1
|
Wang S, Cho YK. Yeast surface display of full-length human microtubule-associated protein tau. Biotechnol Prog 2019; 36:e2920. [PMID: 31581367 DOI: 10.1002/btpr.2920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
Abstract
Microtubule-associated protein tau is an intrinsically disordered, highly soluble protein found primarily in neurons. Under normal conditions, tau regulates the stability of axonal microtubules and intracellular vesicle transport. However, in patients of neurodegeneration such as Alzheimer's disease (AD), tau forms neurofibrillary deposits, which correlates well with the disease progression. Identifying molecular signatures in tau, such as posttranslational modification, truncation, and conformational change has great potential to detect earliest signs of neurodegeneration and develop therapeutic strategies. Here, we show that full-length human tau, including the longest isoform found in the adult brain, can be robustly displayed on the surface of yeast Saccharomyces cerevisiae. Yeast-displayed tau binds to anti-tau antibodies that cover epitopes ranging from the N-terminus to the 4R repeat region. Unlike tau expressed in the yeast cytosol, surface-displayed tau was not phosphorylated at sites found in AD patients (probed by antibodies AT8, AT270, AT180, and PHF-1). However, yeast-displayed tau showed clear binding to paired helical filament (PHF) tau conformation-specific antibodies Alz-50, MC-1, and Tau-2. Although the tau possessed a conformation found in PHFs, oligomerization or aggregation into larger filaments was undetected. Taken together, yeast-displayed tau enables robust measurement of protein interactions and is of particular interest for characterizing conformational change.
Collapse
Affiliation(s)
- Shiyao Wang
- Department of Chemical and Biomolecular Engineering, Institute for Systems Genomics, CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT
| | - Yong Ku Cho
- Department of Chemical and Biomolecular Engineering, Institute for Systems Genomics, CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT.,Department of Biomedical Engineering, Institute for Systems Genomics, CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT
| |
Collapse
|
2
|
Schoonover KE, Farmer CB, Cash AE, Roberts RC. Pathology of white matter integrity in three major white matter fasciculi: A post-mortem study of schizophrenia and treatment status. Br J Pharmacol 2019; 176:1143-1155. [PMID: 30735241 DOI: 10.1111/bph.14612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Imaging studies have shown that people with schizophrenia exhibit abnormal connectivity termed "dysconnectivity" in several white matter tracts, including the cingulum bundle (CB), corpus callosum (CC), and arcuate fasciculus (AF). This study aimed to elucidate potential contributors to schizophrenia "dysconnectivity." EXPERIMENTAL APPROACH Western blot analysis was used to compare protein levels of myelin basic protein, neurofilament heavy, autophagosome marker LC3, and microtubule marker α-tubulin in post-mortem human CB, CC, and AF in schizophrenia subjects (SZ) and matched normal controls (NC). Additionally, SZ cases were subdivided by treatment status: off-medication (OFF) or on-medication (ON). KEY RESULTS In the CC, the combined SZ group exhibited less neurofilament heavy protein than the NCs. In the CB, the combined SZ group had similar levels of α-tubulin protein versus NC, but OFF subjects had increased α-tubulin protein versus ON and NCs. There were significant correlations between α-tubulin and all other proteins but only in the CB. The strong negative relationship between α-tubulin versus myelin basic protein and α-tubulin versus LC3 in NCs was absent in SZs; coefficients comparison showed significant differences. Preliminary race analyses revealed that African American SZ had less AF α-tubulin than Caucasian SZ and African American normal controls. CONCLUSIONS AND IMPLICATIONS The results show a relationship between tract- and protein-specific abnormalities and diagnosis, treatment, and race. These data suggest there is a dysregulation of the relationship between α-tubulin and the other markers of white matter integrity observed in the CB in schizophrenia.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charlene B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew E Cash
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Marchisella F, Coffey ET, Hollos P. Microtubule and microtubule associated protein anomalies in psychiatric disease. Cytoskeleton (Hoboken) 2016; 73:596-611. [DOI: 10.1002/cm.21300] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/03/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Francesca Marchisella
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| | - Eleanor T. Coffey
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| | - Patrik Hollos
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| |
Collapse
|
4
|
Shelton MA, Newman JT, Gu H, Sampson AR, Fish KN, MacDonald ML, Moyer CE, DiBitetto JV, Dorph-Petersen KA, Penzes P, Lewis DA, Sweet RA. Loss of Microtubule-Associated Protein 2 Immunoreactivity Linked to Dendritic Spine Loss in Schizophrenia. Biol Psychiatry 2015; 78:374-85. [PMID: 25818630 PMCID: PMC4520801 DOI: 10.1016/j.biopsych.2014.12.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/25/2014] [Accepted: 12/19/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Microtubule-associated protein 2 (MAP2) is a neuronal protein that plays a role in maintaining dendritic structure through its interaction with microtubules. In schizophrenia (Sz), numerous studies have revealed that the typically robust immunoreactivity (IR) of MAP2 is significantly reduced across several cortical regions. The relationship between MAP2-IR reduction and lower dendritic spine density, which is frequently reported in Sz, has not been explored in previous studies, and MAP2-IR loss has not been investigated in the primary auditory cortex (Brodmann area 41), a site of conserved pathology in Sz. METHODS Using quantitative spinning disk confocal microscopy in two cohorts of subjects with Sz and matched control subjects (Sz subjects, n = 20; control subjects, n = 20), we measured MAP2-IR and dendritic spine density and spine number in deep layer 3 of BA41. RESULTS Subjects with Sz exhibited a significant reduction in MAP2-IR. The reductions in MAP2-IR were not associated with neuron loss, loss of MAP2 protein, clinical confounders, or technical factors. Dendritic spine density and number also were reduced in Sz and correlated with MAP2-IR. In 12 (60%) subjects with Sz, MAP2-IR values were lower than the lowest values in control subjects; only in this group were spine density and number significantly reduced. CONCLUSIONS These findings demonstrate that MAP2-IR loss is closely linked to dendritic spine pathology in Sz. Because MAP2 shares substantial sequence, regulatory, and functional homology with MAP tau, the wealth of knowledge regarding tau biology and the rapidly expanding field of tau therapeutics provide resources for identifying how MAP2 is altered in Sz and possible leads to novel therapeutics.
Collapse
Affiliation(s)
- Micah A Shelton
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jason T Newman
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hong Gu
- Department of Statistics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Allan R Sampson
- Department of Statistics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth N Fish
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew L MacDonald
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Caitlin E Moyer
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - James V DiBitetto
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Karl-Anton Dorph-Petersen
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David A Lewis
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert A Sweet
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.
| |
Collapse
|
5
|
Hazy E, Tompa P. Limitations of Induced Folding in Molecular Recognition by Intrinsically Disordered Proteins. Chemphyschem 2009; 10:1415-9. [DOI: 10.1002/cphc.200900205] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Leterrier JF, Kurachi M, Tashiro T, Janmey PA. MAP2-mediated in vitro interactions of brain microtubules and their modulation by cAMP. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:381-93. [PMID: 19009287 DOI: 10.1007/s00249-008-0381-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/03/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Microtubule-associated proteins (MAPs) are involved in microtubule (MT) bundling and in crossbridges between MTs and other organelles. Previous studies have assigned the MT bundling function of MAPs to their MT-binding domain and its modulation by the projection domain. In the present work, we analyse the viscoelastic properties of MT suspensions in the presence or the absence of cAMP. The experimental data reveal the occurrence of interactions between MT polymers involving MAP2 and modulated by cAMP. Two distinct mechanisms of action of cAMP are identified, which involve on one hand the phosphorylation of MT proteins by the cAMP-dependent protein kinase A (PKA) bound to the end of the N-terminal projection of MAP2, and on the other hand the binding of cAMP to the RII subunit of the PKA affecting interactions between MTs in a phosphorylation-independent manner. These findings imply a role for the complex of PKA with the projection domain of MAP2 in MT-MT interactions and suggest that cAMP may influence directly the density and bundling of MT arrays in dendrites of neurons.
Collapse
Affiliation(s)
- J F Leterrier
- Department of Neurosciences, UMR 6187 CNRS, P.B.S., Poitiers University, 40 Avenue du, Recteur Pineau, 86022, Poitiers Cedex, France.
| | | | | | | |
Collapse
|
7
|
Farah CA, Leclerc N. HMWMAP2: New perspectives on a pathway to dendritic identity. ACTA ACUST UNITED AC 2008; 65:515-27. [DOI: 10.1002/cm.20284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Csizmók V, Bokor M, Bánki P, Klement E, Medzihradszky KF, Friedrich P, Tompa K, Tompa P. Primary Contact Sites in Intrinsically Unstructured Proteins: The Case of Calpastatin and Microtubule-Associated Protein 2†. Biochemistry 2005; 44:3955-64. [PMID: 15751971 DOI: 10.1021/bi047817f] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intrinsically unstructured proteins (IUPs) exist in a disordered conformational state, often considered to be equivalent with the random-coil structure. We challenge this simplifying view by limited proteolysis, circular dichroism (CD) spectroscopy, and solid-state (1)H NMR, to show short- and long-range structural organization in two IUPs, the first inhibitory domain of calpastatin (CSD1) and microtubule-associated protein 2c (MAP2c). Proteases of either narrow (trypsin, chymotrypsin, and plasmin) or broad (subtilisin and proteinase K) substrate specificity, applied at very low concentrations, preferentially cleaved both proteins in regions, i.e., subdomains A, B, and C in CSD1 and the proline-rich region (PRR) in MAP2c, that are destined to form contacts with their targets. For CSD1, nonadditivity of the CD spectra of its two halves and suboptimal hydration of the full-length protein measured by solid-state NMR demonstrate that long-range tertiary interactions provide the structural background of this structural feature. In MAP2c, such tertiary interactions are absent, which points to the importance of local structural constraints. In fact, urea and temperature dependence of the CD spectrum of its PRR reveals the presence of the extended and rather stiff polyproline II helix conformation that keeps the interaction site exposed. These data suggest that functionally significant residual structure exists in both of these IUPs. This structure, manifest as either transient local and/or global organization, ensures the spatial exposure of short contact segments on the surface. Pertinent data from other IUPs suggest that the presence of such recognition motifs may be a general feature of disordered proteins. To emphasize the possible importance of this structural trait, we propose that these motifs be called primary contact sites in IUPs.
Collapse
Affiliation(s)
- Veronika Csizmók
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Post Office Box 7, H-1518 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Low HH, Moncrieffe MC, Löwe J. The crystal structure of ZapA and its modulation of FtsZ polymerisation. J Mol Biol 2004; 341:839-52. [PMID: 15288790 DOI: 10.1016/j.jmb.2004.05.031] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 04/13/2004] [Accepted: 05/21/2004] [Indexed: 11/25/2022]
Abstract
FtsZ is part of a mid-cell cytokinetic structure termed the Z-ring that recruits a hierarchy of fission related proteins early in the bacterial cell cycle. The widely conserved ZapA has been shown to interact with FtsZ, to drive its polymerisation and to promote FtsZ filament bundling thereby contributing to the spatio-temporal tuning of the Z-ring. Here, we show the crystal structure of ZapA (11.6 kDa) from Pseudomonas aeruginosa at 2.8 A resolution. The electron density reveals two dimers associating via an extensive C-terminal coiled-coil protrusion to form an elongated anti-parallel tetramer. In solution, ZapA exists in a dimer-tetramer equilibrium that is strongly correlated with concentration. An increase in concentration promotes formation of the higher oligomeric state. The dimer is postulated to be the predominant physiological species although the tetramer could become significant if, as FtsZ is integrated into the Z-ring and is cross-linked, the local concentration of the dimer becomes sufficiently high. We also show that ZapA binds FtsZ with an approximate 1:1 molar stoichiometry and that this interaction provokes dramatic FtsZ polymerisation and inter-filament association as well as yielding filaments, single or bundled, more stable and resistant to collapse. Whilst in vitro dynamics of FtsZ are well characterised, its in vivo arrangement within the ultra-structural architecture of the Z-ring is yet to be determined despite being fundamental to cell division. The ZapA dimer has single 2-fold symmetry whilst the bipolar tetramer displays triple 2-fold symmetry. Given the symmetry of these ZapA oligomers and the polar nature of FtsZ filaments, the structure of ZapA carries novel implications for the inherent architecture of the Z-ring in vivo.
Collapse
Affiliation(s)
- Harry H Low
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
10
|
Matsunaga W, Miyata S, Itoh M, Kiyohara T, Maekawa S. Expression of high levels of tubulin and microtubule-associated protein 2d in the neurohypophysial astrocytes of adult rat. Neuroscience 2002; 111:151-62. [PMID: 11955719 DOI: 10.1016/s0306-4522(01)00607-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hypothalamo-neurohypophysial system, containing arginine vasopressin and oxytocin, is well known to show reversible morphological reorganization for both neurons and glial cells during chronic physiological stimulation. To determine the molecular background for these morphological changes, we investigated the expression of tubulin and microtubule-associated protein (MAP) 2d in the neurohypophysial astrocytes, pituicytes of adult rats by using reverse transcription-polymerase chain reaction, western blot, and immunohistochemistry. The mRNA of MAP2d was expressed at higher levels than that of MAP2c in the neurohypophysis, cerebral cortex, and cerebellum. In contrast, predominant expression of mRNA of MAP2c was detected in the olfactory bulb. Western blot analysis showed the presence of MAP2d in the neurohypophysis, however the amount was below the detection level in the cerebral cortex and cerebellum. A double labeling study using a confocal laser scanning microscope showed intense tubulin immunoreactivity in the glial fibrillary acidic protein (GFAP)-positive pituicytes of the intact neurohypophysis. Almost no tubulin immunoreactivity was observed in the astrocytes of the intact cerebral cortex, cerebellum, and supraoptic nucleus, in contrast to strong tubulin immunoreactivity in neuronal dendrites and somata. Interestingly, intense tubulin immunoreactivity was also observed in the GFAP-positive reactive astrocytes in the immediate vicinity of the artificial lesion of the cerebral cortex. Electron microscopic observation further demonstrated the presence of a lot of microtubules in the pituicytes of intact rats.The present results demonstrate that pituicytes in the adult rat neurohypophysis expresses high levels of tubulin and MAP2d compared with normal brain astrocytes, and suggest that the ability of astrocytic morphological alteration may be at least partly ascribed to this high expression of microtubule proteins.
Collapse
Affiliation(s)
- W Matsunaga
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Japan
| | | | | | | | | |
Collapse
|
11
|
Iida J, Itoh TJ, Hotani H, Nishiyama KI, Murofushi H, Bulinski JC, Hisanaga SI. The projection domain of MAP4 suppresses the microtubule-bundling activity of the microtubule-binding domain. J Mol Biol 2002; 320:97-106. [PMID: 12079337 DOI: 10.1016/s0022-2836(02)00402-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Microtubule-associated protein 4 (MAP4), a major MAP expressed in proliferating non-neuronal cells, consists of an N-terminal projection (PJ) domain and a C-terminal microtubule-binding (MTB) domain. The PJ domain of MAP4 is divided into three regions; the N-terminal acidic region (the Na-region), the multiple KDM-repeated sequence region (the KDM-region), and the b-region followed by the MTB domain. To investigate roles of the PJ domain, we prepared three truncated forms of human MAP4 with different PJ domain lengths; PJ1, PJ2 and MTB with deletion of about one-third, two-third and all of the PJ domain, respectively, and examined their effects on bundle formation of microtubules (MTs). MTs polymerized by full length MAP4 were singly distributed as observed by both negative staining electron microscopy and dark field microscopy. MTs with PJ1 were also separated in solution but became pairs when pelleted by centrifugation. PJ2 formed planar two-dimensional bundles consisting of several MTs (the 2D-bundle). MTB induced large bundles of many MTs, tightly packed without space in between (termed the 3D-bundle). To study how the PJ domain decreases the bundle-forming activity of the MTB domain of MAP4, we made three additional deletion-mutants of MAP4, called Na-MTB, KDM-MTB and Na-PJ2. Na-MTB and KDM-MTB, in which the KDM/b-region and both of Na- and b-regions were deleted respectively, were prepared by fusing the Na-region or KDM-region to MTB. Both of Na-MTB and KDM-MTB suppressed the 3D-bundle formation as effectively as PJ2. MTs polymerized with Na-PJ2, the KDM-deletion mutant made by adding the Na-region to PJ2, were singular and did not become bundles. These results indicated that the PJ domain kept individual MTs separated by suppressing the bundle-forming ability of the MTB domain. The suppressive activity of the PJ domain was correlated with the length, but not the amino acid sequence, of the PJ.
Collapse
Affiliation(s)
- Junko Iida
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachiohji, Tokyo 192-0397, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Bélanger D, Farah CA, Nguyen MD, Lauzon M, Cornibert S, Leclerc N. The projection domain of MAP2b regulates microtubule protrusion and process formation in Sf9 cells. J Cell Sci 2002; 115:1523-39. [PMID: 11896199 DOI: 10.1242/jcs.115.7.1523] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of microtubule-associated protein 2 (MAP2), developmentally regulated by alternative splicing, coincides with neurite outgrowth. MAP2 proteins contain a microtubule-binding domain (C-terminal) that promotes microtubule assembly and a poorly characterized domain, the projection domain(N-terminal), extending at the surface of microtubules. MAP2b differs from MAP2c by an additional sequence of 1372 amino acids in the projection domain. In this study, we examined the role of the projection domain in the protrusion of microtubules from the cell surface and the subsequent process formation in Sf9 cells. In this system, MAP2b has a lower capacity to induce process formation than MAP2c. To investigate the role of the projection domain in this event, we expressed truncated forms of MAP2b and MAP2c that have partial or complete deletion of their projection domain in Sf9 cells. Our results indicate that process formation is induced by the microtubule-binding domain of these MAP2 proteins and is regulated by their projection domain. Furthermore, the microtubule-binding activity of MAP2b and MAP2c truncated forms as well as the structural properties of the microtubule bundles induced by them do not seem to be the only determinants that control the protrusion of microtubules from the cell surface in Sf9 cells. Rather, our data suggest that microtubule protrusion and process formation are regulated by intramolecular interactions between the projection domain and its microtubule-binding domain in MAP2b.
Collapse
Affiliation(s)
- Dave Bélanger
- Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada, H3T 1J8
| | | | | | | | | | | |
Collapse
|
13
|
Ichihara K, Kitazawa H, Iguchi Y, Hotani H, Itoh TJ. Visualization of the stop of microtubule depolymerization that occurs at the high-density region of microtubule-associated protein 2 (MAP2). J Mol Biol 2001; 312:107-18. [PMID: 11545589 DOI: 10.1006/jmbi.2001.4934] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Individual microtubules (MTs) repeat alternating phases of polymerization and depolymerization, a process known as dynamic instability. Microtubule-associated proteins (MAPs) regulate the dynamic instability by increasing the rescue frequency. To explore the influence of MAP2 on in vitro MT dynamics, we correlated the distribution of MAP2 on individual MTs with the dynamic phase changes of the same MTs. MAP2 was modified selectively on its projection region by X-rhodamine iodoacetamide without altering the MT-binding activity. When the labeled MAP2 was added to MTs, the fluorescence was distributed along almost the entire length of individual MTs. However, the inhomogeneity of the distribution gradually became obvious due to the fluorescence bleaching, and the MTs appeared to consist of rapidly bleached portions (RBPs) and slowly bleached portions (SBPs), which were distributed randomly along the MT. By measuring the duration of fluorescence bleaching, the density of MAP2 in SBP was estimated to be approximately 2.5 times higher than the RBP. The average tubulin:MAP2 ratio in SBP was calculated to be 16. When the MT dynamics were observed by dark-field microscopy after determining the MAP2 distribution, rescues were always found to occur only at the SBPs. MTs also displayed intermittent shortening by repeated depolymerization phases separated by pause phases. In these cases, depolymerization phases stopped only at the SBPs. Not every SBP stopped depolymerization, but depolymerization always stopped at an SBP. Taken together, we suggest that there is a minimum density of MAP2 that is necessary to stop depolymerization.
Collapse
Affiliation(s)
- K Ichihara
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
14
|
Sánchez C, Pérez M, Avila J. GSK3beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. Eur J Cell Biol 2000; 79:252-60. [PMID: 10826493 DOI: 10.1078/s0171-9335(04)70028-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A major determinant of neuronal morphology is the cytoskeleton. And one of the main regulatory mechanisms of cytoskeletal proteins is the modification of their phosphorylation state via changes in the relative activities of protein kinases and phosphatases in neurons. In particular, the microtubule-associated protein 2 (MAP2) family of proteins are abundant cytoskeletal components predominantly expressed in neurons and have been found to be substrates for most of protein kinases and phosphatases present in neurons, including glycogen-synthase kinase 3 (GSK3). It has been suggested that changes in GSK3-mediated MAP phosphorylation may modify MT stability and could control neuronal development. We have previously shown that MAP2 is phosphorylated in vitro and in situ by GSK3 at Thr1620 and Thr1623, located in the proline-rich region of MAP2 and recognized by antibody 305. However, the function of the phosphorylation of this site of MAP2 is still unknown. In this study, non-neuronal COS-1 cells have been co-transfected with cDNAs encoding MAP2C and either wild type or mutated GSK3beta to analyze possible effects on microtubule stability and on the association of MAP2 with microtubules. We have found that GSK3beta phosphorylates MAP2C in co-transfected cells. Moreover, this phosphorylation is inhibited by the specific GSK3 inhibitor lithium chloride. Additionally, the formation of microtubule bundles, which is observed after transfection with MAP2C, was decreased when MAP2C was co-transfected with GSK3beta wild type. Microtubule bundles were not observed in cells expressing MAP2C phosphorylated at the site recognized by antibody 305. The absence of microtubule bundles was reverted after treatment of MAP2C/GSK3beta wild type transfected cells with lithium chloride. Highly phosphorylated MAP2C species, which were phosphorylated at the site recognized by antibody 305, appeared in cells co-transfected with MAP2C and GSK3beta wild type. Interestingly, these MAP2C species were enriched in cytoskeleton-unbound protein preparations. These data suggests that GSK3-mediated phosphorylation of MAP2 may modify its binding to microtubules and regulate microtubule stability.
Collapse
Affiliation(s)
- C Sánchez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Spain.
| | | | | |
Collapse
|
15
|
Cunningham CC, Leclerc N, Flanagan LA, Lu M, Janmey PA, Kosik KS. Microtubule-associated protein 2c reorganizes both microtubules and microfilaments into distinct cytological structures in an actin-binding protein-280-deficient melanoma cell line. J Cell Biol 1997; 136:845-57. [PMID: 9049250 PMCID: PMC2132495 DOI: 10.1083/jcb.136.4.845] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/1996] [Revised: 11/04/1996] [Indexed: 02/03/2023] Open
Abstract
The emergence of processes from cells often involves interactions between microtubules and microfilaments. Interactions between these two cytoskeletal systems are particularly apparent in neuronal growth cones. The juvenile isoform of the neuronal microtubule-associated protein 2 (MAP2c) is present in growth cones, where we hypothesize it mediates interactions between microfilaments and microtubules. To approach this problem in vivo, we used the human melanoma cell, M2, which lacks actin-binding protein-280 (ABP-280) and forms membrane blebs, which are not seen in wild-type or ABP-transfected cells. The microinjection of tau or mature MAP2 rescued the blebbing phenotype; MAP2c not only caused cessation of blebbing but also induced the formation of two distinct cellular structures. These were actin-rich lamellae, which often included membrane ruffles, and microtubule-bearing processes. The lamellae collapsed after treatment with cytochalasin D, and the processes retracted after treatment with colchicine. MAP2c was immunocytochemically visualized in zones of the cell that were devoid of tubulin, such as regions within the lamellae and in association with membrane ruffles. In vitro rheometry confirmed that MAP2c is an efficient actin gelation protein capable of organizing actin filaments into an isotropic array at very low concentrations; tau and mature MAP2 do not share this rheologic property. These results suggest that MAP2c engages in functionally specific interactions not only with microtubules but also with microfilaments.
Collapse
Affiliation(s)
- C C Cunningham
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
16
|
Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E. RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett 1996; 399:344-9. [PMID: 8985176 DOI: 10.1016/s0014-5793(96)01386-5] [Citation(s) in RCA: 391] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The microtubule-associated protein tau is the main component of the paired helical filaments (PHFs) of Alzheimer's disease, the most common senile dementia. To understand the origin of tau's abnormal assembly we have studied the influence of other cytosolic components. Here we report that PHF assembly is strongly enhanced by RNA. The RNA-induced assembly of PHFs is dependent on the formation of intermolecular disulfide bridges involving Cys322 in the third repeat of tau, and it includes the dimerization of tau as an early intermediate. Three-repeat constructs polymerize most efficiently, two repeat constructs are the minimum number required for assembly, and even all six full-length isoforms of tau can be induced to form PHFs by RNA.
Collapse
Affiliation(s)
- T Kampers
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Illenberger S, Drewes G, Trinczek B, Biernat J, Meyer HE, Olmsted JB, Mandelkow EM, Mandelkow E. Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase p110mark. Phosphorylation sites and regulation of microtubule dynamics. J Biol Chem 1996; 271:10834-43. [PMID: 8631898 DOI: 10.1074/jbc.271.18.10834] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The phosphorylation of microtubule-associated proteins (MAPs) is thought to be a key factor in the regulation of microtubule stability. We have shown recently that a novel protein kinase, termed p110 microtubule-affinity regulating kinase ("MARK"), phosphorylates microtubule-associated protein tau at the KXGS motifs in the region of internal repeats and causes the detachment of tau from microtubules (Drewes, G., Trinczek, B., Illenberger, S., Biernat, J., Schmitt-Ulms, G., Meyer, H.E., Mandelkow, E.-M., and Mandelkow, E. (1995) J. Biol. Chem. 270, 7679-7688). Here we show that p110mark phosphorylates analogous KXGS sites in the microtubule binding domains of the neuronal MAP2 and the ubiquitous MAP4. Phosphorylation in vitro leads to the dissociation of MAP2 and MAP4 from microtubules and to a pronounced increase in dynamic instability. Thus, the phosphorylation of the repeated motifs in the microtubule binding domains of MAPs by p110mark might provide a mechanism for the regulation of microtubule dynamics in cells.
Collapse
Affiliation(s)
- S Illenberger
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ferhat L, Represa A, Bernard A, Ben-Ari Y, Khrestchatisky M. MAP2d promotes bundling and stabilization of both microtubules and microfilaments. J Cell Sci 1996; 109 ( Pt 5):1095-103. [PMID: 8743956 DOI: 10.1242/jcs.109.5.1095] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two low molecular weight MAP2 variants have been described, MAP2c and MAP2d. These variants are produced from a single gene by alternative splicing, and in their C-terminal regions contain, respectively, 3 and 4 tandem repeats, some of which are known to be involved in binding to microtubules. Substantial differences in the developmental expression pattern of MAP2c and MAP2d suggest they have different functions in neural cells. In order to investigate the respective roles of these MAP2 variants, we have analyzed the effects of MAP2c and MAP2d expression on microtubule and microfilament organization in transiently transfected cells. Our results show that both variants stabilize microtubules, but only MAP2d stabilizes microfilaments.
Collapse
Affiliation(s)
- L Ferhat
- Université René Descartes, Paris V, INSERM Unité 29, France
| | | | | | | | | |
Collapse
|
19
|
Ko LW, Liu WK, Georgieff IS, Yen SH. Modulated induction of tau proteins in cultured human neuroblastoma cells. Brain Res 1996; 707:256-65. [PMID: 8919303 DOI: 10.1016/0006-8993(95)01268-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous studies indicated that a chemically-defined, differentiation medium (DM) induces neuroblastoma cells, especially IMR32K cells, to exhibit phenotypes of mature neurons (including neurite outgrowth and synthesis of neurofilament polypeptides) and develop certain attributes of the neurons which are affected by neurofibrillary degeneration in Alzheimer's disease, such as expression of tangle-associated epitopes and accumulation of paired helical filaments-(PHF-) like fibrils. Immunocytochemical staining suggested that this cytoskeletal abnormality most likely results from altered expression of tau proteins. In the current study, we addressed this issue by analyzing tau-enriched preparations of IMR32K cells that were previously exposed to different incubation media using a panel of antibodies specific to tau and related microtubule-associated proteins. These cultured cells exhibited three groups of tau immunoreactivities which differ in molecular weight. Among them the level of high molecular weight tau (MW 90-112 kDa) was selectively augmented after DM incubation. The tau proteins produced in these neuron-like cells shared phosphorylated sites with PHF-tau and fetal tau, but differed from PHF-tau in their lack of the N-terminal insert which characterizes adult isoforms.
Collapse
Affiliation(s)
- L W Ko
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
20
|
Olson KR, McIntosh JR, Olmsted JB. Analysis of MAP 4 function in living cells using green fluorescent protein (GFP) chimeras. J Biophys Biochem Cytol 1995; 130:639-50. [PMID: 7622564 PMCID: PMC2120526 DOI: 10.1083/jcb.130.3.639] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MAP 4 is a ubiquitous microtubule-associated protein thought to play a role in the polymerization and stability of microtubules in interphase and mitotic cells. We have analyzed the behavior of protein domains of MAP 4 in vivo using chimeras constructed from these polypeptides and the green fluorescent protein (GFP). GFP-MAP 4 localizes to microtubules; this is confirmed by colocalization of GFP-MAP 4 with microtubules that have incorporated microinjected rhodamine-tubulin, and by loss of localized fluorescence after treatment of cells with anti-microtubule agents. Different subdomains of MAP 4 have distinct effects on microtubule organization and dynamics. The entire basic domain of MAP 4 reorganizes microtubules into bundles and stabilizes these arrays against depolymerization with nocodazole. Within the basic domain, the PGGG repeats, which are conserved with MAP 2 and tau, have a weak affinity for microtubules and are dispensable for microtubule binding, whereas the MAP 4-unique PSP region can function independently in binding. The projection domain shows no microtubule localization, but does modulate the association of various binding subdomains with microtubules. The acidic carboxy terminus of MAP 4 strongly affects the microtubule binding characteristics of the other domains, despite constituting less than 6% of the protein. These data show that MAP 4 association with microtubules is modulated by sequences both within and outside the basic domain. Further, our work demonstrates that GFP chimeras will allow an in vivo analysis of the effects of MAPs and their variants on microtubule dynamics in real time.
Collapse
Affiliation(s)
- K R Olson
- Department of Biology, University of Rochester, New York 14627, USA
| | | | | |
Collapse
|
21
|
Takemura R, Okabe S, Umeyama T, Hirokawa N. Polarity orientation and assembly process of microtubule bundles in nocodazole-treated, MAP2c-transfected COS cells. Mol Biol Cell 1995; 6:981-96. [PMID: 7579713 PMCID: PMC301257 DOI: 10.1091/mbc.6.8.981] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Microtubule bundles reminiscent of those found in neuronal processes are formed in fibroblasts and Sf9 cells that are transfected with the microtubule-associated proteins tau, MAP2, or MAP2c. To analyze the assembly process of these bundles and its relation to the microtubule polarity, we depolymerized the bundles formed in MAP2c-transfected COS cells using nocodazole, and observed the process of assembly of microtubule bundles after removal of the drug in cells microinjected with rhodamine-labeled tubulin. Within minutes of its removal, numerous short microtubule fragments were observed throughout the cytoplasm. These short fragments were randomly oriented and were already bundled. Somewhat longer, but still short bundles, were then found in the peripheral cytoplasm. These bundles became the primordium of the larger bundles, and gradually grew in length and width. The polarity orientation of microtubules in the reformed bundle as determined by "hook" procedure using electron microscope was uniform with the plus end distal to the cell nucleus. The results suggest that some mechanism(s) exists to orient the polarity of microtubules, which are not in direct continuity with the centrosome, during the formation of large bundles. The observed process presents a useful model system for studying the organization of microtubules that are not directly associated with the centrosomes, such as those observed in axons.
Collapse
Affiliation(s)
- R Takemura
- Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
22
|
Mandelkow E, Song YH, Schweers O, Marx A, Mandelkow EM. On the structure of microtubules, tau, and paired helical filaments. Neurobiol Aging 1995; 16:347-54. [PMID: 7566344 DOI: 10.1016/0197-4580(95)00026-b] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microtubules and their associated proteins form the basis of axonal transport; they are degraded during the neuronal degeneration in Alzheimer's disease. This article surveys recent results on the structure of microtubules, tau protein, and PHFs. Microtubules have been investigated by electron microscopy and image processing after labeling them with the head domain of the motor protein kinesin. This reveals the arrangement of tubulin subunits in microtubules and the shape of the tubulin-motor complex. Tau protein was studied by electron microscopy, solution X-ray scattering, and spectroscopic methods. It appears as an elongated molecule (about 35 nm) without recognizable secondary structure. Alzheimer PHFs were examined by FTIR and X-ray diffraction; they, too, show evidence for secondary structure such as beta sheets.
Collapse
Affiliation(s)
- E Mandelkow
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Kanai Y, Hirokawa N. Sorting mechanisms of tau and MAP2 in neurons: suppressed axonal transit of MAP2 and locally regulated microtubule binding. Neuron 1995; 14:421-32. [PMID: 7857650 DOI: 10.1016/0896-6273(95)90298-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tau is abundant in the axon, whereas MAP2 is found in the cell body and dendrites. To understand their differential localization, we performed transfection studies on primary cultured neurons using tagged tau, MAP2, MAP2C, and their chimeric/deletion mutants. We found that MAP2 was prevented from entering the axon by its N-terminal projection domain and that microtubule binding of tau was stronger in the axon than in the cell body and dendrites, whereas that of MAP2/MAP2C was tighter in the cell body and dendrites than in the axon. These binding properties were determined by their microtubule-binding domains and were suggested to be regulated by phosphorylation, at least in the case of tau. Thus, the suppressed axonal transit of MAP2 and locally regulated microtubule binding may play important roles for their sorting in neurons.
Collapse
Affiliation(s)
- Y Kanai
- Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
24
|
Ferhat L, Bernard A, Ribas de Pouplana L, Ben-Ari Y, Khrestchatisky M. Structure, regional and developmental expression of rat MAP2d, a MAP2 splice variant encoding four microtubule-binding domains. Neurochem Int 1994; 25:327-38. [PMID: 7820066 DOI: 10.1016/0197-0186(94)90139-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
MAP2, a major component of microtubule polymers in neurons consists of high molecular weight (HMW) proteins MAP2a, MAP2b and a low molecular weight (LMW) MAP2c, expressed in the developing brain. These isoforms are produced from a single gene by alternative splicing and share identical C-termini encompassing 3 tandem repeats, critical in microtubule binding. We describe the structure, regional and developmental expression of a novel MAP2 splice variant, MAP2d, containing an insertion whose sequence is homologous to the three and four repeats of MAP2 and Tau respectively. This insertion is absent from the mRNAs encoding HMW MAP2. MAP2d mRNAs are expressed at higher levels than MAP2c in all adult nervous tissues of the rat, and are found at low levels in glial cell cultures when compared to primary cultures of cerebellar neurons. Splicing of the fourth repeat in mature Tau precedes that in MAP2d during rat brain development. The tardive expression of a four microtubule-binding domain LMW MAP2 suggests it could play in extended neurites a similar role as mature Tau in axons.
Collapse
|
25
|
Burgin KE, Ludin B, Ferralli J, Matus A. Bundling of microtubules in transfected cells does not involve an autonomous dimerization site on the MAP2 molecule. Mol Biol Cell 1994; 5:511-7. [PMID: 7919534 PMCID: PMC301063 DOI: 10.1091/mbc.5.5.511] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have searched for putative dimerization sites in microtubule-associated protein 2 (MAP2) that may be involved in the bundling of microtubules. An overlapping series of fragments of the embryonic form MAP2c were created and immunologically "tagged" with an 11 amino acid sequence from human c-myc. Nonneuronal cells were transfected simultaneously with one of these myc-tagged fragments and with full-length native MAP2c. Immunolabeling with site-specific antibodies allowed the two transgene products to be located independently within the cytoplasm of a single double-transfected cell. All transfected cells contained bundled microtubules to which the full-length native MAP2 was bound. The distribution of the tagged MAP2 fragment relative to these MAP2-induced bundles was determined by the anti-myc staining. None of the fragments tested, representing all of the MAP2c sequence in overlapping pieces, were associated with MAP2-induced microtubule bundles. These results suggest that MAP2-induced bundle formation in cells does not involve an autonomous dimerization site within the MAP2 sequence.
Collapse
Affiliation(s)
- K E Burgin
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
26
|
Abstract
High-resolution microscopic analysis has precisely revealed the control of microtubule dynamics by individual microtubule-associated proteins (MAPs) in vitro. Furthermore, transfection of MAP cDNA into fibroblasts and subsequent analysis using microinjection of caged fluorescein-labeled tubulin and photoactivation have enabled the function of MAPs in microtubule dynamics to be studied in detail in vivo. Systematic, quantitative studies using transfection of various kinds of MAP cDNA deletion mutants have demonstrated the complex mechanism for microtubule bundling in vivo, and have shown the involvement in microtubule bundling of both microtubule binding and projection regions of MAPs. A similar approach, combined with detailed structural analysis, has indicated clearly that differences in the amino-terminal projection region of MAPs can determine differential organization of MT bundles, and thus influence the characteristic organization of microtubule domains in dendrites and axons.
Collapse
Affiliation(s)
- N Hirokawa
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Tokyo, Japan
| |
Collapse
|
27
|
Hunt C, Stebbings H. Role of MAPs and motors in the bundling and shimmering of native microtubules from insect ovarioles. CELL MOTILITY AND THE CYTOSKELETON 1994; 27:69-78. [PMID: 8194111 DOI: 10.1002/cm.970270108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bundles of native microtubules isolated from the ovarioles of hemipteran insects are seen to shimmer when observed using dark-field microscopy. This novel form of microtubule motility becomes even more obvious when the isolated bundles are detergent-extracted and reactivated. We have studied the nucleotide-specificity and the drug-sensitivity of microtubule shimmering in order to obtain information regarding the nature of the motor protein responsible, and to compare its properties with those of previously characterised microtubule motors. The involvement of structural MAPs in the shimmering and in maintenance of microtubule bundles in this system has also been investigated.
Collapse
Affiliation(s)
- C Hunt
- University of Exeter, Department of Biological Sciences, Washington Singer Laboratories, United Kingdom
| | | |
Collapse
|
28
|
Schoenfeld TA, Obar RA. Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 151:67-137. [PMID: 7912236 DOI: 10.1016/s0074-7696(08)62631-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T A Schoenfeld
- Department of Psychology, Clark University, Worcester, Massachusetts 01610
| | | |
Collapse
|
29
|
Abstract
The prominent death of central neurons in Alzheimer's and Parkinson's is reflected by changes in cell shape and by the formation of characteristic cytoskeletal inclusions (neurofibrillary tangles, Lewy bodies). This review focuses on the biology of neurofilaments and microtubule-associated proteins and identifies changes that can occur to these elements from basic and clinical research perspectives. Attention is directed at certain advances in neurobiology that have been especially integral to the identification of epitope domains, protein isoforms, and posttranslational (phosphorylation) events related to the composition, development, and structure of the common cytoskeletal modifications. Recently, a number of experimental strategies have emerged to simulate the aberrant changes in neurodegenerative disorders and gain insight into possible molecular events that contribute to alterations of the cytoskeleton. Descriptions of specific systems used to induce modifications are presented. In particular, unique neural transplantation methods in animals have been used to probe possible molecular and cellular conditions concerned with abnormal cytoskeletal changes in neurons.
Collapse
Affiliation(s)
- L C Doering
- Division of Anatomy, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Weisshaar B, Matus A. Microtubule-associated protein 2 and the organization of cellular microtubules. JOURNAL OF NEUROCYTOLOGY 1993; 22:727-34. [PMID: 8270957 DOI: 10.1007/bf01181318] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microtubule-associated proteins (MAPs) are prominent components of the neuronal cytoskeleton that can promote microtubule formation and whose expression is under strong developmental regulation. They are thought to be involved in organizing the structure of microtubule fascicles in axons and dendrites, although whether they form active cross-links between microtubules or serve as strut-like spacer elements has yet to be resolved. In the experiments reported here we explored their influence on microtubules by expressing them in non-neuronal cells using DNA transfection techniques. We confirm earlier reports that microtubule-associated proteins of the MAP2/tau class can induce bundling of microtubules. In addition we find that MAP2 causes the rearrangement of microtubules in the cytoplasm in a manner that is dependent on the length of the microtubule bundles. Short bundles are straight and run across the cytoplasm whereas long bundles form a marginal band-like array at the periphery. We suggest that the latter arrangement is produced when microtubule bundles that are too long to fit inside the diameter of the cell bend under the restraining influence of the cortical cytoskeleton. In confirmation of this, we show that when the cortical actin network is depolymerized by cytochalasin B the MAP2-containing microtubule bundles push out cylindrical extensions from the cell surface. These results suggest that the induction of stiff microtubules bundles by MAP2, coupled with a breach in the cortical actin network, can confer two of the properties characteristic of neuronal processes; their cylindrical form and the presence of fasciculated microtubules.
Collapse
Affiliation(s)
- B Weisshaar
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
31
|
Díaz-Nido J, Montoro RJ, López-Barneo J, Avila J. High external potassium induces an increase in the phosphorylation of the cytoskeletal protein MAP2 in rat hippocampal slices. Eur J Neurosci 1993; 5:818-24. [PMID: 8281293 DOI: 10.1111/j.1460-9568.1993.tb00933.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Depolarization induced in rat hippocampal slices by a high concentration of extracellular K+ leads to an increase in the phosphorylation of microtubule-associated protein MAP2. The comparison of the major phosphopeptides derived from in situ and in vitro phosphorylated MAP2 suggests the implication of calcium-dependent protein kinases, including calcium/calmodulin-dependent protein kinase type II and protein kinase C, in the up-phosphorylation of MAP2. In particular, a peptide containing the tubulin-binding domain of the MAP2 molecule may be phosphorylated by protein kinase C. As the association of MAP2 with the cytoskeleton may be regulated by phosphorylation, we suggest that changes in the phosphorylation level of MAP2 might be involved in synaptic remodelling in hippocampal neurons.
Collapse
Affiliation(s)
- J Díaz-Nido
- Centro de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Wallis K, Azhar S, Rho M, Lewis S, Cowan N, Murphy D. The mechanism of equilibrium binding of microtubule-associated protein 2 to microtubules. Binding is a multi-phasic process and exhibits positive cooperativity. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82450-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Abstract
This past year, the structure and function of microtubule-associated proteins (MAPs) have been investigated in studies probing their phosphorylation, patterns of expression, and the function of the microtubule-binding domain. Cellular studies have also contributed new insights into the roles of these proteins in process outgrowth.
Collapse
Affiliation(s)
- G Lee
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Jung D, Filliol D, Miehe M, Rendon A. Interaction of brain mitochondria with microtubules reconstituted from brain tubulin and MAP2 or TAU. CELL MOTILITY AND THE CYTOSKELETON 1993; 24:245-55. [PMID: 8097434 DOI: 10.1002/cm.970240405] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To explore the behaviour of microtubule-associated proteins, MAP2 and TAU in the interactions of mitochondria with microtubules, an homologous acellular system has been reconstituted with organelles isolated from rat brain. We have established a quantitative in vitro binding assay based on the cosedimentation of 125I-labeled microtubules with mitochondria. We found that binding of microtubules to mitochondria was concentration dependent and saturable. Binding was insensitive to ATP. A comparison of taxol-stabilized microtubules prepared from MAP-free tubulin or tubulin coated with TAU or MAP2 showed that the microtubule-associated proteins diminished, or reduced to background levels, the formation of complexes with mitochondria. In contrast, the amount of MAP-free taxol microtubules that cosedimented with mitochondria increased two- and six-fold when mitochondria were coated with MAP2 or TAU. These studies suggest that the two major brain MAPs could have a crosslinking or a spacing role, depending on their organelle localization.
Collapse
Affiliation(s)
- D Jung
- INSERM Unité 338, Biologie de la Communication Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|
35
|
Chen J, Kanai Y, Cowan NJ, Hirokawa N. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 1992; 360:674-7. [PMID: 1465130 DOI: 10.1038/360674a0] [Citation(s) in RCA: 418] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurons develop a highly polarized morphology consisting of dendrites and a long axon. Both axons and dendrites contain microtubules and microtubule-associated proteins (MAPs) with characteristic structures. Among MAPs, MAP2 is specifically expressed in dendrites whereas MAP2C and tau are abundant in the axon. But the influence of MAP2, MAP2C and tau on the organization of microtubule domains in dendrites versus axons is unknown. Both MAP2 and tau induce microtubule bundle formation in fibroblasts after transfection of complementary DNAs, and a long process resembling an axon is extended in Sf9 cells infected with recombinant baculovirus expressing tau. We have now expressed MAP2 and MAP2C in Sf9 cells in order to compare their morphology and the arrangement of their microtubules to that found in Sf9 cells expressing tau. We report here that the spacing between microtubules depends on the MAP expressed: in cells expressing MAP2, the distance is similar to that found in dendrites, whereas the spacing between microtubules in cells expressing MAP2C or tau is similar to that found in axons.
Collapse
Affiliation(s)
- J Chen
- Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
36
|
Johnson GV, Jope RS. The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. J Neurosci Res 1992; 33:505-12. [PMID: 1484385 DOI: 10.1002/jnr.490330402] [Citation(s) in RCA: 245] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microtubule associated protein 2 (MAP-2) historically has been perceived primarily as a static, structural protein, necessary along with other cytoskeletal proteins to maintain neuroarchitecture but somewhat removed from the "mainstream" of neuronal response mechanisms. Quite to the contrary, MAP-2 is exquisitely sensitive to many inputs and recent investigations have revealed dynamic functions for MAP-2 in the growth, differentiation, and plasticity of neurons, with key roles in neuronal responses to growth factors, neurotransmitters, synaptic activity, and neurotoxins. These discoveries indicate that modification and rearrangement of MAP-2 is an early obligatory step in many processes which modify neuronal function.
Collapse
Affiliation(s)
- G V Johnson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham
| | | |
Collapse
|
37
|
Wille H, Drewes G, Biernat J, Mandelkow EM, Mandelkow E. Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J Biophys Biochem Cytol 1992; 118:573-84. [PMID: 1639844 PMCID: PMC2289542 DOI: 10.1083/jcb.118.3.573] [Citation(s) in RCA: 369] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent evidence from several laboratories shows that the paired helical filaments of Alzheimer's disease brains consist mainly of the protein tau in an abnormally phosphorylated form, but the mode of assembly is not understood. Here we use EM to study several constructs derived from human brain tau and expressed in Escherichia coli. All constructs or tau isoforms are rodlike molecules with a high tendency to dimerize in an antiparallel fashion, as shown by antibody labeling and chemical crosslinking. The length of the rods is largely determined by the region of internal repeats that is also responsible for microtubule binding. One unit length of the repeat domain (three or four repeats) is around 22-25 nm, comparable to the cross-section of Alzheimer PHF cores. Constructs corresponding roughly to the repeat region of tau can form synthetic paired helical filaments resembling those from Alzheimer brain tissue. A similar self-assembly occurs with the chemically cross-linked dimers. In both cases there is no need for phosphorylation of the protein.
Collapse
Affiliation(s)
- H Wille
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | |
Collapse
|