1
|
Paredes-Villa AA, Aguilar-Arce IE, Meneses-Morales I, Cervantes-Roldán R, Valadéz-Graham V, León-Del-Río A. NHERF2 regulatory function in signal transduction pathways and control of gene expression: Implications for cellular homeostasis and breast cancer. Arch Med Res 2025; 56:103179. [PMID: 39813852 DOI: 10.1016/j.arcmed.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2) is a nucleocytoplasmic protein initially identified as a regulator of membrane-bound sodium-hydrogen exchanger 3 (NHE3). In the cytoplasm, NHERF2 regulates the activity of G protein-coupled receptors (GPCRs), including beta-2 adrenergic receptor (2β-AR), lysophosphatidic acid receptor 2, and parathyroid hormone type 1 receptor. In the nucleus, NHERF2 acts as a coregulator of transcription factors such as sex-determining region Y protein (SRY), involved in male sex determination, and estrogen receptor alpha (ERα). ERα is a ligand-dependent transcription factor that controls mammary gland growth and differentiation during puberty and pregnancy and plays a major role in the development and progression of breast cancer tumors. Altogether, the regulatory functions of NHERF2 on ion channels, GPCRs, and nuclear transcription factors have a modulatory effect on signal transduction pathways, metabolic homeostasis, cell proliferation and differentiation, neurotransmission, muscle contraction, and renal electrolyte balance. This work highlights NHERF2 functions in the cytoplasm and nucleus and underscores the nuclear mechanisms through which NHERF2 participates in the regulation of gene expression and tumor growth and progression in breast cancer.
Collapse
Affiliation(s)
- Adrián-Alejandro Paredes-Villa
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isaac Esaú Aguilar-Arce
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Posgrado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Iván Meneses-Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Rafael Cervantes-Roldán
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Viviana Valadéz-Graham
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alfonso León-Del-Río
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Patel NM, Ripoll L, Peach CJ, Ma N, Blythe EE, Vaidehi N, Bunnett NW, von Zastrow M, Sivaramakrishnan S. Myosin VI drives arrestin-independent internalization and signaling of GPCRs. Nat Commun 2024; 15:10636. [PMID: 39638791 PMCID: PMC11621365 DOI: 10.1038/s41467-024-55053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
G protein-coupled receptor (GPCR) endocytosis is canonically associated with β-arrestins. Here, we delineate a β-arrestin-independent endocytic pathway driven by the cytoskeletal motor, myosin VI. Myosin VI engages GIPC, an adaptor protein that binds a PDZ sequence motif present at the C-terminus of several GPCRs. Using the D2 dopamine receptor (D2R) as a prototype, we find that myosin VI regulates receptor endocytosis, spatiotemporal localization, and signaling. We find that access to the D2R C-tail for myosin VI-driven internalization is controlled by an interaction between the C-tail and the third intracellular loop of the receptor. Agonist efficacy, co-factors, and GIPC expression modulate this interaction to tune agonist trafficking. Myosin VI is differentially regulated by distinct GPCR C-tails, suggesting a mechanism to shape spatiotemporal signaling profiles in different ligand and physiological contexts. Our biophysical and structural insights may advance orthogonal therapeutic strategies for targeting GPCRs through cytoskeletal motor proteins.
Collapse
Affiliation(s)
- Nishaben M Patel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Léa Ripoll
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Chloe J Peach
- Department of Molecular Pathobiology, New York University, New York, NY, USA
- School of Life Sciences, Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, UK
| | - Ning Ma
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Emily E Blythe
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Tillison EA, Sahoo D. Sticky Business: Correlating Oligomeric Features of Class B Scavenger Receptors to Lipid Transport. Curr Atheroscler Rep 2024; 27:15. [PMID: 39630384 DOI: 10.1007/s11883-024-01260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE OF THE REVIEW Atherosclerotic plaques result from imbalanced lipid metabolism and maladaptive chronic immune responses. Class B scavenger receptors are lipid transporters and regulators of their metabolism. The purpose of this review is to explore recent structural findings of these membrane-associated receptors, with particular focus on their higher-order oligomeric organization and impact on lipid transport. RECENT FINDINGS Class B scavenger receptors have evidence for oligomerization, with recent efforts placed on identifying residues and motifs responsible for mediating this process. The first studies correlating scavenger receptor oligomerization to function are described. This review highlights two emerging hypotheses regarding the function of scavenger receptor oligomerization. The first is a hydrophobic channel created by self-association of receptors to promote transport. The second hypothesis suggests that homo-oligomerization stabilizes receptors, prevents internalization and thereby promotes transport indirectly. Novel computational and in vitro experimental techniques with purified receptors are also described.
Collapse
Affiliation(s)
- Emma A Tillison
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Division of Endocrinology & Molecular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- H4930 Health Research Center, Medical College of Wisconsin, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Dagunts A, Adoff H, Novy B, Maria MD, Lobingier BT. Retromer Opposes Opioid-Induced Downregulation of the Mu Opioid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626482. [PMID: 39677727 PMCID: PMC11642924 DOI: 10.1101/2024.12.02.626482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The mu opioid receptor (MOR) is protected from opioid-induced trafficking to lysosomes and proteolytic downregulation by its ability to access the endosomal recycling pathway through its C-terminal recycling motif, LENL. MOR sorting towards the lysosome results in downregulation of opioid signaling while recycling of MOR to the plasma membrane preserves signaling function. However, the mechanisms by which LENL promotes MOR recycling are unknown, and this sequence does not match any known consensus recycling motif. Here we took a functional genomics approach with a comparative genome-wide screen design to identify genes which control opioid receptor expression and downregulation. We identified 146 hits including all three subunits of the endosomal Retromer complex. We show that the LENL motif in MOR is a novel Retromer recycling motif and that LENL is a necessary, sufficient, and conserved mechanism to give MOR access to the Retromer recycling pathway and protect MOR from agonist-induced downregulation to multiple clinically relevant opioids including fentanyl and methadone.
Collapse
Affiliation(s)
- Aleksandra Dagunts
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hayden Adoff
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brandon Novy
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
5
|
Crecelius JM, Manz AR, Benzow S, Marchese A. Receptor Determinants for β-Arrestin Functional Specificity at C-X-C Chemokine Receptor 5. Mol Pharmacol 2024; 106:287-297. [PMID: 39472027 PMCID: PMC11585254 DOI: 10.1124/molpharm.124.000942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024] Open
Abstract
β-arrestins are multifaceted adaptor proteins that mediate G protein-coupled receptor (GPCR) desensitization, internalization, and signaling. It is emerging that receptor-specific determinants specify these divergent functions at GPCRs, yet this remains poorly understood. Here, we set out to identify the receptor determinants responsible for β-arrestin-mediated regulation of the chemokine receptor C-X-C motif chemokine receptor 5 (CXCR5). Using bioluminescence resonance energy transfer, we show that β-arrestin1 and β-arrestin2 are dose-dependently recruited to CXCR5 by its cognate ligand C-X-C motif chemokine ligand 13 (CXCL13). The carboxy-terminal tail of CXCR5 contains several serine/threonine residues that can be divided into three discrete phospho-site clusters based on their position relative to transmembrane domain 7. Mutagenesis experiments revealed that the distal and medial phospho-site clusters, but not the proximal, are required for agonist-stimulated β-arrestin1 or β-arrestin2 recruitment to CXCR5. Consistent with this, we provide evidence that the distal and medial, but not proximal, phospho-site clusters are required for receptor desensitization. Surprisingly, the individual phospho-site clusters are not required for agonist-stimulated internalization of CXCR5. Further, we show that CXCL13-stimulated CXCR5 internalization and ERK1/2 phosphorylation, but not desensitization, remain intact in human embryonic kidney 293 cells lacking β-arrestin1 and β-arrestin2. Our study provides evidence that β-arrestins are recruited to CXCR5 and are required for desensitization but are dispensable for internalization or signaling, suggesting that discrete receptor determinants specify the divergent functions of β-arrestins. SIGNIFICANCE STATEMENT: C-X-C motif ligand 13 (CXCL13) and C-X-C motif chemokine receptor 5 (CXCR5) are important in the immune system and are linked to diseases, yet regulation of CXCR5 signaling remains poorly understood. We provide evidence that a phospho-site cluster located at the extreme distal carboxyl-terminal tail of the receptor is responsible for β-arrestin recruitment and receptor desensitization. β-arrestins are not required for CXCL13-stimulated internalization or signaling, indicating that β-arrestins perform only one of their functions at CXCR5 and that discrete receptor determinants specify the divergent functions of β-arrestins.
Collapse
Affiliation(s)
- Joseph M Crecelius
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aaren R Manz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sara Benzow
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
6
|
Sirbu A, Bathe-Peters M, Kumar JLM, Inoue A, Lohse MJ, Annibale P. Cell swelling enhances ligand-driven β-adrenergic signaling. Nat Commun 2024; 15:7822. [PMID: 39242606 PMCID: PMC11379887 DOI: 10.1038/s41467-024-52191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
G protein-coupled receptors' conformational landscape can be affected by their local, microscopic interactions within the cell plasma membrane. We employ here a pleiotropic stimulus, namely osmotic swelling, to alter the cortical environment within intact cells and monitor the response in terms of receptor function and downstream signaling. We observe that in osmotically swollen cells the β2-adrenergic receptor, a prototypical GPCR, favors an active conformation, resulting in cAMP transient responses to adrenergic stimulation that have increased amplitude. The results are validated in primary cell types such as adult cardiomyocytes, a model system where swelling occurs upon ischemia-reperfusion injury. Our results suggest that receptors' function is finely modulated by their biophysical context, and specifically that osmotic swelling acts as a potentiator of downstream signaling, not only for the β2-adrenergic receptor, but also for other receptors, hinting at a more general regulatory mechanism.
Collapse
Affiliation(s)
- Alexei Sirbu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Marc Bathe-Peters
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jothi L M Kumar
- School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- ISAR Bioscience Institute, Munich-Planegg, Germany
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
| |
Collapse
|
7
|
Xiang H, Bao C, Chen Q, Gao Q, Wang N, Gao Q, Mao L. Extracellular vesicles (EVs)' journey in recipient cells: from recognition to cargo release. J Zhejiang Univ Sci B 2024; 25:633-655. [PMID: 39155778 PMCID: PMC11337091 DOI: 10.1631/jzus.b2300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 08/20/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized bilayer vesicles that are shed or secreted by virtually every cell type. A variety of biomolecules, including proteins, lipids, coding and non-coding RNAs, and mitochondrial DNA, can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells, leading to alterations in the recipient cells, suggesting that EVs play an important role in intercellular communication. EVs play effective roles in physiology and pathology and could be used as diagnostic and therapeutic tools. At present, although the mechanisms of exosome biogenesis and secretion in donor cells are well understood, the molecular mechanism of EV recognition and uptake by recipient cells is still unclear. This review summarizes the current understanding of the molecular mechanisms of EVs' biological journey in recipient cells, from recognition to uptake and cargo release. Furthermore, we highlight how EVs escape endolysosomal degradation after uptake and thus release cargo, which is crucial for studies applying EVs as drug-targeted delivery vehicles. Knowledge of the cellular processes that govern EV uptake is important to shed light on the functions of EVs as well as on related clinical applications.
Collapse
Affiliation(s)
- Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Nan Wang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China.
| |
Collapse
|
8
|
Rossi M, Banskota N, Shin CH, Anerillas C, Tsitsipatis D, Yang JH, Munk R, Martindale J, Yang X, Piao Y, Mazan-Mamczarz K, Fan J, Lehrmann E, Lam KW, De S, Abdelmohsen K, Gorospe M. Increased PTCHD4 expression via m6A modification of PTCHD4 mRNA promotes senescent cell survival. Nucleic Acids Res 2024; 52:7261-7278. [PMID: 38721764 PMCID: PMC11229380 DOI: 10.1093/nar/gkae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 07/09/2024] Open
Abstract
RNA modifications, including N6-methyladenosine (m6A), critically modulate protein expression programs in a range of cellular processes. Although the transcriptomes of cells undergoing senescence are strongly regulated, the landscape and impact of m6A modifications during senescence are poorly understood. Here, we report a robust m6A modification of PTCHD4 mRNA, encoding Patched Domain-Containing Protein 4, in senescent cells. The METTL3/METTL14 complex was found to incorporate the m6A modification on PTCHD4 mRNA; addition of m6A rendered PTCHD4 mRNA more stable and increased PTCHD4 production. MeRIP RT-qPCR and eCLIP analyses were used to map this m6A modification to the last exon of PTCHD4 mRNA. Further investigation identified IGF2BP1, but not other m6A readers, as responsible for the stabilization and increased abundance of m6A-modified PTCHD4 mRNA. Silencing PTCHD4, a transmembrane protein, enhanced growth arrest and DNA damage in pre-senescent cells and sensitized them to senolysis and apoptosis. Our results indicate that m6A modification of PTCHD4 mRNA increases the production of PTCHD4, a protein associated with senescent cell survival, supporting the notion that regulating m6A modification on specific mRNAs could be exploited to eliminate senescent cells for therapeutic benefit.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Kwan-Wood Gabriel Lam
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| |
Collapse
|
9
|
Flores-Espinoza E, Thomsen ARB. Beneath the surface: endosomal GPCR signaling. Trends Biochem Sci 2024; 49:520-531. [PMID: 38643023 PMCID: PMC11162320 DOI: 10.1016/j.tibs.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 04/22/2024]
Abstract
G protein-coupled receptors (GPCRs) located at the cell surface bind extracellular ligands and convey intracellular signals via activation of heterotrimeric G proteins. Traditionally, G protein signaling was viewed to occur exclusively at this subcellular region followed by rapid desensitization facilitated by β-arrestin (βarr)-mediated G protein uncoupling and receptor internalization. However, emerging evidence over the past 15 years suggests that these βarr-mediated events do not necessarily terminate receptor signaling and that some GPCRs continue to activate G proteins after having been internalized into endosomes. Here, we review the recently elucidated mechanistic basis underlying endosomal GPCR signaling and discuss physiological implications and pharmacological targeting of this newly appreciated signaling mode.
Collapse
Affiliation(s)
- Emmanuel Flores-Espinoza
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| | - Alex R B Thomsen
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
10
|
Stykel MG, Ryan SD. Network analysis of S-nitrosylated synaptic proteins demonstrates unique roles in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119720. [PMID: 38582237 DOI: 10.1016/j.bbamcr.2024.119720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Nitric oxide can covalently modify cysteine thiols on target proteins to alter that protein's function in a process called S-nitrosylation (SNO). S-nitrosylation of synaptic proteins plays an integral part in neurotransmission. Here we review the function of the SNO-proteome at the synapse and whether clusters of SNO-modification may predict synaptic dysfunction associated with disease. We used a systematic search strategy to concatenate SNO-proteomic datasets from normal human or murine brain samples. Identified SNO-modified proteins were then filtered against proteins reported in the Synaptome Database, which provides a detailed and experimentally verified annotation of all known synaptic proteins. Subsequently, we performed an unbiased network analysis of all known SNO-synaptic proteins to identify clusters of SNO proteins commonly involved in biological processes or with known disease associations. The resulting SNO networks were significantly enriched in biological processes related to metabolism, whereas significant gene-disease associations were related to Schizophrenia, Alzheimer's, Parkinson's and Huntington's disease. Guided by an unbiased network analysis, the current review presents a thorough discussion of how clustered changes to the SNO-proteome influence health and disease.
Collapse
Affiliation(s)
- Morgan G Stykel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada; Hotchkiss Brain Institute, Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
11
|
Chiang JY, Wei ST, Chang HJ, Chen DC, Wang HL, Lei FJ, Wei KY, Huang YC, Wang CC, Hsieh CH. ABCC4 suppresses glioblastoma progression and recurrence by restraining cGMP-PKG signalling. Br J Cancer 2024; 130:1324-1336. [PMID: 38347095 PMCID: PMC11014854 DOI: 10.1038/s41416-024-02581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cyclic nucleotides are critical mediators of cellular signalling in glioblastoma. However, the clinical relevance and mechanisms of regulating cyclic nucleotides in glioblastoma progression and recurrence have yet to be thoroughly explored. METHODS In silico, mRNA, and protein level analyses identified the primary regulator of cyclic nucleotides in recurrent human glioblastoma. Lentiviral and pharmacological manipulations examined the functional impact of cyclic nucleotide signalling in human glioma cell lines and primary glioblastoma cells. An orthotopic xenograft mice model coupled with aspirin hydrogels verified the in vivo outcome of targeting cyclic nucleotide signalling. RESULTS Elevated intracellular levels of cGMP, instead of cAMP, due to a lower substrate efflux from ATP-binding cassette sub-family C member 4 (ABCC4) is engaged in the recurrence of glioblastoma. ABCC4 gene expression is negatively associated with recurrence and overall survival outcomes in glioblastoma specimens. ABCC4 loss-of-function activates cGMP-PKG signalling, promoting malignancy in glioblastoma cells and xenografts. Hydrogels loaded with aspirin, inhibiting glioblastoma progression partly by upregulating ABCC4 expressions, augment the efficacy of standard-of-care therapies in orthotopic glioblastoma xenografts. CONCLUSION ABCC4, repressing the cGMP-PKG signalling pathway, is a tumour suppressor in glioblastoma progression and recurrence. Aspirin hydrogels impede glioblastoma progression through ABCC4 restoration and constitute a viable translational approach.
Collapse
Affiliation(s)
- Jung-Ying Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Sung-Tai Wei
- Division of Neurosurgery, Asia University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Huan-Jui Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Der-Cherng Chen
- Department of Neurosurgery, China Medical University and Hospital, Taichung, Taiwan
| | - Hwai-Lee Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Fu-Ju Lei
- Graduate Institute of Clinical Medical Sciences, China Medical University, Taichung, Taiwan
| | - Kai-Yu Wei
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Mingdao High School, Taichung, Taiwan
| | - Yen-Chih Huang
- Department of Medical Imaging, China Medical University and Hospital, Taichung, Taiwan
| | - Chi-Chung Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
12
|
Maranduca MA, Cozma CT, Clim A, Pinzariu AC, Tudorancea I, Popa IP, Lazar CI, Moscalu R, Filip N, Moscalu M, Constantin M, Scripcariu DV, Serban DN, Serban IL. The Molecular Mechanisms Underlying the Systemic Effects Mediated by Parathormone in the Context of Chronic Kidney Disease. Curr Issues Mol Biol 2024; 46:3877-3905. [PMID: 38785509 PMCID: PMC11120161 DOI: 10.3390/cimb46050241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic kidney disease (CKD) stands as a prominent non-communicable ailment, significantly impacting life expectancy. Physiopathology stands mainly upon the triangle represented by parathormone-Vitamin D-Fibroblast Growth Factor-23. Parathormone (PTH), the key hormone in mineral homeostasis, is one of the less easily modifiable parameters in CKD; however, it stands as a significant marker for assessing the risk of complications. The updated "trade-off hypothesis" reveals that levels of PTH spike out of the normal range as early as stage G2 CKD, advancing it as a possible determinant of systemic damage. The present review aims to review the effects exhibited by PTH on several organs while linking the molecular mechanisms to the observed actions in the context of CKD. From a diagnostic perspective, PTH is the most reliable and accessible biochemical marker in CKD, but its trend bears a higher significance on a patient's prognosis rather than the absolute value. Classically, PTH acts in a dichotomous manner on bone tissue, maintaining a balance between formation and resorption. Under the uremic conditions of advanced CKD, the altered intestinal microbiota majorly tips the balance towards bone lysis. Probiotic treatment has proven reliable in animal models, but in humans, data are limited. Regarding bone status, persistently high levels of PTH determine a reduction in mineral density and a concurrent increase in fracture risk. Pharmacological manipulation of serum PTH requires appropriate patient selection and monitoring since dangerously low levels of PTH may completely inhibit bone turnover. Moreover, the altered mineral balance extends to the cardiovascular system, promoting vascular calcifications. Lastly, the involvement of PTH in the Renin-Angiotensin-Aldosterone axis highlights the importance of opting for the appropriate pharmacological agent should hypertension develop.
Collapse
Affiliation(s)
- Minela Aida Maranduca
- Discipline of Physiology, Department of Morpho-Functional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (C.T.C.); (A.C.); (A.C.P.); (I.T.); (I.P.P.); (C.I.L.); (D.N.S.); (I.L.S.)
| | - Cristian Tudor Cozma
- Discipline of Physiology, Department of Morpho-Functional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (C.T.C.); (A.C.); (A.C.P.); (I.T.); (I.P.P.); (C.I.L.); (D.N.S.); (I.L.S.)
| | - Andreea Clim
- Discipline of Physiology, Department of Morpho-Functional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (C.T.C.); (A.C.); (A.C.P.); (I.T.); (I.P.P.); (C.I.L.); (D.N.S.); (I.L.S.)
| | - Alin Constantin Pinzariu
- Discipline of Physiology, Department of Morpho-Functional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (C.T.C.); (A.C.); (A.C.P.); (I.T.); (I.P.P.); (C.I.L.); (D.N.S.); (I.L.S.)
| | - Ionut Tudorancea
- Discipline of Physiology, Department of Morpho-Functional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (C.T.C.); (A.C.); (A.C.P.); (I.T.); (I.P.P.); (C.I.L.); (D.N.S.); (I.L.S.)
| | - Irene Paula Popa
- Discipline of Physiology, Department of Morpho-Functional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (C.T.C.); (A.C.); (A.C.P.); (I.T.); (I.P.P.); (C.I.L.); (D.N.S.); (I.L.S.)
| | - Cristina Iuliana Lazar
- Discipline of Physiology, Department of Morpho-Functional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (C.T.C.); (A.C.); (A.C.P.); (I.T.); (I.P.P.); (C.I.L.); (D.N.S.); (I.L.S.)
| | - Roxana Moscalu
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK;
| | - Nina Filip
- Discipline of Biochemistry, Department of Morpho-Functional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Constantin
- Internal Medicine Department, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Dragos Viorel Scripcariu
- Department of Surgery, Grigore T. Popa University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Dragomir Nicolae Serban
- Discipline of Physiology, Department of Morpho-Functional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (C.T.C.); (A.C.); (A.C.P.); (I.T.); (I.P.P.); (C.I.L.); (D.N.S.); (I.L.S.)
| | - Ionela Lacramioara Serban
- Discipline of Physiology, Department of Morpho-Functional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (C.T.C.); (A.C.); (A.C.P.); (I.T.); (I.P.P.); (C.I.L.); (D.N.S.); (I.L.S.)
| |
Collapse
|
13
|
Douguet L, Fert I, Lopez J, Vesin B, Le Chevalier F, Moncoq F, Authié P, Nguyen T, Noirat A, Névo F, Blanc C, Bourgine M, Hardy D, Anna F, Majlessi L, Charneau P. Full eradication of pre-clinical human papilloma virus-induced tumors by a lentiviral vaccine. EMBO Mol Med 2023; 15:e17723. [PMID: 37675835 PMCID: PMC10565635 DOI: 10.15252/emmm.202317723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Human papillomavirus (HPV) infections are the cause of all cervical and numerous oropharyngeal and anogenital cancers. The currently available HPV vaccines, which induce neutralizing antibodies, have no therapeutic effect on established tumors. Here, we developed an immuno-oncotherapy against HPV-induced tumors based on a non-integrative lentiviral vector encoding detoxified forms of the Early E6 and E7 oncoproteins of HPV16 and 18 genotypes, namely, "Lenti-HPV-07". A single intramuscular injection of Lenti-HPV-07 into mice bearing established HPV-induced tumors resulted in complete tumor eradication in 100% of the animals and was also effective against lung metastases. This effect correlated with CD8+ T-cell induction and profound remodeling of the tumor microenvironment. In the intra-tumoral infiltrates of vaccinated mice, the presence of large amounts of activated effector, resident memory, and transcription factor T cell factor-1 (TCF-1)+ "stem-like" CD8+ T cells was associated with full tumor eradication. The Lenti-HPV-07-induced immunity was long-lasting and prevented tumor growth after a late re-challenge, mimicking tumor relapse. Lenti-HPV-07 therapy synergizes with an anti-checkpoint inhibitory treatment and therefore shows promise as an immuno-oncotherapy against established HPV-mediated malignancies.
Collapse
Affiliation(s)
- Laëtitia Douguet
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Ingrid Fert
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Jodie Lopez
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Benjamin Vesin
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fabien Le Chevalier
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fanny Moncoq
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Pierre Authié
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Trang‐My Nguyen
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Amandine Noirat
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fabien Névo
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Catherine Blanc
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Maryline Bourgine
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - David Hardy
- Histopathology Platform, Institut PasteurUniversité de ParisParisFrance
| | - François Anna
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Laleh Majlessi
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Pierre Charneau
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| |
Collapse
|
14
|
Chen H, Weinberg ZY, Kumar GA, Puthenveedu MA. Vesicle-associated membrane protein 2 is a cargo-selective v-SNARE for a subset of GPCRs. J Cell Biol 2023; 222:e202207070. [PMID: 37022307 PMCID: PMC10082327 DOI: 10.1083/jcb.202207070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/26/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Vesicle fusion at the plasma membrane is critical for releasing hormones and neurotransmitters and for delivering the cognate G protein-coupled receptors (GPCRs) to the cell surface. The SNARE fusion machinery that releases neurotransmitters has been well characterized. In contrast, the fusion machinery that delivers GPCRs is still unknown. Here, using high-speed multichannel imaging to simultaneously visualize receptors and v-SNAREs in real time in individual fusion events, we identify VAMP2 as a selective v-SNARE for GPCR delivery. VAMP2 was preferentially enriched in vesicles that mediate the surface delivery of μ opioid receptor (MOR), but not other cargos, and was required selectively for MOR recycling. Interestingly, VAMP2 did not show preferential localization on MOR-containing endosomes, suggesting that v-SNAREs are copackaged with specific cargo into separate vesicles from the same endosomes. Together, our results identify VAMP2 as a cargo-selective v-SNARE and suggest that surface delivery of specific GPCRs is mediated by distinct fusion events driven by distinct SNARE complexes.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, University of MichiganMedical School, Ann Arbor, MI, USA
| | - Zara Y. Weinberg
- Department of Pharmacology, University of MichiganMedical School, Ann Arbor, MI, USA
| | - G. Aditya Kumar
- Department of Pharmacology, University of MichiganMedical School, Ann Arbor, MI, USA
| | | |
Collapse
|
15
|
Xu R, Wan M, Shi X, Ma S, Zhang L, Yi P, Zhang R. A Rab10-ACAP1-Arf6 GTPases cascade modulates M4 muscarinic acetylcholine receptor trafficking and signaling. Cell Mol Life Sci 2023; 80:87. [PMID: 36917255 PMCID: PMC11072986 DOI: 10.1007/s00018-023-04722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/16/2023]
Abstract
Membrane trafficking processes regulate the G protein-coupled receptor activity. The muscarinic acetylcholine receptors (mAChRs) are highly pursued drug targets for neurological diseases, but the cellular machineries that control the trafficking of these receptors remain largely elusive. Here, we revealed the role of the small GTPase Rab10 as a negative regulator for the post-activation trafficking of M4 mAChR and the underlying mechanism. We show that constitutively active Rab10 arrests the receptor within Rab5-positive early endosomes and significantly hinders the resensitization of M4-mediated Ca2+ signaling. Mechanistically, M4 binds to Rab10-GTP, which requires the motif 386RKKRQMAA393 (R386-A393) within the third intracellular loop. Moreover, Rab10-GTP inactivates Arf6 by recruiting the Arf6 GTPase-activating protein, ACAP1. Strikingly, deletion of the motif R386-A393 causes M4 to bypass the control by Rab10 and switch to the Rab4-facilitated fast recycling pathway, thus reusing the receptor. Therefore, Rab10 couples the cargo sorting and membrane trafficking regulation through cycle between GTP-bound and GDP-bound state. Our findings suggest a model that Rab10 binds to the M4 like a molecular brake and controls the receptor's transport through endosomes, thus modulating the signaling, and this regulation is specific among the mAChR subtypes.
Collapse
Affiliation(s)
- Rongmei Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Wan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
| | - Xuemeng Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shumin Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lina Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Zhao Y, Grigoryan G. Multiplex measurement of protein-peptide dissociation constants using dialysis and mass spectrometry. Protein Sci 2023; 32:e4607. [PMID: 36823715 PMCID: PMC10031237 DOI: 10.1002/pro.4607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
We propose a high-throughput method for quantitively measuring hundreds of protein-peptide binding affinities in parallel. In this assay a solution of protein is dialyzed into a buffer containing a pool of potential binding peptides, such that upon equilibration the relative abundance of a peptide species is mathematically related to that peptide's dissociation constant, Kd . We use isobaric multiplexed quantitative proteomics to simultaneously determine the relative abundance, and hence the Kd and its associated error, for an entire peptide library. We apply this technique, which we call PEDAL (Parallel Equilibrium Dialysis for Affinity Learning), to determine accurate Kd 's between a PDZ domain and hundreds of peptides, spanning an affinity range of multiple orders of magnitude in a single experiment. PEDAL is a convenient, fast, and low-cost method for measuring large numbers of protein-peptide affinities in parallel, providing a rare combination of true in-solution binding equilibria with the ability to multiplex. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
17
|
Shroka TM, Kufareva I, Salanga CL, Handel TM. The dual-function chemokine receptor CCR2 drives migration and chemokine scavenging through distinct mechanisms. Sci Signal 2023; 16:eabo4314. [PMID: 36719944 PMCID: PMC10091583 DOI: 10.1126/scisignal.abo4314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
C-C chemokine receptor 2 (CCR2) is a dual-function receptor. Similar to other G protein-coupled chemokine receptors, it promotes monocyte infiltration into tissues in response to the chemokine CCL2, and, like atypical chemokine receptors (ACKRs), it scavenges chemokine from the extracellular environment. CCR2 therefore mediates CCL2-dependent signaling as a G protein-coupled receptor (GPCR) and also limits CCL2 signaling as a scavenger receptor. We investigated the mechanisms underlying CCR2 scavenging, including the involvement of intracellular proteins typically associated with GPCR signaling and internalization. Using CRISPR knockout cell lines, we showed that CCR2 scavenged by constitutively internalizing to remove CCL2 from the extracellular space and recycling back to the cell surface for further rounds of ligand sequestration. This process occurred independently of G proteins, GPCR kinases (GRKs), β-arrestins, and clathrin, which is distinct from other "professional" chemokine scavenger receptors that couple to GRKs, β-arrestins, or both. These findings set the stage for understanding the molecular regulators that determine CCR2 scavenging and may have implications for drug development targeting this therapeutically important receptor.
Collapse
Affiliation(s)
- Thomas M. Shroka
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Catherina L. Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Eph Receptors in Cancer. Biomedicines 2023; 11:biomedicines11020315. [PMID: 36830852 PMCID: PMC9953285 DOI: 10.3390/biomedicines11020315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have a low expression in adults, functioning mainly in tissue homeostasis and plasticity, but are often overexpressed in cancers, where they are especially associated with undifferentiated or progenitor cells, and with tumour development, vasculature, and invasion. Mutations in Eph receptors also occur in various tumour types and are suspected to promote tumourigenesis. Ephs and ephrins have the capacity to operate as both tumour promoters and tumour suppressors, depending on the circumstances. They have been demonstrated to impact tumour cell proliferation, migration, and invasion in vitro, as well as tumour development, angiogenesis, and metastases in vivo, making them potential therapeutic targets. However, successful development of therapies will require detailed understanding of the opposing roles of Ephs in various cancers. In this review, we discuss the variations in Eph expression and functions in a variety of malignancies. We also describe the multiple strategies that are currently available to target them in tumours, including preclinical and clinical development.
Collapse
|
19
|
Stevens AO, Kazan IC, Ozkan B, He Y. Investigating the allosteric response of the PICK1 PDZ domain to different ligands with all-atom simulations. Protein Sci 2022; 31:e4474. [PMID: 36251217 PMCID: PMC9667829 DOI: 10.1002/pro.4474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
The PDZ family is comprised of small modular domains that play critical roles in the allosteric modulation of many cellular signaling processes by binding to the C-terminal tail of different proteins. As dominant modular proteins that interact with a diverse set of peptides, it is of particular interest to explore how different binding partners induce different allosteric effects on the same PDZ domain. Because the PICK1 PDZ domain can bind different types of ligands, it is an ideal test case to answer this question and explore the network of interactions that give rise to dynamic allostery. Here, we use all-atom molecular dynamics simulations to explore dynamic allostery in the PICK1 PDZ domain by modeling two PICK1 PDZ systems: PICK1 PDZ-DAT and PICK1 PDZ-GluR2. Our results suggest that ligand binding to the PICK1 PDZ domain induces dynamic allostery at the αA helix that is similar to what has been observed in other PDZ domains. We found that the PICK1 PDZ-ligand distance is directly correlated with both dynamic changes of the αA helix and the distance between the αA helix and βB strand. Furthermore, our work identifies a hydrophobic core between DAT/GluR2 and I35 as a key interaction in inducing such dynamic allostery. Finally, the unique interaction patterns between different binding partners and the PICK1 PDZ domain can induce unique dynamic changes to the PICK1 PDZ domain. We suspect that unique allosteric coupling patterns with different ligands may play a critical role in how PICK1 performs its biological functions in various signaling networks.
Collapse
Affiliation(s)
- Amy O. Stevens
- Department of Chemistry and Chemical BiologyThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - I. Can Kazan
- Department of Physics, Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | - Banu Ozkan
- Department of Physics, Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | - Yi He
- Department of Chemistry and Chemical BiologyThe University of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
20
|
Stevens AO, Luo S, He Y. Three Binding Conformations of BIO124 in the Pocket of the PICK1 PDZ Domain. Cells 2022; 11:cells11152451. [PMID: 35954295 PMCID: PMC9368557 DOI: 10.3390/cells11152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The PDZ family has drawn attention as possible drug targets because of the domains’ wide ranges of function and highly conserved binding pockets. The PICK1 PDZ domain has been proposed as a possible drug target because the interactions between the PICK1 PDZ domain and the GluA2 subunit of the AMPA receptor have been shown to progress neurodegenerative diseases. BIO124 has been identified as a sub µM inhibitor of the PICK1–GluA2 interaction. Here, we use all-atom molecular dynamics simulations to reveal the atomic-level interaction pattern between the PICK1 PDZ domain and BIO124. Our simulations reveal three unique binding conformations of BIO124 in the PICK1 PDZ binding pocket, referred to here as state 0, state 1, and state 2. Each conformation is defined by a unique hydrogen bonding network and a unique pattern of hydrophobic interactions between BIO124 and the PICK1 PDZ domain. Interestingly, each conformation of BIO124 results in different dynamic changes to the PICK1 PDZ domain. Unlike states 1 and 2, state 0 induces dynamic coupling between BIO124 and the αA helix. Notably, this dynamic coupling with the αA helix is similar to what has been observed in other PDZ–ligand complexes. Our analysis indicates that the interactions formed between BIO124 and I35 may be the key to inducing dynamic coupling with the αA helix. Lastly, we suspect that the conformational shifts observed in our simulations may affect the stability and thus the overall effectiveness of BIO124. We propose that a physically larger inhibitor may be necessary to ensure sufficient interactions that permit stable binding between a drug and the PICK1 PDZ domain.
Collapse
Affiliation(s)
- Amy O. Stevens
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Samuel Luo
- Albuquerque Academy, Albuquerque, NM 87131, USA
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence:
| |
Collapse
|
21
|
Vázquez-Ulloa E, Lin KL, Lizano M, Sahlgren C. Reversible and bidirectional signaling of notch ligands. Crit Rev Biochem Mol Biol 2022; 57:377-398. [PMID: 36048510 DOI: 10.1080/10409238.2022.2113029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kai-Lan Lin
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genomica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Cecilia Sahlgren
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
22
|
Moens U. Role of Signaling Pathways in the Viral Life Cycle 2.0. Int J Mol Sci 2022; 23:ijms23147857. [PMID: 35887205 PMCID: PMC9324909 DOI: 10.3390/ijms23147857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
23
|
Argani P, Tickoo SK, Matoso A, Pratilas CA, Mehra R, Tretiakova M, Sibony M, Meeker AK, Lin MT, Reuter VE, Epstein JI, Gagan J, Palsgrove DN. Adult Wilms Tumor: Genetic Evidence of Origin of a Subset of Cases From Metanephric Adenoma. Am J Surg Pathol 2022; 46:988-999. [PMID: 35184066 PMCID: PMC9310085 DOI: 10.1097/pas.0000000000001864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The genetics of nephroblastoma (Wilms tumor) occurring in adults is largely unknown, as studies have largely been limited to isolated case reports. We, therefore, studied 14 adult Wilms tumors for genetic alterations, using expanded targeted sequencing on 11 cases. The patients ranged from 17 to 46 years of age (mean and median, 31 y), and there were 8 males and 6 females. Five Wilms tumors harbored BRAF V600E mutations. All of these had better-differentiated areas identical to metanephric adenoma, as has previously been described. In 3 such cases, microdissection studies revealed that the BRAF V600E mutation was present in both the metanephric adenoma and Wilms tumor areas; however, additional genetic alterations (including TERT promoter mutations in 2 cases, ASLX1/ATR mutations in 1 other case) were limited to the Wilms tumor component. These findings suggest that the Wilms tumor developed from the metanephric adenoma. Other adult Wilms tumors harbored genetic alterations previously reported in the more common pediatric Wilms tumors, including WT1 mutations (2 cases), ASLX1 mutations (3 additional cases), NSD2 mutation (1 additional case), and 11p loss (3 cases). In summary, a significant subset of adult Wilms tumors (specifically those of epithelial type with differentiated areas) harbor targetable BRAF V600E mutations and appear to arise from metanephric adenomas as a consequence of additional acquired genetic alterations. Other adult Wilms tumors often harbor genetic alterations found in their more common pediatric counterparts, suggesting at least some similarities in their pathogenesis.
Collapse
Affiliation(s)
| | - Satish K. Tickoo
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Andres Matoso
- Departments of Pathology
- Departments of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Rohit Mehra
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Maria Tretiakova
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA
| | | | - Alan K. Meeker
- Departments of Pathology
- Departments of Oncology
- Departments of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Victor E. Reuter
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jonathan I. Epstein
- Departments of Pathology
- Departments of Oncology
- Departments of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Doreen N. Palsgrove
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
24
|
Friedman PA, Sneddon WB, Mamonova T, Montanez-Miranda C, Ramineni S, Harbin NH, Squires KE, Gefter JV, Magyar CE, Emlet DR, Hepler JR. RGS14 regulates PTH- and FGF23-sensitive NPT2A-mediated renal phosphate uptake via binding to the NHERF1 scaffolding protein. J Biol Chem 2022; 298:101836. [PMID: 35307350 PMCID: PMC9035407 DOI: 10.1016/j.jbc.2022.101836] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Phosphate homeostasis, mediated by dietary intake, renal absorption, and bone deposition, is incompletely understood because of the uncharacterized roles of numerous implicated protein factors. Here, we identified a novel role for one such element, regulator of G protein signaling 14 (RGS14), suggested by genome-wide association studies to associate with dysregulated Pi levels. We show that human RGS14 possesses a carboxy-terminal PDZ ligand required for sodium phosphate cotransporter 2a (NPT2A) and sodium hydrogen exchanger regulatory factor-1 (NHERF1)-mediated renal Pi transport. In addition, we found using isotope uptake measurements combined with bioluminescence resonance energy transfer assays, siRNA knockdown, pull-down and overlay assays, and molecular modeling that secreted proteins parathyroid hormone (PTH) and fibroblast growth factor 23 inhibited Pi uptake by inducing dissociation of the NPT2A-NHERF1 complex. PTH failed to affect Pi transport in cells expressing RGS14, suggesting that it suppresses hormone-sensitive but not basal Pi uptake. Interestingly, RGS14 did not affect PTH-directed G protein activation or cAMP formation, implying a postreceptor site of action. Further pull-down experiments and direct binding assays indicated that NPT2A and RGS14 bind distinct PDZ domains on NHERF1. We showed that RGS14 expression in human renal proximal tubule epithelial cells blocked the effects of PTH and fibroblast growth factor 23 and stabilized the NPT2A-NHERF1 complex. In contrast, RGS14 genetic variants bearing mutations in the PDZ ligand disrupted RGS14 binding to NHERF1 and subsequent PTH-sensitive Pi transport. In conclusion, these findings identify RGS14 as a novel regulator of hormone-sensitive Pi transport. The results suggest that changes in RGS14 function or abundance may contribute to the hormone resistance and hyperphosphatemia observed in kidney diseases.
Collapse
Affiliation(s)
- Peter A Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | - W Bruce Sneddon
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Carolina Montanez-Miranda
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Suneela Ramineni
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas H Harbin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Katherine E Squires
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Julia V Gefter
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Clara E Magyar
- Department of Pathology and Laboratory Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - David R Emlet
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
25
|
Identification of dysregulated pathways and key genes in human retinal angiogenesis using microarray metadata. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Stevens AO, He Y. Allosterism in the PDZ Family. Int J Mol Sci 2022; 23:1454. [PMID: 35163402 PMCID: PMC8836106 DOI: 10.3390/ijms23031454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Dynamic allosterism allows the propagation of signal throughout a protein. The PDZ (PSD-95/Dlg1/ZO-1) family has been named as a classic example of dynamic allostery in small modular domains. While the PDZ family consists of more than 200 domains, previous efforts have primarily focused on a few well-studied PDZ domains, including PTP-BL PDZ2, PSD-95 PDZ3, and Par6 PDZ. Taken together, experimental and computational studies have identified regions of these domains that are dynamically coupled to ligand binding. These regions include the αA helix, the αB lower-loop, and the αC helix. In this review, we summarize the specific residues on the αA helix, the αB lower-loop, and the αC helix of PTP-BL PDZ2, PSD-95 PDZ3, and Par6 PDZ that have been identified as participants in dynamic allostery by either experimental or computational approaches. This review can serve as an index for researchers to look back on the previously identified allostery in the PDZ family. Interestingly, our summary of previous work reveals clear consistencies between the domains. While the PDZ family has a low sequence identity, we show that some of the most consistently identified allosteric residues within PTP-BL PDZ2 and PSD-95 PDZ3 domains are evolutionarily conserved. These residues include A46/A347, V61/V362, and L66/L367 on PTP-BL PDZ2 and PSD-95 PDZ3, respectively. Finally, we expose a need for future work to explore dynamic allostery within (1) PDZ domains with multiple binding partners and (2) multidomain constructs containing a PDZ domain.
Collapse
Affiliation(s)
| | - Yi He
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA;
| |
Collapse
|
27
|
Protein-Protein Interaction Inhibitors Targeting the Eph-Ephrin System with a Focus on Amino Acid Conjugates of Bile Acids. Pharmaceuticals (Basel) 2022; 15:ph15020137. [PMID: 35215250 PMCID: PMC8880657 DOI: 10.3390/ph15020137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
The role of the Eph-ephrin system in the etiology of pathological conditions has been consolidated throughout the years. In this context, approaches directed against this signaling system, intended to modulate its activity, can be strategic therapeutic opportunities. Currently, the most promising class of compounds able to interfere with the Eph receptor-ephrin protein interaction is composed of synthetic derivatives of bile acids. In the present review, we summarize the progresses achieved, in terms of chemical expansions and structure-activity relationships, both in the steroidal core and the terminal carboxylic acid group, along with the pharmacological characterization for the most promising Eph-ephrin antagonists in in vivo settings.
Collapse
|
28
|
Potjewyd FM, Axtman AD. Exploration of Aberrant E3 Ligases Implicated in Alzheimer's Disease and Development of Chemical Tools to Modulate Their Function. Front Cell Neurosci 2021; 15:768655. [PMID: 34867205 PMCID: PMC8637409 DOI: 10.3389/fncel.2021.768655] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) is responsible for the degradation of misfolded or aggregated proteins via a multistep ATP-dependent proteolytic mechanism. This process involves a cascade of ubiquitin (Ub) transfer steps from E1 to E2 to E3 ligase. The E3 ligase transfers Ub to a targeted protein that is brought to the proteasome for degradation. The inability of the UPS to remove misfolded or aggregated proteins due to UPS dysfunction is commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD). UPS dysfunction in AD drives disease pathology and is associated with the common hallmarks such as amyloid-β (Aβ) accumulation and tau hyperphosphorylation, among others. E3 ligases are key members of the UPS machinery and dysfunction or changes in their expression can propagate other aberrant processes that accelerate AD pathology. The upregulation or downregulation of expression or activity of E3 ligases responsible for these processes results in changes in protein levels of E3 ligase substrates, many of which represent key proteins that propagate AD. A powerful way to better characterize UPS dysfunction in AD and the role of individual E3 ligases is via the use of high-quality chemical tools that bind and modulate specific E3 ligases. Furthermore, through combining gene editing with recent advances in 3D cell culture, in vitro modeling of AD in a dish has become more relevant and possible. These cell-based models of AD allow for study of specific pathways and mechanisms as well as characterization of the role E3 ligases play in driving AD. In this review, we outline the key mechanisms of UPS dysregulation linked to E3 ligases in AD and highlight the currently available chemical modulators. We present several key approaches for E3 ligase ligand discovery being employed with respect to distinct classes of E3 ligases. Where possible, specific examples of the use of cultured neurons to delineate E3 ligase biology have been captured. Finally, utilizing the available ligands for E3 ligases in the design of proteolysis targeting chimeras (PROTACs) to degrade aberrant proteins is a novel strategy for AD, and we explore the prospects of PROTACs as AD therapeutics.
Collapse
|
29
|
Nardella C, Visconti L, Malagrinò F, Pagano L, Bufano M, Nalli M, Coluccia A, La Regina G, Silvestri R, Gianni S, Toto A. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biol Direct 2021; 16:15. [PMID: 34641953 PMCID: PMC8506081 DOI: 10.1186/s13062-021-00303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
30
|
Zhang Q, Friedman PA. Receptor-Loaded Virion Endangers GPCR Signaling: Mechanistic Exploration of SARS-CoV-2 Infections and Pharmacological Implications. Int J Mol Sci 2021; 22:ijms222010963. [PMID: 34681624 PMCID: PMC8535999 DOI: 10.3390/ijms222010963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023] Open
Abstract
SARS-CoV-2 exploits the respiratory tract epithelium including lungs as the primary entry point and reaches other organs through hematogenous expansion, consequently causing multiorgan injury. Viral E protein interacts with cell junction-associated proteins PALS1 or ZO-1 to gain massive penetration by disrupting the inter-epithelial barrier. Conversely, receptor-mediated viral invasion ensures limited but targeted infections in multiple organs. The ACE2 receptor represents the major virion loading site by virtue of its wide tissue distribution as demonstrated in highly susceptible lung, intestine, and kidney. In brain, NRP1 mediates viral endocytosis in a similar manner to ACE2. Prominently, PDZ interaction involves the entire viral loading process either outside or inside the host cells, whereas E, ACE2, and NRP1 provide the PDZ binding motif required for interacting with PDZ domain-containing proteins PALS1, ZO-1, and NHERF1, respectively. Hijacking NHERF1 and β-arrestin by virion loading may impair specific sensory GPCR signalosome assembling and cause disordered cellular responses such as loss of smell and taste. PDZ interaction enhances SARS-CoV-2 invasion by supporting viral receptor membrane residence, implying that the disruption of these interactions could diminish SARS-CoV-2 infections and be another therapeutic strategy against COVID-19 along with antibody therapy. GPCR-targeted drugs are likely to alleviate pathogenic symptoms-associated with SARS-CoV-2 infection.
Collapse
|
31
|
Guo ZS, Qu Z. PDLIM2: Signaling pathways and functions in cancer suppression and host immunity. Biochim Biophys Acta Rev Cancer 2021; 1876:188630. [PMID: 34571051 DOI: 10.1016/j.bbcan.2021.188630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
PDZ and LIM domains-containing proteins play pivotal functions in cell cytoskeleton organization, cell polarization and differentiation. As a key member of the family, PDLIM2 regulates stability and activity of transcription factors such as NF-κB, STATs and β-catenin, and thus exert it functions in inflammation, immunity, and cancer. PDLIM2 functions as a tumor suppressor in multiple tissues and it is often genetically mutated or epigenetically silenced in human cancers derived from lung, breast, ovarian and other histologies. However, in certain types of cancers, PDLIM2 may promote cancer cell proliferation and metastases. Therefore, PDLIM2 is added to a long list of genes that can function as tumor suppressor or oncogenic protein. During tumorigenesis induced by oncogenic viruses, PDLIM2 is a key target. Through promotion of NF-κB/RelA and STAT3 degradation, PDLIM2 enhances expression of proteins involved in antigen presentation and promotes T-cell activation while repressing multidrug resistance genes, thereby rendering mutated cells susceptible to immune surveillance and cytotoxicity mediated by immune cells and chemotherapeutic drugs. Intriguingly, PDLIM2 in alveolar macrophages (AMs) plays key roles in monitoring lung tumorigenesis, as its selective genetic deletion leads to constitutive activation of STAT3, driving monocyte differentiation to AMs with pro-tumorigenic polarization and activation. PDLIM2 has also been explored as a therapeutic target for cancer therapy. At the end of this review, we provide perspectives on this important molecule and discuss the future directions of both basic and translational studies.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Rodat-Despoix L, Chamlali M, Ouadid-Ahidouch H. Ion channels as key partners of cytoskeleton in cancer disease. Biochim Biophys Acta Rev Cancer 2021; 1876:188627. [PMID: 34520803 DOI: 10.1016/j.bbcan.2021.188627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
Several processes occur during tumor development including changes in cell morphology, a reorganization of the expression and distribution of the cytoskeleton proteins as well as ion channels. If cytoskeleton proteins and ion channels have been widely investigated in understanding cancer mechanisms, the interaction between these two elements and the identification of the associated signaling pathways are only beginning to emerge. In this review, we summarize the work published over the past 15 years relating to the roles played by ion channels in these mechanisms of reorganization of the cellular morphology, essential to metastatic dissemination, both through the physical interactions with elements of the cytoskeleton and by intracellular signaling pathways involved.
Collapse
Affiliation(s)
- Lise Rodat-Despoix
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France.
| | - Mohamed Chamlali
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| |
Collapse
|
33
|
ACE2 interaction with cytoplasmic PDZ protein enhances SARS-CoV-2 invasion. iScience 2021; 24:102770. [PMID: 34189428 PMCID: PMC8223119 DOI: 10.1016/j.isci.2021.102770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/23/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 is responsible for the global COVID-19 pandemic. Angiotensin converting enzyme 2 (ACE2) is the membrane-delimited receptor for SARS-CoV-2. Lung, intestine, and kidney, major sites of viral infection, express ACE2 that harbors an intracellular, carboxy-terminal PDZ-recognition motif. These organs prominently express the PDZ protein Na+/H+ exchanger regulatory factor-1 (NHERF1). Here, we report NHERF1 tethers ACE2 and augments SARS-CoV-2 cell entry. ACE2 directly binds both NHERF1 PDZ domains. Disruption of either NHERF1 PDZ core-binding motif or the ACE2 PDZ recognition sequence eliminates interaction. Proximity ligation assays establish that ACE2 and NHERF1 interact at constitutive expression levels in human lung and intestine cells. Ablating ACE2 interaction with NHERF1 accelerated SARS-CoV-2 cell entry. Conversely, elimination of the ACE2 C-terminal PDZ-binding motif decreased ACE2 membrane residence and reduced pseudotyped virus entry. We conclude that the PDZ interaction of ACE2 with NHERF1 facilitates SARS-CoV-2 internalization. β-Arrestin is likely indispensable, as with G protein-coupled receptors. The SARS-CoV-2 receptor ACE2 C-terminal PDZ-recognition motif 802QTSF805 binds to NHERF1 NHERF1 and ACE2 interact directly in SARS-CoV-2-susceptible lung and intestine cells NHERF1 expression correlates with SARS-CoV-2 entry by regulating ACE2 membrane abundance β-Arrestins may cooperate with NHERF1 to promote ACE2-mediated SARS-CoV-2 cell entry
Collapse
|
34
|
Solís KH, Romero-Ávila MT, Guzmán-Silva A, García-Sáinz JA. The LPA 3 Receptor: Regulation and Activation of Signaling Pathways. Int J Mol Sci 2021; 22:ijms22136704. [PMID: 34201414 PMCID: PMC8269014 DOI: 10.3390/ijms22136704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
The lysophosphatidic acid 3 receptor (LPA3) participates in different physiological actions and in the pathogenesis of many diseases through the activation of different signal pathways. Knowledge of the regulation of the function of the LPA3 receptor is a crucial element for defining its roles in health and disease. This review describes what is known about the signaling pathways activated in terms of its various actions. Next, we review knowledge on the structure of the LPA3 receptor, the domains found, and the roles that the latter might play in ligand recognition, signaling, and cellular localization. Currently, there is some information on the action of LPA3 in different cells and whole organisms, but very little is known about the regulation of its function. Areas in which there is a gap in our knowledge are indicated in order to further stimulate experimental work on this receptor and on other members of the LPA receptor family. We are convinced that knowledge on how this receptor is activated, the signaling pathways employed and how the receptor internalization and desensitization are controlled will help design new therapeutic interventions for treating diseases in which the LPA3 receptor is implicated.
Collapse
|
35
|
New Structural Perspectives in G Protein-Coupled Receptor-Mediated Src Family Kinase Activation. Int J Mol Sci 2021; 22:ijms22126489. [PMID: 34204297 PMCID: PMC8233884 DOI: 10.3390/ijms22126489] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
Src family kinases (SFKs) are key regulators of cell proliferation, differentiation, and survival. The expression of these non-receptor tyrosine kinases is strongly correlated with cancer development and tumor progression. Thus, this family of proteins serves as an attractive drug target. The activation of SFKs can occur via multiple signaling pathways, yet many of them are poorly understood. Here, we summarize the current knowledge on G protein-coupled receptor (GPCR)-mediated regulation of SFKs, which is of considerable interest because GPCRs are among the most widely used pharmaceutical targets. This type of activation can occur through a direct interaction between the two proteins or be allosterically regulated by arrestins and G proteins. We postulate that a rearrangement of binding motifs within the active conformation of arrestin-3 mediates Src regulation by comparison of available crystal structures. Therefore, we hypothesize a potentially different activation mechanism compared to arrestin-2. Furthermore, we discuss the probable direct regulation of SFK by GPCRs and investigate the intracellular domains of exemplary GPCRs with conserved polyproline binding motifs that might serve as scaffolding domains to allow such a direct interaction. Large intracellular domains in GPCRs are often understudied and, in general, not much is known of their contribution to different signaling pathways. The suggested direct interaction between a GPCR and a SFK could allow for a potential immediate allosteric regulation of SFKs by GPCRs and thereby unravel a novel mechanism of SFK signaling. This overview will help to identify new GPCR-SFK interactions, which could serve to explain biological functions or be used to modulate downstream effectors.
Collapse
|
36
|
The polarity protein PARD3 and cancer. Oncogene 2021; 40:4245-4262. [PMID: 34099863 DOI: 10.1038/s41388-021-01813-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/10/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Tissue disorganisation is one of the main hallmarks of cancer. Polarity proteins are responsible for the arrangement of cells within epithelial tissues through the asymmetric organisation of cellular components. Partition defective 3 (PARD3) is a master regulator of the Par polarity complex primarily due to its ability to form large complexes via its self-homologous binding domain. In addition to its role in polarity, PARD3 is a scaffolding protein that binds to intracellular signalling molecules, many of which are frequently deregulated in cancer. The role of PARD3 has been implicated in multiple solid cancers as either a tumour suppressor or promoter. This dual functionality is both physiologically and cell context dependent. In this review, we will discuss PARD3's role in tumourigenesis in both laboratory and clinical settings. We will also review several of the mechanisms underpinning PARD3's function including its association with intracellular signalling pathways and its role in the regulation of asymmetric cell division.
Collapse
|
37
|
Ud Din Farooqee SB, Christie J, Venkatraman P. PSMD9 ribosomal protein network maintains nucleolar architecture and WT p53 levels. Biochem Biophys Res Commun 2021; 563:105-112. [PMID: 34077860 DOI: 10.1016/j.bbrc.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Capitalizing on an unexpected observation that multiple free ribosomal proteins co-purify/pull-down with PSMD9, we report here for the first time that PSMD9 is necessary to maintain the morphology and integrity of the nucleolus. As seen by NPM1 immunofluorescence and electron microscopy, the nucleolar structure is clearly disrupted in PSMD9 null MCF7 breast cancer cells. The resultant stress is pronounced leading to the accumulation of WT p53 and slow growth. A dual insult with Actinomycin D exasperates the nucleolar stress in these cells which fail to recover in stipulated time. This double insult in the WT cells enhances the interaction of PSMD9 with ribosomal subunits. Our data also reveals that in PSMD9 null cells, ribosomal proteins RPS25 and RPL15 fail to localise in the nucleolus. We speculate that the interaction of PSMD9 with multiple free ribosome subunits has at least two important implications: a) PSMD9 plays a role in trafficking of ribosomal proteins into the nucleolus, therefore contributing to the maintenance of structural and morphological organization of the membrane-less nucleolar compartment; b) under conditions that induce nucleolar stress, PSMD9-Ribosomal Protein interaction protects WT MCF7 breast cancer cells from slow growth and eventual death. This possibility renders the domains of PSMD9 to be attractive drug targets in the context of cancer and other multiple ribosome-associated disorders.
Collapse
Affiliation(s)
- Sheikh Burhan Ud Din Farooqee
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, Maharashtra, 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Joel Christie
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, Maharashtra, 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Prasanna Venkatraman
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Sector 22, Kharghar, Navi Mumbai, Maharashtra, 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
38
|
Polarity scaffolds signaling in epithelial cell permeability. Inflamm Res 2021; 70:525-538. [PMID: 33721031 DOI: 10.1007/s00011-021-01454-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/20/2021] [Accepted: 03/06/2021] [Indexed: 01/14/2023] Open
Abstract
As an integral part of the innate immune system, the epithelial membrane is exposed to an array of insults that may trigger an immune response. One of the immune system's main functions is to regulate the level of communications between the mucosa and the lumen of various tissues. While it is clear that inhaled or ingested substances, or microorganisms may induce changes that affect the epithelial barrier in various ways, the proteins involved in the signaling cascades and physiological events leading to the regulation and maintenance of the barrier are not always well characterized. We review here some of the signaling components involved in regulating the barrier's paracellular permeability, and their potential effects on the activation of an immune response. While an effective immune response must be launched against pathogenic insults, tolerance must also be maintained for non-pathogenic antigens such as those in the commensal flora or for endogenous metabolites. Along with other members of the innate and adaptive immunity, the endocannabinoid system also plays an instrumental role in maintaining the balance between inflammation and tolerance. We discuss the potential effects of endo- and phytocannabinoids on epithelial permeability and how the dysregulation of this system could be involved in diseases and targeted for therapy.
Collapse
|
39
|
Vistrup-Parry M, Sneddon WB, Bach S, Strømgaard K, Friedman PA, Mamonova T. Multisite NHERF1 phosphorylation controls GRK6A regulation of hormone-sensitive phosphate transport. J Biol Chem 2021; 296:100473. [PMID: 33639163 PMCID: PMC8042174 DOI: 10.1016/j.jbc.2021.100473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The type II sodium-dependent phosphate cotransporter (NPT2A) mediates renal phosphate uptake. The NPT2A is regulated by parathyroid hormone (PTH) and fibroblast growth factor 23, which requires Na+/H+ exchange regulatory factor-1 (NHERF1), a multidomain PDZ-containing phosphoprotein. Phosphocycling controls the association between NHERF1 and the NPT2A. Here, we characterize the critical involvement of G protein–coupled receptor kinase 6A (GRK6A) in mediating PTH-sensitive phosphate transport by targeted phosphorylation coupled with NHERF1 conformational rearrangement, which in turn allows phosphorylation at a secondary site. GRK6A, through its carboxy-terminal PDZ recognition motif, binds NHERF1 PDZ1 with greater affinity than PDZ2. However, the association between NHERF1 PDZ2 and GRK6A is necessary for PTH action. Ser162, a PKCα phosphorylation site in PDZ2, regulates the binding affinity between PDZ2 and GRK6A. Substitution of Ser162 with alanine (S162A) blocks the PTH action but does not disrupt the interaction between NHERF1 and the NPT2A. Replacement of Ser162 with aspartic acid (S162D) abrogates the interaction between NHERF1 and the NPT2A and concurrently PTH action. We used amber codon suppression to generate a phosphorylated Ser162(pSer162)-PDZ2 variant. KD values determined by fluorescence anisotropy indicate that incorporation of pSer162 increased the binding affinity to the carboxy terminus of GRK6A 2-fold compared with WT PDZ2. Molecular dynamics simulations predict formation of an electrostatic network between pSer162 and Asp183 of PDZ2 and Arg at position −1 of the GRK6A PDZ-binding motif. Our results suggest that PDZ2 plays a regulatory role in PTH-sensitive NPT2A-mediated phosphate transport and phosphorylation of Ser162 in PDZ2 modulates the interaction with GRK6A.
Collapse
Affiliation(s)
- Maria Vistrup-Parry
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - W Bruce Sneddon
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sofie Bach
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter A Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
40
|
Carr HS, Chang JT, Frost JA. The PDZ Domain Protein SYNJ2BP Regulates GRK-Dependent Sst2A Phosphorylation and Downstream MAPK Signaling. Endocrinology 2021; 162:6031468. [PMID: 33313679 PMCID: PMC7799432 DOI: 10.1210/endocr/bqaa229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 11/19/2022]
Abstract
The somatostatin receptor 2A (SST2) is a G-protein-coupled receptor (GPCR) that is expressed in neuroendocrine tissues within the gastrointestinal tract and brain, and is commonly overexpressed in many neuroendocrine tumors. Moreover, SST2 agonists are used clinically as the primary pharmacological treatment to suppress excess hormone secretion in a variety of neuroendocrine tumors. Despite its wide clinical use, mechanisms controlling the trafficking and signaling of SST2 are not fully understood. SST2 contains a C-terminal post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) domain-binding motif that has been shown to interact with 3 different PDZ domain-containing proteins. However, the consequences of these interactions are not well understood, nor is it known whether additional PDZ domain proteins interact with SST2. Through unbiased screening we have identified 10 additional PDZ domain proteins that interact with SST2. We chose one of these, SYNJ2BP, for further study. We observed that SYNJ2BP interacted with SST2 in an agonist-dependent manner, and that this required the PDZ binding site of SST2. Importantly, overexpression of SYNJ2BP enhanced ligand-stimulated receptor internalization. Mechanistically, SYNJ2BP interacted with G-protein-coupled receptor kinase 2 (GRK2) and promoted GRK-dependent phosphorylation of the receptor after somatostatin stimulation. Interaction with GRK2 required the C-terminus of SYNJ2BP. Binding to SYNJ2BP did not affect the ability of SST2 to suppress 3',5'-cyclic adenosine 5'-monophosphate production, but was required for optimal agonist-stimulated extracellularly regulated kinase 1/2 activation. These data indicated that SYNJ2BP is an SST2-interacting protein that modulates agonist-stimulated receptor regulation and downstream signaling.
Collapse
Affiliation(s)
- Heather S Carr
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Correspondence: Jeffrey A. Frost, PhD, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Álvarez-Carrión L, Gutiérrez-Rojas I, Rodríguez-Ramos MR, Ardura JA, Alonso V. MINDIN Exerts Protumorigenic Actions on Primary Prostate Tumors via Downregulation of the Scaffold Protein NHERF-1. Cancers (Basel) 2021; 13:436. [PMID: 33498862 PMCID: PMC7865820 DOI: 10.3390/cancers13030436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Advanced prostate cancer preferential metastasis to bone is associated with osteomimicry. MINDIN is a secreted matrix protein upregulated in prostate tumors that overexpresses bone-related genes during prostate cancer progression. Na+/H+ exchanger regulatory factor (NHERF-1) is a scaffold protein that has been involved both in tumor regulation and osteogenesis. We hypothesize that NHERF-1 modulation is a mechanism used by MINDIN to promote prostate cancer progression. We analyzed the expression of NHERF-1 and MINDIN in human prostate samples and in a premetastatic prostate cancer mouse model, based on the implantation of prostate adenocarcinoma TRAMP-C1 (transgenic adenocarcinoma of the mouse prostate) cells in immunocompetent C57BL/6 mice. The relationship between NHERF-1 and MINDIN and their effects on cell proliferation, migration, survival and osteomimicry were evaluated. Upregulation of MINDIN and downregulation of NHERF-1 expression were observed both in human prostate cancer samples and in the TRAMP-C1 model. MINDIN silencing restored NHERF-1 expression to control levels in the mouse model. Stimulation with MINDIN reduced NHERF-1 expression and triggered its mobilization from the plasma membrane to the cytoplasm in TRAMP-C1 cells. MINDIN-dependent downregulation of NHERF-1 promoted tumor cell migration and proliferation without affecting osteomimicry and adhesion. We propose that MINDIN downregulates NHERF-1 expression leading to promotion of processes involved in prostate cancer progression.
Collapse
Affiliation(s)
- Luis Álvarez-Carrión
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Spain; (L.Á.-C.); (I.G.-R.); (M.R.R.-R.)
| | - Irene Gutiérrez-Rojas
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Spain; (L.Á.-C.); (I.G.-R.); (M.R.R.-R.)
| | - María Rosario Rodríguez-Ramos
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Spain; (L.Á.-C.); (I.G.-R.); (M.R.R.-R.)
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Spain
| | - Juan A. Ardura
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Spain; (L.Á.-C.); (I.G.-R.); (M.R.R.-R.)
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Spain
| | - Verónica Alonso
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Spain; (L.Á.-C.); (I.G.-R.); (M.R.R.-R.)
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925 Alcorcón, Spain
| |
Collapse
|
42
|
Mamonova T, Friedman PA. Noncanonical Sequences Involving NHERF1 Interaction with NPT2A Govern Hormone-Regulated Phosphate Transport: Binding Outside the Box. Int J Mol Sci 2021; 22:1087. [PMID: 33499384 PMCID: PMC7866199 DOI: 10.3390/ijms22031087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
Na+/H+ exchange factor-1 (NHERF1), a multidomain PDZ scaffolding phosphoprotein, is required for the type II sodium-dependent phosphate cotransporter (NPT2A)-mediated renal phosphate absorption. Both PDZ1 and PDZ2 domains are involved in NPT2A-dependent phosphate uptake. Though harboring identical core-binding motifs, PDZ1 and PDZ2 play entirely different roles in hormone-regulated phosphate transport. PDZ1 is required for the interaction with the C-terminal PDZ-binding sequence of NPT2A (-TRL). Remarkably, phosphocycling at Ser290 distant from PDZ1, the penultimate step for both parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) regulation, controls the association between NHERF1 and NPT2A. PDZ2 interacts with the C-terminal PDZ-recognition motif (-TRL) of G Protein-coupled Receptor Kinase 6A (GRK6A), and that promotes phosphorylation of Ser290. The compelling biological puzzle is how PDZ1 and PDZ2 with identical GYGF core-binding motifs specifically recognize distinct binding partners. Binding determinants distinct from the canonical PDZ-ligand interactions and located "outside the box" explain PDZ domain specificity. Phosphorylation of NHERF1 by diverse kinases and associated conformational changes in NHERF1 add more complexity to PDZ-binding diversity.
Collapse
Affiliation(s)
- Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | | |
Collapse
|
43
|
Hong J, Won M, Ro H. The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family. Molecules 2020; 25:E5938. [PMID: 33333989 PMCID: PMC7765395 DOI: 10.3390/molecules25245938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| |
Collapse
|
44
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
45
|
Fu C, Yuan G, Yang ST, Zhang D, Yang S. RGS12 Represses Oral Cancer via the Phosphorylation and SUMOylation of PTEN. J Dent Res 2020; 100:522-531. [PMID: 33198557 DOI: 10.1177/0022034520972095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer characterized by aggressive local invasion and metastasis. The pathogenesis of OSCC is mainly due to the accumulation of genetic alterations in epithelial cells, but the underlying mechanism for its development remains unclear. Here, we found that the expression level of regulator of G protein signaling 12 (RGS12) was significantly reduced in human OSCC. To understand the role and mechanism of RGS12 in OSCC, we generated a novel RGS12 global knockout (CMVCre/+; RGS12fl/fl) mouse model by crossing RGS12fl/fl mice with CMV-Cre transgenic mice and then further induced the mice to develop OSCC by using 4-nitroquinoline 1-oxide (4NQO). Deletion of RGS12 exhibited aggressive OSCC in the tongue compared with the control RGS12fl/fl mice. Knockdown of RGS12 in OSCC cells significantly increased cell proliferation and migration. Mechanistically, we found that RGS12 associated with phosphatase and tension homolog (PTEN) via the PDZ domain to upregulate the phosphorylation and SUMOylation of PTEN and then correspondingly inactivated the AKT/mTOR signaling pathway. To test the potential therapeutic effect of RGS12 on OSCC, we overexpressed RGS12 in OSCC cells and found a significant inhibition of cancer cell proliferation and migration. Moreover, subcutaneous inoculation of RGS12-overexpressed OSCC cells in NOD scid mice showed a significant reduction in tumor formation. Our findings reveal that RGS12 is an essential tumor suppressor and highlights RGS12 as a potential therapeutic target and prognostic biomarker of OSCC.
Collapse
Affiliation(s)
- C Fu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Orthodontics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - G Yuan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S T Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D Zhang
- Department of Orthodontics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Orthodontics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - S Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.,The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Kang DH, Lee TJ, Kim JW, Shin YS, Kim JD, Ryu SW, Ryu S, Choi YH, Kim CH, You E, Rhee S, Song KS. Down-regulation of diesel particulate matter-induced airway inflammation by the PDZ motif peptide of ZO-1. J Cell Mol Med 2020; 24:12211-12218. [PMID: 32931139 PMCID: PMC7579716 DOI: 10.1111/jcmm.15843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/23/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023] Open
Abstract
Although diesel airborne particulate matter (PM2.5) has been known to play a role in many human diseases, there is no direct evidence that therapeutic drugs or proteins can diminish PM2.5-induced diseases. Nevertheless, studies examining the negative control mechanisms of PM2.5-induced diseases are critical to develop novel therapeutic medications. In this study, the consensus PDZ peptide of ZO-1 inhibited PM2.5-induced inflammatory cell infiltration, pro-inflammatory cytokine gene expression, and TEER in bronchoalveolar lavage (BAL) fluid and AM cells. Our data indicated that the PDZ domain in ZO-1 is critical for regulation of the PM2.5-induced inflammatory microenvironment. Therefore, the PDZ peptide may be a potential therapeutic candidate during PM-induced respiratory diseases.
Collapse
Affiliation(s)
- Dong Hee Kang
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, Korea
| | - Ji Wook Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Yu Som Shin
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Ju Deok Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Sung Won Ryu
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Siejeong Ryu
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan, Korea
| | - Cheol Hong Kim
- Department of Pediatrics, Sungkyunkwan University Samsung Changwon Hospital, Changwon, Korea
| | - EunAe You
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - SangMyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Kyoung Seob Song
- Department of Cell Biology, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
47
|
Rehman A, Baloch NUA, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020; 211:107529. [PMID: 32197794 PMCID: PMC7388546 DOI: 10.1016/j.pharmthera.2020.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The Third International Consensus Definitions (Sepsis-3) define sepsis as life-threatening multi-organ dysfunction caused by a dysregulated host response to infection. Sepsis can progress to septic shock-an even more lethal condition associated with profound circulatory, cellular and metabolic abnormalities. Septic shock remains a leading cause of death in intensive care units and carries a mortality of almost 25%. Despite significant advances in our understanding of the pathobiology of sepsis, therapeutic interventions have not translated into tangible differences in the overall outcome for patients. Clinical trials of antagonists of various pro-inflammatory mediators in sepsis have been largely unsuccessful in the past. Given the diverse physiologic roles played by G-protein coupled receptors (GPCR), modulation of GPCR signaling for the treatment of sepsis has also been explored. Traditional pharmacologic approaches have mainly focused on ligands targeting the extracellular domains of GPCR. However, novel techniques aimed at modulating GPCR intracellularly through aptamers, pepducins and intrabodies have opened a fresh avenue of therapeutic possibilities. In this review, we summarize the diverse roles played by various subfamilies of GPCR in the pathogenesis of sepsis and identify potential targets for pharmacotherapy through these novel approaches.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Noor Ul-Ain Baloch
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - John P Morrow
- Department of Medicine, Columbia University, New York City, NY, United States
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York City, NY, United States.
| |
Collapse
|
48
|
Pushpakumar S, Ahmad A, Ketchem CJ, Jose PA, Weinman EJ, Sen U, Lederer ED, Khundmiri SJ. Sodium-hydrogen exchanger regulatory factor-1 (NHERF1) confers salt sensitivity in both male and female models of hypertension in aging. Life Sci 2020; 243:117226. [PMID: 31904366 PMCID: PMC7015806 DOI: 10.1016/j.lfs.2019.117226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
Hypertension is a risk factor for premature death and roughly 50% of hypertensive patients are salt-sensitive. The incidence of salt-sensitive hypertension increases with age. However, the mechanisms of salt-sensitive hypertension are not well understood. We had demonstrated decreased renal sodium‑hydrogen exchanger regulatory factor 1 (NHERF1) expression in old salt-resistant F344 rats. Based on those studies we hypothesized that NHERF1 expression is required for the development of some forms of salt-sensitive hypertension. To address this hypothesis, we measured blood pressure in NHERF1 expressing salt-sensitive 4-mo and 24-mo-old male and female Fischer Brown Norway (FBN) rats male and female 18-mo-old NHERF1 knock-out (NHERF1-/-) mice and wild-type (WT) littermates on C57BL/6J background after feeding high salt (8% NaCl) diet for 7 days. Our data demonstrate that 8% salt diet increased blood pressure in both male and female 24-mo-old FBN rats but not in 4-mo-old FBN rats and in 18-mo-old male and female WT mice but not in NHERF1-/- mice. Renal dopamine 1 receptor (D1R) expression was decreased in 24-mo-old rats, compared with 4-mo-old FBN rats. However, sodium chloride cotransporter (NCC) expression increased in 24-mo-old FBN rats. In FBN rats, age had no effect on NaK ATPase α1 and NKCC2 expression. By contrast, high salt diet increased the renal expressions of NKCC2, and NCC in 24-mo-old FBN rats. High salt diet also increased NKCC2 and NCC expression in WT mice but not NHERF1-/- mice. Our data suggest that renal NHERF1 expression confers salt sensitivity with aging, associated with increased expression of sodium transporters.
Collapse
Affiliation(s)
- Sathnur Pushpakumar
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
| | - Asrar Ahmad
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States of America
| | - Corey J Ketchem
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, KY, United States of America
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC, United States of America
| | - Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Utpal Sen
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
| | - Eleanor D Lederer
- Department of Physiology, University of Louisville, Louisville, KY, United States of America; Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, KY, United States of America; Robley Rex VA Medical Center, Louisville, KY, United States of America
| | - Syed J Khundmiri
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States of America.
| |
Collapse
|
49
|
Phenylethylamides derived from bacterial secondary metabolites specifically inhibit an insect serotonin receptor. Sci Rep 2019; 9:20358. [PMID: 31885035 PMCID: PMC6935581 DOI: 10.1038/s41598-019-56892-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/16/2019] [Indexed: 01/02/2023] Open
Abstract
Serotonin (5-hydroxytryptamine: 5-HT) is a biogenic monoamine that mediates immune responses and modulates nerve signal in insects. Se-5HTR, a specific receptor of serotonin, has been identified in the beet armyworm, Spodoptera exigua. It is classified into subtype 7 among known 5HTRs. Se-5HTR was expressed in all developmental stages of S. exigua. It was expressed in all tested tissues of larval stage. Its expression was up-regulated in hemocytes and fat body in response to immune challenge. RNA interference (RNAi) of Se-5HTR exhibited significant immunosuppression by preventing cellular immune responses such as phagocytosis and nodulation. Treatment with an inhibitor (SB-269970) specific to 5HTR subtype 7 resulted in significant immunosuppression. Furthermore, knockout mutant of Se-5HTR by CRISPR-Cas9 led to significant reduction of phagocytotic activity of S. exigua hemocytes. Such immunosuppression was also induced by bacterial secondary metabolites derived from Xenorhabdus and Photorhabdus. To determine specific bacterial metabolites inhibiting Se-5HTR, this study screened 37 bacterial secondary metabolites with respect to cellular immune responses associated with Se-5HTR and selected 10 potent inhibitors. These 10 selected compounds competitively inhibited cellular immune responses against 5-HT and shared phenylethylamide (PEA) chemical skeleton. Subsequently, 46 PEA derivatives were screened and resulting potent chemicals were used to design a compound to be highly inhibitory against Se-5HTR. The designed compound was chemically synthesized. It showed high immunosuppressive activities along with specific and competitive inhibition activity for Se-5HTR. This study reports the first 5HT receptor from S. exigua and provides its specific inhibitor designed from bacterial metabolites and their derivatives.
Collapse
|
50
|
Kunselman JM, Zajac AS, Weinberg ZY, Puthenveedu MA. Homologous Regulation of Mu Opioid Receptor Recycling by G βγ , Protein Kinase C, and Receptor Phosphorylation. Mol Pharmacol 2019; 96:702-710. [PMID: 31575621 PMCID: PMC6820217 DOI: 10.1124/mol.119.117267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/14/2019] [Indexed: 12/20/2022] Open
Abstract
Membrane trafficking and receptor signaling are two fundamental cellular processes that interact constantly. Although how trafficking regulates signaling is well studied, how signaling pathways regulate trafficking is less well understood. Here, we use the mu opioid receptor (MOR), the primary target for opioid analgesics, to define a signaling pathway that dynamically regulates postendocytic receptor recycling. By directly visualizing individual MOR recycling events, we show that agonist increases MOR recycling. Inhibition of G βγ, phospholipase C, or protein kinase C mimicked agonist removal, whereas activation of G βγ increased recycling even after agonist removal. Phosphorylation of serine 363 on the C-terminal tail of MOR was required and sufficient for agonist-mediated regulation of MOR recycling. Our results identify a feedback loop that regulates MOR recycling via G βγ , protein kinase C, and receptor phosphorylation. This could serve as a general model for how signaling regulates postendocytic trafficking of G protein-coupled receptors. SIGNIFICANCE STATEMENT: G protein-coupled receptor (GPCR) localization in the endosome is being increasingly recognized as an important and distinct component of GPCR signaling and physiology. This study identifies a G protein-dependent and protein kinase C-dependent signaling pathway that dynamically regulates the endosomal localization of the mu opioid receptor, the primary target of opioid analgesics and abused drugs. This pathway could provide a mechanism to manipulate spatial encoding of opioid signaling and physiology.
Collapse
Affiliation(s)
- Jennifer M Kunselman
- Cellular and Molecular Biology Program (J.M.K., M.A.P.) and Department of Pharmacology (J.M.K., Z.Y.W., M.A.P.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.S.Z., M.A.P.)
| | - Amanda S Zajac
- Cellular and Molecular Biology Program (J.M.K., M.A.P.) and Department of Pharmacology (J.M.K., Z.Y.W., M.A.P.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.S.Z., M.A.P.)
| | - Zara Y Weinberg
- Cellular and Molecular Biology Program (J.M.K., M.A.P.) and Department of Pharmacology (J.M.K., Z.Y.W., M.A.P.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.S.Z., M.A.P.)
| | - Manojkumar A Puthenveedu
- Cellular and Molecular Biology Program (J.M.K., M.A.P.) and Department of Pharmacology (J.M.K., Z.Y.W., M.A.P.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.S.Z., M.A.P.)
| |
Collapse
|