonstrating the high affinity interaction of rbSec1 and syntaxin 1, our results indicate that rbSec1 and syntaxin 1 are not stably associated. They also suggest that the function of rbSec1, syntaxin 1, and SNAP-25 is not restricted to synaptic vesicle exocytosis at the synapse.
Collapse
Affiliation(s)
- E P Garcia
- Department of Cell Biology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | |
Collapse
|
38
|
Takei K, McPherson PS, Schmid SL, De Camilli P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 1995; 374:186-90. [PMID: 7877693 DOI: 10.1038/374186a0] [Citation(s) in RCA: 594] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mechanisms through which synaptic vesicle membranes are reinternalized after exocytosis remain a matter of debate. Because several vesicular transport steps require GTP hydrolysis, GTP-gamma S may help identify intermediates in synaptic vesicle recycling. In GTP-gamma S-treated nerve terminals, we observed tubular invaginations of the plasmalemma that were often, but not always, capped by a clathrin-coated bud. Strikingly, the walls of these tubules were decorated by transverse electron-dense rings that were morphologically similar to structures formed by dynamin around tubular templates. Dynamin is a GTPase implicated in synaptic vesicle endocytosis and here we show that the walls of these membranous tubules, but not their distal ends, were positive for dynamin immunoreactivity. These findings demonstrate that dynamin and clathrin act at different sites in the formation of endocytic vesicles. They strongly support a role for dynamin in the fission reaction and suggest that stabilization of the GTP-bound conformation of dynamin leads to tubule formation by progressive elongation of the vesicle stalk.
Collapse
Affiliation(s)
- K Takei
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
39
|
Dirkx R, Thomas A, Li L, Lernmark A, Sherwin RS, De Camilli P, Solimena M. Targeting of the 67-kDa isoform of glutamic acid decarboxylase to intracellular organelles is mediated by its interaction with the NH2-terminal region of the 65-kDa isoform of glutamic acid decarboxylase. J Biol Chem 1995; 270:2241-6. [PMID: 7836456 DOI: 10.1074/jbc.270.5.2241] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The two isoforms of glutamic acid decarboxylase (GAD), GAD67 and GAD65, synthesize the neurotransmitter gamma-aminobutyric acid in neurons and pancreatic beta-cells. Previous studies suggest that GAD67 is a soluble cytosolic protein, whereas GAD65 is membrane-associated. Here, we study the intracellular distribution of GAD67 in neurons, pancreatic beta-cells, and fibroblasts transfected either with GAD65 and GAD67 together or with GAD67 alone. Neuronal GAD67 is partially recovered with GAD65 in membrane-containing pellet fractions and Triton X-114 detergent phases. The two proteins co-immunoprecipitate from extracts of brain and GAD65-GAD67 co-transfected fibroblasts, but not when extracts of GAD65 and GAD67 transfected fibroblasts were mixed and used as a starting material for immunoprecipitation. GAD67 is concentrated in the Golgi complex region in GAD65-GAD67 co-transfected fibroblasts, but not in fibroblasts transfected with GAD67 alone. A pool of neuronal GAD67 co-localizes with GAD65 in the Golgi complex region and in many synapses. The two proteins also co-localize in the perinuclear region of some pancreatic beta-cells. GAD67 interacts with the NH2-terminal region of GAD65, even in the absence of palmitoylation of this region of GAD65. Taken together, our results indicate that GAD65-GAD67 association occurs in vivo and is required for the targeting of GAD67 to membranes.
Collapse
Affiliation(s)
- R Dirkx
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | | | | | |
Collapse
|