1
|
Kase D, Zimnik AJ, Han Y, Harsch DR, Bacha S, Cox KM, Bostan AC, Richardson RM, Turner RS. Movement-related activity in the internal globus pallidus of the parkinsonian macaque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610310. [PMID: 39257740 PMCID: PMC11383679 DOI: 10.1101/2024.08.29.610310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Although the basal ganglia (BG) plays a central role in the motor symptoms of Parkinson's disease, few studies have investigated the influence of parkinsonism on movement-related activity in the BG. Here, we studied the perimovement activity of neurons in globus pallidus internus (GPi) of non-human primates before and after the induction of parkinsonism by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuronal responses were equally common in the parkinsonian brain as seen prior to MPTP and the distribution of different response types was largely unchanged. The slowing of behavioral reaction times and movement durations following the induction of parkinsonism was accompanied by a prolongation of the time interval between neuronal response onset and movement initiation. Neuronal responses were also reduced in magnitude and prolonged in duration after the induction of parkinsonism. Importantly, those two effects were more pronounced among decrease-type responses, and they persisted after controlling for MPTP-induced changes in the trial-by-trial timing of neuronal responses. Following MPTP The timing of neuronal responses also became uncoupled from the time of movement onset and more variable from trial-to-trial. Overall, the effects of MPTP on temporal features of neural responses correlated most consistently with the severity of parkinsonian motor impairments whereas the changes in response magnitude and duration were either anticorrelated with symptom severity or inconsistent. These findings point to a potential previously underappreciated role for abnormalities in the timing of GPi task-related activity in the generation of parkinsonian motor signs.
Collapse
Affiliation(s)
- Daisuke Kase
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Andrew J Zimnik
- Department of Neuroscience, Columbia University Medical Center, New York, NY
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Yan Han
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Devin R Harsch
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sarah Bacha
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karin M Cox
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andreea C Bostan
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert S Turner
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
2
|
Kunimatsu J, Amita H, Hikosaka O. Neuronal response of the primate striatum tail to face of socially familiar persons. iScience 2024; 27:110043. [PMID: 38868184 PMCID: PMC11167483 DOI: 10.1016/j.isci.2024.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
Recent studies have suggested that the basal ganglia, the center of stimulus-reward associative learning, are involved in social behavior. However, the role of the basal ganglia in social information processing remains unclear. Here, we demonstrate that the striatum tail (STRt) in macaque monkeys, which is sensitive to visual objects with long-term reward history (i.e., stable object value), is also sensitive to socially familiar persons. Many STRt neurons responded to face images of persons, especially those who took daily care of the subject monkeys. These face-responsive neurons also encoded stable object value. The strength of the neuronal modulation of social familiarity and stable object value biases were positively correlated. These results suggest that both social familiarity and stable object value information are mediated by a common neuronal mechanism. Thus, the representation of social information is linked to reward information in the STRt, not in the dedicated social information circuit.
Collapse
Affiliation(s)
- Jun Kunimatsu
- Labortory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hidetoshi Amita
- Labortory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Okihide Hikosaka
- Labortory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Kiani MM, Heidari Beni MH, Aghajan H. Aberrations in temporal dynamics of cognitive processing induced by Parkinson's disease and Levodopa. Sci Rep 2023; 13:20195. [PMID: 37980451 PMCID: PMC10657430 DOI: 10.1038/s41598-023-47410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
The motor symptoms of Parkinson's disease (PD) have been shown to significantly improve by Levodopa. However, despite the widespread adoption of Levodopa as a standard pharmaceutical drug for the treatment of PD, cognitive impairments linked to PD do not show visible improvement with Levodopa treatment. Furthermore, the neuronal and network mechanisms behind the PD-induced cognitive impairments are not clearly understood. In this work, we aim to explain these cognitive impairments, as well as the ones exacerbated by Levodopa, through examining the differential dynamic patterns of the phase-amplitude coupling (PAC) during cognitive functions. EEG data recorded in an auditory oddball task performed by a cohort consisting of controls and a group of PD patients during both on and off periods of Levodopa treatment were analyzed to derive the temporal dynamics of the PAC across the brain. We observed distinguishing patterns in the PAC dynamics, as an indicator of information binding, which can explain the slower cognitive processing associated with PD in the form of a latency in the PAC peak time. Thus, considering the high-level connections between the hippocampus, the posterior and prefrontal cortices established through the dorsal and ventral striatum acting as a modulatory system, we posit that the primary issue with cognitive impairments of PD, as well as Levodopa's cognitive deficit side effects, can be attributed to the changes in temporal dynamics of dopamine release influencing the modulatory function of the striatum.
Collapse
Affiliation(s)
- Mohammad Mahdi Kiani
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Hamid Aghajan
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
4
|
Bakalar D, Gavrilova O, Jiang SZ, Zhang HY, Roy S, Williams SK, Liu N, Wisser S, Usdin TB, Eiden LE. Constitutive and conditional deletion reveals distinct phenotypes driven by developmental versus neurotransmitter actions of the neuropeptide PACAP. J Neuroendocrinol 2023; 35:e13286. [PMID: 37309259 PMCID: PMC10620107 DOI: 10.1111/jne.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 06/14/2023]
Abstract
Neuropeptides may exert trophic effects during development, and then neurotransmitter roles in the developed nervous system. One way to associate peptide-deficiency phenotypes with either role is first to assess potential phenotypes in so-called constitutive knockout mice, and then proceed to specify, regionally and temporally, where and when neuropeptide expression is required to prevent these phenotypes. We have previously demonstrated that the well-known constellation of behavioral and metabolic phenotypes associated with constitutive pituitary adenylate cyclase-activating peptide (PACAP) knockout mice are accompanied by transcriptomic alterations of two types: those that distinguish the PACAP-null phenotype from wild-type (WT) in otherwise quiescent mice (cPRGs), and gene induction that occurs in response to acute environmental perturbation in WT mice that do not occur in knockout mice (aPRGs). Comparing constitutive PACAP knockout mice to a variety of temporally and regionally specific PACAP knockouts, we show that the prominent hyperlocomotor phenotype is a consequence of early loss of PACAP expression, is associated with Fos overexpression in hippocampus and basal ganglia, and that a thermoregulatory effect previously shown to be mediated by PACAP-expressing neurons of medial preoptic hypothalamus is independent of PACAP expression in those neurons in adult mice. In contrast, PACAP dependence of weight loss/hypophagia triggered by restraint stress, seen in constitutive PACAP knockout mice, is phenocopied in mice in which PACAP is deleted after neuronal differentiation. Our results imply that PACAP has a prominent role as a trophic factor early in development determining global central nervous system characteristics, and in addition a second, discrete set of functions as a neurotransmitter in the fully developed nervous system that support physiological and psychological responses to stress.
Collapse
Affiliation(s)
- Dana Bakalar
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Kidney Disease- Intramural Research Program, Bethesda, Maryland, USA
| | - Sunny Z Jiang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Hai-Ying Zhang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Snehashis Roy
- Systems Neuroscience Imaging Resource, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Sarah K Williams
- Systems Neuroscience Imaging Resource, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Naili Liu
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Kidney Disease- Intramural Research Program, Bethesda, Maryland, USA
| | - Stephen Wisser
- Systems Neuroscience Imaging Resource, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Ted B Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Migó M, Chou T, Widge AS, Peters AT, Ellard K, Dougherty DD, Deckersbach T. Neural correlates of learning accommodation and consolidation in generalised anxiety disorder. Acta Neuropsychiatr 2023; 35:218-225. [PMID: 35621086 DOI: 10.1017/neu.2022.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE. Anxiety can interfere with attention and working memory, which are components that affect learning. Statistical models have been designed to study learning, such as the Bayesian Learning Model, which takes into account prior possibilities and behaviours to determine how much of a new behaviour is determined by learning instead of chance. However, the neurobiological basis underlying how anxiety interferes with learning is not yet known. Accordingly, we aimed to use neuroimaging techniques and apply a Bayesian Learning Model to study learning in individuals with generalised anxiety disorder (GAD). METHODS. Participants were 25 controls and 14 individuals with GAD and comorbid disorders. During fMRI, participants completed a shape-button association learning and reversal task. Using a flexible factorial analysis in SPM, activation in the dorsolateral prefrontal cortex, basal ganglia, and hippocampus was compared between groups during first reversal. Beta values from the peak of these regions were extracted for all learning conditions and submitted to repeated measures analyses in SPSS. RESULTS. Individuals with GAD showed less activation in the basal ganglia and the hippocampus only in the first reversal compared with controls. This difference was not present in the initial learning and second reversal. CONCLUSION. Given that the basal ganglia is associated with initial learning, and the hippocampus with transfer of knowledge from short- to long-term memory, our results suggest that GAD may engage these regions to a lesser extent during early accommodation or consolidation of learning, but have no longer term effects in brain activation patterns during subsequent learning.
Collapse
Affiliation(s)
- Marta Migó
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tina Chou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Amy T Peters
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristen Ellard
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- University of Applied Sciences, Diploma Hochschule, Germany
| |
Collapse
|
6
|
Levcik D, Sugi AH, Aguilar-Rivera M, Pochapski JA, Baltazar G, Pulido LN, Villas-Boas CA, Fuentes-Flores R, Nicola SM, Da Cunha C. Nucleus Accumbens Shell Neurons Encode the Kinematics of Reward Approach Locomotion. Neuroscience 2023; 524:181-196. [PMID: 37330195 PMCID: PMC10527230 DOI: 10.1016/j.neuroscience.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
The nucleus accumbens (NAc) is considered an interface between motivation and action, with NAc neurons playing an important role in promoting reward approach. However, the encoding by NAc neurons that contributes to this role remains unknown. We recorded 62 NAc neurons in male Wistar rats (n = 5) running towards rewarded locations in an 8-arm radial maze. Variables related to locomotor approach kinematics were the best predictors of the firing rate for most NAc neurons. Nearly 18% of the recorded neurons were inhibited during the entire approach run (locomotion-off cells), suggesting that reduction in firing of these neurons promotes initiation of locomotor approach. 27% of the neurons presented a peak of activity during acceleration followed by a valley during deceleration (acceleration-on cells). Together, these neurons accounted for most of the speed and acceleration encoding identified in our analysis. In contrast, a further 16% of neurons presented a valley during acceleration followed by a peak just prior to or after reaching reward (deceleration-on cells). These findings suggest that these three classes of NAc neurons influence the time course of speed changes during locomotor approach to reward.
Collapse
Affiliation(s)
- David Levcik
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil; Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Adam H Sugi
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil; Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| | - Marcelo Aguilar-Rivera
- Department of Bioengineering, University of California, 9500 Gilman Drive MC 0412, La Jolla, San Diego 92093, USA
| | - José A Pochapski
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil; Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gabriel Baltazar
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil; Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| | - Laura N Pulido
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil; Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Cyrus A Villas-Boas
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil
| | - Romulo Fuentes-Flores
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia 8380453, Santiago, Chile
| | - Saleem M Nicola
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; Department of Psychiatry, Albert Einstein College of Medicine, New York, USA
| | - Claudio Da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil; Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
7
|
Ruigrok TJH, Wang X, Sabel-Goedknegt E, Coulon P, Gao Z. A disynaptic basal ganglia connection to the inferior olive: potential for basal ganglia influence on cerebellar learning. Front Syst Neurosci 2023; 17:1176126. [PMID: 37215357 PMCID: PMC10196041 DOI: 10.3389/fnsys.2023.1176126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Recent studies have shown that the cerebellum and the basal ganglia are interconnected at subcortical levels. However, a subcortical basal ganglia connection to the inferior olive (IO), being the source of the olivocerebellar climbing fiber system, is not known. We have used classical tracing with CTb, retrograde transneuronal infection with wildtype rabies virus, conditional tracing with genetically modified rabies virus, and examination of material made available by the Allen Brain Institute, to study potential basal ganglia connections to the inferior olive in rats and mice. We show in both species that parvalbumin-positive, and therefore GABAergic, neurons in the entopeduncular nucleus, representing the rodent equivalent of the internal part of the globus pallidus, innervate a group of cells that surrounds the fasciculus retroflexus and that are collectively known as the area parafascicularis prerubralis. As these neurons supply a direct excitatory input to large parts of the inferior olivary complex, we propose that the entopeduncular nucleus, as a main output station of the basal ganglia, provides an inhibitory influence on olivary excitability. As such, this connection may influence olivary involvement in cerebellar learning and/or could be involved in transmission of reward properties that have recently been established for olivocerebellar signaling.
Collapse
Affiliation(s)
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Patrice Coulon
- Institute de Neurosciences de la Timone, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
8
|
Caulfield ME, Manfredsson FP, Steece-Collier K. The Role of Striatal Cav1.3 Calcium Channels in Therapeutics for Parkinson's Disease. Handb Exp Pharmacol 2023; 279:107-137. [PMID: 36592226 DOI: 10.1007/164_2022_629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Parkinson's disease (PD) is a relentlessly progressive neurodegenerative disorder with typical motor symptoms that include rigidity, tremor, and akinesia/bradykinesia, in addition to a host of non-motor symptoms. Motor symptoms are caused by progressive and selective degeneration of dopamine (DA) neurons in the SN pars compacta (SNpc) and the accompanying loss of striatal DA innervation from these neurons. With the exception of monogenic forms of PD, the etiology of idiopathic PD remains unknown. While there are a number of symptomatic treatment options available to individuals with PD, these therapies do not work uniformly well in all patients, and eventually most are plagued with waning efficacy and significant side-effect liability with disease progression. The incidence of PD increases with aging, and as such the expected burden of this disease will continue to escalate as our aging population increases (Dorsey et al. Neurology 68:384-386, 2007). The daunting personal and socioeconomic burden has pressed scientists and clinicians to find improved symptomatic treatment options devoid side-effect liability and meaningful disease-modifying therapies. Federal and private sources have supported clinical investigations over the past two-plus decades; however, no trial has yet been successful in finding an effective therapy to slow progression of PD, and there is currently just one FDA approved drug to treat the antiparkinsonian side-effect known as levodopa-induced dyskinesia (LID) that impacts approximately 90% of all individuals with PD. In this review, we present biological rationale and experimental evidence on the potential therapeutic role of the L-type voltage-gated Cav1.3 calcium (Ca2+) channels in two distinct brain regions, with two distinct mechanisms of action, in impacting the lives of individuals with PD. Our primary emphasis will be on the role of Cav1.3 channels in the striatum and the compelling evidence of their involvement in LID side-effect liability. We also briefly discuss the role of these same Ca2+ channels in the SNpc and the longstanding interest in Cav1.3 in this brain region in halting or delaying progression of PD.
Collapse
Affiliation(s)
- Margaret E Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
9
|
Nordli SA, Todd PM. Embodied and embedded ecological rationality: A common vertebrate mechanism for action selection underlies cognition and heuristic decision-making in humans. Front Psychol 2022; 13:841972. [DOI: 10.3389/fpsyg.2022.841972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
The last common ancestor shared by humans and other vertebrates lived over half a billion years ago. In the time since that ancestral line diverged, evolution by natural selection has produced an impressive diversity—from fish to birds to elephants—of vertebrate morphology; yet despite the great species-level differences that otherwise exist across the brains of many animals, the neural circuitry that underlies motor control features a functional architecture that is virtually unchanged in every living species of vertebrate. In this article, we review how that circuitry facilitates motor control, trial-and-error-based procedural learning, and habit formation; we then develop a model that describes how this circuitry (embodied in an agent) works to build and refine sequences of goal-directed actions that are molded to fit the structure of the environment (in which the agent is embedded). We subsequently review evidence suggesting that this same functional circuitry became further adapted to regulate cognitive control in humans as well as motor control; then, using examples of heuristic decision-making from the ecological rationality tradition, we show how the model can be used to understand how that circuitry operates analogously in both cognitive and motor domains. We conclude with a discussion of how the model encourages a shift in perspective regarding ecological rationality’s “adaptive toolbox”—namely, to one that views heuristic processes and other forms of goal-directed cognition as likely being implemented by the same neural circuitry (and in the same fashion) as goal-directed action in the motor domain—and how this change of perspective can be useful.
Collapse
|
10
|
The influence of distal and proximal muscle activation on neural crosstalk. PLoS One 2022; 17:e0275997. [PMID: 36282810 PMCID: PMC9595517 DOI: 10.1371/journal.pone.0275997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Previous research has indicated that neural crosstalk is asymmetric, with the dominant effector exerting a stronger influence on the non-dominant effector than vice versa. Recently, it has been hypothesized that this influence is more substantial for proximal than distal effectors. The current investigation was designed to determine the effects of distal ((First Dorsal Interosseous (FDI)) and proximal (triceps brachii (TBI)) muscle activation on neural crosstalk. Twelve right-limb dominant participants (mean age = 21.9) were required to rhythmically coordinate a 1:2 pattern of isometric force guided by Lissajous displays. Participants performed 10, 30 s trials with both distal and proximal effectors. Coherence between the two effector groups were calculated using EMG-EMG wavelet coherence. The results indicated that participants could effectively coordinate the goal coordination pattern regardless of the effectors used. However, spatiotemporal performance was more accurate when performing the task with distal than proximal effectors. Force distortion, quantified by harmonicity, indicated that more perturbations occurred in the non-dominant effector than in the dominant effector. The results also indicated significantly lower harmonicity for the non-dominant proximal effector compared to the distal effectors. The current results support the notion that neural crosstalk is asymmetric in nature and is greater for proximal than distal effectors. Additionally, the EMG-EMG coherence results indicated significant neural crosstalk was occurring in the Alpha bands (5-13 Hz), with higher values observed in the proximal condition. Significant coherence in the Alpha bands suggest that the influence of neural crosstalk is occurring at a subcortical level.
Collapse
|
11
|
Laing PAF, Felmingham KL, Davey CG, Harrison BJ. The neurobiology of Pavlovian safety learning: Towards an acquisition-expression framework. Neurosci Biobehav Rev 2022; 142:104882. [PMID: 36150453 DOI: 10.1016/j.neubiorev.2022.104882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
Safety learning creates associations between conditional stimuli and the absence of threat. Studies of human fear conditioning have accumulated evidence for the neural signatures of safety over various paradigms, aligning on several common brain systems. While these systems are often interpreted as underlying safety learning in a generic sense, they may instead reflect the expression of learned safety, pertaining to processes of fear inhibition, positive affect, and memory. Animal models strongly suggest these can be separable from neural circuits implicated in the conditioning process itself (or safety acquisition). While acquisition-expression distinctions are ubiquitous in behavioural science, this lens has not been applied to safety learning, which remains a novel area in the field. In this mini-review, we overview findings from prevalent safety paradigms in humans, and synthesise these with insights from animal models to propose that the neurobiology of safety learning be conceptualised along an acquisition-expression model, with the aim of stimulating richer brain-based characterisations of this important process.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| |
Collapse
|
12
|
O’Neill J, Schoth A. The Mental Maxwell Relations: A Thermodynamic Allegory for Higher Brain Functions. Front Neurosci 2022; 16:827888. [PMID: 35295094 PMCID: PMC8919724 DOI: 10.3389/fnins.2022.827888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
The theoretical framework of classical thermodynamics unifies vastly diverse natural phenomena and captures once-elusive effects in concrete terms. Neuroscience confronts equally varied, equally ineffable phenomena in the mental realm, but has yet to unite or to apprehend them rigorously, perhaps due to an insufficient theoretical framework. The terms for mental phenomena, the mental variables, typically used in neuroscience are overly numerous and imprecise. Unlike in thermodynamics or other branches of physics, in neuroscience, there are no core mental variables from which all others formally derive and it is unclear which variables are distinct and which overlap. This may be due to the nature of mental variables themselves. Unlike the variables of physics, perhaps they cannot be interpreted as composites of a small number of axioms. However, it is well worth exploring if they can, as that would allow more parsimonious theories of higher brain function. Here we offer a theoretical exercise in the spirit of the National Institutes of Health Research Domain Criteria (NIH RDoC) Initiative and the Cognitive Atlas Project, which aim to remedy this state of affairs. Imitating classical thermodynamics, we construct a formal framework for mental variables, an extended analogy - an allegory - between mental and thermodynamic quantities. Starting with mental correlates of the physical indefinables length, time, mass or force, and charge, we pursue the allegory up to mental versions of the thermodynamic Maxwell Relations. The Maxwell Relations interrelate the thermodynamic quantities volume, pressure, temperature, and entropy and were chosen since they are easy to derive, yet capable of generating nontrivial, nonobvious predictions. Our "Mental Maxwell Relations" interlink the mental variables consciousness, salience, arousal, and distraction and make nontrivial, nonobvious statements about mental phenomena. The mental system thus constructed is internally consistent, in harmony with introspection, and respects the RDoC criteria of employing only psychologically valid constructs with some evidence of a brain basis. We briefly apply these concepts to the problem of decision-making and sketch how some of them might be tested empirically.
Collapse
Affiliation(s)
- Joseph O’Neill
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Andreas Schoth
- IMTEK Department for Process Technology, Institute of Microsystem Technology, Universität Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Dougherty DD, Peters AT, Grant JE, Peris TS, Ricketts EJ, Migó M, Chou T, O'Neill J, Stein DJ, Lochner C, Keuthen N, Piacentini J, Deckersbach T. Neural Basis of Associative Learning in Trichotillomania and Skin-Picking Disorder. Behav Brain Res 2022; 425:113801. [PMID: 35183617 PMCID: PMC8940679 DOI: 10.1016/j.bbr.2022.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
Abstract
Disorders such as Trichotillomania (TTM) and skin-picking disorder (SPD) are associated with reduced flexibility and increased internally focused attention. While the basal ganglia have been hypothesized to play a key role, the mechanisms underlying learning and flexible accommodation of new information is unclear. Using a Bayesian Learning Model, we evaluated the neural basis of learning and accommodation in individuals with TTM and/or SPD. Participants were 127 individuals with TTM and/or SPD (TTM/SPD) recruited from three sites (age 18-57, 84% female) and 26 healthy controls (HC). During fMRI, participants completed a shape-button associative learning and reversal fMRI task. Above-threshold clusters were identified where the Initial Learning-Reversals BOLD activation contrast differed significantly (p < .05 FDR-corrected) between the two groups. A priori, effects were anticipated in predefined ROIs in bilateral basal ganglia, with exploratory analyses in the hippocampus, dorsolateral prefrontal cortex (dlPFC), and dorsal anterior cingulate cortex (dACC). Relative to HC, individuals with TTM/SPD demonstrated reduced activation during initial learning compared to reversal learning in the right basal ganglia. Similarly, individuals with TTM/SPD demonstrated reduced activation during initial learning compared to reversal learning in several clusters in the dlPFC and dACC compared to HC. Individuals with TTM/SPD may form or reform visual stimulus-motor response associations through different brain mechanisms than healthy controls. The former exhibit altered activation within the basal ganglia, dlPFC, and dACC during an associative learning task compared to controls, reflecting reduced frontal-subcortical activation during initial learning. Future work should determine whether these neural deficits may be restored with targeted treatment.
Collapse
Affiliation(s)
- Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States.
| | - Amy T Peters
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States
| | - Jon E Grant
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, United States
| | - Tara S Peris
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Emily J Ricketts
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Marta Migó
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States
| | - Tina Chou
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States
| | - Joseph O'Neill
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christine Lochner
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Nancy Keuthen
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States
| | - John Piacentini
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Thilo Deckersbach
- Psychology Program, University of Applied Sciences Europe, Berlin, Germany
| |
Collapse
|
14
|
Patel K, Katz CN, Kalia SK, Popovic MR, Valiante TA. Volitional control of individual neurons in the human brain. Brain 2021; 144:3651-3663. [PMID: 34623400 PMCID: PMC8719845 DOI: 10.1093/brain/awab370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Brain-machine interfaces allow neuroscientists to causally link specific neural activity patterns to a particular behaviour. Thus, in addition to their current clinical applications, brain-machine interfaces can also be used as a tool to investigate neural mechanisms of learning and plasticity in the brain. Decades of research using such brain-machine interfaces have shown that animals (non-human primates and rodents) can be operantly conditioned to self-regulate neural activity in various motor-related structures of the brain. Here, we ask whether the human brain, a complex interconnected structure of over 80 billion neurons, can learn to control itself at the most elemental scale-a single neuron. We used the unique opportunity to record single units in 11 individuals with epilepsy to explore whether the firing rate of a single (direct) neuron in limbic and other memory-related brain structures can be brought under volitional control. To do this, we developed a visual neurofeedback task in which participants were trained to move a block on a screen by modulating the activity of an arbitrarily selected neuron from their brain. Remarkably, participants were able to volitionally modulate the firing rate of the direct neuron in these previously uninvestigated structures. We found that a subset of participants (learners), were able to improve their performance within a single training session. Successful learning was characterized by (i) highly specific modulation of the direct neuron (demonstrated by significantly increased firing rates and burst frequency); (ii) a simultaneous decorrelation of the activity of the direct neuron from the neighbouring neurons; and (iii) robust phase-locking of the direct neuron to local alpha/beta-frequency oscillations, which may provide some insights in to the potential neural mechanisms that facilitate this type of learning. Volitional control of neuronal activity in mnemonic structures may provide new ways of probing the function and plasticity of human memory without exogenous stimulation. Furthermore, self-regulation of neural activity in these brain regions may provide an avenue for the development of novel neuroprosthetics for the treatment of neurological conditions that are commonly associated with pathological activity in these brain structures, such as medically refractory epilepsy.
Collapse
Affiliation(s)
- Kramay Patel
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, Ontario M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, M5G 2A2, Canada
| | - Chaim N Katz
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, Ontario M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, M5G 2A2, Canada
| | - Suneil K Kalia
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, Ontario M5T 1M8, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, M5G 2A2, Canada
- The KITE Research Institute, University Health Network, Toronto, Ontario M5G 2A2, Canada
| | - Milos R Popovic
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, Ontario M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, M5G 2A2, Canada
- Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Taufik A Valiante
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, Ontario M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, M5G 2A2, Canada
- The KITE Research Institute, University Health Network, Toronto, Ontario M5G 2A2, Canada
- Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
15
|
Frontal lobe dysfunction is associated with reduced DAT-SPECT accumulation in Lewy body disease. J Neurol Sci 2021; 430:119998. [PMID: 34601357 DOI: 10.1016/j.jns.2021.119998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Lewy body disease (LBD) causes olfactory or cognitive dysfunction even before motor symptoms emerge. Recent reports indicate that the dopamine transporter (DAT), which can be imaged using single-photon emission computed tomography (123I-ioflupane SPECT), is related to olfactory and cognitive dysfunction in LBD patients. We suspected that decreased cerebral blood flow (CBF) in the frontal lobe might be involved in these relationships. If so, then the results of these examinations may be useful in assessing the pathological progression of Lewy bodies. METHODS We retrospectively analyzed the data of 139 de novo consecutive patients with LBD. We used the Odor Stick Identification Test for Japanese (OSIT-J) and the Frontal Assessment Battery (FAB) to evaluate olfactory and frontal lobe dysfunction, respectively. Among the 139 patients, ultimately 84 patients were analyzed and underwent 123I-ioflupane SPECT within 3 months (before or after) of the OSIT-J and FAB. We categorized patients on the basis of whether frontal lobe CBF was reduced (n = 28) or normal (n = 56). RESULTS The average OSIT-J and FAB scores were 4.0 and 14.1, respectively, and the scores on the two tests were significantly correlated. Furthermore, OSIT-J scores were significantly correlated with the specific binding ratio (SBR) in both groups. The SBR was correlated with FAB scores in patients with reduced CBF in the frontal lobe, but not in those with normal CBF. CONCLUSION Frontal lobe dysfunction and striatum dysfunction are correlated in LBD patients only after CBF has declined. Also, there is a time lag in the appearance of olfactory dysfunction and frontal lobe dysfunction in LBD patients. As with pathological development, olfaction is impaired earliest, followed by striatal, and then frontal lobe dysfunction.
Collapse
|
16
|
Boros M, Magyari L, Török D, Bozsik A, Deme A, Andics A. Neural processes underlying statistical learning for speech segmentation in dogs. Curr Biol 2021; 31:5512-5521.e5. [PMID: 34717832 DOI: 10.1016/j.cub.2021.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/23/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
To learn words, humans extract statistical regularities from speech. Multiple species use statistical learning also to process speech, but the neural underpinnings of speech segmentation in non-humans remain largely unknown. Here, we investigated computational and neural markers of speech segmentation in dogs, a phylogenetically distant mammal that efficiently navigates humans' social and linguistic environment. Using electroencephalography (EEG), we compared event-related responses (ERPs) for artificial words previously presented in a continuous speech stream with different distributional statistics. Results revealed an early effect (220-470 ms) of transitional probability and a late component (590-790 ms) modulated by both word frequency and transitional probability. Using fMRI, we searched for brain regions sensitive to statistical regularities in speech. Structured speech elicited lower activity in the basal ganglia, a region involved in sequence learning, and repetition enhancement in the auditory cortex. Speech segmentation in dogs, similar to that of humans, involves complex computations, engaging both domain-general and modality-specific brain areas. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Marianna Boros
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary.
| | - Lilla Magyari
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Norwegian Reading Centre for Reading Education and Research, Faculty of Arts and Education, University of Stavanger, Professor Olav Hanssens vei 10, 4036 Stavanger, Norway
| | - Dávid Török
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Anett Bozsik
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Anatomy and Histology, University of Veterinary Medicine, 1078 Budapest, István utca 2, Hungary
| | - Andrea Deme
- Department of Applied Linguistics and Phonetics, Eötvös Loránd University, 1088 Budapest, Múzeum krt. 4/A, Hungary; MTA-ELTE "Lendület" Lingual Articulation Research Group, 1088 Budapest, Múzeum krt. 4/A, Hungary
| | - Attila Andics
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary.
| |
Collapse
|
17
|
Pando-Naude V, Patyczek A, Bonetti L, Vuust P. An ALE meta-analytic review of top-down and bottom-up processing of music in the brain. Sci Rep 2021; 11:20813. [PMID: 34675231 PMCID: PMC8531391 DOI: 10.1038/s41598-021-00139-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/06/2021] [Indexed: 12/01/2022] Open
Abstract
A remarkable feature of the human brain is its ability to integrate information from the environment with internally generated content. The integration of top-down and bottom-up processes during complex multi-modal human activities, however, is yet to be fully understood. Music provides an excellent model for understanding this since music listening leads to the urge to move, and music making entails both playing and listening at the same time (i.e., audio-motor coupling). Here, we conducted activation likelihood estimation (ALE) meta-analyses of 130 neuroimaging studies of music perception, production and imagery, with 2660 foci, 139 experiments, and 2516 participants. We found that music perception and production rely on auditory cortices and sensorimotor cortices, while music imagery recruits distinct parietal regions. This indicates that the brain requires different structures to process similar information which is made available either by an interaction with the environment (i.e., bottom-up) or by internally generated content (i.e., top-down).
Collapse
Affiliation(s)
- Victor Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen, 3-0-17, 8000, Aarhus C, Denmark.
| | - Agata Patyczek
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen, 3-0-17, 8000, Aarhus C, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen, 3-0-17, 8000, Aarhus C, Denmark
| |
Collapse
|
18
|
Licea-Haquet GL, Reyes-Aguilar A, Alcauter S, Giordano M. The Neural Substrate of Speech Act Recognition. Neuroscience 2021; 471:102-114. [PMID: 34332015 DOI: 10.1016/j.neuroscience.2021.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
Pragmatic competence demands linguistic, but also communicative, social and cognitive competence. Successful use of language in social interaction requires mutual understanding of the speaker's intentions; without it, a conversation cannot proceed. The term speech act refers to what a speaker intends to accomplish when saying something. The purpose of this study was to contribute to the identification of the neural substrate of speech act recognition and to the characterization of the cognitive processes that may be involved. The recognition of speech acts resulted in greater activation of frontal regions, precuneus and posterior cingulate gyrus. From all cognitive and behavioral measures obtained, only the scores in mental flexibility predicted the change in blood oxygen level dependent (BOLD) signal in the precuneus. These results, support the idea that speech act recognition requires the inference of intention, executive functions, including memory and entails the activation of areas of social cognition that participate in several brain networks i.e., the Intention Processing, the Default Mode and Theory of Mind networks, and areas involved in planning and guiding behavior.
Collapse
Affiliation(s)
- G L Licea-Haquet
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología UNAM Campus Juriquilla, Querétaro, Mexico
| | - A Reyes-Aguilar
- Laboratorio de Neurocognición, Facultad de Psicología, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - S Alcauter
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología UNAM Campus Juriquilla, Querétaro, Mexico
| | - M Giordano
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología UNAM Campus Juriquilla, Querétaro, Mexico.
| |
Collapse
|
19
|
Flores-Fuentes N, Hernandez-Cruz C, Bermeo K, Barajas-Martinez A, Hernandez-Serratos VN, Aceves-Rodriguez EM, Martinez-Alonso E, Castro H, Martinez-Huerta MI, Elias-Viñas D, Salazar-Anguiano J, Arenas I, Garcia DE. Motor learning impairment in rats under a high sucrose diet. Physiol Behav 2021; 234:113384. [PMID: 33676960 DOI: 10.1016/j.physbeh.2021.113384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 11/18/2022]
Abstract
Motor learning skills are reliable indicators of behavioral acquisition and cognitive disorders. The ease with which learning skills are measured disparities the complexity of the interpretation concerning neural plasticity. Conversely, a wealth of information regarding metabolic derangements has long been reported with direct connection to high sucrose diets. However, the impact of excessive sucrose consumption on undergoing cognitive processes has been only scarcely addressed up to now. Therefore, the goal of this work was to describe the associative relationship between high sucrose consumption and changes in motor learning skills acquisition. Motor learning impairments conditioned by central alterations are hypothesized. Rotarod, elevated plus-maze and open field trials, along with metabolic and pro-inflammatory biomarkers tests in Wistar rats under a high sucrose treatment, were performed. Motor learning impairment in high sucrose diet-treated rats was found while spontaneous locomotor activity remained unchanged. Even though, no anxiety-like behavior under high sucrose diet-treatment was observed. Consistently, the worst outcome in the glucose tolerance test was developed, the worst motor learning performance was observed. Furthermore, insulin resistance correlated positively with a pro-inflammatory state and a decreased latency to fall in the rotarod test. Indeed, C-reactive protein and tumor necrosis factor-α serum levels, along with the homeostasis model assessment of insulin resistance (HOMA-IR), significantly increased in motor learning impairment. Together, these results support behavioral, metabolic and pro-inflammatory changes associated with deleterious changes in central nervous system likely involving crucial motor learning structures. Underlying pro-inflammatory-triggered processes may explain cognitive disorders in advanced states of metabolic derangements.
Collapse
Affiliation(s)
- Nayely Flores-Fuentes
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Carolina Hernandez-Cruz
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Karina Bermeo
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Antonio Barajas-Martinez
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Valeria Nayely Hernandez-Serratos
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Erick Mauricio Aceves-Rodriguez
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Eduardo Martinez-Alonso
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Hector Castro
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - Maricela Irel Martinez-Huerta
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - David Elias-Viñas
- Section of Bioelectronics, Department of Electrical Engineering, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, PO Box 14740, C.P. 07000 Mexico City, Mexico
| | - Jeny Salazar-Anguiano
- Section of Bioelectronics, Department of Electrical Engineering, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, PO Box 14740, C.P. 07000 Mexico City, Mexico
| | - Isabel Arenas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico
| | - David E Garcia
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, C.P. 04510 Mexico City, Mexico.
| |
Collapse
|
20
|
Park BY, Bethlehem RAI, Paquola C, Larivière S, Rodríguez-Cruces R, Vos de Wael R, Bullmore ET, Bernhardt BC. An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization. eLife 2021; 10:e64694. [PMID: 33787489 PMCID: PMC8087442 DOI: 10.7554/elife.64694] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Adolescence is a critical time for the continued maturation of brain networks. Here, we assessed structural connectome development in a large longitudinal sample ranging from childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold spaces, we identified a marked expansion of structural connectomes, with strongest effects in transmodal regions during adolescence. Findings reflected increased within-module connectivity together with increased segregation, indicating increasing differentiation of higher-order association networks from the rest of the brain. Projection of subcortico-cortical connectivity patterns into these manifolds showed parallel alterations in pathways centered on the caudate and thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and subcortical manifold features at baseline and their maturational change predicted measures of intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge the conceptual and empirical gaps between macroscale network reconfigurations, microscale processes, and cognitive outcomes in adolescent development.
Collapse
Affiliation(s)
- Bo-yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Department of Data Science, Inha UniversityIncheonRepublic of Korea
| | - Richard AI Bethlehem
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Raul Rodríguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
21
|
Yang L, Su Z, Wang Z, Li Z, Shang Z, Du H, Liu G, Qi D, Yang Z, Xu Z, Zhang Z. Transcriptional profiling reveals the transcription factor networks regulating the survival of striatal neurons. Cell Death Dis 2021; 12:262. [PMID: 33712552 PMCID: PMC7955055 DOI: 10.1038/s41419-021-03552-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/31/2023]
Abstract
The striatum is structurally highly diverse, and its organ functionality critically depends on normal embryonic development. Although several studies have been conducted on the gene functional changes that occur during striatal development, a system-wide analysis of the underlying molecular changes is lacking. Here, we present a comprehensive transcriptome profile that allows us to explore the trajectory of striatal development and identify the correlation between the striatal development and Huntington's disease (HD). Furthermore, we applied an integrative transcriptomic profiling approach based on machine learning to systematically map a global landscape of 277 transcription factor (TF) networks. Most of these TF networks are linked to biological processes, and some unannotated genes provide information about the corresponding mechanisms. For example, we found that the Meis2 and Six3 were crucial for the survival of striatal neurons, which were verified using conditional knockout (CKO) mice. Finally, we used RNA-Seq to speculate their downstream targets.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Shanghai Key Lab of Birth Defect, Children's Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zihao Su
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Shanghai Key Lab of Birth Defect, Children's Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Ziwu Wang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Shanghai Key Lab of Birth Defect, Children's Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Shanghai Key Lab of Birth Defect, Children's Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zicong Shang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Shanghai Key Lab of Birth Defect, Children's Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Heng Du
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Shanghai Key Lab of Birth Defect, Children's Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Shanghai Key Lab of Birth Defect, Children's Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Dashi Qi
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Shanghai Key Lab of Birth Defect, Children's Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Shanghai Key Lab of Birth Defect, Children's Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Shanghai Key Lab of Birth Defect, Children's Hospital, Fudan University, Shanghai, 200032, P.R. China.
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Shanghai Key Lab of Birth Defect, Children's Hospital, Fudan University, Shanghai, 200032, P.R. China.
| |
Collapse
|
22
|
Tian W, Chen S. Neurotransmitters, Cell Types, and Circuit Mechanisms of Motor Skill Learning and Clinical Applications. Front Neurol 2021; 12:616820. [PMID: 33716924 PMCID: PMC7947691 DOI: 10.3389/fneur.2021.616820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 02/02/2023] Open
Abstract
Animals acquire motor skills to better survive and adapt to a changing environment. The ability to learn novel motor actions without disturbing learned ones is essential to maintaining a broad motor repertoire. During motor learning, the brain makes a series of adjustments to build novel sensory–motor relationships that are stored within specific circuits for long-term retention. The neural mechanism of learning novel motor actions and transforming them into long-term memory still remains unclear. Here we review the latest findings with regard to the contributions of various brain subregions, cell types, and neurotransmitters to motor learning. Aiming to seek therapeutic strategies to restore the motor memory in relative neurodegenerative disorders, we also briefly describe the common experimental tests and manipulations for motor memory in rodents.
Collapse
Affiliation(s)
- Wotu Tian
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Zürcher NR, Walsh EC, Phillips RD, Cernasov PM, Tseng CEJ, Dharanikota A, Smith E, Li Z, Kinard JL, Bizzell JC, Greene RK, Dillon D, Pizzagalli DA, Izquierdo-Garcia D, Truong K, Lalush D, Hooker JM, Dichter GS. A simultaneous [ 11C]raclopride positron emission tomography and functional magnetic resonance imaging investigation of striatal dopamine binding in autism. Transl Psychiatry 2021; 11:33. [PMID: 33431841 PMCID: PMC7801430 DOI: 10.1038/s41398-020-01170-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023] Open
Abstract
The social motivation hypothesis of autism posits that autism spectrum disorder (ASD) is characterized by impaired motivation to seek out social experience early in life that interferes with the development of social functioning. This framework suggests that impaired mesolimbic dopamine function underlies compromised responses to social rewards in ASD. Although this hypothesis is supported by functional magnetic resonance imaging (fMRI) studies, no molecular imaging study has evaluated striatal dopamine functioning in response to rewards in ASD. Here, we examined striatal functioning during monetary incentive processing in ASD and controls using simultaneous positron emission tomography (PET) and fMRI. Using a bolus + infusion protocol with the D2/D3 dopamine receptor antagonist [11C]raclopride, voxel-wise binding potential (BPND) was compared between groups (controls = 12, ASD = 10) in the striatum. Striatal clusters showing significant between-group BPND differences were used as seeds in whole-brain fMRI general functional connectivity analyses. Relative to controls, the ASD group demonstrated decreased phasic dopamine release to incentives in the bilateral putamen and left caudate, as well as increased functional connectivity between a PET-derived right putamen seed and the precuneus and insula. Within the ASD group, decreased phasic dopamine release in the putamen was related to poorer theory-of-mind skills. Our findings that ASD is characterized by impaired striatal phasic dopamine release to incentives provide support for the social motivation hypothesis of autism. PET-fMRI may be a suitable tool to evaluate novel ASD therapeutics targeting the striatal dopamine system.
Collapse
Affiliation(s)
- Nicole R. Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Erin C. Walsh
- grid.10698.360000000122483208Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514 USA
| | - Rachel D. Phillips
- grid.10698.360000000122483208Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514 USA
| | - Paul M. Cernasov
- grid.10698.360000000122483208Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514 USA
| | - Chieh-En J. Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Ayarah Dharanikota
- grid.10698.360000000122483208Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC USA
| | - Eric Smith
- grid.10698.360000000122483208UNC-Chapel Hill Department of Radiology and Biomedical Research Imaging Center (BRIC), Chapel Hill, NC 27514 USA
| | - Zibo Li
- grid.10698.360000000122483208UNC-Chapel Hill Department of Radiology and Biomedical Research Imaging Center (BRIC), Chapel Hill, NC 27514 USA
| | - Jessica L. Kinard
- grid.10698.360000000122483208Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, Chapel Hill, NC 27510 USA
| | - Joshua C. Bizzell
- grid.10698.360000000122483208Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514 USA
| | - Rachel K. Greene
- grid.10698.360000000122483208Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514 USA
| | - Daniel Dillon
- grid.240206.20000 0000 8795 072XCenter for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA USA
| | - Diego A. Pizzagalli
- grid.240206.20000 0000 8795 072XCenter for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA USA
| | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Kinh Truong
- grid.10698.360000000122483208Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514 USA
| | - David Lalush
- grid.10698.360000000122483208Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Gabriel S. Dichter
- grid.10698.360000000122483208Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514 USA ,grid.10698.360000000122483208Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514 USA ,grid.10698.360000000122483208Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, Chapel Hill, NC 27510 USA
| |
Collapse
|
24
|
Lee B, Van Lancker Sidtis D. Subcortical Involvement in Formulaic Language: Studies on Bilingual Individuals With Parkinson's Disease. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:4029-4045. [PMID: 33141624 PMCID: PMC8608202 DOI: 10.1044/2020_jslhr-19-00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Purpose An impoverished production of routinized expressions, namely, formulaic language, has been reported for monolingual speakers with Parkinson's disease (PD). Little is known regarding how formulaic expressions might be manifested in individuals with neurological damage who speak more than one language. This study investigated the processing of formulaic language across first language (L1) and second language (L2) in bilingual individuals with PD. Method Eleven Korean-English bilingual speakers with PD, who acquired Korean as L1 and English as L2, were recruited for this study. Two matched control groups composed of 11 healthy Korean-English bilingual individuals and 11 healthy native English speakers were included for comparison. Their performance on three structured tasks (comprehension, completion, and judgment-correction) and conversational speech was measured and compared across groups for analyses. Results The bilingual speakers with PD had significantly impaired comprehension of formulaic language in L1 and had lower proportions of formulaic expressions in their L1 conversational speech compared with the bilingual controls. Regarding L2, both bilingual groups with and without PD were comparable in their English performance across all tasks. Both groups performed significantly poorer in L2 structured tasks than the native English speakers. Spontaneous production of formulaic language in English (L2 for bilingual individuals) was similar across all three groups. Conclusions The results of this study contribute to the growing body of literature on impoverishment of formulaic language production following subcortical dysfunction. Additionally, findings here demonstrate a selective impairment of formulaic language performance in L1 but not L2 for bilinguals with PD, further supporting the role of the basal ganglia in native language.
Collapse
Affiliation(s)
- Binna Lee
- Graduate Program in Speech and Language Pathology, Touro College, Brooklyn, NY
- Department of Communicative Sciences and Disorders, New York University, New York
| | - Diana Van Lancker Sidtis
- Department of Communicative Sciences and Disorders, New York University, New York
- Brain and Behavior Laboratory, Geriatrics Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
| |
Collapse
|
25
|
Miller MW. Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. THE BIOLOGICAL BULLETIN 2020; 239:189-208. [PMID: 33347799 PMCID: PMC8016498 DOI: 10.1086/711293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe catecholamine 3,4-dihydroxyphenethylamine, or dopamine, acts as a neurotransmitter across a broad phylogenetic spectrum. Functions attributed to dopamine in the mammalian brain include regulation of motor circuits, valuation of sensory stimuli, and mediation of reward or reinforcement signals. Considerable evidence also supports a neurotransmitter role for dopamine in gastropod molluscs, and there is growing appreciation for its potential common functions across phylogeny. This article reviews evidence for dopamine's transmitter role in the nervous systems of gastropods. The functional properties of identified dopaminergic neurons in well-characterized neural circuits suggest a hypothetical incremental sequence by which dopamine accumulated its diverse roles. The successive acquisition of dopamine functions is proposed in the context of gastropod feeding behavior: (1) sensation of potential nutrients, (2) activation of motor circuits, (3) selection of motor patterns from multifunctional circuits, (4) valuation of sensory stimuli with reference to internal state, (5) association of motor programs with their outcomes, and (6) coincidence detection between sensory stimuli and their consequences. At each stage of this sequence, it is proposed that existing functions of dopaminergic neurons favored their recruitment to fulfill additional information processing demands. Common functions of dopamine in other intensively studied groups, ranging from mammals and insects to nematodes, suggest an ancient origin for this progression.
Collapse
|
26
|
MRS suggests multi-regional inflammation and white matter axonal damage at 11 years following perinatal HIV infection. NEUROIMAGE-CLINICAL 2020; 28:102505. [PMID: 33395994 PMCID: PMC7721646 DOI: 10.1016/j.nicl.2020.102505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
The neurological changes in children living with perinatal HIV (PHIV) on antiretroviral therapy (ART) can be studied at a metabolic level through proton magnetic resonance spectroscopy. While previous studies in children have largely focused on individual metabolite changes, investigating patterns within and across regions of interest can aid in identifying metabolic markers of HIV infection. In this study 76 children with PHIV from the Children with HIV Early AntiRetroviral (CHER) trial, 30 children who were HIV-exposed-uninfected (HEU) and 30 children who were HIV-unexposed (HU), were scanned at the age of 11.6 (sd = 0.3) years using a 3 T Skyra scanner. Metabolite concentrations were quantified within the basal ganglia (BG), midfrontal gray matter (MFGM) and peritrigonal white matter (PWM), comparing levels between HIV status groups using linear regression. Factor analysis and logistic regression were performed to identify metabolic patterns characteristic of HIV infection within and across the regions of interest. In the BG region we observed restored metabolic activity in children with PHIV and children who were HEU, despite differences being previously observed at younger ages, suggesting that treatment may effectively reduce the effects of HIV infection and exposure. Elevated MFGM choline levels in children with PHIV are indicative of inflammation. Further, we observed reduced N-acetyl-aspartate (NAA) in the PWM of children with PHIV and children who were HEU, indicating possible axonal damage. Lower levels of PWM creatine in children with PHIV suggest that this may not be a valid reference metabolite in HIV studies. Finally, factor scores for a cross-regional inflammatory factor and a PWM axonal factor, driven by PWM NAA and creatine levels, distinguished children with PHIV from children without HIV (HEU and HU) at 11 years. Therefore, the effects of perinatal HIV infection and exposure continue to be seen at 11 years despite early treatment.
Collapse
|
27
|
Zhang Z, Cheng H, Yang T. A recurrent neural network framework for flexible and adaptive decision making based on sequence learning. PLoS Comput Biol 2020; 16:e1008342. [PMID: 33141824 PMCID: PMC7673505 DOI: 10.1371/journal.pcbi.1008342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/18/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022] Open
Abstract
The brain makes flexible and adaptive responses in a complicated and ever-changing environment for an organism's survival. To achieve this, the brain needs to understand the contingencies between its sensory inputs, actions, and rewards. This is analogous to the statistical inference that has been extensively studied in the natural language processing field, where recent developments of recurrent neural networks have found many successes. We wonder whether these neural networks, the gated recurrent unit (GRU) networks in particular, reflect how the brain solves the contingency problem. Therefore, we build a GRU network framework inspired by the statistical learning approach of NLP and test it with four exemplar behavior tasks previously used in empirical studies. The network models are trained to predict future events based on past events, both comprising sensory, action, and reward events. We show the networks can successfully reproduce animal and human behavior. The networks generalize the training, perform Bayesian inference in novel conditions, and adapt their choices when event contingencies vary. Importantly, units in the network encode task variables and exhibit activity patterns that match previous neurophysiology findings. Our results suggest that the neural network approach based on statistical sequence learning may reflect the brain's computational principle underlying flexible and adaptive behaviors and serve as a useful approach to understand the brain.
Collapse
Affiliation(s)
- Zhewei Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| | - Huzi Cheng
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China
| | - Tianming Yang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, China
| |
Collapse
|
28
|
Esterle L, Brown JNA. I Think Therefore You Are. ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS 2020. [DOI: 10.1145/3375403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cyber-physical systems operate in our real world, constantly interacting with the environment and collaborating with other systems. The increasing number of devices will make it infeasible to control each one individually. It will also be infeasible to prepare each of them for every imaginable rapidly unfolding situation. Therefore, we must increase the autonomy of future Cyber-physical Systems. Making these systems self-aware allows them to reason about their own capabilities and their immediate environment. In this article, we extend the idea of the self-awareness of individual systems toward
networked self-awareness
. This gives systems the ability to reason about how they are being affected by the actions and interactions of others within their perceived environment, as well as in the extended environment that is beyond their direct perception. We propose that different levels of networked self-awareness can develop over time in systems as they do in humans. Furthermore, we propose that this could have the same benefits for networks of systems that it has had for communities of humans, increasing performance and adaptability.
Collapse
|
29
|
Hamm AG, Mattfeld AT. Distinct Neural Circuits Underlie Prospective and Concurrent Memory-Guided Behavior. Cell Rep 2020; 28:2541-2553.e4. [PMID: 31484067 DOI: 10.1016/j.celrep.2019.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/18/2019] [Accepted: 07/30/2019] [Indexed: 11/15/2022] Open
Abstract
The past is the best predictor of the future. This simple postulate belies the complex neurobiological mechanisms that facilitate an individual's use of memory to guide decisions. Previous research has shown integration of memories bias decision-making. Alternatively, memories can prospectively guide our choices. Here, we elucidate the mechanisms and timing of hippocampal (HPC), medial prefrontal cortex (mPFC), and striatal contributions during prospective memory-guided decision-making. We develop an associative learning task in which the correct choice is conditional on the preceding stimulus. Two distinct networks emerge: (1) a prospective circuit consisting of the HPC, putamen, mPFC, and other cortical regions, which exhibit increased activation preceding successful conditional decisions and (2) a concurrent circuit comprising the caudate, dorsolateral prefrontal cortex (dlPFC), and additional cortical structures that engage during the execution of correct conditional choices. Our findings demonstrate distinct neurobiological circuits through which memory prospectively biases decisions and influences choice execution.
Collapse
Affiliation(s)
- Amanda G Hamm
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Aaron T Mattfeld
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199, USA; Center for Children and Families, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
30
|
Zhukovsky P, Morein‐Zamir S, Meng C, Dalley JW, Ersche KD. Network failures: When incentives trigger impulsive responses. Hum Brain Mapp 2020; 41:2216-2228. [PMID: 32150321 PMCID: PMC7267965 DOI: 10.1002/hbm.24941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022] Open
Abstract
Adequate control of impulsive urges to act is demanded in everyday life but is impaired in neuropsychiatric conditions such as stimulant use disorder. Despite intensive research it remains unclear whether failures in impulse control are caused by impaired suppression of behavior or by the over invigoration of behavior by stimuli associated with salient incentives such as drugs, food, and money. We investigated failures in impulse control using functional magnetic resonance imaging (fMRI) to map the neural correlates of premature (impulsive) responses during the anticipation phase of the Monetary Incentive Delay (MID) task in healthy controls (HC), stimulant-dependent individuals (SDIs), and their unaffected first-degree siblings (SIB). We combined task-based fMRI analyses with dynamic causal modeling to show that failures of impulse control were associated with interactions between cingulo-opercular and dorsal striatal networks regardless of group status and incentive type. We further report that group-specific incentive salience plays a critical role in modulating impulsivity in SDIs since drug-related incentives specifically increased premature responding and shifted task modulation away from the dorsal striatal network to the cingulo-opercular network. Our findings thus indicate that impulsive actions are elicited by salient personally-relevant incentive stimuli and those such slips of action recruit a distinct fronto-striatal network.
Collapse
Affiliation(s)
- Peter Zhukovsky
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridgeUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | | | - Chun Meng
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridgeUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Karen D. Ersche
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| |
Collapse
|
31
|
Neppi-Mòdona M, Sirovich R, Cicerale A, Richard N, Pradat-Diehl P, Sirigu A, Duhamel JR. Following the gold trail: Reward influences on spatial exploration in neglect. Cortex 2020; 129:329-340. [PMID: 32559507 DOI: 10.1016/j.cortex.2020.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Abstract
Spatial attention is guided by the perceived salience and relevance of objects in the environment, a process considered to depend on a broad parieto-frontal cortical network. Signals arising from the limbic and nigrostriatal pathways conveying affective and motivational cues are also known to modulate visual selection, but the nature of this contribution and its relation to spatial attention remain unclear. We investigated the role of reward information in 15 patients with left hemispatial neglect and 15 control subjects playing multiple rounds of a virtual foraging game. Participants' exploration tracked dynamically adjusted underlying reward distributions, largely unbeknownst to them. Both control and neglect participants showed typical exploration/exploitation balance, dependent on abundance or scarcity of rewards. De-reinforcing previously favored, mostly right, regions of space attenuated left space under-exploration in patients. Multiple regression analysis indicates that such reward-based training may benefit mostly patients early after lesion onset, with mild neglect and small lesions sparing subcortical regions. Our findings support the view that spatial exploration recruits heavily right hemispheric visuospatial attentional mechanisms as well as reward signals processed by basal ganglia and prefrontal cortical circuits, which serve to learn about the motivational relevance of environmental stimuli and help prioritize attention and motor response selection.
Collapse
Affiliation(s)
- Marco Neppi-Mòdona
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229, Centre National de La Recherche Scientifique, Université Claude Bernard Lyon, Lyon, France; Department of Psychology, University of Turin, Turin, Italy
| | | | | | - Nathalie Richard
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229, Centre National de La Recherche Scientifique, Université Claude Bernard Lyon, Lyon, France
| | - Pascale Pradat-Diehl
- Département des Maladies Du Système Nerveux, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Angela Sirigu
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229, Centre National de La Recherche Scientifique, Université Claude Bernard Lyon, Lyon, France
| | - Jean-René Duhamel
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229, Centre National de La Recherche Scientifique, Université Claude Bernard Lyon, Lyon, France.
| |
Collapse
|
32
|
Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci Biobehav Rev 2020; 112:553-584. [DOI: 10.1016/j.neubiorev.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
|
33
|
Ceballos JM, Stocco A, Prat CS. The Role of Basal Ganglia Reinforcement Learning in Lexical Ambiguity Resolution. Top Cogn Sci 2020; 12:402-416. [PMID: 32023006 DOI: 10.1111/tops.12488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/15/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022]
Abstract
The current study aimed to elucidate the contributions of the subcortical basal ganglia to human language by adopting the view that these structures engage in a basic neurocomputation that may account for its involvement across a wide range of linguistic phenomena. Specifically, we tested the hypothesis that basal ganglia reinforcement learning (RL) mechanisms may account for variability in semantic selection processes necessary for ambiguity resolution. To test this, we used a biased homograph lexical ambiguity priming task that allowed us to measure automatic processes for resolving ambiguity toward high-frequency word meanings. Individual differences in task performance were then related to indices of basal ganglia RL, which were used to group subjects into three learning styles: (a) Choosers who learn by seeking high reward probability stimuli; (b) Avoiders, who learn by avoiding low reward probability stimuli; and (c) Balanced participants, whose learning reflects equal contributions of choose and avoid processes. The results suggest that balanced individuals had significantly lower access to subordinate, or low-frequency, homograph word meanings. Choosers and Avoiders, on the other hand, had higher access to the subordinate word meaning even after a long delay between prime and target. Experimental findings were then tested using an ACT-R computational model of RL that learns from both positive and negative feedback. Results from the computational model simulations confirm and extend the pattern of behavioral findings, providing an RL account of individual differences in lexical ambiguity resolution.
Collapse
Affiliation(s)
- Jose M Ceballos
- Department of Psychology and Institute for Learning & Brain Sciences, University of Washington.,Google, Inc
| | - Andrea Stocco
- Department of Psychology and Institute for Learning & Brain Sciences, University of Washington
| | - Chantel S Prat
- Department of Psychology and Institute for Learning & Brain Sciences, University of Washington
| |
Collapse
|
34
|
Tovar A, Garí Soler A, Ruiz-Idiago J, Mareca Viladrich C, Pomarol-Clotet E, Rosselló J, Hinzen W. Language disintegration in spontaneous speech in Huntington's disease: a more fine-grained analysis. JOURNAL OF COMMUNICATION DISORDERS 2020; 83:105970. [PMID: 32062158 DOI: 10.1016/j.jcomdis.2019.105970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disease causing motor symptoms along with cognitive and affective problems. Recent evidence suggests that HD also affects language across core levels of linguistic organization, including at stages of the disease when standardized neuropsychological test profiles are still normal and motor symptoms do not yet reach clinical thresholds ('pre-manifest HD'). The present study aimed to subject spontaneous speech to a more fine-grained linguistic analysis in a sample of 20 identified HD gene-carriers, 10 with pre-manifest and 10 with early manifest HD. We further explored how language performance related to non-linguistic cognitive impairment, using standardized neuropsychological measures. A distinctive pattern of linguistic impairments marked off participants with both pre-manifest and manifest HD from healthy controls and each other. Fluency patterns in premanifest HD were marked by prolongations, filled pauses, and repetitions, which shifted to a pattern marked by empty (unfilled) pauses, re-phrasings, and truncations in manifest HD. Both HD groups also significantly differed from controls and each other in how they grammatically connected clauses and used noun phrases referentially. Functional deficits in language occurred in pre-manifest HD in the absence of any non-linguistic neuropsychological impairment and did largely not correlate with standardized neuropsychological measures in manifest HD. These results further corroborate that language can act as a fine-grained clinical marker in HD, which can track disease progression from the pre-manifest stage, define critical remediation targets, and inform the role of the basal ganglia in language processing.
Collapse
Affiliation(s)
- Antonia Tovar
- Department of Translation and Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Jesús Ruiz-Idiago
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Neuropsychiatry Unit, Hospital Mare de Déu de la Mercè, Barcelona, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Celia Mareca Viladrich
- Neuropsychiatry Unit, Hospital Mare de Déu de la Mercè, Barcelona, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | | | - Joana Rosselló
- Department of Catalan Philology and General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Wolfram Hinzen
- Department of Translation and Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; ICREA (Catalan Institution for Research and Advanced Studies), Barcelona, Spain.
| |
Collapse
|
35
|
Kikuta S, Iguchi Y, Kakizaki T, Kobayashi K, Yanagawa Y, Takada M, Osanai M. Store-Operated Calcium Channels Are Involved in Spontaneous Slow Calcium Oscillations in Striatal Neurons. Front Cell Neurosci 2019; 13:547. [PMID: 31920549 PMCID: PMC6927941 DOI: 10.3389/fncel.2019.00547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
The striatum plays an important role in linking cortical activity to basal ganglia output. Striatal neurons exhibit spontaneous slow Ca2+ oscillations that result from Ca2+ release from the endoplasmic reticulum (ER) induced by the mGluR5-IP3R signaling cascade. The maximum duration of a single oscillatory event is about 300 s. A major question arises as to how such a long-duration Ca2+ elevation is maintained. Store-operated calcium channels (SOCCs) are one of the calcium (Ca2+)-permeable ion channels. SOCCs are opened by activating the metabotropic glutamate receptor type 5 and inositol 1,4,5-trisphosphate receptor (mGluR5-IP3R) signal transduction cascade and are related to the pathophysiology of several neurological disorders. However, the functions of SOCCs in striatal neurons remain unclear. Here, we show that SOCCs exert a functional role in striatal GABAergic neurons. Depletion of calcium stores from the ER induced large, sustained calcium entry that was blocked by SKF96365, an inhibitor of SOCCs. Moreover, the application of SKF96365 greatly reduced the frequency of slow Ca2+ oscillations. The present results indicate that SOCCs contribute to Ca2+ signaling in striatal GABAergic neurons, including medium spiny projection neurons (MSNs) and GABAergic interneurons, through elevated Ca2+ due to spontaneous slow Ca2+ oscillations.
Collapse
Affiliation(s)
- Satomi Kikuta
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshio Iguchi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Makoto Osanai
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory for Physiological Functional Imaging, Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
36
|
Tullo S, Patel R, Devenyi GA, Salaciak A, Bedford SA, Farzin S, Wlodarski N, Tardif CL, Breitner JCS, Chakravarty MM. MR-based age-related effects on the striatum, globus pallidus, and thalamus in healthy individuals across the adult lifespan. Hum Brain Mapp 2019; 40:5269-5288. [PMID: 31452289 PMCID: PMC6864890 DOI: 10.1002/hbm.24771] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 01/18/2023] Open
Abstract
While numerous studies have used magnetic resonance imaging (MRI) to elucidate normative age-related trajectories in subcortical structures across the human lifespan, there exists substantial heterogeneity among different studies. Here, we investigated the normative relationships between age and morphology (i.e., volume and shape), and microstructure (using the T1-weighted/T2-weighted [T1w/T2w] signal ratio as a putative index of myelin and microstructure) of the striatum, globus pallidus, and thalamus across the adult lifespan using a dataset carefully quality controlled, yielding a final sample of 178 for the morphological analyses, and 162 for the T1w/T2w analyses from an initial dataset of 253 healthy subjects, aged 18-83. In accordance with previous cross-sectional studies of adults, we observed age-related volume decrease that followed a quadratic relationship between age and bilateral striatal and thalamic volumes, and a linear relationship in the globus pallidus. Our shape indices consistently demonstrated age-related posterior and medial areal contraction bilaterally across all three structures. Beyond morphology, we observed a quadratic inverted U-shaped relationship between T1w/T2w signal ratio and age, with a peak value occurring in middle age (at around 50 years old). After permutation testing, the Akaike information criterion determined age relationships remained significant for the bilateral globus pallidus and thalamus, for both the volumetric and T1w/T2w analyses. Our findings serve to strengthen and expand upon previous volumetric analyses by providing a normative baseline of morphology and microstructure of these structures to which future studies investigating patients with various disorders can be compared.
Collapse
Affiliation(s)
- Stephanie Tullo
- Integrated Program in NeuroscienceMcGill UniversityMontrealQuebecCanada
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
| | - Raihaan Patel
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
- Department of Biological and Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| | - Gabriel A. Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| | - Alyssa Salaciak
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
| | - Saashi A. Bedford
- Integrated Program in NeuroscienceMcGill UniversityMontrealQuebecCanada
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
| | - Sarah Farzin
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
| | - Nancy Wlodarski
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
| | - Christine L. Tardif
- McConnell Brain Imaging CenterMontreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | | | - John C. S. Breitner
- Centre for the Studies on the Prevention of ADDouglas Mental Health University InstituteVerdunQuebecCanada
| | - M. Mallar Chakravarty
- Integrated Program in NeuroscienceMcGill UniversityMontrealQuebecCanada
- Computational Brain Anatomy Laboratory, Cerebral Imaging CentreDouglas Mental Health University InstituteVerdunQuebecCanada
- Department of Biological and Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
37
|
Hu B, Chomiak T. Wearable technological platform for multidomain diagnostic and exercise interventions in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:75-93. [PMID: 31607363 DOI: 10.1016/bs.irn.2019.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Physical activity and exercise have become a central component of medical management of chronic illness, particular for the elderly who suffer from neurodegenerative disorders that impair their cognition and mobility. This chapter summarizes our recent research showing that a new generation of wearable technology can be adopted as diagnostic and rehabilitation tools for people living with Parkinson's disease. For example, wearable device-enabled 6-min walking test can be automated to eliminate human supervision and many other technical factors that confound the results with conventional testing. With reduced cost and increased test standardization, the technology can be adopted for population-based screening of cardiovascular fitness and gait rehabilitation training efficacy associated with many medical conditions. The Ambulosono platform for multidomain exercise intervention, in particular, has the potential to deliver lasting clinical benefits in slowing PD progression. The platform, through the integration of brisk walking with behavioral shaping strategies such as contingency reinforcement, anticipatory motor control and musical motivational stimulation, creates a home exercise regime that can transform monotonous walking into a pleasurable daily activity and habit.
Collapse
Affiliation(s)
- Bin Hu
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Taylor Chomiak
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Pagnozzi AM, Fripp J, Rose SE. Quantifying deep grey matter atrophy using automated segmentation approaches: A systematic review of structural MRI studies. Neuroimage 2019; 201:116018. [PMID: 31319182 DOI: 10.1016/j.neuroimage.2019.116018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
The deep grey matter (DGM) nuclei of the brain play a crucial role in learning, behaviour, cognition, movement and memory. Although automated segmentation strategies can provide insight into the impact of multiple neurological conditions affecting these structures, such as Multiple Sclerosis (MS), Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD) and Cerebral Palsy (CP), there are a number of technical challenges limiting an accurate automated segmentation of the DGM. Namely, the insufficient contrast of T1 sequences to completely identify the boundaries of these structures, as well as the presence of iso-intense white matter lesions or extensive tissue loss caused by brain injury. Therefore in this systematic review, 269 eligible studies were analysed and compared to determine the optimal approaches for addressing these technical challenges. The automated approaches used among the reviewed studies fall into three broad categories, atlas-based approaches focusing on the accurate alignment of atlas priors, algorithmic approaches which utilise intensity information to a greater extent, and learning-based approaches that require an annotated training set. Studies that utilise freely available software packages such as FIRST, FreeSurfer and LesionTOADS were also eligible, and their performance compared. Overall, deep learning approaches achieved the best overall performance, however these strategies are currently hampered by the lack of large-scale annotated data. Improving model generalisability to new datasets could be achieved in future studies with data augmentation and transfer learning. Multi-atlas approaches provided the second-best performance overall, and may be utilised to construct a "silver standard" annotated training set for deep learning. To address the technical challenges, providing robustness to injury can be improved by using multiple channels, highly elastic diffeomorphic transformations such as LDDMM, and by following atlas-based approaches with an intensity driven refinement of the segmentation, which has been done with the Expectation Maximisation (EM) and level sets methods. Accounting for potential lesions should be achieved with a separate lesion segmentation approach, as in LesionTOADS. Finally, to address the issue of limited contrast, R2*, T2* and QSM sequences could be used to better highlight the DGM due to its higher iron content. Future studies could look to additionally acquire these sequences by retaining the phase information from standard structural scans, or alternatively acquiring these sequences for only a training set, allowing models to learn the "improved" segmentation from T1-sequences alone.
Collapse
Affiliation(s)
- Alex M Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia.
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Stephen E Rose
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| |
Collapse
|
39
|
Within the framework of the dual-system model, voluntary action is central to cognition. Atten Percept Psychophys 2019; 81:2192-2216. [PMID: 31062301 DOI: 10.3758/s13414-019-01737-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new version of the dual-system hypothesis is described. Consistent with earlier models, the improvisational subsystem of the instrumental system, which includes the occipital cortex, inferior temporal cortex, and medial temporal cortex, especially the hippocampus, directs the construction of visual representations of the world and constructs ad-hoc responses to novel targets. The habit system, which includes the occipital cortex; parietal cortex; premotor, supplementary motor, and ventrolateral areas of frontal cortex; and the basal ganglia, especially the caudate nucleus, encodes sequences of actions and generates previously successful actions to familiar targets. However, unlike in previous dual-system models, human cognitive activity involved in task performance is not exclusively associated with one system or the other. Rather, the two systems make it possible for people to learn a variety of skills that draw on the competencies of both systems. The collective effects of these skills define human cognition. So, in contrast with earlier versions of the dual-system hypothesis, which identified the habit system solely with procedural learning and implicit improvements in task performance, the model presented here attributes a direct role in declarative-memory tasks to the habit system. Furthermore, within the model, the computational competencies of the two systems are used to construct purposeful sequences of actions-that is, skills. Human cognition is the result of the performance of these skills. Thus, voluntary action is central to human cognition.
Collapse
|
40
|
Caligiore D, Arbib MA, Miall RC, Baldassarre G. The super-learning hypothesis: Integrating learning processes across cortex, cerebellum and basal ganglia. Neurosci Biobehav Rev 2019; 100:19-34. [DOI: 10.1016/j.neubiorev.2019.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
|
41
|
Montague PR, Kishida KT. Computational Underpinnings of Neuromodulation in Humans. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:71-82. [PMID: 31023828 DOI: 10.1101/sqb.2018.83.038166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We summarize a new approach to neuromodulator detection that provides colocalized detection of dopamine, serotonin, and norepinephrine at subsecond timescales and promises to provide submillisecond estimates of the same. The methodology, elastic net electrochemistry, is used to estimate dopamine and serotonin in the striatum of conscious human subjects during active decision-making. We show a proof-of-principle example of the same method working on commercially available depth electrodes in common use for epilepsy monitoring and neurosurgical planning in humans, which further promises to make such electrodes sources of fast neuromodulator information never before available in human subjects. We discuss the implications of this methodology for making direct tests in humans of the computations carried by these three important neuromodulatory systems. The methods also promise great utility in model organisms, but this chapter focuses on the possibilities for human use.
Collapse
Affiliation(s)
- P Read Montague
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA.,Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom.,Fralin Biomedical Research Institute, Virginia Tech, Roanoke, Virginia 24018, USA
| | - Kenneth T Kishida
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, USA.,Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, USA
| |
Collapse
|
42
|
Shou J, Tran A, Snyder N, Bleem E, Kim S. Distinct Roles of GluA2-lacking AMPA Receptor Expression in Dopamine D1 or D2 Receptor Neurons in Animal Behavior. Neuroscience 2019; 398:102-112. [DOI: 10.1016/j.neuroscience.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
|
43
|
Balbinot G, Schuch CP. Compensatory Relearning Following Stroke: Cellular and Plasticity Mechanisms in Rodents. Front Neurosci 2019; 12:1023. [PMID: 30766468 PMCID: PMC6365459 DOI: 10.3389/fnins.2018.01023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
von Monakow’s theory of diaschisis states the functional ‘standstill’ of intact brain regions that are remote from a damaged area, often implied in recovery of function. Accordingly, neural plasticity and activity patterns related to recovery are also occurring at the same regions. Recovery relies on plasticity in the periinfarct and homotopic contralesional regions and involves relearning to perform movements. Seeking evidence for a relearning mechanism following stroke, we found that rodents display many features that resemble classical learning and memory mechanisms. Compensatory relearning is likely to be accompanied by gradual shaping of these regions and pathways, with participating neurons progressively adapting cortico-striato-thalamic activity and synaptic strengths at different cortico-thalamic loops – adapting function relayed by the striatum. Motor cortex functional maps are progressively reinforced and shaped by these loops as the striatum searches for different functional actions. Several cortical and striatal cellular mechanisms that influence motor learning may also influence post-stroke compensatory relearning. Future research should focus on how different neuromodulatory systems could act before, during or after rehabilitation to improve stroke recovery.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Clarissa Pedrini Schuch
- Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
44
|
Stark SM, Frithsen A, Mattfeld AT, Stark CEL. Modulation of associative learning in the hippocampal-striatal circuit based on item-set similarity. Cortex 2018; 109:60-73. [PMID: 30300757 PMCID: PMC6263739 DOI: 10.1016/j.cortex.2018.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/25/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
Mounting evidence suggests that the medial temporal lobe (MTL) and striatal learning systems support different forms of learning, which can be competitive or cooperative depending on task demands. We have previously shown how activity in these regions can be modulated in a conditional visuomotor associative learning task based on the consistency of response mappings or reward feedback (Mattfeld & Stark, 2015). Here, we examined the shift in learning towards the MTL and away from the striatum by placing strong demands on pattern separation, a process of orthogonalizing similar inputs into distinct representations. Mnemonically, pattern separation processes have been shown to rely heavily on processing in the hippocampus. Therefore, we predicted modulation of hippocampal activity by pattern separation demands, but no such modulation of striatal activity. Using a variant of the conditional visuomotor associative learning task that we have used previously, we presented participants with two blocked conditions: items with high and low perceptual overlap during functional magnetic resonance imaging (fMRI). As predicted, we observed learning-related activity in the hippocampus, which was greater in the high than the low overlap condition, particularly in the dentate gyrus. In contrast, the associative striatum also showed learning related activity, but it was not modulated by overlap condition. Using functional connectivity analyses, we showed that the correlation between the hippocampus and dentate gyrus with the associative striatum was differentially modulated by high vs. low overlap, suggesting that the coordination between these regions was affected when pattern separation demands were high. These findings contribute to a growing literature that suggests that the hippocampus and striatal network both contribute to the learning of arbitrary associations that are computationally distinct and can be altered by task demands.
Collapse
Affiliation(s)
- Shauna M Stark
- Department of Neurobiology and Behavior, University of California, Irvine, United States
| | - Amy Frithsen
- Department of Neurobiology and Behavior, University of California, Irvine, United States
| | - Aaron T Mattfeld
- Department of Psychology, Florida International University, United States
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, United States; Center for the Neurobiology of Learning and Memory, University of California, Irvine, United States.
| |
Collapse
|
45
|
Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci 2018; 49:604-622. [PMID: 29797362 PMCID: PMC6587740 DOI: 10.1111/ejn.13949] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
Collapse
Affiliation(s)
| | | | | | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
46
|
Barr HJ, Woolley SC. Developmental auditory exposure shapes responses of catecholaminergic neurons to socially-modulated song. Sci Rep 2018; 8:11717. [PMID: 30082796 PMCID: PMC6079043 DOI: 10.1038/s41598-018-30039-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/18/2018] [Indexed: 11/09/2022] Open
Abstract
Developmental sensory experience is critical to the tuning of sensory systems and can shape perceptual abilities and their neural substrates. Neuromodulators, including catecholamines, contribute to sensory plasticity in both older and younger individuals and provide a mechanism for translating sensory experience into changes in brain and behavior. Less well known, however, is whether developmental sensory experience has lasting effects on the neuromodulatory neurons themselves. Here, we used female zebra finches to investigate the degree to which developmental auditory experience can have lasting effects on the density and sensory responsiveness of catecholamine-synthesizing neuron populations. We found that hearing courtship, but not non-courtship, song increased expression of the activity-dependent immediate early gene cFOS in dopamine neurons of the caudal ventral tegmental area (VTA) and this increase was dependent on whether females heard adult song during development. Developmental song exposure also affected the density of dopamine producing neurons in the rostral VTA. In contrast, song-evoked responses in noradrenergic neurons of the Locus Coeruleus were not affected by either developmental song exposure or the social context of the stimulus. These data highlight the lasting effects that developmental auditory experience can have in shaping both the density and sensory responsiveness of dopamine neuron populations.
Collapse
Affiliation(s)
- Helena J Barr
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Center for Research on Brain, Language, and Music, McGill University, Montreal, QC, Canada
| | - Sarah C Woolley
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada. .,Center for Research on Brain, Language, and Music, McGill University, Montreal, QC, Canada. .,Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
47
|
Eisinger RS, Urdaneta ME, Foote KD, Okun MS, Gunduz A. Non-motor Characterization of the Basal Ganglia: Evidence From Human and Non-human Primate Electrophysiology. Front Neurosci 2018; 12:385. [PMID: 30026679 PMCID: PMC6041403 DOI: 10.3389/fnins.2018.00385] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/22/2018] [Indexed: 12/02/2022] Open
Abstract
Although the basal ganglia have been implicated in a growing list of human behaviors, they include some of the least understood nuclei in the brain. For several decades studies have employed numerous methodologies to uncover evidence pointing to the basal ganglia as a hub of both motor and non-motor function. Recently, new electrophysiological characterization of the basal ganglia in humans has become possible through direct access to these deep structures as part of routine neurosurgery. Electrophysiological approaches for identifying non-motor function have the potential to unlock a deeper understanding of pathways that may inform clinical interventions and particularly neuromodulation. Various electrophysiological modalities can also be combined to reveal functional connections between the basal ganglia and traditional structures throughout the neocortex that have been linked to non-motor behavior. Several reviews have previously summarized evidence for non-motor function in the basal ganglia stemming from behavioral, clinical, computational, imaging, and non-primate animal studies; in this review, instead we turn to electrophysiological studies of non-human primates and humans. We begin by introducing common electrophysiological methodologies for basal ganglia investigation, and then we discuss studies across numerous non-motor domains–emotion, response inhibition, conflict, decision-making, error-detection and surprise, reward processing, language, and time processing. We discuss the limitations of current approaches and highlight the current state of the information.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Morgan E Urdaneta
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
48
|
Moreno A, Limousin F, Dehaene S, Pallier C. Brain correlates of constituent structure in sign language comprehension. Neuroimage 2018; 167:151-161. [PMID: 29175202 PMCID: PMC6044420 DOI: 10.1016/j.neuroimage.2017.11.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/27/2017] [Accepted: 11/19/2017] [Indexed: 01/16/2023] Open
Abstract
During sentence processing, areas of the left superior temporal sulcus, inferior frontal gyrus and left basal ganglia exhibit a systematic increase in brain activity as a function of constituent size, suggesting their involvement in the computation of syntactic and semantic structures. Here, we asked whether these areas play a universal role in language and therefore contribute to the processing of non-spoken sign language. Congenitally deaf adults who acquired French sign language as a first language and written French as a second language were scanned while watching sequences of signs in which the size of syntactic constituents was manipulated. An effect of constituent size was found in the basal ganglia, including the head of the caudate and the putamen. A smaller effect was also detected in temporal and frontal regions previously shown to be sensitive to constituent size in written language in hearing French subjects (Pallier et al., 2011). When the deaf participants read sentences versus word lists, the same network of language areas was observed. While reading and sign language processing yielded identical effects of linguistic structure in the basal ganglia, the effect of structure was stronger in all cortical language areas for written language relative to sign language. Furthermore, cortical activity was partially modulated by age of acquisition and reading proficiency. Our results stress the important role of the basal ganglia, within the language network, in the representation of the constituent structure of language, regardless of the input modality.
Collapse
Affiliation(s)
- Antonio Moreno
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.
| | - Fanny Limousin
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Christophe Pallier
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.
| |
Collapse
|
49
|
Walters CJ, Redish A. A Case Study in Computational Psychiatry. COMPUTATIONAL PSYCHIATRY 2018. [DOI: 10.1016/b978-0-12-809825-7.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Clark GM, Lum JAG. Procedural memory and speed of grammatical processing: Comparison between typically developing children and language impaired children. RESEARCH IN DEVELOPMENTAL DISABILITIES 2017; 71:237-247. [PMID: 29073489 DOI: 10.1016/j.ridd.2017.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/08/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Procedural memory has been proposed to underlie the acquisition of a range of skills including grammar, reading, and motor skills. In developmental language disorder (DLD) it has been suggested that procedural memory problems lead to the difficulties with grammar in this group. AIMS This study aimed to extend previous research by exploring associations between procedural memory and a range of cognitive skills, in children with and without language impairments. METHODS AND PROCEDURES Twenty children with DLD and 20 age-matched non-language impaired children undertook tasks assessing procedural memory, grammatical processing speed, single word and nonword reading, and motor skills (as indexed by a pegboard task). OUTCOMES AND RESULTS For the DLD group, no significant correlations between procedural memory and any of the variables were observed. The typically developing group showed a significant correlation (r=.482, p<0.05) between the measure of procedural memory and grammatical processing speed. Correlations between procedural memory and the remaining variables were all non-significant for this group. CONCLUSIONS AND IMPLICATIONS This study provides new evidence showing that grammatical processing speed is correlated with procedural memory in typically developing children. Furthermore, results suggest that the relationship with procedural memory does not extend to reading or the types of motor skills used on a pegboard task. For the DLD group the pattern of result indicate grammatical processing, reading, and motor sequencing are not supported by procedural memory or a common memory system.
Collapse
Affiliation(s)
- Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Australia.
| | - Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Australia
| |
Collapse
|