1
|
Luebbert L, Sullivan DK, Carilli M, Hjörleifsson KE, Winnett AV, Chari T, Pachter L. Efficient and accurate detection of viral sequences at single-cell resolution reveals putative novel viruses perturbing host gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.11.571168. [PMID: 38168363 PMCID: PMC10760059 DOI: 10.1101/2023.12.11.571168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
There are an estimated 300,000 mammalian viruses from which infectious diseases in humans may arise. They inhabit human tissues such as the lungs, blood, and brain and often remain undetected. Efficient and accurate detection of viral infection is vital to understanding its impact on human health and to make accurate predictions to limit adverse effects, such as future epidemics. The increasing use of high-throughput sequencing methods in research, agriculture, and healthcare provides an opportunity for the cost-effective surveillance of viral diversity and investigation of virus-disease correlation. However, existing methods for identifying viruses in sequencing data rely on and are limited to reference genomes or cannot retain single-cell resolution through cell barcode tracking. We introduce a method that accurately and rapidly detects viral sequences in bulk and single-cell transcriptomics data based on highly conserved amino acid domains, which enables the detection of RNA viruses covering up to 1012 virus species. The analysis of viral presence and host gene expression in parallel at single-cell resolution allows for the characterization of host viromes and the identification of viral tropism and host responses. We applied our method to identify putative novel viruses in rhesus macaque PBMC data that display cell type specificity and whose presence correlates with altered host gene expression.
Collapse
Affiliation(s)
- Laura Luebbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Delaney K. Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Maria Carilli
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | | | - Alexander Viloria Winnett
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Tara Chari
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California
| |
Collapse
|
2
|
Singh S, Sharma P, Pal N, Sarma DK, Tiwari R, Kumar M. Holistic One Health Surveillance Framework: Synergizing Environmental, Animal, and Human Determinants for Enhanced Infectious Disease Management. ACS Infect Dis 2024; 10:808-826. [PMID: 38415654 DOI: 10.1021/acsinfecdis.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Recent pandemics, including the COVID-19 outbreak, have brought up growing concerns about transmission of zoonotic diseases from animals to humans. This highlights the requirement for a novel approach to discern and address the escalating health threats. The One Health paradigm has been developed as a responsive strategy to confront forthcoming outbreaks through early warning, highlighting the interconnectedness of humans, animals, and their environment. The system employs several innovative methods such as the use of advanced technology, global collaboration, and data-driven decision-making to come up with an extraordinary solution for improving worldwide disease responses. This Review deliberates environmental, animal, and human factors that influence disease risk, analyzes the challenges and advantages inherent in using the One Health surveillance system, and demonstrates how these can be empowered by Big Data and Artificial Intelligence. The Holistic One Health Surveillance Framework presented herein holds the potential to revolutionize our capacity to monitor, understand, and mitigate the impact of infectious diseases on global populations.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Poonam Sharma
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Namrata Pal
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Rajnarayan Tiwari
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| |
Collapse
|
3
|
Khan G, Perveen N. Monkeypox: Past, Present, and Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:1-20. [PMID: 38801568 DOI: 10.1007/978-3-031-57165-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Monkeypox (Mpox) is a zoonotic disease caused by a virus (monkeypox virus-MPV) belonging to the Poxviridae family. In humans, the disease has an incubation period of 5-21 days and then progresses in two phases, the prodromal phase and the rash phase. The prodromal phase is characterized by non-specific symptoms such as fever, muscle pain, malaise, lymphadenopathy, headache, and chills. Skin lesions appear in the rash phase of the disease. These lesions progress through different stages (macules, papules, vesicles, and pustules). In May 2022, WHO reported an outbreak of human Mpox in several countries which were previously Mpox-free. As per the CDC report of March 01, 2023, a total of 86,231 confirmed cases of Mpox and 105 deaths have been reported from 110 countries and territories across the globe. Notably, more than 90% of these countries were reporting Mpox for the first time. The phylogenetic analysis revealed that this outbreak was associated with the virus from the West African clade. However, most of the cases in this outbreak had no evidence of travel histories to MPV-endemic countries in Central or West Africa. This outbreak was primarily driven by the transmission of the virus via intimate contact in men who have sex with men (MSM). The changing epidemiology of Mpox raised concerns about the increasing spread of the disease in non-endemic countries and the urgent need to control and prevent it. In this chapter, we present all the documented cases of Mpox from 1970 to 2023 and discuss the past, present, and future of MPV.
Collapse
Affiliation(s)
- Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| | - Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| |
Collapse
|
4
|
Echenique JVZ, Gris AH, Camargo LJ, De Lorenzo C, Bertolini M, Barbosa FMS, Ansolch M, Canal CW, Panziera W, Pavarini SP, Sonne L. Fatal Simplexvirus humanalpha1 infection in howler-monkeys (Alouatta sp.) under human care: Clinical, molecular, and pathological findings. J Med Primatol 2023; 52:392-399. [PMID: 37602976 DOI: 10.1111/jmp.12670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Simplexvirus humanalpha1 (HuAHV-1) are common anthropozoonosis reported in marmosets but rare in howler monkeys (Alouatta sp.). METHODS Necropsy of two brown-howler monkeys (A. caraya) and one red-howler monkey (A. guariba clamitans) from different zoo collections were performed. Fragments of all organs were examined through microscopy. Samples were submitted to IHC for Simplexvirus humanalpha 2 (HuAHV-2) [sin. Herpesvirus simplex type 2] and PCR. RESULTS Grossly, only the A. guariba showed liver lesions characterized by multifocal, pinpoint white areas corresponding microscopically as random necrotizing herpetic hepatitis and ulcerative glossitis. Both A. caraya showed necrotizing meningoencephalitis with Cowdry A-type body inclusions within neurons and astrocytes. Immunolabeling for HuAHV-1/2 was observed in the tongue, liver, and brain. HuAHV-1 was confirmed in all samples by PCR, Sanger sequencing, and phylogenetic analyses. CONCLUSION Necrotizing meningoencephalitis was appreciated in 2/3 of animals, and it is associated with neurologic signs. Along with ulcerative glossitis, a hallmark lesion in marmosets, it was present in one animal. Regarding herpetic hepatitis, it is not frequent in monkeys and occurs mainly in immunocompromised animals. HuAHV-1 infection was confirmed corroborating with a human source. This is the second report on captive black-howler monkeys and the first gross, histologic, immunohistochemical, and molecular description of herpetic hepatitis and ulcerative glossitis in red-howler monkeys (A. guariba).
Collapse
Affiliation(s)
- Joanna V Z Echenique
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anderson H Gris
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura J Camargo
- Laboratório de Virologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cíntia De Lorenzo
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marianna Bertolini
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franscisca M S Barbosa
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moira Ansolch
- Mantenedor de Fauna Arca de Noé (MFAN), Morro Reuter, Brazil
| | - Cláudio W Canal
- Laboratório de Virologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Welden Panziera
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Saulo P Pavarini
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciana Sonne
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Ortiz-Cam L, Jones-Engel L, Mendoza P, Castillo-Neyra R. Association between seroprevalence of measles virus in monkeys and degree of human-monkey contact in Bangladesh. One Health 2023; 17:100571. [PMID: 37332882 PMCID: PMC10272506 DOI: 10.1016/j.onehlt.2023.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Measles infections can cause significant morbidity and mortality in human and monkey populations. The endemicity of measles in human populations and viral circulation within populations of free-living monkeys may have important repercussions for potential zoonotic transmission events and for the long-term health of monkey populations. Yet, there has not yet been a rigorous investigation of the dynamics of measles transmission where human and monkey populations coexist. In this study, to determine the difference in seroprevalence of the measles virus across different contexts of human-monkey contact, we analyzed serum samples collected from 56 apparently healthy Macaca mulatta monkeys who occupied diverse contexts, with different degrees of human-monkey contact, in Bangladesh. This is the first report of measles virus seroprevalence in monkeys in Bangladesh. We found a clear association between measles virus seropositivity in monkeys and the context in which they interact with humans. Seroprevalence was the lowest in wild areas (0.0%) and increased in shrines (4.8%), urban areas (5.9%), and was highest among monkeys who are used as performance animals (50.0%). This work suggests that a One Health approach informed by local interspecies transmission dynamics is necessary to develop strategies that both improve measles vaccination coverage, achieve long-term surveillance in monkey populations, and prevent measles spillback to monkeys. This approach aims to inform conservation efforts and protect the long-term health of human and monkey populations.
Collapse
Affiliation(s)
- Lizzie Ortiz-Cam
- National Forest and Wildlife Service (SERFOR), Lima, Peru
- School of Veterinary Medicine and Zoothecnic, Cayetano Heredia Peruvian University, Lima, Peru
- School of Public Health and Administration, Cayetano Heredia Peruvian University, Lima, Peru
| | - Lisa Jones-Engel
- People for the Ethical Treatment of Animals (PETA), Norfolk, VA, USA
| | - Patricia Mendoza
- Neotropical Primate Conservation, Lima, Peru
- Department of Biology, Missouri University, St Louis, USA
| | - Ricardo Castillo-Neyra
- School of Public Health and Administration, Cayetano Heredia Peruvian University, Lima, Peru
- Department of Biostatistics, Epidemiology and Informatics at University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
6
|
Furusato IN, Figueiredo KB, de Carvalho ACSR, da Silva Ferreira CS, Takahashi JPF, Kimura LM, Aleixo CS, de Brito OP, Luchs A, Cunha MS, de Azevedo Fernandes NCC, de Araújo LJT, Catão-Dias JL, Guerra JM. Detection of herpesviruses in neotropical primates from São Paulo, Brazil. Braz J Microbiol 2023; 54:3201-3209. [PMID: 37688686 PMCID: PMC10689701 DOI: 10.1007/s42770-023-01105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
Transmission of herpesvirus between humans and non-human primates represents a serious potential threat to human health and endangered species conservation. This study aimed to identify herpesvirus genomes in samples of neotropical primates (NTPs) in the state of São Paulo, Brazil. A total of 242 NTPs, including Callithrix sp., Alouatta sp., Sapajus sp., and Callicebus sp., were evaluated by pan-herpesvirus polymerase chain reaction (PCR) and sequencing. Sixty-two (25.6%) samples containing genome segments representative of members of the family Herpesviridae, including 16.1% for Callitrichine gammaherpesvirus 3, 6.1% for Human alphaherpesvirus 1, 2.1% for Alouatta macconnelli cytomegalovirus, and 0.83% for Cebus albifrons lymphocryptovirus 1. No co-infections were detected. The detection of herpesvirus genomes was significantly higher among adult animals (p = 0.033) and those kept under human care (p = 0.008671). These findings confirm the importance of monitoring the occurrence of herpesviruses in NTP populations in epizootic events.
Collapse
Affiliation(s)
- Isabella Naomi Furusato
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | | | | | | | - Juliana Possatto Fernandes Takahashi
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
- Programa de Pós-Graduação Em Doenças Infecciosas E Parasitárias - Faculdade de Medicina, Universidade Federal de Mato Grosso Do Sul, Bairro Universitário, Av. Costa E Silva, S/nº, Campo Grande, MS, 79070900, Brazil
| | - Lidia Midori Kimura
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | - Camila Siqueira Aleixo
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | - Odília Pereira de Brito
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | - Adriana Luchs
- Centro de Virologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | - Mariana Sequetin Cunha
- Centro de Virologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | | | | | - José Luiz Catão-Dias
- Laboratório de Patologia Comparada (LAPCOM), Departamento de Patologia, Faculdade de Veterinária E Zootecnia, Universidade de São Paulo, Avenida Professor Orlando Marques de Paiva, 70, São Paulo, SP, 05508270, Brazil
| | - Juliana Mariotti Guerra
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil.
- Laboratório de Patologia Comparada (LAPCOM), Departamento de Patologia, Faculdade de Veterinária E Zootecnia, Universidade de São Paulo, Avenida Professor Orlando Marques de Paiva, 70, São Paulo, SP, 05508270, Brazil.
| |
Collapse
|
7
|
Dogadov DI, Kyuregyan KK, Alexandra GM, Minosyan AA, Kochkonyan AA, Karlsen AA, Vyshemirsky OI, Karal-Ogly DD, Mikhailov MI. Markers of antroponotic viral infections in vervet monkeys arrived from their natural habitat (Tanzania). Vopr Virusol 2023; 68:394-403. [PMID: 38156576 DOI: 10.36233/0507-4088-188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Various human viruses have been identified in wild monkeys and in captive primates. Cases of transmission of viruses from wild monkeys to humans and vice versa are known. The aim of this study was to identify markers of anthroponotic viral infections in vervet monkeys (Chlorocebus pygerythrus) arrived from their natural habitat (Tanzania). MATERIALS AND METHODS Fecal samples (n = 56) and blood serum samples (n = 75) obtained from 75 animals, respectively, on days 10 and 23 after admission to the primate center, were tested for the markers of anthroponotic viral infections (Ebola virus, Marburg virus, lymphocytic choriomeningitis, hepatitis C virus, herpes simplex virus (HSV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), parainfluenza types 1 and 3, intestinal adenoviruses, rotaviruses) by enzyme immunoassay (ELISA) and polymerase chain reaction (PCR). RESULTS AND DISCUSSION Among the examined animals, markers of 6 out of 11 tested viral infections were identified. Detection rates of IgG antibodies to HSV-1,2 (15.9%) and CMV (15.9%) were two times as low as IgG antibodies to EBV (31.8%). Among the markers of respiratory viral infections, IgG antibodies to parainfluenza virus type 1 were found (6.8%). 14.3% of the animals had rotavirus antigen, and 94% had simian adenovirus DNA. Markers of hemorrhagic fevers Ebola, Marburg, LCM, hepatitis C, and type 3 parainfluenza were not detected. CONCLUSION When importing monkeys from different regions of the world, an expanded screening for viral infections is needed considering the epidemiological situation both in the country of importation and in the country of destination.
Collapse
Affiliation(s)
- D I Dogadov
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia
| | - K K Kyuregyan
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- I.I. Mechnikov Research Institute of Vaccines and Sera
| | - G M Alexandra
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia
| | - A A Minosyan
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia
| | - A A Kochkonyan
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia
| | - A A Karlsen
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- I.I. Mechnikov Research Institute of Vaccines and Sera
| | - O I Vyshemirsky
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia
| | - D D Karal-Ogly
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia
| | - M I Mikhailov
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- I.I. Mechnikov Research Institute of Vaccines and Sera
| |
Collapse
|
8
|
Xu J, Xue Y, Bolinger AA, Li J, Zhou M, Chen H, Li H, Zhou J. Therapeutic potential of salicylamide derivatives for combating viral infections. Med Res Rev 2023; 43:897-931. [PMID: 36905090 PMCID: PMC10247541 DOI: 10.1002/med.21940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/09/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023]
Abstract
Since time immemorial human beings have constantly been fighting against viral infections. The ongoing and devastating coronavirus disease 2019 pandemic represents one of the most severe and most significant public health emergencies in human history, highlighting an urgent need to develop broad-spectrum antiviral agents. Salicylamide (2-hydroxybenzamide) derivatives, represented by niclosamide and nitazoxanide, inhibit the replication of a broad range of RNA and DNA viruses such as flavivirus, influenza A virus, and coronavirus. Moreover, nitazoxanide was effective in clinical trials against different viral infections including diarrhea caused by rotavirus and norovirus, uncomplicated influenza A and B, hepatitis B, and hepatitis C. In this review, we summarize the broad antiviral activities of salicylamide derivatives, the clinical progress, and the potential targets or mechanisms against different viral infections and highlight their therapeutic potential in combating the circulating and emerging viral infections in the future.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
9
|
Ullah M, Li Y, Munib K, Zhang Z. Epidemiology, host range, and associated risk factors of monkeypox: an emerging global public health threat. Front Microbiol 2023; 14:1160984. [PMID: 37213509 PMCID: PMC10196482 DOI: 10.3389/fmicb.2023.1160984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/23/2023] Open
Abstract
Based on recent multiregional epidemiological investigations of Monkeypox (MPX), on 24 July 2022, the World Health Organization declared it a global public health threat. Retrospectively MPX was an ignored zoonotic endemic infection to tropical rainforest regions of Western and Central African rural communities until a worldwide epidemic in May 2022 verified the potential threat of monkeypox virus (MPXV) to be propagated across the contemporary world via transnational tourism and animal movements. During 2018-2022, different cases of MPX diagnosed in Nigerian travelers have been documented in Israel, the United Kingdom, Singapore, and the United States. More recently, on 27 September 2022, 66,000 MPX cases have been confirmed in more than 100 non-endemic countries, with fluctuating epidemiological footprinting from retrospective epidemics. Particular disease-associated risk factors fluctuate among different epidemics. The unpredicted appearance of MPX in non-endemic regions suggests some invisible transmission dynamic. Hence, broad-minded and vigilant epidemiological attention to the current MPX epidemic is mandatory. Therefore, this review was compiled to highlight the epidemiological dynamic, global host ranges, and associated risk factors of MPX, concentrating on its epidemic potential and global public health threat.
Collapse
Affiliation(s)
- Munib Ullah
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Kainat Munib
- Department of Sociology, Allama Iqbal Open University Islamabad, Islamabad, Pakistan
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| |
Collapse
|
10
|
Abdelwhab EM, Mettenleiter TC. Zoonotic Animal Influenza Virus and Potential Mixing Vessel Hosts. Viruses 2023; 15:980. [PMID: 37112960 PMCID: PMC10145017 DOI: 10.3390/v15040980] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Influenza viruses belong to the family Orthomyxoviridae with a negative-sense, single-stranded segmented RNA genome. They infect a wide range of animals, including humans. From 1918 to 2009, there were four influenza pandemics, which caused millions of casualties. Frequent spillover of animal influenza viruses to humans with or without intermediate hosts poses a serious zoonotic and pandemic threat. The current SARS-CoV-2 pandemic overshadowed the high risk raised by animal influenza viruses, but highlighted the role of wildlife as a reservoir for pandemic viruses. In this review, we summarize the occurrence of animal influenza virus in humans and describe potential mixing vessel or intermediate hosts for zoonotic influenza viruses. While several animal influenza viruses possess a high zoonotic risk (e.g., avian and swine influenza viruses), others are of low to negligible zoonotic potential (e.g., equine, canine, bat and bovine influenza viruses). Transmission can occur directly from animals, particularly poultry and swine, to humans or through reassortant viruses in "mixing vessel" hosts. To date, there are less than 3000 confirmed human infections with avian-origin viruses and less than 7000 subclinical infections documented. Likewise, only a few hundreds of confirmed human cases caused by swine influenza viruses have been reported. Pigs are the historic mixing vessel host for the generation of zoonotic influenza viruses due to the expression of both avian-type and human-type receptors. Nevertheless, there are a number of hosts which carry both types of receptors and can act as a potential mixing vessel host. High vigilance is warranted to prevent the next pandemic caused by animal influenza viruses.
Collapse
Affiliation(s)
- Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
11
|
Ohta E. Pathologic characteristics of infectious diseases in macaque monkeys used in biomedical and toxicologic studies. J Toxicol Pathol 2023; 36:95-122. [PMID: 37101957 PMCID: PMC10123295 DOI: 10.1293/tox.2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/16/2023] [Indexed: 04/28/2023] Open
Abstract
Nonhuman primates (NHPs), which have many advantages in scientific research and are often the only relevant animals to use in assessing the safety profiles and biological or pharmacological effects of drug candidates, including biologics. In scientific or developmental experiments, the immune systems of animals can be spontaneously compromised possibly due to background infection, experimental procedure-associated stress, poor physical condition, or intended or unintended mechanisms of action of test articles. Under these circumstances, background, incidental, or opportunistic infections can seriously can significantly complicate the interpretation of research results and findings and consequently affect experimental conclusions. Pathologists and toxicologists must understand the clinical manifestations and pathologic features of infectious diseases and the effects of these diseases on animal physiology and experimental results in addition to the spectrum of infectious diseases in healthy NHP colonies. This review provides an overview of the clinical and pathologic characteristics of common viral, bacterial, fungal, and parasitic infectious diseases in NHPs, especially macaque monkeys, as well as methods for definitive diagnosis of these diseases. Opportunistic infections that can occur in the laboratory setting have also been addressed in this review with examples of cases of infection disease manifestation that was observed or influenced during safety assessment studies or under experimental conditions.
Collapse
Affiliation(s)
- Etsuko Ohta
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai,
Tsukuba-shi, Ibaraki 300-2635, Japan
- *Corresponding author: E Ohta (e-mail: )
| |
Collapse
|
12
|
Rosinski JR, Raasch LE, Barros Tiburcio P, Breitbach ME, Shepherd PM, Yamamoto K, Razo E, Krabbe NP, Bliss MI, Richardson AD, Einwalter MA, Weiler AM, Sneed EL, Fuchs KB, Zeng X, Noguchi KK, Morgan TK, Alberts AJ, Antony KM, Kabakov S, Ausderau KK, Bohm EK, Pritchard JC, Spanton RV, Ver Hoove JN, Kim CBY, Nork TM, Katz AW, Rasmussen CA, Hartman A, Mejia A, Basu P, Simmons HA, Eickhoff JC, Friedrich TC, Aliota MT, Mohr EL, Dudley DM, O’Connor DH, Newman CM. Frequent first-trimester pregnancy loss in rhesus macaques infected with African-lineage Zika virus. PLoS Pathog 2023; 19:e1011282. [PMID: 36976812 PMCID: PMC10081769 DOI: 10.1371/journal.ppat.1011282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
In the 2016 Zika virus (ZIKV) pandemic, a previously unrecognized risk of birth defects surfaced in babies whose mothers were infected with Asian-lineage ZIKV during pregnancy. Less is known about the impacts of gestational African-lineage ZIKV infections. Given high human immunodeficiency virus (HIV) burdens in regions where African-lineage ZIKV circulates, we evaluated whether pregnant rhesus macaques infected with simian immunodeficiency virus (SIV) have a higher risk of African-lineage ZIKV-associated birth defects. Remarkably, in both SIV+ and SIV- animals, ZIKV infection early in the first trimester caused a high incidence (78%) of spontaneous pregnancy loss within 20 days. These findings suggest a significant risk for early pregnancy loss associated with African-lineage ZIKV infection and provide the first consistent ZIKV-associated phenotype in macaques for testing medical countermeasures.
Collapse
Affiliation(s)
- Jenna R. Rosinski
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Lauren E. Raasch
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Patrick Barros Tiburcio
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Phoenix M. Shepherd
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Keisuke Yamamoto
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Elaina Razo
- Department of Pediatrics, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Nicholas P. Krabbe
- Department of Pediatrics, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Mason I. Bliss
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Alexander D. Richardson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Morgan A. Einwalter
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Emily L. Sneed
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Kerri B. Fuchs
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases; Fort Detrick, Maryland, Unites States of America
| | - Kevin K. Noguchi
- Department of Psychiatry, Washington University School of Medicine; St. Louis, Washington, Unites States of America
| | - Terry K. Morgan
- Department of Pathology, Oregon Health and Science University; Portland, Oregon, Unites States of America
- Department of Obstetrics and Gynecology, Oregon Health and Science University; Portland, Oregon, Unites States of America
| | - Alexandra J. Alberts
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Kathleen M. Antony
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Sabrina Kabakov
- Department of Kinesiology, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Karla K. Ausderau
- Department of Kinesiology, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
- Waisman Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Science, University of Minnesota; St. Paul, Minnesota, Unites States of America
| | - Julia C. Pritchard
- Department of Veterinary and Biomedical Science, University of Minnesota; St. Paul, Minnesota, Unites States of America
| | - Rachel V. Spanton
- Department of Kinesiology, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - James N. Ver Hoove
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Charlene B. Y. Kim
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - T. Michael Nork
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Alex W. Katz
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Carol A. Rasmussen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Amy Hartman
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Puja Basu
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Jens C. Eickhoff
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Science, University of Minnesota; St. Paul, Minnesota, Unites States of America
| | - Emma L. Mohr
- Department of Pediatrics, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, Wisconsin, Unites States of America
| |
Collapse
|
13
|
Cardeti G, Cersini A, Manna G, De Santis P, Scicluna MT, Albani A, Simula M, Sittinieri S, De Santis L, De Liberato C, Ngakan PO, Wahid I, Carosi M. Detection of viruses from feces of wild endangered Macaca maura: a potential threat to moor macaque survival and for zoonotic infection. BMC Vet Res 2022; 18:418. [PMID: 36447236 PMCID: PMC9706849 DOI: 10.1186/s12917-022-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND To date, there is a scarcity of information and literature on Macaca maura health status relative to viral diseases. The objectives of the present study were to investigate on the potential spread of enteric and non-enteric viruses shed in the environment through a wild macaque feces and to understand the possible interrelation in the spread of zoonotic viruses in a poorly studied geographical area, the Sulawesi Island. This study will also contribute providing useful information on potential threats to the health of this endangered species. METHODS The sampling was conducted between 2014 and 2016 in the Bantimurung Bulusaraung National Park, in the south of the Sulawesi Island and non-invasive sampling methods were used to collect fresh stools of the M. maura, one of the seven macaque species endemic to the island of Sulawesi, Indonesia. The population under study consisted in two wild, neighboring social macaque groups with partially overlapping home ranges; twenty-four samples were collected and examined using negative staining electron microscopy and a panel of PCR protocols for the detection of ten RNA and two DNA viruses. RESULTS Viral particles resembling parvovirus (5 samples), picornavirus (13 samples) and calicivirus (13 samples) were detected by electron microscopy whereas the PCR panel was negative for the 12 viruses investigated, except for one sample positive for a mosquito flavivirus. The results did not correlate with animal sex; furthermore, because all of the animals were clinically healthy, it was not possible to correlate feces consistency with viral presence. CONCLUSIONS As information on viral infections in wild moor macaques remains limited, further studies are yet required to identify the fecal-oral and blood transmitted potentially zoonotic viruses, which may infect the moor macaque and other macaque species endemic to the South Sulawesi Island.
Collapse
Affiliation(s)
- Giusy Cardeti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Giuseppe Manna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Paola De Santis
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Alessandro Albani
- grid.8509.40000000121622106Department of Sciences, Roma Tre University, Rome, Italy ,Royal Society for the Protection of Birds/Gola Rainforest National Park, Kenema, Sierra Leone
| | - Massimiliano Simula
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Stefania Sittinieri
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Laura De Santis
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Putu Oka Ngakan
- grid.412001.60000 0000 8544 230XFaculty of Forestry, Hasanuddin University, Makassar, Sulawesi Indonesia
| | - Isra Wahid
- grid.412001.60000 0000 8544 230XFaculty of Medicine, Hasanuddin University, Makassar, Sulawesi Indonesia
| | - Monica Carosi
- grid.8509.40000000121622106Department of Sciences, Roma Tre University, Rome, Italy
| |
Collapse
|
14
|
Johnson AL, Keesler RI, Lewis AD, Reader JR, Laing ST. Common and Not-So-Common Pathologic Findings of the Gastrointestinal Tract of Rhesus and Cynomolgus Macaques. Toxicol Pathol 2022; 50:638-659. [PMID: 35363082 PMCID: PMC9308647 DOI: 10.1177/01926233221084634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rhesus and cynomolgus macaques are the most frequently used nonhuman primate (NHP) species for biomedical research and toxicology studies of novel therapeutics. In recent years, there has been a shortage of laboratory macaques due to a variety of competing factors. This was most recently exacerbated by the surge in NHP research required to address the severe acute respiratory syndrome (SARS)-coronavirus 2 pandemic. Continued support of these important studies has required the use of more varied cohorts of macaques, including animals with different origins, increased exposure to naturally occurring pathogens, and a wider age range. Diarrhea and diseases of the gastrointestinal tract are the most frequently occurring spontaneous findings in macaques of all origins and ages. The purpose of this review is to alert pathologists and scientists involved in NHP research to these findings and their impact on animal health and study endpoints, which may otherwise confound the interpretation of data generated using macaques.
Collapse
Affiliation(s)
| | | | - Anne D Lewis
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - J Rachel Reader
- California National Primate Research Center, Davis, California, USA
| | | |
Collapse
|
15
|
Kooshkaki O, Asghari A, Mahdavi R, Azarkar G, Parsamanesh N. Potential of MicroRNAs As Biomarkers and Therapeutic Targets in Respiratory Viruses: A Literature Review. DNA Cell Biol 2022; 41:544-563. [PMID: 35699380 DOI: 10.1089/dna.2021.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through recognition of cognate sequences and interference of transcriptional, translational, or epigenetic processes. Hundreds of miRNA genes have been found in diverse viruses, and many of these are phylogenetically conserved. Respiratory viruses are the most frequent causative agents of disease in humans, with a significant impact on morbidity and mortality worldwide. Recently, the role of miRNAs in respiratory viral gene regulation, as well as host gene regulation during disease progression, has become a field of interest. This review highlighted the importance of various miRNAs and their potential role in fighting with respiratory viruses as therapeutic molecules with a focus on COVID-19.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Asghari
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Mahdavi
- Department of Hematology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghodsiyeh Azarkar
- Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Department of Hematology, Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
16
|
Bertzbach LD, Ip WH, Dobner T. Animal Models in Human Adenovirus Research. BIOLOGY 2021; 10:biology10121253. [PMID: 34943168 PMCID: PMC8698265 DOI: 10.3390/biology10121253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary Animal models are widely used to study various aspects of human diseases and disorders. Likewise, they are indispensable for preclinical testing of medicals and vaccines. Human adenovirus infections are usually self-limiting, and can cause mild respiratory symptoms with fever, eye infection or gastrointestinal symptoms, but occasional local outbreaks with severe disease courses have been reported. In addition, adenovirus infections pose a serious risk for children and patients with a weakened immune system. Human adenovirus research in animal models to study adenovirus-induced disease and tumor development started in the 1950s. Various animal species have been tested for their susceptibility to human adenovirus infection since then, and some have been shown to mimic key characteristics of the infection in humans, including persistent infection. Furthermore, some rodent species have been found to develop tumors upon human adenovirus infection. Our review summarizes the current knowledge on animal models in human adenovirus research, describing the pros and cons along with important findings and future perspectives. Abstract Human adenovirus (HAdV) infections cause a wide variety of clinical symptoms, ranging from mild upper respiratory tract disease to lethal outcomes, particularly in immunocompromised individuals. To date, neither widely available vaccines nor approved antiadenoviral compounds are available to efficiently deal with HAdV infections. Thus, there is a need to thoroughly understand HAdV-induced disease, and for the development and preclinical evaluation of HAdV therapeutics and/or vaccines, and consequently for suitable standardizable in vitro systems and animal models. Current animal models to study HAdV pathogenesis, persistence, and tumorigenesis include rodents such as Syrian hamsters, mice, and cotton rats, as well as rabbits. In addition, a few recent studies on other species, such as pigs and tree shrews, reported promising data. These models mimic (aspects of) HAdV-induced pathological changes in humans and, although they are relevant, an ideal HAdV animal model has yet to be developed. This review summarizes the available animal models of HAdV infection with comprehensive descriptions of virus-induced pathogenesis in different animal species. We also elaborate on rodent HAdV animal models and how they contributed to insights into adenovirus-induced cell transformation and cancer.
Collapse
|
17
|
Colman K, Andrews RN, Atkins H, Boulineau T, Bradley A, Braendli-Baiocco A, Capobianco R, Caudell D, Cline M, Doi T, Ernst R, van Esch E, Everitt J, Fant P, Gruebbel MM, Mecklenburg L, Miller AD, Nikula KJ, Satake S, Schwartz J, Sharma A, Shimoi A, Sobry C, Taylor I, Vemireddi V, Vidal J, Wood C, Vahle JL. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Non-proliferative and Proliferative Lesions of the Non-human Primate ( M. fascicularis). J Toxicol Pathol 2021; 34:1S-182S. [PMID: 34712008 PMCID: PMC8544165 DOI: 10.1293/tox.34.1s] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the nonhuman primate used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Institutes for BioMedical Research, Cambridge, MA,
USA
| | - Rachel N. Andrews
- Wake Forest School of Medicine, Department of Radiation
Oncology, Winston-Salem, NC, USA
| | - Hannah Atkins
- Penn State College of Medicine, Department of Comparative
Medicine, Hershey, PA, USA
| | | | - Alys Bradley
- Charles River Laboratories Edinburgh Ltd., Tranent,
Scotland, UK
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical
Sciences, Roche Innovation Center Basel, Switzerland
| | - Raffaella Capobianco
- Janssen Research & Development, a Division of Janssen
Pharmaceutica NV, Beerse, Belgium
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Cline
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Takuya Doi
- LSIM Safety Institute Corporation, Ibaraki, Japan
| | | | | | - Jeffrey Everitt
- Department of Pathology, Duke University School of
Medicine, Durham, NC, USA
| | | | | | | | - Andew D. Miller
- Cornell University College of Veterinary Medicine, Ithaca,
NY, USA
| | | | - Shigeru Satake
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima and
Tokyo, Japan
| | | | - Alok Sharma
- Covance Laboratories, Inc., Madison, WI, USA
| | | | | | | | | | | | - Charles Wood
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT,
USA
| | | |
Collapse
|
18
|
Saravanan C, Flandre T, Hodo CL, Lewis AD, Mecklenburg L, Romeike A, Turner OC, Yen HY. Research Relevant Conditions and Pathology in Nonhuman Primates. ILAR J 2021; 61:139-166. [PMID: 34129672 DOI: 10.1093/ilar/ilab017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Biomedical research involving animal models continues to provide important insights into disease pathogenesis and treatment of diseases that impact human health. In particular, nonhuman primates (NHPs) have been used extensively in translational research due to their phylogenetic proximity to humans and similarities to disease pathogenesis and treatment responses as assessed in clinical trials. Microscopic changes in tissues remain a significant endpoint in studies involving these models. Spontaneous, expected (ie, incidental or background) histopathologic changes are commonly encountered and influenced by species, genetic variations, age, and geographical origin of animals, including exposure to infectious or parasitic agents. Often, the background findings confound study-related changes, because numbers of NHPs used in research are limited by animal welfare and other considerations. Moreover, background findings in NHPs can be exacerbated by experimental conditions such as treatment with xenobiotics (eg, infectious morphological changes related to immunosuppressive therapy). This review and summary of research-relevant conditions and pathology in rhesus and cynomolgus macaques, baboons, African green monkeys, common marmosets, tamarins, and squirrel and owl monkeys aims to improve the interpretation and validity of NHP studies.
Collapse
Affiliation(s)
- Chandra Saravanan
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, Massachusetts 02139, USA
| | - Thierry Flandre
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Carolyn L Hodo
- The University of Texas MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, Texas, USA
| | - Anne D Lewis
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | | - Oliver C Turner
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, East Hanover, New Jersey, USA
| | - Hsi-Yu Yen
- Covance Preclinical Services GmbH, Münster 48163, Germany
| |
Collapse
|
19
|
Silva NIO, de Oliveira JS, Kroon EG, Trindade GDS, Drumond BP. Here, There, and Everywhere: The Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses. Viruses 2020; 13:E43. [PMID: 33396609 PMCID: PMC7823380 DOI: 10.3390/v13010043] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023] Open
Abstract
The global emergence of zoonotic viruses, including poxviruses, poses one of the greatest threats to human and animal health. Forty years after the eradication of smallpox, emerging zoonotic orthopoxviruses, such as monkeypox, cowpox, and vaccinia viruses continue to infect humans as well as wild and domestic animals. Currently, the geographical distribution of poxviruses in a broad range of hosts worldwide raises concerns regarding the possibility of outbreaks or viral dissemination to new geographical regions. Here, we review the global host ranges and current epidemiological understanding of zoonotic orthopoxviruses while focusing on orthopoxviruses with epidemic potential, including monkeypox, cowpox, and vaccinia viruses.
Collapse
Affiliation(s)
| | | | | | | | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais: Belo Horizonte, Minas Gerais 31270-901, Brazil; (N.I.O.S.); (J.S.d.O.); (E.G.K.); (G.d.S.T.)
| |
Collapse
|
20
|
Kanduc D, Shoenfeld Y. Medical, Genomic, and Evolutionary Aspects of the Peptide Sharing between Pathogens, Primates, and Humans. Glob Med Genet 2020; 7:64-67. [PMID: 32939517 PMCID: PMC7490124 DOI: 10.1055/s-0040-1716334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Comparing mammalian proteomes for molecular mimicry with infectious pathogens highlights the highest levels of heptapeptide sharing between pathogens and human, murine, and rat proteomes, while the peptide sharing level is minimal (or absent) with proteomes from nonhuman primates such as gorilla, chimpanzee, and rhesus macaque. From the medical point of view, the data might be useful to clinicians and vaccinologists to develop and evaluate immunomodulatory and immunotherapeutic approaches. As a matter of fact, primates seem to be unreliable animal models for revealing potential autoimmune events in preclinical testing of immunotherapies. In terms of genomics, the scarce or absent peptide sharing between pathogens and primates versus the massive peptide sharing existing between pathogens and humans lets foresee mechanisms of pathogen sequence insertion/deletion/alteration that have differently operated in mammals over evolutionary timescales. Why and how the human genome has been colonized by pathogen sequences and why and how primates escaped such a colonization appears to be the new scientific challenge in our efforts to understand not only the origin of Homo sapiens but also his autoimmune diseasome.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, University School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
| |
Collapse
|
21
|
Sarfaty AE, Fulbright RK, Compton SR, Asher JL, Zeiss CJ. Transverse myelitis following measles vaccination in a rhesus macaque (Macaca mulatta). J Med Primatol 2019; 49:103-106. [PMID: 31789460 DOI: 10.1111/jmp.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/23/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
Abstract
A 16-year-old rhesus macaque presented with progressive, ascending quadriparesis following measles vaccination. He was diagnosed with transverse myelitis following MRI, gross necropsy, and histopathology. This is the first report of transverse myelitis in a rhesus macaque following measles vaccination.
Collapse
Affiliation(s)
- Anna E Sarfaty
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT
| | - Robert K Fulbright
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Susan R Compton
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT
| | - Jennifer L Asher
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT
| | - Caroline J Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT
| |
Collapse
|
22
|
Hard GC. Critical review of renal tubule karyomegaly in non-clinical safety evaluation studies and its significance for human risk assessment. Crit Rev Toxicol 2018; 48:575-595. [DOI: 10.1080/10408444.2018.1503641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Nectin-4 Interactions Govern Measles Virus Virulence in a New Model of Pathogenesis, the Squirrel Monkey (Saimiri sciureus). J Virol 2017; 91:JVI.02490-16. [PMID: 28331086 DOI: 10.1128/jvi.02490-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/13/2017] [Indexed: 12/16/2022] Open
Abstract
In addition to humans, only certain nonhuman primates are naturally susceptible to measles virus (MeV) infection. Disease severity is species dependent, ranging from mild to moderate for macaques to severe and even lethal for certain New World monkey species. To investigate if squirrel monkeys (Saimiri sciureus), which are reported to develop a course of disease similar to humans, may be better suited than macaques for the identification of virulence determinants or the evaluation of therapeutics, we infected them with a green fluorescent protein-expressing MeV. Compared to cynomolgus macaques (Macaca fascicularis) infected with the same virus, the squirrel monkeys developed more-severe immunosuppression, higher viral load, and a broader range of clinical signs typical for measles. In contrast, infection with an MeV unable to interact with the epithelial receptor nectin-4, while causing immunosuppression, resulted in only a mild and transient rash and a short-lived elevation of the body temperature. Similar titers of the wild-type and nectin-4-blind MeV were detected in peripheral blood mononuclear cells and lymph node homogenates, but only the wild-type virus was found in tracheal lavage fluids and urine. Thus, our study demonstrates the importance of MeV interactions with nectin-4 for clinical disease in the new and better-performing S. sciureus model of measles pathogenesis.IMPORTANCE The characterization of mechanisms underlying measles virus clinical disease has been hampered by the lack of an animal model that reproduces the course of disease seen in human patients. Here, we report that infection of squirrel monkeys (Saimiri sciureus) fulfills these requirements. Comparative infection with wild-type and epithelial cell receptor-blind viruses demonstrated the importance of epithelial cell infection for clinical disease, highlighting the spread to epithelia as an attractive target for therapeutic strategies.
Collapse
|
24
|
Assaf BT, Knight HL, Miller AD. rhesus cytomegalovirus (macacine herpesvirus 3)-associated facial neuritis in simian immunodeficiency virus-infected rhesus macaques (Macaca mulatta). Vet Pathol 2014; 52:217-23. [PMID: 24686387 DOI: 10.1177/0300985814529313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peripheral neuropathies are common sequelae to human immunodeficiency virus (HIV) infection in humans and are due to a variety of mechanisms, including direct antiretroviral toxicity, HIV-mediated damage, immune-mediated disorders, and opportunistic viral infections. Rhesus macaques (Macaca mulatta) infected with simian immunodeficiency virus (SIV) remain the most consistent animal model for unraveling the pathogenesis of lentiviral-associated disease and its associated opportunistic infections. Rhesus cytomegalovirus (RhCMV) is the most common opportunistic viral infection in rhesus macaques infected with SIV and causes multiorgan pathology; however, its role in peripheral nerve pathology has not been explored. We have identified 115 coinfected cases with SIV and RhCMV, of which 10 cases of RhCMV-associated facial neuritis were found (8.7% prevalence). Histologic lesions were consistent in all cases and ranged from partial to complete obliteration of the nerves of the tongue, lacrimal gland, and other facial tissues with a mixed inflammatory population of neutrophils and macrophages, of which the latter commonly contained intranuclear inclusion bodies. Luxol fast blue staining and myelin basic protein immunohistochemistry confirmed the progressive myelin loss in the peripheral nerves. Bielschowsky silver stain revealed progressive loss of axons directly related to the severity of inflammation. Double immunohistochemistry with spectral imaging analysis revealed RhCMV-infected macrophages directly associated with the neuritis, and there was no evidence to support RhCMV infection of Schwann cells. These results suggest that peripheral nerve damage is a bystander effect secondary to inflammation rather than a direct infection of Schwann cells and warrants further investigations into the pathogenesis of RhCMV-induced peripheral neuropathy.
Collapse
Affiliation(s)
- B T Assaf
- Harvard Medical School, New England Primate Research Center, Division of Comparative Pathology, Southborough, MA, USA Oregon Health and Science University, Oregon National Primate Research Center, Division of Pathobiology and Immunology, Beaverton, OR, USA
| | - H L Knight
- Harvard Medical School, New England Primate Research Center, Division of Comparative Pathology, Southborough, MA, USA
| | - A D Miller
- Harvard Medical School, New England Primate Research Center, Division of Comparative Pathology, Southborough, MA, USA Cornell University College of Veterinary Medicine, Department of Biomedical Sciences, Section of Anatomic Pathology, Ithaca, NY, USA
| |
Collapse
|