1
|
Liu L, Zhang Q, Ma Y, Lin L, Liu W, Ding A, Wang C, Zhou S, Cai J, Tang H. Recent Developments in Drug Design of Oral Synthetic Free Fatty Acid Receptor 1 Agonists. Drug Des Devel Ther 2024; 18:5961-5983. [PMID: 39679134 PMCID: PMC11646431 DOI: 10.2147/dddt.s487469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Over the past two decades, synthetic FFAR1 agonists such as TAK-875 and TSL1806 have undergone meticulous design and extensive clinical trials. However, due to issues primarily related to hepatotoxicity, no FFAR1 agonist has yet received regulatory approval. Research into the sources of hepatotoxicity suggests that one potential cause lies in the molecular structure itself. These structures typically feature lipid-like carboxylic acid head groups, which tend to generate toxic metabolites. Strategies to mitigate these risks focus on optimizing chemical groups to reduce lipophilicity and prevent the formation of reactive metabolites. Recent studies have concentrated on developing low-molecular-weight compounds that more closely resemble natural products, with CPL207280 showing promising potential and liver safety, currently in Phase II clinical trials. Moreover, ongoing research continues to explore the potential applications of FFAR1 agonists in diabetes management, as well as in conditions such as non-alcoholic fatty liver disease (NAFLD) and cerebrovascular diseases. Utilizing advanced technologies such as artificial intelligence and computer-aided design, the development of compact molecules that mimic natural structures represents a hopeful direction for future research and development.
Collapse
Affiliation(s)
- Lei Liu
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Qinghua Zhang
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Yichuan Ma
- China Medical University (CMU)-The Queen’s University of Belfast (QUB) Joint College, Shenyang, Liaoning, People’s Republic of China
| | - Ling Lin
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Wenli Liu
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Aizhong Ding
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Chunjian Wang
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Shuiping Zhou
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
| | - Jinyong Cai
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
| | - Hai Tang
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| |
Collapse
|
2
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
3
|
Wu J, Wang S, Zhuang H, Wang W, Wang Y, Chen Y, Huang Z, Chen C, Chen X. Proteomics Analysis Provides Insights into the Role of Lipid Metabolism in T2DM-Related Sarcopenia. ACS OMEGA 2024; 9:34056-34069. [PMID: 39130597 PMCID: PMC11308078 DOI: 10.1021/acsomega.4c04668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/07/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia has been recognized as an emerging complication of type 2 diabetes mellitus (T2DM). Currently, the pathogenesis of T2DM-related sarcopenia remains unclear. The aim of this study was to investigate the molecular mechanisms and potential therapeutic targets for T2DM-related sarcopenia. In this study, a T2DM-related sarcopenia mouse model was established using db/db mice. Proteins extracted from the gastrocnemius muscles of db/db mice and littermate control db/m mice were analyzed by a 4D label-free quantitative proteomics approach. A total of 131 upregulated and 68 downregulated proteins were identified as differentially expressed proteins (DEPs). Bioinformatics analysis revealed that DEPs were significantly enriched in lipid metabolism. Protein-protein interaction network analysis revealed that six hub proteins, including ACOX1, CPT2, ECI2, ACADVL, ACADL, and ECH1, were involved in the fatty acid oxidation. The hub protein-transcription factor-miRNA network was also constructed using the NetworkAnalyst tool. Finally, the hub proteins were validated by Western blotting and immunohistochemistry and further confirmed to be significantly negatively correlated with muscle mass and grip strength. Our study suggested that lipid metabolism, especially excessive fatty acid oxidation, may be a crucial contributor to the progression of T2DM-related sarcopenia and a common cause of the inter-relationship between T2DM and sarcopenia. Targeting lipid metabolism may be a promising therapeutic strategy for T2DM-related sarcopenia.
Collapse
Affiliation(s)
- Jingying Wu
- Department
of Cardiology, Second Affiliated Hospital
of Fujian Medical University, 950 Donghai Street, Fengze District, Quanzhou, Fujian Province 362000, China
| | - Shengnan Wang
- Department
of Cardiology, Second Affiliated Hospital
of Fujian Medical University, 950 Donghai Street, Fengze District, Quanzhou, Fujian Province 362000, China
| | - Huafeng Zhuang
- Department
of Orthopedics, Second Affiliated Hospital
of Fujian Medical University, 950 Donghai Street, Fengze District, Quanzhou, Fujian Province 362000, China
| | - Weichun Wang
- Department
of Cardiology, Second Affiliated Hospital
of Fujian Medical University, 950 Donghai Street, Fengze District, Quanzhou, Fujian Province 362000, China
| | - Yaoguo Wang
- Department
of Cardiology, Second Affiliated Hospital
of Fujian Medical University, 950 Donghai Street, Fengze District, Quanzhou, Fujian Province 362000, China
| | - Youfang Chen
- Medical
Research Center, Quanzhou Medical College, 2 Anji Road, Luojiang District, Quanzhou, Fujian Province 362000, China
- Department
of Clinical Medicine, Quanzhou Medical College, 2 Anji Road, Luojiang
District, Quanzhou, Fujian Province 362000, China
| | - Zhengping Huang
- Department
of Neurology, Second Affiliated Hospital
of Fujian Medical University, 950 Donghai Street, Fengze District, Quanzhou, Fujian Province 362000, China
| | - Chunnuan Chen
- Department
of Neurology, Second Affiliated Hospital
of Fujian Medical University, 950 Donghai Street, Fengze District, Quanzhou, Fujian Province 362000, China
| | - Xiaofeng Chen
- Department
of Cardiology, Second Affiliated Hospital
of Fujian Medical University, 950 Donghai Street, Fengze District, Quanzhou, Fujian Province 362000, China
| |
Collapse
|
4
|
Li HY, Li CF, Liu CH, Chen SC, Liu YF, Lv QH, Zhang W. Extract of Phyllanthus emblica L. fruit stimulates basal glucose uptake and ameliorates palmitate-induced insulin resistance through AMPK activation in C2C12 myotubes. BMC Complement Med Ther 2024; 24:296. [PMID: 39095777 PMCID: PMC11295889 DOI: 10.1186/s12906-024-04592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The fruit of Phyllanthus emblica L., a traditional medicine in China and India, is used to treat diabetes mellitus. Its water extract (WEPE) has demonstrated hypoglycemic effects in diabetic rats, but its mechanisms on glucose utilization and insulin resistance in skeletal muscle remain unclear. Therefore, this study aims to investigate the effects and underlying mechanisms of WEPE on glucose utilization and insulin resistance using C2C12 myotubes. METHODS Effects of WEPE on glucose uptake, GLUT4 translocation, and AMPK and AKT phosphorylation were investigated in C2C12 myotubes and palmitate-treated myotubes. An AMPK inhibitor and siRNA were used to explore the mechanisms of WEPE. Glucose uptake was determined using a 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) uptake assay, and protein expression and GLUT4 translocation were assessed via western blotting. RESULTS In normal myotubes, WEPE significantly stimulated glucose uptake and GLUT4 translocation to the plasma membrane at concentrations of 125 and 250 µg/mL. This was accompanied by an increase in the phosphorylation of AMPK and its downstream targets. However, both compound C and AMPK siRNA blocked the WEPE-induced GLUT4 translocation and glucose uptake. Moreover, pretreatment with STO-609, a calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) inhibitor, inhibited WEPE-induced AMPK phosphorylation and attenuated the WEPE-stimulated glucose uptake and GLUT4 translocation. In myotubes treated with palmitate, WEPE prevented palmitate-induced insulin resistance by enhancing insulin-mediated glucose uptake and AKT phosphorylation. It also restored the insulin-mediated translocation of GLUT4 from cytoplasm to membrane. However, these effects of WEPE on glucose uptake and GLUT4 translocation were blocked by pretreatment with compound C. CONCLUSIONS WEPE significantly stimulated basal glucose uptake though CaMKKβ/AMPK pathway and markedly ameliorated palmitate-induced insulin resistance by activating the AMPK pathway in C2C12 myotubes.
Collapse
Affiliation(s)
- Hai-Yan Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chun-Fei Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chun-Hui Liu
- China National Institute of Standardization, 4 Zhichun Road, Beijing, 100191, China.
| | - Sun-Ce Chen
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yi-Fan Liu
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Quan-He Lv
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
5
|
Taheri R, Mokhtari Y, Yousefi AM, Bashash D. The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets. Cell Biol Int 2024; 48:1049-1068. [PMID: 38812089 DOI: 10.1002/cbin.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/03/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.
Collapse
Affiliation(s)
- Rana Taheri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Mokhtari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhou X, Xu J, Dai H. The ratio of alanine aminotransferase to high-density lipoprotein cholesterol is positively correlated with the insulin resistance in American adults: a population-based cohort study. Front Med (Lausanne) 2024; 11:1418364. [PMID: 38962742 PMCID: PMC11220187 DOI: 10.3389/fmed.2024.1418364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Previous studies have demonstrated a correlation between the ratio of alanine aminotransferase to high-density lipoprotein cholesterol (ALT/HDL-C) in the serum and the risk of diabetes. However, no existing study has investigated the association between insulin resistance (IR) and ALT/HDL-C. Therefore, this study aims to explore the association between ALT/HDL-C and IR in American adults. Methods A total of 7,599 adults selected from the National Health and Nutrition Examination Survey (NHANES) in 2013 to 2020 were studied. IR was assessed based on the homeostatic model assessment of insulin resistance (HOMA-IR). And the association between IR and ALT/HDL-C was assessed through multiple logistic regression, generalized smooth curve fitting and subgroup analyses. Results Multiple logistic regression analysis indicated a significant correlation between IR and ALT/HDL-C, with odds ratios (OR) of 1.04 (95% CI = 1.02-1.05) in males and 1.04 (95% CI = 1.02-1.07) in females. A non-linear association and saturation effect between ALT/HDL-C and IR risk were identified, with an inverted L shaped curve and an inflection point at 33.62. The area under the ROC curve (AUC) of ALT/HDL-C was significantly larger (AUC = 0.725 for males and 0.696 for females, all p < 0.01) compared with the use of ALT, HDL-C, AST and AST/ALT. Subgroup analysis showed a significantly higher independent association in obese individuals and individuals aged ≥50 years (All P interaction <0.05). Conclusion Elevated ALT/HDL-C demonstrates a significant correlation with IR, which can be used as a potential indicator of IR in American adults.
Collapse
Affiliation(s)
| | | | - Huifang Dai
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Zhou X, Xu J. Association between serum uric acid-to-high-density lipoprotein cholesterol ratio and insulin resistance in an American population: A population-based analysis. J Diabetes Investig 2024; 15:762-771. [PMID: 38407574 PMCID: PMC11143423 DOI: 10.1111/jdi.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Previous studies have demonstrated a correlation between the serum uric acid-to-high-density lipoprotein cholesterol ratio (UHR) and insulin resistance (IR) in individuals with type 2 diabetes mellitus. However, no existing studies have investigated the relationship between IR and UHR in the general population. Therefore, the primary objective of this study was to investigate the correlation between UHR and IR in the general American population. METHODS A sample of 8,817 participants was selected from the 2013 to 2020 National Health and Nutrition Examination Survey (NHANES). Homeostatic model assessment of insulin resistance (HOMA-IR) was used to assess insulin resistance. Multiple logistic regression, generalized smooth curve fitting, and subgroup analysis were used to assess the association between IR and UHR. RESULTS Multiple logistic regression analysis indicated a significant correlation between insulin resistance and UHR, with odds ratios (OR) of 1.07 (95% CI = 1.03-1.11) in males and 1.18 (95% CI = 1.13-1.25) in females. A non-linear relationship and saturation effect between IR risk and UHR were observed, characterized by an inverted L-shaped curve and a critical inflection point at 8.82. It was found that the area under the ROC curve (AUC) of UHR was significantly larger (AUC = 0.703 for males and 0.747 for females, all P < 0.01) compared with the use of UA or HDL-C alone. Subgroup analysis showed that this independent association remain consistent regardless of race, age, BMI, diabetes, moderate activities, education level, alcohol drinking, and gender. CONCLUSION Elevated UHR demonstrates a significant correlation with insulin resistance, so it can be used as a potential indicator of insulin resistance within the American population.
Collapse
Affiliation(s)
- Xiaohai Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Xu
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Szymczak K, Zakłos-Szyda M, Mietlińska K, Eliašová A, Jodłowska I, Gruľová D, Hodun G, Bonikowski R. Old Apple Cultivars as a Natural Source of Phenolics and Triterpenoids with Cytoprotective Activity on Caco-2 and HepG2 Cells. Foods 2024; 13:1014. [PMID: 38611320 PMCID: PMC11011742 DOI: 10.3390/foods13071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Apples are among the most consumed fruits worldwide. They serve as an excellent source of compounds that have a positive impact on human health. While new varieties of apples are being developed, numerous varieties have been forgotten. In this article, we present the results of research on 30 old apple cultivars, focusing on both qualitative and quantitative determination of antioxidant properties, and content of total phenolics, phenolic acids, triterpenoids and polyphenols. Our analyses show significant differences in the total content of each group of compounds between apple cultivars, as well as the phytochemical profile. The richest source of antioxidants was revealed to be 'Reneta Blenheimska' and 'Książę Albrecht Pruski' varieties, but the highest amount of phenolics had 'James Grieve' and 'Kantówka Gdańska' (KG). Among studied apples KG, 'Krótkonóżka Królewska' and 'Grochówka' (G) were the richest source of phenolic acids and polyphenols, whereas G, 'James Grieve' and 'Krótkonóżka Królewska' had the highest level of triterpenoids. Based on these findings, we selected two cultivars, G and KG, for further in vitro cell line-based studies. Based on biological activity analyses, we demonstrated not only antioxidant potential but also proapoptotic and cytoprotective properties within human-originated Caco-2 and HepG2 cell lines. In the era of a dynamically growing number of lifestyle diseases, it is particularly important to draw the attention of producers and consumers to the need to choose fruit varieties with the highest possible content of health-promoting compounds and, therefore, with the strongest health-promoting properties.
Collapse
Affiliation(s)
- Kamil Szymczak
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (K.M.); (R.B.)
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (M.Z.-S.); (I.J.)
| | - Katarzyna Mietlińska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (K.M.); (R.B.)
| | - Adriana Eliašová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17, Novembra 1, SK-081 16 Prešov, Slovakia; (A.E.); (D.G.)
| | - Iga Jodłowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (M.Z.-S.); (I.J.)
| | - Daniela Gruľová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17, Novembra 1, SK-081 16 Prešov, Slovakia; (A.E.); (D.G.)
| | - Grzegorz Hodun
- Department of Variety Studies, Nursery and Gene Resources, Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland;
| | - Radosław Bonikowski
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (K.M.); (R.B.)
| |
Collapse
|
9
|
Wang Y, Wang J, Tao SY, Liang Z, Xie R, Liu NN, Deng R, Zhang Y, Deng D, Jiang G. Mitochondrial damage-associated molecular patterns: A new insight into metabolic inflammation in type 2 diabetes mellitus. Diabetes Metab Res Rev 2024; 40:e3733. [PMID: 37823338 DOI: 10.1002/dmrr.3733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
The pathogenesis of diabetes is accompanied by increased levels of inflammatory factors, also known as "metabolic inflammation", which runs through the whole process of the occurrence and development of the disease. Mitochondria, as the key site of glucose and lipid metabolism, is often accompanied by mitochondrial function damage in type 2 diabetes mellitus (T2DM). Damaged mitochondria release pro-inflammatory factors through damage-related molecular patterns that activate inflammation pathways and reactions to oxidative stress, further aggravate metabolic disorders, and form a vicious circle. Currently, the pathogenesis of diabetes is still unclear, and clinical treatment focuses primarily on symptomatic intervention of the internal environment of disorders of glucose and lipid metabolism with limited clinical efficacy. The proinflammatory effect of mitochondrial damage-associated molecular pattern (mtDAMP) in T2DM provides a new research direction for exploring the pathogenesis and intervention targets of T2DM. Therefore, this review covers the most recent findings on the molecular mechanism and related signalling cascades of inflammation caused by mtDAMP in T2DM and discusses its pathogenic role of it in the pathological process of T2DM to search potential intervention targets.
Collapse
Affiliation(s)
- Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingwu Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Si-Yu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Rong Xie
- Xinjiang Medical University, Urumqi, China
| | - Nan-Nan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruxue Deng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Deqiang Deng
- Department of Endocrinology, Urumqi Hospital of Traditional Chinese Medicine, Urumqi, China
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Zhou X, Xu J. Association between serum uric acid-to-high-density lipoprotein cholesterol ratio and insulin resistance in patients with type 2 diabetes mellitus. J Diabetes Investig 2024; 15:113-120. [PMID: 37737515 PMCID: PMC10759725 DOI: 10.1111/jdi.14086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
INTRODUCTION Previous studies have shown that the serum uric acid-to-high-density lipoprotein cholesterol ratio (UHR) is related to metabolic syndrome. However, no existing study has examined the relationship between UHR and insulin resistance (IR). Therefore, this study aims to explore the association between the UHR and IR in patients with type 2 diabetes mellitus (T2DM). METHODS Patients with type 2 diabetes mellitus (1,532 males and 1,013 females) were enrolled. Insulin resistance was measured by homeostatic model assessment of insulin resistance (HOMA-IR) and was defined as HOMI-IR ≥ 2.69. Pearson correlation, multiple logistic regression, ROC analysis, and subgroup analysis were used to evaluate the association between UHR and IR. RESULTS UHR was associated with HOMA-IR in patients with type 2 diabetes mellitus (pearson's correlation coefficient = 0.274 in males and 0.337 in females, P < 0.001). Multiple logistic regression analysis showed that UHR was significantly correlated with insulin resistance (OR = 1.06, 95%CI = 1.03-1.08 in males and OR = 1.11, 95%CI = 1.08-1.15 in females). The area under the ROC curve (AUC) of UHR (AUC = 0.665 for males and 0.717 for females, all P < 0.01) was the largest compared with that of UA and HDL-C in insulin resistance. Subgroup analysis showed that there was a more significantly positive correlation among subjects with BMI ≥ 24 kg/m2 , age < 60 years old, HbA1c < 7%, non-hypertension, or in female subjects. CONCLUSION Elevated UHR is significantly correlated with insulin resistance, which can be used as an indicator of insulin resistance in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xinhe Zhou
- Department of EndocrinologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jing Xu
- Department of EndocrinologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
11
|
Najjar RS. Comment on Dyńka et al. The Ketogenic Diet and Cardiovascular Diseases. Nutrients 2023, 15, 3368. Nutrients 2023; 15:4311. [PMID: 37892387 PMCID: PMC10609687 DOI: 10.3390/nu15204311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The recent review by Dyńka et al. [...].
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
12
|
Wang Q, Li H, Lu H, Wang S, Li Y, Zhang Z, Han J, Yang Z, Yang Y, Hong Y. SAA1 exacerbates pancreatic β-cell dysfunction through activation of NF-κB signaling in high-fat diet-induced type 2 diabetes mice. Mol Cell Endocrinol 2023; 576:112043. [PMID: 37574124 DOI: 10.1016/j.mce.2023.112043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Insufficient decompensated insulin secretion and insulin resistance caused by pancreatic β-cell dysfunction are the pathological bases of type 2 diabetes mellitus (T2DM). Glucolipotoxicity in pancreatic β-cells is an important factor leading to their dysfunction, closely related to inflammatory signals, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum stress (ERs). However, there may be other unproven regulatory mechanisms that govern pancreatic β-cell dysfunction. Therefore, further elucidation of the underlying mechanisms that lead to pancreatic β-cells dysfunction will provide a sufficient theoretical basis for the more effective prevention and treatment of T2DM. As a stress protein with pro-inflammatory properties, Serum Amyloid 1 (SAA1) promotes the progression of metabolic syndrome-related diseases by activating immune cells and damaging endothelial cells. In the development of T2DM, the activation of nuclear factor-kappa B (NF-κB) signaling aggravates pancreatic β-cells dysfunction under the stimulation of free fatty acids (FFAs), inflammatory factors, and chemokines. Moreover, the facilitating effect of SAA1 on the activation of the NF-κB signaling pathway has been demonstrated in other studies. In the present study, we demonstrated that SAA1 inhibits insulin secretion and promotes apoptotic molecular expression in pancreatic cells and islets and that NF-κB signaling inhibitors could reduce this effect of SAA1. SAA1 deficiency improved high-fat diet (HFD)-induced pancreatic β-cell dysfunction and decreased expression of NF-κB signaling molecules. Our findings suggested that HFD-induced SAA1 might exacerbate T2DM by enhancing pancreatic β-cell dysfunction; such a function of SAA1 might depend on NF-κB signaling activation.
Collapse
Affiliation(s)
- Qi Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Hong Li
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Henghao Lu
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Shumin Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Yuxiu Li
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Zhenfen Zhang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Jing Han
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Zhe Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Yanping Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Yan Hong
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China.
| |
Collapse
|
13
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
14
|
Vasincu A, Rusu RN, Ababei DC, Neamțu M, Arcan OD, Macadan I, Beșchea Chiriac S, Bild W, Bild V. Exploring the Therapeutic Potential of Cannabinoid Receptor Antagonists in Inflammation, Diabetes Mellitus, and Obesity. Biomedicines 2023; 11:1667. [PMID: 37371762 DOI: 10.3390/biomedicines11061667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, research has greatly expanded the knowledge of the endocannabinoid system (ECS) and its involvement in several therapeutic applications. Cannabinoid receptors (CBRs) are present in nearly every mammalian tissue, performing a vital role in different physiological processes (neuronal development, immune modulation, energy homeostasis). The ECS has an essential role in metabolic control and lipid signaling, making it a potential target for managing conditions such as obesity and diabetes. Its malfunction is closely linked to these pathological conditions. Additionally, the immunomodulatory function of the ECS presents a promising avenue for developing new treatments for various types of acute and chronic inflammatory conditions. Preclinical investigations using peripherally restricted CBR antagonists that do not cross the BBB have shown promise for the treatment of obesity and metabolic diseases, highlighting the importance of continuing efforts to discover novel molecules with superior safety profiles. The purpose of this review is to examine the roles of CB1R and CB2Rs, as well as their antagonists, in relation to the above-mentioned disorders.
Collapse
Affiliation(s)
- Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Sorin Beșchea Chiriac
- Department of Toxicology, "Ion Ionescu de la Brad" University of Life Sciences, 8 M. Sadoveanu Alley, 700489 Iasi, Romania
| | - Walther Bild
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
15
|
Gao SY, Liu YP, Wen R, Huang XM, Li P, Yang YH, Yang N, Zhang TN. Kcnma1 is involved in mitochondrial homeostasis in diabetes-related skeletal muscle atrophy. FASEB J 2023; 37:e22866. [PMID: 36929614 DOI: 10.1096/fj.202201397rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Uncontrolled diabetes causes a catabolic state with multi-organic complications, of which impairment on skeletal muscle contributes to the damaged mobility. Kcnma1 gene encodes the pore-forming α-subunit of Ca2+ - and voltage-gated K+ channels of large conductance (BK channels), and loss-of-function mutations in Kcnma1 are in regards to impaired myogenesis. Herein, we observed a time-course reduction of Kcnma1 expression in the tibialis anterior muscles of leptin receptor-deficient (db/db) diabetic mice. To investigate the role of Kcnma1 in diabetic muscle atrophy, muscle-specific knockdown of Kcnma1 was achieved by mice receiving intravenous injection of adeno-associated virus-9 (AAV9)-encoding shRNA against Kcnma1 under the muscle creatine kinase (MCK) promoter. Impairment on muscle mass and myogenesis were observed in m/m mice with AAV9-shKcnma1 intervention, while this impairment was more obvious in diabetic db/db mice. Simultaneously, damaged mitochondrial dynamics and biogenesis showed much severer in db/db mice with AAV9-shKcnma1 intervention. RNA sequencing revealed the large transcriptomic changes resulted by Kcnma1 knockdown, and changes in mitochondrial homeostasis-related genes were validated. Besides, the artificial alteration of Kcnma1 in mouse C2C12 myoblasts was achieved with an adenovirus vector. Consistent results were demonstrated by Kcnma1 knockdown in palmitate-treated cells, whereas opposite results were exhibited by Kcnma1 overexpression. Collectively, we document Kcnma1 as a potential keeper of mitochondrial homeostasis, and the loss of Kcnma1 is a critical event in priming skeletal muscle loss in diabetes.
Collapse
Affiliation(s)
- Shan-Yan Gao
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Kraft G, Coate KC, Smith M, Farmer B, Scott M, Hastings J, Cherrington AD, Edgerton DS. Profound Sensitivity of the Liver to the Direct Effect of Insulin Allows Peripheral Insulin Delivery to Normalize Hepatic but Not Muscle Glucose Uptake in the Healthy Dog. Diabetes 2023; 72:196-209. [PMID: 36280227 PMCID: PMC9871195 DOI: 10.2337/db22-0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/18/2022] [Indexed: 01/28/2023]
Abstract
Endogenous insulin secretion is a key regulator of postprandial hepatic glucose metabolism, but this process is dysregulated in diabetes. Subcutaneous insulin delivery alters normal insulin distribution, causing relative hepatic insulin deficiency and peripheral hyperinsulinemia, a major risk factor for metabolic disease. Our aim was to determine whether insulin's direct effect on the liver is preeminent even when insulin is given into a peripheral vein. Postprandial-like conditions were created (hyperinsulinemia, hyperglycemia, and a positive portal vein to arterial glucose gradient) in healthy dogs. Peripheral (leg vein) insulin infusion elevated arterial and hepatic levels 8.0-fold and 2.8-fold, respectively. In one group, insulin's full effects were allowed. In another, insulin's indirect hepatic effects were blocked with the infusion of triglyceride, glucagon, and inhibitors of brain insulin action (intracerebroventricular) to prevent decreases in plasma free fatty acids and glucagon, while blocking increased hypothalamic insulin signaling. Despite peripheral insulin delivery the liver retained its full ability to store glucose, even when insulin's peripheral effects were blocked, whereas muscle glucose uptake markedly increased, creating an aberrant distribution of glucose disposal between liver and muscle. Thus, the healthy liver's striking sensitivity to direct insulin action can overcome the effect of relative hepatic insulin deficiency, whereas excess insulin in the periphery produces metabolic abnormalities in nonhepatic tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dale S. Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
17
|
Eslam M, El-Serag HB, Francque S, Sarin SK, Wei L, Bugianesi E, George J. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat Rev Gastroenterol Hepatol 2022; 19:638-651. [PMID: 35710982 DOI: 10.1038/s41575-022-00635-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) affects up to a third of the global population; its burden has grown in parallel with rising rates of type 2 diabetes mellitus and obesity. MAFLD increases the risk of end-stage liver disease, hepatocellular carcinoma, death and liver transplantation and has extrahepatic consequences, including cardiometabolic disease and cancers. Although typically associated with obesity, there is accumulating evidence that not all people with overweight or obesity develop fatty liver disease. On the other hand, a considerable proportion of patients with MAFLD are of normal weight, indicating the importance of metabolic health in the pathogenesis of the disease regardless of body mass index. The clinical profile, natural history and pathophysiology of patients with so-called lean MAFLD are not well characterized. In this Review, we provide epidemiological data on this group of patients and consider overall metabolic health and metabolic adaptation as a framework to best explain the pathogenesis of MAFLD and its heterogeneity in individuals of normal weight and in those who are above normal weight. This framework provides a conceptual schema for interrogating the MAFLD phenotype in individuals of normal weight that can translate to novel approaches for diagnosis and patient care.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium.,Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
18
|
Li H, Meng Y, He S, Tan X, Zhang Y, Zhang X, Wang L, Zheng W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022; 11:cells11193001. [PMID: 36230963 PMCID: PMC9562180 DOI: 10.3390/cells11193001] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of obesity has reached alarming levels, which is considered a major risk factor for several metabolic diseases, including type 2 diabetes (T2D), non-alcoholic fatty liver, atherosclerosis, and ischemic cardiovascular disease. Obesity-induced chronic, low-grade inflammation may lead to insulin resistance, and it is well-recognized that macrophages play a major role in such inflammation. In the current review, the molecular mechanisms underlying macrophages, low-grade tissue inflammation, insulin resistance, and T2D are described. Also, the role of macrophages in obesity-induced insulin resistance is presented, and therapeutic drugs and recent advances targeting macrophages for the treatment of T2D are introduced.
Collapse
Affiliation(s)
- He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya Meng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuwang He
- Shandong DYNE Marine Biopharmaceutical Co., Ltd., Rongcheng 264300, China
| | - Xiaochuan Tan
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujia Zhang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiuli Zhang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (L.W.); (W.Z.); Tel.: +86-010-63165233 (W.Z.)
| | - Wensheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence: (L.W.); (W.Z.); Tel.: +86-010-63165233 (W.Z.)
| |
Collapse
|
19
|
Meneses MJ, Sousa-Lima I, Jarak I, Raposo JF, Alves MG, Macedo MP. Distinct impacts of fat and fructose on the liver, muscle, and adipose tissue metabolome: An integrated view. Front Endocrinol (Lausanne) 2022; 13:898471. [PMID: 36060961 PMCID: PMC9428722 DOI: 10.3389/fendo.2022.898471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Objective In the last years, changes in dietary habits have contributed to the increasing prevalence of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). The differential burden of lipids and fructose on distinct organs needs to be unveiled. Herein, we hypothesized that high-fat and high-fructose diets differentially affect the metabolome of insulin-sensitive organs such as the liver, muscle, and different adipose tissue depots. Methods We have studied the impact of 12 weeks of a control (11.50% calories from fat, 26.93% from protein, and 61.57% from carbohydrates), high-fat/sucrose (HFat), or high-fructose (HFruct) feeding on C57Bl/6J male mice. Besides glucose homeostasis, we analyzed the hepatic levels of glucose and lipid-metabolism-related genes and the metabolome of the liver, the muscle, and white (WAT) and brown adipose tissue (BAT) depots. Results HFat diet led to a more profound impact on hepatic glucose and lipid metabolism than HFruct, with mice presenting glucose intolerance, increased saturated fatty acids, and no glycogen pool, yet both HFat and HFruct presented hepatic insulin resistance. HFat diet promoted a decrease in glucose and lactate pools in the muscle and an increase in glutamate levels. While HFat had alterations in BAT metabolites that indicate increased thermogenesis, HFruct led to an increase in betaine, a protective metabolite against fructose-induced inflammation. Conclusions Our data illustrate that HFat and HFruct have a negative but distinct impact on the metabolome of the liver, muscle, WAT, and BAT.
Collapse
Affiliation(s)
- Maria João Meneses
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
- Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - Inês Sousa-Lima
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ivana Jarak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - João F. Raposo
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
- Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - Marco G. Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Maria Paula Macedo
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
- Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
- Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
20
|
Nakamura NK, Tokunaga DS, Ha HY, Polgar N. The Exocyst Is Required for CD36 Fatty Acid Translocase Trafficking and Free Fatty Acid Uptake in Skeletal Muscle Cells. Cells 2022; 11:2440. [PMID: 35954283 PMCID: PMC9368548 DOI: 10.3390/cells11152440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
In obesity, chronic membrane-localization of CD36 free fatty acid (FFA) translocase, but not other FFA transporters, enhances FFA uptake and intracellular lipid accumulation. This ectopic lipid accumulation promotes insulin resistance by inhibiting insulin-induced GLUT4 glucose transporter trafficking and glucose uptake. GLUT4 and CD36 cell surface delivery is triggered by insulin- and contraction-induced signaling, which share conserved downstream effectors. While we have gathered detailed knowledge on GLUT4 trafficking, the mechanisms regulating CD36 membrane delivery and subsequent FFA uptake in skeletal muscle are not fully understood. The exocyst trafficking complex facilitates the docking of membrane-bound vesicles, a process underlying the controlled surface delivery of fuel transporters. The exocyst regulates insulin-induced glucose uptake via GLUT4 membrane trafficking in adipocytes and skeletal muscle cells and plays a role in lipid uptake in adipocytes. Based on the high degree of conservation of the GLUT4 and CD36 trafficking mechanisms in adipose and skeletal muscle tissue, we hypothesized that the exocyst also contributes to lipid uptake in skeletal muscle and acts through the targeted plasma membrane delivery of CD36 in response to insulin and contraction. Here, we show that the exocyst complex is necessary for insulin- and contraction-induced CD36 membrane trafficking and FFA uptake in muscle cells.
Collapse
Affiliation(s)
| | | | | | - Noemi Polgar
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
21
|
Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases. J Clin Med 2022; 11:jcm11154358. [PMID: 35955975 PMCID: PMC9369133 DOI: 10.3390/jcm11154358] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver.
Collapse
|
22
|
Zhou Y, Takano T, Li X, Wang Y, Wang R, Zhu Z, Tanokura M, Miyakawa T, Hachimura S. β-elemene regulates M1-M2 macrophage balance through the ERK/JNK/P38 MAPK signaling pathway. Commun Biol 2022; 5:519. [PMID: 35641589 PMCID: PMC9156783 DOI: 10.1038/s42003-022-03369-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Macrophages are classified into classically activated M1 macrophages and alternatively activated M2 macrophages, and the two phenotypes of macrophages are present during the development of various chronic diseases, including obesity-induced inflammation. In the present study, β-elemene, which is contained in various plant substances, is predicted to treat high-fat diet (HFD)-induced macrophage dysfunction based on the Gene Expression Omnibus (GEO) database and experimental validation. β-elemene impacts the imbalance of M1-M2 macrophages by regulating pro-inflammatory cytokines in mouse white adipose tissue both in vitro and in vivo. In addition, the RAW 264 cell line, which are macrophages from mouse ascites, is used to identify the effects of β-elemene on inhibiting bacterial endotoxin lipopolysaccharide (LPS)-induced phosphorylation of mitogen-activated protein kinase (MAPK) pathways. These pathways both induce and are activated by pro-inflammatory cytokines, and they also participate in the process of obesity-induced inflammation. The results highlight that β-elemene may represent a possible macrophage-mediated therapeutic medicine.
Collapse
Affiliation(s)
- Yingyu Zhou
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomohiro Takano
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Xuyang Li
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yimei Wang
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Rong Wang
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Zhangliang Zhu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, P. R. China
| | - Masaru Tanokura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
23
|
Han JH, Kim MT, Myung CS. Garcinia Cambogia Improves High-Fat Diet-Induced Glucose Imbalance by Enhancing Calcium/CaMKII/AMPK/GLUT4-Mediated Glucose Uptake in Skeletal Muscle. Mol Nutr Food Res 2022; 66:e2100669. [PMID: 35213784 DOI: 10.1002/mnfr.202100669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/01/2022] [Indexed: 12/20/2022]
Abstract
SCOPE Garcinia cambogia (G. cambogia) is known to have antiobesity effects. In this study, the therapeutic effects of G. cambogia on glucose homeostasis in obesity-induced diabetes are explored and the underlying mechanisms are investigated. METHODS AND RESULTS C2C12 myotubes are treated with G. cambogia; glucose uptake, intracellular Ca2+ levels, and related alterations in signaling pathways are examined. High-fat diet (HFD)-fed mice are administered G. cambogia for 8 weeks; oral glucose tolerance is evaluated, and the regulation of identified targets of signaling pathways in quadriceps skeletal muscle are examined in vivo. G. cambogia increases glucose uptake in C2C12 myotubes and induces the upregulation of AMPK, ACC, and p38 MAPK phosphorylation. Notably, G. cambogia markedly elevates both intracellular Ca2+ levels, activating CaMKII, a Ca2+ -sensing protein, and TBC1D4-mediated GLUT4 translocation, to facilitate glucose uptake. Furthermore, high-glucose-induced inhibition of glucose uptake and signal transduction is reverted by G. cambogia. In an HFD-induced diabetes mouse model, G. cambogia administration results in significant blood glucose-lowering effects, which are attributed to the regulation of targets that have been identified in vitro, in quadricep skeletal muscle. CONCLUSION These findings provide new insights into the mechanism by which G. cambogia regulates glucose homeostasis in obesity-induced diabetes.
Collapse
Affiliation(s)
- Joo-Hui Han
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Min-Tae Kim
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
24
|
Fujimoto R, Ohta Y, Masuda K, Taguchi A, Akiyama M, Yamamoto K, Nakabayashi H, Nagao Y, Matsumura T, Hiroshige S, Kajimura Y, Akashi M, Tanizawa Y. Metabolic state switches between morning and evening in association with circadian clock in non‐diabetic humans. J Diabetes Investig 2022; 13:1496-1505. [PMID: 35429128 PMCID: PMC9434593 DOI: 10.1111/jdi.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Aims/Introduction Understanding morning–evening variation in metabolic state is critical for managing metabolic disorders. We aimed to characterize this variation from the viewpoints of insulin secretion and insulin sensitivity, including their relevance to the circadian rhythm. Materials and Methods A total of 14 and 10 people without diabetes were enrolled, and underwent a 75‐g oral glucose tolerance test (OGTT) and hyperinsulinemic‐euglycemic clamp study, respectively. Participants completed the OGTT or hyperinsulinemic‐euglycemic clamp at 08.00 hours and 20.00 hours in random order. Before each study, hair follicles were collected. In mice, phosphorylation levels of protein kinase B were examined in the liver and muscle by western blotting. Results Glucose tolerance was better at 08 .00 hours, which was explained by the higher 1‐h insulin secretion on OGTT and increased skeletal muscle insulin sensitivity on hyperinsulinemic‐euglycemic clamp. Hepatic insulin sensitivity, estimated by the hepatic insulin resistance index on OGTT, was better at 20.00 hours. The 1‐h insulin secretion and hepatic insulin resistance index correlated significantly with Per2 messenger ribonucleic acid expression. The change (evening value – morning value) in the glucose infusion rate correlated significantly with the change in non‐esterified fatty acid, but not with clock gene expressions. The change in non‐esterified fatty acid correlated significantly with E4bp4 messenger ribonucleic acid expression and the change in cortisol. In mice, phosphorylation of protein kinase B was decreased in the liver and increased in muscle in the beginning of the active period as, expected from the human study. Conclusions Glucose metabolism in each tissue differed between the morning and evening, partly reflecting lipid metabolism, clock genes and cortisol levels. Deeper knowledge of these associations might be useful for ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Ruriko Fujimoto
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Ysuharu Ohta
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
- Department of Diabetes Research Yamaguchi University School of Medicine, Ube Yamaguchi Japan
| | - Konosuke Masuda
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Akihiko Taguchi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Masaru Akiyama
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Kaoru Yamamoto
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Hiroko Nakabayashi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Yuko Nagao
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Takuro Matsumura
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Syunsuke Hiroshige
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Yasuko Kajimura
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Makoto Akashi
- The Research Institute for Time Studies Yamaguchi University Yamaguchi Japan
| | - Yukio Tanizawa
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| |
Collapse
|
25
|
Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The Biological Functions and Regulatory Mechanisms of Fatty Acid Binding Protein 5 in Various Diseases. Front Cell Dev Biol 2022; 10:857919. [PMID: 35445019 PMCID: PMC9013884 DOI: 10.3389/fcell.2022.857919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, fatty acid binding protein 5 (FABP5), also known as fatty acid transporter, has been widely researched with the help of modern genetic technology. Emerging evidence suggests its critical role in regulating lipid transport, homeostasis, and metabolism. Its involvement in the pathogenesis of various diseases such as metabolic syndrome, skin diseases, cancer, and neurological diseases is the key to understanding the true nature of the protein. This makes FABP5 be a promising component for numerous clinical applications. This review has summarized the most recent advances in the research of FABP5 in modulating cellular processes, providing an in-depth analysis of the protein's biological properties, biological functions, and mechanisms involved in various diseases. In addition, we have discussed the possibility of using FABP5 as a new diagnostic biomarker and therapeutic target for human diseases, shedding light on challenges facing future research.
Collapse
Affiliation(s)
- Binyue Xu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Karl Nelson S. Marquez
- Clinical Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hankou, China
| | - Lvjia Zhuo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shasha Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jinyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xudong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Gu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
26
|
Isse FA, El-Sherbeni AA, El-Kadi AOS. The multifaceted role of cytochrome P450-Derived arachidonic acid metabolites in diabetes and diabetic cardiomyopathy. Drug Metab Rev 2022; 54:141-160. [PMID: 35306928 DOI: 10.1080/03602532.2022.2051045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding lipid metabolism is a critical key to understanding the pathogenesis of Diabetes Mellitus (DM). It is known that 60-90% of DM patients are obese or used to be obese. The incidence of obesity is rising owing to the modern sedentary lifestyle that leads to insulin resistance and increased levels of free fatty acids, predisposing tissues to utilize more lipids with less glucose uptake. However, the exact mechanism is not yet fully elucidated. Diabetic cardiomyopathy seems to be associated with these alterations in lipid metabolism. Arachidonic acid (AA) is an important fatty acid that is metabolized to several bioactive compounds by cyclooxygenases, lipoxygenases, and the more recently discovered, cytochrome P450 (P450) enzymes. P450 metabolizes AA to either epoxy-AA (EETs) or hydroxy-AA (HETEs). Studies showed that EETs could have cardioprotective effects and beneficial effects in reversing abnormalities in glucose and insulin homeostasis. Conversely, HETEs, most importantly 12-HETE and 20-HETE, were found to interfere with normal glucose and insulin homeostasis and thus, might be involved in diabetic cardiomyopathy. In this review, we highlight the role of P450-derived AA metabolites in the context of DM and diabetic cardiomyopathy and their potential use as a target for developing new treatments for DM and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Fadumo Ahmed Isse
- Departmet of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ahmed A El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ayman O S El-Kadi
- Departmet of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
27
|
Wang Q, Xie T, Zhang T, Deng Y, Zhang Y, Wu Q, Dong M, Luo X. The Role of Changes in Cumulative Lipid Parameter Burden in the Pathogenesis of Type 2 Diabetes Mellitus: A Cohort Study of People Aged 35-65 Years in Rural China. Diabetes Metab Syndr Obes 2022; 15:1831-1843. [PMID: 35733642 PMCID: PMC9208634 DOI: 10.2147/dmso.s363692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The main purpose of this study was to examine the effect of the cumulative exposure of blood lipid parameters on type 2 diabetes mellitus (T2DM). Another purpose was to explore whether the cumulative burden of blood lipid parameters plays a certain role in the pathogenesis of diet affecting T2DM. PATIENTS AND METHODS A total of 63 cases of diabetes occurred from 2017 to 2020, with an incidence density of 3.71 person-years. The dietary intake of the residents was obtained by using a dietary frequency questionnaire (FFQ). Cumulative lipid parameter burden was calculated according to the number of years (2016-2020) multiplied by total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL) and triglyceride (TG). A Cox proportional hazard model was used to estimate the effect of cumulative lipid burden on T2DM. A mediating analysis of accelerated failure time (AFT) was used to investigate the mediating effects of certain foods, the cumulative lipid parameter burden and T2DM. RESULTS A higher cumulative TG load corresponded to a higher risk of T2DM onset (Ptrend =0.021). After adjusting for covariates, the highest quartile cumulative TG burden had a 3.462 times higher risk of T2DM than that in the lowest quartile (HR=3.462, 95% CI: 1.297-9.243). Moreover, a higher cumulative HDL load corresponded to a lower risk of T2DM onset (Ptrend =0.006). After adjusting for covariates, the risk of T2DM was 0.314-fold lower in the highest quartile of cumulative HDL burden than that in the lowest quartile (HR=0.314, 95% CI: 0.131-0.753). Cumulative TG burden partially mediated the association between red meat and T2DM. CONCLUSION The increase in cumulative HDL burden and the decrease in cumulative HDL burden are related to the incidence of T2DM. Cumulative TG burden was shown to play a partial mediating role in the pathogenesis of red meat and diabetes.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Tao Xie
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ting Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yuanjia Deng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yuying Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Qingfeng Wu
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Minghua Dong
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Xiaoting Luo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
- School of General Medicine, Gannan Medical University, Ganzhou, People’s Republic of China
- Correspondence: Xiaoting Luo, Tel +86 13677975578, Fax +86 0797-8169600, Email
| |
Collapse
|
28
|
Imai N, Nicholls HT, Alves-Bezerra M, Li Y, Ivanova AA, Ortlund EA, Cohen DE. Up-regulation of thioesterase superfamily member 2 in skeletal muscle promotes hepatic steatosis and insulin resistance in mice. Hepatology 2022; 75:154-169. [PMID: 34433228 PMCID: PMC9938941 DOI: 10.1002/hep.32122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Thioesterase superfamily member 2 (Them2) is highly expressed in liver and oxidative tissues, where it hydrolyzes long-chain fatty acyl-CoA esters to free fatty acids and CoA. Although mice globally lacking Them2 (Them2-/- ) are protected against diet-induced obesity, hepatic steatosis (HS), and insulin resistance (IR), liver-specific Them2-/- mice remain susceptible. The aim of this study was to test whether Them2 activity in extrahepatic oxidative tissues is a primary determinant of HS and IR. APPROACH AND RESULTS Upon observing IR and up-regulation of Them2 in skeletal, but not cardiac, muscle of high-fat-diet (HFD)-fed wild-type compared to Them2-/- mice, we created mice with Them2 specifically deleted in skeletal (S-Them2-/- ) and cardiac muscle (C-Them2-/- ), as well as in adipose tissue (A-Them2-/- ). When fed an HFD, S-Them2-/- , but not C-Them2-/- or A-Them2-/- , mice exhibited reduced weight gain and improved glucose homeostasis and insulin sensitivity. Reconstitution of Them2 expression in skeletal muscle of global Them2-/- mice, using adeno-associated virus, was sufficient to restore excess weight gain. Increased rates of fatty acid oxidation in skeletal muscle of S-Them2-/- mice contributed to protection from HFD-induced HS by increasing VLDL triglyceride secretion rates in response to greater demand. Increases in insulin sensitivity were further attributable to alterations in production of skeletal muscle metabolites, including short-chain fatty acids, branched-chain amino acids, and pentose phosphate pathway intermediates, as well as in expression of myokines that modulate insulin responsiveness. CONCLUSIONS These results reveal a key role for skeletal muscle Them2 in the pathogenesis of HS and IR and implicate it as a target in the management of NAFLD.
Collapse
Affiliation(s)
- Norihiro Imai
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| | - Hayley T. Nicholls
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| | - Michele Alves-Bezerra
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| | - Yingxia Li
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| | - Anna A. Ivanova
- Department of Biochemistry, Emory University, Atlanta, GA 30322 USA
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA 30322 USA
| | - David E. Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| |
Collapse
|
29
|
Deng Q, Du L, Zhang Y, Liu G. NEFAs Influence the Inflammatory and Insulin Signaling Pathways Through TLR4 in Primary Calf Hepatocytes in vitro. Front Vet Sci 2021; 8:755505. [PMID: 34966805 PMCID: PMC8710596 DOI: 10.3389/fvets.2021.755505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Transition dairy cows are often in a state of negative energy balance because of decreased dry matter intake and increased energy requirements, initiating lipid mobilization and leading to high serum β-hydroxybutyrate (BHBA) and non-esterified fatty acid (NEFAs) levels, which can induce ketosis and fatty liver in dairy cows. Inflammation and insulin resistance are also common diseases in the perinatal period of dairy cows. What is the relationship between negative energy balance, insulin resistance and inflammation in dairy cows? To study the role of non-esterified fatty acids in the nuclear factor kappa beta (NF-κB) inflammatory and insulin signaling pathways through Toll-like receptor 4 (TLR4), we cultured primary calf hepatocytes and added different concentrations of NEFAs to assess the mRNA and protein levels of inflammatory and insulin signaling pathways. Our experiments indicated that NEFAs could activate the NF-κB inflammatory signaling pathway and influence insulin resistance through TLR4. However, an inhibitor of TLR4 alleviated the inhibitory effects of NEFAs on the insulin pathway. In conclusion, all of these results indicate that high-dose NEFAs (2.4 mM) can activate the TLR4/NF-κB inflammatory signaling pathway and reduce the sensitivity of the insulin pathway through the TLR4/PI3K/AKT metabolic axis.
Collapse
Affiliation(s)
- Qinghua Deng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,Inner Mongolia Minzu University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao, China
| | - Liyin Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,Inner Mongolia Minzu University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao, China
| | - Yuming Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,Inner Mongolia Minzu University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao, China
| | - Guowen Liu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
30
|
Enyama Y, Takeshita Y, Tanaka T, Sako S, Kanamori T, Takamura T. Distinct effects of carbohydrate ingestion timing on glucose fluctuation and energy metabolism in patients with type 2 diabetes: a randomized controlled study. Endocr J 2021; 68:1225-1236. [PMID: 34121047 DOI: 10.1507/endocrj.ej20-0623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This randomized, open-label, and parallel-group study aimed to investigate the effects of altering the timing of carbohydrate intake at breakfast or dinner on blood glucose fluctuations and energy metabolism. A total of 43 participants with type 2 diabetes were assigned to either the breakfast or dinner group. Participants were provided an isocaloric carbohydrate-restricted diet constituting 10% carbohydrate only at breakfast or dinner for 2 days during the study. Glucose fluctuations were compared using a continuous glucose monitoring system (iPro2) and body composition, energy expenditure, blood biochemistry, and endocrine function changes. The carbohydrate restriction either at breakfast or dinner significantly decreased postprandial glucose excursion and mean 24-h blood glucose levels. The incremental blood glucose area under the curve (AUC) for 2 h (iAUC0-2h) at lunch significantly increased in the breakfast group, whereas no significant differences were observed in the iAUC0-2h between breakfast and lunch in the dinner group. Carbohydrate restriction reduced diet-induced thermogenesis at breakfast (intragroup comparison; 223 ± 117 to 109 ± 104 kcal, p = 0.002) but did not affect diet-induced thermogenesis at dinner. However, fasting plasma free fatty acids were comparable in both groups, prelunch free fatty acids increased significantly only in the breakfast group (0.20 ± 0.09 to 0.63 ± 0.19 mEq/L, p < 0.001). Carbohydrate restriction in the diet once daily decreases mean 24-h blood glucose levels and exerts unique metabolic effects depending on the timing.
Collapse
Affiliation(s)
- Yasufumi Enyama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa 920-8640, Japan
| | - Takeo Tanaka
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa 920-8640, Japan
| | - Saori Sako
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa 920-8640, Japan
| | - Takehiro Kanamori
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa 920-8640, Japan
| |
Collapse
|
31
|
Li LJ, Ma J, Li SB, Chen XF, Zhang J. Electric pulse stimulation inhibited lipid accumulation on C2C12 myotubes incubated with oleic acid and palmitic acid. Arch Physiol Biochem 2021; 127:344-350. [PMID: 31298959 DOI: 10.1080/13813455.2019.1639763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the effect of electrical pulse stimulation (EPS) on lipid accumulation and alteration of fatty acid-related enzymes in C2C12 myotubes incubated with fatty acids. METHODS Mouse C2C12 myotubes were incubated with oleic acid and palmitic acid, and differentiated C2C12 myotubes were treated with EPS, oil-red O (ORO), BODIPY staining and triglyceride (TG) content were examined. Total RNA was isolated, and real-time polymerase chain reaction analysis was performed. RESULTS (1) EPS decreased TG content (p < .01). (2) EPS significantly induced the mRNA expression of FAD/CD36 (p < .05), FATP4 (p < .001), FABP1 (p < .01) and FABP5 (p < .01). (3) EPS significantly inhibited the mRNA expression of fatty acid synthase (p < .01). (4) Adipose triglyceride lipase and hormone-sensitive lipase expression were significantly elevated (p < .001), and induced the mRNA expression of CPT1 (p < .01), ACOX1 (p < .05), UCP3 (p < .05) and PPARα (p < .001) after EPS. CONCLUSION EPS reduced lipid droplet accumulation; enhanced CD36, FATP4, FABP1 and FABP5 expression; inhibited C2C12 myotube fatty acid re-esterification; and promoted fatty acid oxidation in C2C12 myotubes.
Collapse
Affiliation(s)
- Ling-Jie Li
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Jin Ma
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Song-Bo Li
- China Academy of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Xue-Fei Chen
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Jing Zhang
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| |
Collapse
|
32
|
Calvo E, Keiran N, Núñez-Roa C, Maymó-Masip E, Ejarque M, Sabadell-Basallote J, Del Mar Rodríguez-Peña M, Ceperuelo-Mallafré V, Seco J, Benaiges E, Michalopoulou T, Jorba R, Vendrell J, Fernández-Veledo S. Effects of stem cells from inducible brown adipose tissue on diet-induced obesity in mice. Sci Rep 2021; 11:13923. [PMID: 34230537 PMCID: PMC8260805 DOI: 10.1038/s41598-021-93224-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/16/2021] [Indexed: 11/11/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are a promising option for the treatment of obesity and its metabolic co-morbidities. Despite the recent identification of brown adipose tissue (BAT) as a potential target in the management of obesity, the use of ASCs isolated from BAT as a therapy for patients with obesity has not yet been explored. Metabolic activation of BAT has been shown to have not only thermogenic effects, but it also triggers the secretion of factors that confer protection against obesity. Herein, we isolated and characterized ASCs from the visceral adipose tissue surrounding a pheochromocytoma (IB-hASCs), a model of inducible BAT in humans. We then compared the anti-obesity properties of IB-hASCs and human ASCs isolated from visceral white adipose tissue (W-hASCs) in a murine model of diet-induced obesity. We found that both ASC therapies mitigated the metabolic abnormalities of obesity to a similar extent, including reducing weight gain and improving glucose tolerance. However, infusion of IB-hASCs was superior to W-hASCs in suppressing lipogenic and inflammatory markers, as well as preserving insulin secretion. Our findings provide evidence for the metabolic benefits of visceral ASC infusion and support further studies on IB-hASCs as a therapeutic option for obesity-related comorbidities.
Collapse
Affiliation(s)
- Enrique Calvo
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Keiran
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili, Tarragona, Spain
| | - Catalina Núñez-Roa
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
| | - Elsa Maymó-Masip
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Ejarque
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Sabadell-Basallote
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili, Tarragona, Spain
| | - María Del Mar Rodríguez-Peña
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
| | - Victòria Ceperuelo-Mallafré
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili, Tarragona, Spain
| | - Jesús Seco
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Benaiges
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira I Virgili, Tarragona, Spain
| | - Theodora Michalopoulou
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain
| | - Rosa Jorba
- Servei de Cirurgia General I de L'Aparell Digestiu, Hospital Universitari Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Joan Vendrell
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain.
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain.
- Universitat Rovira I Virgili, Tarragona, Spain.
| | - Sonia Fernández-Veledo
- Servei D'Endocrinologia I Nutrició I Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut D'Investigació Sanitària Pere Virgili (IISPV), c/ Dr. Mallafré Guasch 4, 43007, Tarragona, Spain.
- CIBER de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM) - Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
33
|
The Effect of Simulated In Vitro Digestion on Biological Activity of Viburnum opulus Fruit Juices. Molecules 2021; 26:molecules26134086. [PMID: 34279426 PMCID: PMC8271880 DOI: 10.3390/molecules26134086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, an in vitro digestion method has been used to assay the influence of the physiological conditions in the mouth, stomach, and intestine on the stability and activity in different cell models of the main phenolic compounds from Viburnum opulus fresh juice (FJ), phenolic-rich juice (PJ), and the bioavailable fractions (DFJ and DPJ). The data obtained indicate that the V. opulus samples achieved after in vitro digestion had an influence on cellular glucose and lipid metabolism. The bioavailable fraction of both digested juices stimulated glucose uptake and decreased lipid accumulation by L6 myoblasts and HepG2 hepatocytes. Both DFJ and DPJ reduced the secretion of inflammatory cytokines by 3T3-L1 adipocytes: interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Simultaneously, DFJ and DPJ enhanced oxidative stress in MIN6 cells and decreased glucose-stimulated insulin secretion (GSIS). UPLC-MS analysis revealed qualitative and quantitative changes in hydroxycinnamic acids. In particular, the content of chlorogenic acid decreased drastically; its content in the bioavailable fraction was almost 7 times and 30 times lower than in the FJ and PJ, respectively. Our results suggested that although the phenolic compounds of V. opulus juices undergo transformation during digestion, they are still potent antioxidant agents with biological activity.
Collapse
|
34
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
35
|
Yang M, Li C, Sun L. Mitochondria-Associated Membranes (MAMs): A Novel Therapeutic Target for Treating Metabolic Syndrome. Curr Med Chem 2021; 28:1347-1362. [PMID: 32048952 DOI: 10.2174/0929867327666200212100644] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 11/22/2022]
Abstract
Mitochondria-associated Endoplasmic Reticulum (ER) Membranes (MAMs) are the cellular structures that connect the ER and mitochondria and mediate communication between these two organelles. MAMs have been demonstrated to be involved in calcium signaling, lipid transfer, mitochondrial dynamic change, mitophagy, and the ER stress response. In addition, MAMs are critical for metabolic regulation, and their dysfunction has been reported to be associated with metabolic syndrome, including the downregulation of insulin signaling and the accelerated progression of hyperlipidemia, obesity, and hypertension. This review covers the roles of MAMs in regulating insulin sensitivity and the molecular mechanism underlying MAM-regulated cellular metabolism and reveals the potential of MAMs as a therapeutic target in treating metabolic syndrome.
Collapse
Affiliation(s)
- Ming Yang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, the Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Changsha 410011, Hunan, China
| | - Chenrui Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, the Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Changsha 410011, Hunan, China
| | - Lin Sun
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, the Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Changsha 410011, Hunan, China
| |
Collapse
|
36
|
Dong ZH, Lin HY, Chen FL, Che XQ, Bi WK, Shi SL, Wang J, Gao L, He Z, Zhao JJ. Berberine improves intralipid-induced insulin resistance in murine. Acta Pharmacol Sin 2021; 42:735-743. [PMID: 32770172 PMCID: PMC8115075 DOI: 10.1038/s41401-020-0493-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance (IR) is a major metabolic risk factor even before the onset of hyperglycemia. Recently, berberine (BBR) is found to improve hyperglycemia and IR. In this study, we investigated whether BBR could improve IR independent of hyperglycemia. Acute insulin-resistant state was induced in rats by systemic infusion of intralipid (6.6%). BBR was administered via different delivery routes before or after the beginning of a 2-h euglycemic-hyperinsulinemic clamp. At the end of experiment, rats were sacrificed, gastrocnemius muscle was collected for detecting mitochondrial swelling, phosphorylation of Akt and AMPK, as well as the mitochondrial permeability regulator cyclophilin D (CypD) protein expression. We showed that BBR administration markedly ameliorated intralipid-induced IR without affecting blood glucose, which was accompanied by alleviated mitochondrial swelling in skeletal muscle. We used human skeletal muscle cells (HSMCs), AML12 hepatocytes, human umbilical vein endothelial cells, and CypD knockout mice to investigate metabolic and molecular alternations. In either HSMCs or AML12 hepatocytes, BBR (5 μM) abolished palmitate acid (PA)-induced increase of CypD protein levels. In CypD-deficient mice, intralipid-induced IR was greatly attenuated and the beneficial effect of BBR was diminished. Furthermore, we demonstrated that the inhibitory effect of BBR on intralipid-induced IR was mainly mediated by skeletal muscle, but not by intestine, liver, or microvasculature; BBR administration suppressed intralipid-induced upregulation of CypD expression in skeletal muscle. These results suggest that BBR alleviates intralipid-induced IR, which is related to the inhibition of CypD protein expression in skeletal muscle.
Collapse
Affiliation(s)
- Zhen-Hua Dong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China
- Department of Endocrinology, Ji-nan Central Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China
| | - Hai-Yan Lin
- Department of Health Management Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China
| | - Fu-Lian Chen
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
| | - Xiao-Qi Che
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China
| | - Wen-Kai Bi
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China
| | - Shu-Long Shi
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Ji-nan, 250000, China.
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China.
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China.
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China.
- Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China.
| | - Jia-Jun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China.
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China.
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China.
| |
Collapse
|
37
|
Chen Y, Hu W, Li Q, Zhao S, Zhao D, Zhang S, Wei Z, Yang X, Chen Y, Li X, Liao C, Han J, Miao QR, Duan Y. NGBR is required to ameliorate type 2 diabetes in mice by enhancing insulin sensitivity. J Biol Chem 2021; 296:100624. [PMID: 33812996 PMCID: PMC8111265 DOI: 10.1016/j.jbc.2021.100624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/11/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
The reduction of insulin resistance or improvement of insulin sensitivity is the most effective treatment for type 2 diabetes (T2D). We previously reported that Nogo-B receptor (NGBR), encoded by the NUS1 gene, is required for attenuating hepatic lipogenesis by blocking nuclear translocation of liver X receptor alpha, suggesting its important role in regulating hepatic lipid metabolism. Herein, we demonstrate that NGBR expression was decreased in the liver of obesity-associated T2D patients and db/db mice. NGBR knockout in mouse hepatocytes resulted in increased blood glucose, insulin resistance, and beta-cell loss. High-fat diet (HFD)/streptozotocin (STZ)-treated mice presented the T2D phenotype by showing increased nonesterified fatty acid (NEFA) and triglyceride (TG) in the liver and plasma and increased insulin resistance and beta-cell loss. AAV-mediated NGBR overexpression in the liver reduced NEFA and TG in the liver and circulation and improved liver functions. Consequently, HFD/STZ-treated mice with hepatic NGBR overexpression had increased insulin sensitivity and reduced beta-cell loss. Mechanistically, NGBR overexpression restored insulin signaling of AMPKα1-dependent phosphorylation of AKT and GSK3β. NGBR overexpression also reduced expression of endoplasmic reticulum stress-associated genes in the liver and skeletal muscle to improve insulin sensitivity. Together, our results reveal that NGBR is required to ameliorate T2D in mice, providing new insight into the role of hepatic NGBR in insulin sensitivity and T2D treatment.
Collapse
Affiliation(s)
- Yi Chen
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wenquan Hu
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Diabetes and Obesity Research Center, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Qi Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Shiwei Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Dan Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Shuang Zhang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhuo Wei
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoju Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Chenzhong Liao
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qing Robert Miao
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Diabetes and Obesity Research Center, New York University Long Island School of Medicine, Mineola, New York, USA.
| | - Yajun Duan
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
38
|
Serum soluble epoxide hydrolase related oxylipins and major depression in patients with type 2 diabetes. Psychoneuroendocrinology 2021; 126:105149. [PMID: 33503568 DOI: 10.1016/j.psyneuen.2021.105149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND People with type 2 diabetes mellitus (T2DM) are at increased risk for depression. Both conditions are associated with disturbances in polyunsaturated fatty acids. Omega-3 and omega-6 fatty acids can be converted into bioactive epoxides by cytochrome P450s (CYP450), which play pro-resolving roles in the inflammatory response; however, soluble epoxide hydrolase (sEH) metabolizes epoxides into diols, which lack pro-resolving functions and can be cytotoxic. Here, we survey serum CYP450- and sEH-derived metabolite concentrations in people with T2DM with and without a major depressive episode. METHODS Sunnybrook Type 2 Diabetes Study (NCT04455867) participants experiencing a major depressive episode (research version of the Structured Clinical Interview for DSM-5 criteria) were matched 1:1 for gender, glycosylated hemoglobin A1c and body mass index to participants without a current depressive episode. Depression severity was assessed using the Beck Depression Inventory 2nd Edition (BDI-II). From fasting morning blood, unesterified serum oxylipins were quantified by ultra-high-performance liquid chromatography tandem mass spectrometry following solid phase extraction, and interleukin-6 (IL-6) by enzyme-linked immunosorbent assay. RESULTS Between 20 depressed and 20 non-depressed participants (mean age 58.9 ± 8.5 years, 65% women) with T2DM, several sEH-derived fatty acid diols, but not IL-6, were higher among those with a depressive episode (effect sizes up to d = 0.796 for 17,18-DiHETE, a metabolite of eicosapentaenoic acid [EPA]; t = 2.516, p = 0.016). Among people with a depressive episode, two epoxides were correlated with lower BDI-II scores: 12(13)-EpOME (ρ = -0.541, p = 0.014) and 10(11)-EpDPE (ρ = -0.444, p = 0.049), metabolites of linoleic acid and docosahexaenoic acid (DHA), respectively, while the ratio of 12,13-DiHOME/12(13)-EpOME was correlated with higher BDI-II scores (ρ = 0.513, p = 0.021). CONCLUSIONS In people with T2DM, major depressive episodes and depressive symptom severity were associated with an oxylipin profile consistent with elimination of pro-resolving lipid mediators by sEH.
Collapse
|
39
|
Taki K, Takagi H, Hirose T, Sun R, Yaginuma H, Mizoguchi A, Kobayashi T, Sugiyama M, Tsunekawa T, Onoue T, Hagiwara D, Ito Y, Iwama S, Suga H, Banno R, Sakano D, Kume S, Arima H. Dietary sodium chloride attenuates increased β-cell mass to cause glucose intolerance in mice under a high-fat diet. PLoS One 2021; 16:e0248065. [PMID: 33730054 PMCID: PMC7968668 DOI: 10.1371/journal.pone.0248065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/19/2021] [Indexed: 11/19/2022] Open
Abstract
Excessive sodium salt (NaCl) or fat intake is associated with a variety of increased health risks. However, whether excessive NaCl intake accompanied by a high-fat diet (HFD) affects glucose metabolism has not been elucidated. In this study, C57BL/6J male mice were fed a normal chow diet (NCD), a NCD plus high-NaCl diet (NCD plus NaCl), a HFD, or a HFD plus high-NaCl diet (HFD plus NaCl) for 30 weeks. No significant differences in body weight gain, insulin sensitivity, and glucose tolerance were observed between NCD-fed and NCD plus NaCl-fed mice. In contrast, body and liver weights were decreased, but the weight of epididymal white adipose tissue was increased in HFD plus NaCl-fed compared to HFD-fed mice. HFD plus NaCl-fed mice had lower plasma glucose levels in an insulin tolerance test, and showed higher plasma glucose and lower plasma insulin levels in an intraperitoneal glucose tolerance test compared to HFD-fed mice. The β-cell area and number of islets were decreased in HFD plus NaCl-fed compared to HFD-fed mice. Increased Ki67-positive β-cells, and increased expression levels of Ki67, CyclinB1, and CyclinD1 mRNA in islets were observed in HFD-fed but not HFD plus NaCl-fed mice when compared to NCD-fed mice. Our data suggest that excessive NaCl intake accompanied by a HFD exacerbates glucose intolerance, with impairment in insulin secretion caused by the attenuation of expansion of β-cell mass in the pancreas.
Collapse
Affiliation(s)
- Keigo Taki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
- * E-mail:
| | - Tomonori Hirose
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Runan Sun
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiroshi Yaginuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Akira Mizoguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Daisuke Sakano
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Shoen Kume
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
40
|
Wang HD, Zhang CS, Li MW, Lin Q, Zhang Q, Liu DF, Ma ZY, Dong J. The Association of Trp64Arg Polymorphism in the Beta-Adrenergic Receptor With Insulin Resistance: Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:708139. [PMID: 34512548 PMCID: PMC8426512 DOI: 10.3389/fendo.2021.708139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Insulin resistance is a metabolic disorder that occurs in type 2 diabetes mellitus and obesity. Genetic factors such as β3-adrenoceptor polymorphism (Trp64Arg) may be involved in IR and insulin secretion. However, their association is controversial. Therefore, the current meta-analysis was conducted to clarify the relationship between the Trp64Arg and IR. METHODS The literature search was performed in PubMed, Embase, and Web of Science using the keywords "Receptors, Adrenergic, beta-3, Receptors, Adrenergic, Insulin Resistance, Protein-Coupled Receptor Kinase 3" from 2005 to February 7, 2021. We used a random-effects model to calculate the pooled effect size. We conducted subgroup analysis and regression analysis to identify sources of heterogeneity; and Egger's test and funnel plot were used to test publication bias. Finally, we conducted a sensitivity analysis. RESULTS We included eight papers with 1,586 subjects. There was a positive correlation between Trp64Arg mutation and insulin level (standardized mean difference = 0.20, 95% confidence intervals: 0.00 to 0.39, I2 = 57.6%, p = 0.016). However, there was no association between Trp64Arg and the homeostasis model (HOMA-IR) assessment. Egger's tests showed no publication bias; the sensitivity analysis showed that our results were stable. Regression analysis revealed no source of heterogeneity. CONCLUSION Trp64Arg may be associated with IR. European ancestry, obesity, plasma insulin level, and test status may be potential factors affecting the relationship between Trp64Arg and IR.
Collapse
Affiliation(s)
- Hai-Dan Wang
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Cai-Shun Zhang
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Man-Wen Li
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Qian Lin
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Qing Zhang
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - De-Feng Liu
- Clinical Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Zheng-Ye Ma
- Clinical Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Jing Dong
- Special Medicine Department, Medical College, Qingdao University, Qingdao, China
- Physiology Department, Medical College, Qingdao University, Qingdao, China
- *Correspondence: Jing Dong,
| |
Collapse
|
41
|
Jevtovic F. Combination of Metformin and Exercise in Management of Metabolic Abnormalities Observed in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:4043-4057. [PMID: 34557007 PMCID: PMC8453852 DOI: 10.2147/dmso.s328694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Excess nutrient intake and lack of exercise characterize the problem of obesity and are common factors in insulin resistance (IR). With an increasing number of prediabetic, and type 2 diabetic populations, metformin is still the most prescribed glucose-lowering drug and is often accompanied by recommendations for regular physical exercise. Metformin, by the inhibition of complex 1 of the electron transport chain, and exercise, by increasing energy expenditure, both elicit a low cellular energy state that leads to improvements in glucose control via activation of adenosine 5' monophosphate-activated protein kinase (AMPK). An augmented stimulation of the energy-sensing enzyme AMPK by either of the two modalities leads to an increase in glycogenolysis, glucose uptake, fat oxidation, a decrease in glycogen and protein synthesis, and gluconeogenesis in muscle and the liver, which are remarked as having positive effects on metabolic pathophysiology observed in IR and type 2 diabetes mellitus (T2DM). While both modalities exploit the energy-sensing enzyme AMPK to attain glucose homeostasis, the synergistic effect of these two treatments is not distinctly supported by the literature. Further, an antagonistic dynamic has been observed in cases where metformin and exercise were combined. Reduction of insulin-sensitizing effects of exercise and an overall hindrance of exercise performance and adaptations have been reported and could suggest the possible incongruity of these two modalities. The aim of this review is to elucidate the effect that metformin and exercise have on the management of the metabolic abnormalities observed in T2DM and to provide an insight into the interaction of these two modalities.
Collapse
Affiliation(s)
- Filip Jevtovic
- Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC, USA
- Correspondence: Filip Jevtovic East Carolina University; School of Dental Medicine, Ledyard E. Ross Hall; 1851 MacGregor Downs Road, Mail Stop 701, Greenville, NC, 27834, USATel +1 616 844 8323Fax +1 252 737 7024 Email
| |
Collapse
|
42
|
Awasthi A, Singh SK, Kumar B, Gulati M, Kumar R, Wadhwa S, Khursheed R, Corrie L, Kr A, Kumar R, Patni P, Kaur J, Vishwas S, Yadav A. Treatment Strategies Against Diabetic Foot Ulcer: Success so Far and the Road Ahead. Curr Diabetes Rev 2021; 17:421-436. [PMID: 33143613 DOI: 10.2174/1573399816999201102125537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is one of the leading complications of type-2 diabetes mellitus. It is associated with neuropathy and peripheral arterial disease of the lower limb in patients with diabetes. There are four stages of wound healing, namely hemostasis phase, inflammatory phase, proliferative phase and maturation phase. In the case of DFU, all these stages are disturbed which lead to delay in healing and consequently to lower limb amputation. Conventional dosage forms like tablets, creams, ointments, gels and capsules have been used for the treatment of diabetic foot ulcer for many years. INTRODUCTION In this review, the global prevalence as well as etiopathogenesis related to diabetic foot ulcer have been discussed. The potential role of various synthetic and herbal drugs, as well as their conventional dosage forms in the effective management of DFU have been discussed in detail. METHODS Structured search of bibliographic databases from previously published peer-reviewed research papers was explored and data has been represented in terms of various approaches that are used for the treatment of DFU. RESULTS About 148 papers, including both research and review articles, were included in this review to produce a comprehensive as well as a readily understandable article. A series of herbal and synthetic drugs have been discussed along with their current status of treatment in terms of dose and mechanism of action. CONCLUSION DFU has become one of the most common complications in patients having diabetes for more than ten years. Hence, understanding the root cause and its successful treatment is a big challenge because it depends upon multiple factors such as the judicious selection of drugs as well as proper control of blood sugar level. Most of the drugs that have been used so far either belong to the category of antibiotics, antihyperglycaemic or they have been repositioned. In clinical practice, much focus has been given to dressings that have been used to cover the ulcer. The complete treatment of DFU is still a farfetched dream to be achieved and it is expected that combination therapy of herbal and synthetic drugs with multiple treatment pathways could be able to offer better management of DFU.
Collapse
Affiliation(s)
- Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Arya Kr
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Pooja Patni
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Ankit Yadav
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| |
Collapse
|
43
|
McDougal DH, Marlatt KL, Beyl RA, Redman LM, Ravussin E. A Novel Approach to Assess Metabolic Flexibility Overnight in a Whole-Body Room Calorimeter. Obesity (Silver Spring) 2020; 28:2073-2077. [PMID: 32985108 PMCID: PMC7644592 DOI: 10.1002/oby.22982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This study aimed to investigate a novel approach for determining the effects of energy-standardized dinner meals (high-fat and low-fat) on respiratory exchange ratio (RER) dynamics and metabolic flexibility. METHODS Using a randomized crossover study design, energy expenditure, RER, and macronutrient oxidation rates were assessed in response to a single dinner meal during an overnight stay in a whole-body room calorimeter. Eight healthy adults completed two overnight chamber stays while fed either a high-fat (60% fat, 20% carbohydrate [CHO], 20% protein; food quotient [FQ] = 0.784) or low-fat (20% fat, 60% CHO, 20% protein; FQ = 0.899) dinner containing 40% of daily energy requirements. RESULTS Following the low-fat meal, CHO oxidation first increased before decreasing, resulting in a 12-hour RER:FQ ratio close to 1.0 (0.986 ± 0.019, P = 0.06) and therefore resulting in a 12-hour equilibrated fat balance (29 ± 76 kcal/12 hours). Following the high-fat meal, participants had a RER:FQ ratio above 1.0 (1.061 ± 0.017, P < 0.01), resulting in a significant positive 12-hour fat balance of 376 ± 142 kcal/12 hours. Various RER trajectory parameters were significantly different following the high-fat and low-fat meals. CONCLUSIONS This proof-of-concept study provides an alternative approach to quantify metabolic flexibility in response to a high-fat dinner and it can be used to derive indexes of metabolic flexibility, such as the 12-hour RER:FQ ratio or the 12-hour fat balance.
Collapse
Affiliation(s)
| | - Kara L. Marlatt
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Robbie A. Beyl
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Leanne M. Redman
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
44
|
Gong L, Jin H, Li Y, Quan Y, Yang J, Tang Q, Zou Z. Rosiglitazone ameliorates skeletal muscle insulin resistance by decreasing free fatty acids release from adipocytes. Biochem Biophys Res Commun 2020; 533:1122-1128. [PMID: 33036752 DOI: 10.1016/j.bbrc.2020.09.144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023]
Abstract
Skeletal muscle and white adipose tissue are important organs of glucose-lipid metabolism. However, excessive lipolysis and free fatty acids (FFA) release in adipocytes elevate plasma FFA, leading to insulin resistance in skeletal muscle. Here, we investigated effects of insulin-resistant adipocytes on skeletal muscle in vitro by simulating body environment using a transwell coculture method. Insulin-resistant 3T3-L1 adipocytes increased lipolysis and FFA release, which reduced insulin sensitivity in the cocultured C2C12 myotubes. Rosiglitazone (RSG) decreased excessive lipolysis by reducing expression of adipose triglyceride lipase (ATGL) and activity of hormone-sensitive lipase (HSL), which led to decrease of FFA release from insulin-resistant 3T3-L1 adipocytes. Meanwhile, insulin resistance in C2C12 myotubes cocultured with insulin-resistant 3T3-L1 adipocytes was ameliorated after RSG treatment. Taken together, our present study provided direct evidence to better understand insulin resistance between skeletal muscle and adipose tissue in type 2 diabetes.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes/drug effects
- Adipocytes/metabolism
- Animals
- Asialoglycoproteins/genetics
- Asialoglycoproteins/metabolism
- Cell Communication/physiology
- Coculture Techniques
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Fatty Acids, Nonesterified/blood
- Fatty Acids, Nonesterified/metabolism
- Hypoglycemic Agents/pharmacology
- Insulin Resistance/physiology
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lipase/genetics
- Lipase/metabolism
- Lipid Metabolism/drug effects
- Lipolysis/drug effects
- Lipolysis/physiology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Rosiglitazone/pharmacology
- Sterol Esterase/genetics
- Sterol Esterase/metabolism
Collapse
Affiliation(s)
- Longlong Gong
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yonghua Li
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yingyao Quan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, Guangdong, 519000, China
| | - Jichun Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
45
|
Caron A, Ahmed F, Peshdary V, Garneau L, Atlas E, Aguer C. Effects of PCB126 on Adipose-to-Muscle Communication in an in Vitro Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:107002. [PMID: 33026256 PMCID: PMC7539676 DOI: 10.1289/ehp7058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure to coplanar polychlorinated biphenyls (PCBs) is linked to the development of insulin resistance. Previous studies suggested PCB126 alters muscle mitochondrial function through an indirect mechanism. Given that PCBs are stored in fat, we hypothesized that PCB126 alters adipokine secretion, which in turn affects muscle metabolism. OBJECTIVES We determined a) the impacts of PCB126 exposure on adipocyte cytokine/adipokine secretion in vitro; b) whether adipocyte-derived factors alter glucose metabolism and mitochondrial function in myotubes when exposed to PCB126; and c) whether preestablished insulin resistance alters the metabolic responses of adipocytes exposed to PCB126 and the communication between adipocytes and myotubes. METHODS 3T3-L1 adipocytes were exposed to PCB126 (1-100 nM) in two insulin sensitivity conditions [insulin sensitive (IS) and insulin resistant (IR) adipocytes], followed by the measurement of secreted adipokines, mitochondrial function, and insulin-stimulated glucose uptake. Communication between adipocytes and myotubes was reproduced by exposing C2C12 myotubes or mouse primary myotubes to conditioned medium (CM) derived from IS or IR 3T3-L1 adipocytes exposed to PCB126. Mitochondrial function and insulin-stimulated glucose uptake were then determined in myotubes. RESULTS IR 3T3-L1 adipocytes treated with PCB126 had significantly higher adipokine (adiponectin, IL-6, MCP-1, TNF-α) secretion and lower mitochondrial function, glucose uptake, and glycolysis. However, PCB126 did not significantly alter these parameters in IS adipocytes. Altered energy metabolism in IR 3T3-L1 adipocytes was linked to lower phosphorylation of AMP-activated protein kinase (p-AMPK) and higher superoxide dismutase 2 levels, an enzyme involved in reactive oxygen species detoxification. Myotubes exposed to the CM from PCB126-treated IR adipocytes had lower glucose uptake, with no alteration in glycolysis or mitochondrial function. Interestingly, p-AMPK levels were higher in myotubes exposed to the CM of PCB126-treated IR adipocytes. DISCUSSION Taken together, these data suggest that increased adipokine secretion from IR adipocytes exposed to PCB126 might explain impaired glucose uptake in myotubes. https://doi.org/10.1289/EHP7058.
Collapse
Affiliation(s)
- Audrey Caron
- Institut du Savoir Montfort—recherche, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Fozia Ahmed
- Institut du Savoir Montfort—recherche, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vian Peshdary
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Léa Garneau
- Institut du Savoir Montfort—recherche, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ella Atlas
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Céline Aguer
- Institut du Savoir Montfort—recherche, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Ishiuchi-Sato Y, Hiraiwa E, Shinozaki A, Nedachi T. The effects of glucose and fatty acids on CXCL10 expression in skeletal muscle cells. Biosci Biotechnol Biochem 2020; 84:2448-2457. [PMID: 32877316 DOI: 10.1080/09168451.2020.1814127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscles produce secretory factors termed as myokines, which alter physiological functions of target tissues. We recently identified C-X-C chemokine ligand 10 (CXCL10) as a novel myokine, which is downregulated in response to exercise. In the present study, we investigated whether the nutritional changes affect CXCL10 expression in mouse skeletal muscle. Expression of CXCL10 was evaluated in mice fed a normal diet or a high fat diet for 10 weeks. In animals fed on HFD, Cxcl10 expression was significantly induced in fast-twitched muscles, and was accompanied by increased blood glucose and free fatty acid levels. In vitro experiments using C2C12 myotubes suggested that the increased levels of glucose and palmitic acids directly enhanced CXCL10 expression. Interestingly, the effect of palmitic acids was attenuated by palmitoleic acids. Considering its potent angiostatic activity, induction of CXCL10 by nutritional changes may contribute to the impairment of microvascular networks in skeletal muscles.
Collapse
Affiliation(s)
| | - Erika Hiraiwa
- Faculty of Life Sciences, Toyo University , Gunma, Japan
| | | | - Taku Nedachi
- Graduate School of Life Sciences, Toyo University , Gunma, Japan.,Faculty of Life Sciences, Toyo University , Gunma, Japan
| |
Collapse
|
47
|
Mert S, Bulutoglu B, Chu C, Dylewski M, Lin FM, Yu YM, Yarmush ML, Sheridan RL, Uygun K. Multiorgan Metabolomics and Lipidomics Provide New Insights Into Fat Infiltration in the Liver, Muscle Wasting, and Liver-Muscle Crosstalk Following Burn Injury. J Burn Care Res 2020; 42:269-287. [PMID: 32877506 DOI: 10.1093/jbcr/iraa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Burn injury mediated hypermetabolic syndrome leads to increased mortality among severe burn victims, due to liver failure and muscle wasting. Metabolic changes may persist up to 2 years following the injury. Thus, understanding the underlying mechanisms of the pathology is crucially important to develop appropriate therapeutic approaches. We present detailed metabolomic and lipidomic analyses of the liver and muscle tissues in a rat model with a 30% body surface area burn injury located at the dorsal skin. Three hundred and thirty-eight of 1587 detected metabolites and lipids in the liver and 119 of 1504 in the muscle tissue exhibited statistically significant alterations. We observed excessive accumulation of triacylglycerols, decreased levels of S-adenosylmethionine, increased levels of glutamine and xenobiotics in the liver tissue. Additionally, the levels of gluconeogenesis, glycolysis, and tricarboxylic acid cycle metabolites are generally decreased in the liver. On the other hand, burn injury muscle tissue exhibits increased levels of acyl-carnitines, alpha-hydroxyisovalerate, ophthalmate, alpha-hydroxybutyrate, and decreased levels of reduced glutathione. The results of this preliminary study provide compelling observations that liver and muscle tissues undergo distinctly different changes during hypermetabolism, possibly reflecting liver-muscle crosstalk. The liver and muscle tissues might be exacerbating each other's metabolic pathologies, via excessive utilization of certain metabolites produced by each other.
Collapse
Affiliation(s)
- Safak Mert
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Beyza Bulutoglu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christopher Chu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maggie Dylewski
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Florence M Lin
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Yong-Ming Yu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Martin L Yarmush
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Robert L Sheridan
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Korkut Uygun
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
48
|
Khoshnejat M, Kavousi K, Banaei-Moghaddam AM, Moosavi-Movahedi AA. Unraveling the molecular heterogeneity in type 2 diabetes: a potential subtype discovery followed by metabolic modeling. BMC Med Genomics 2020; 13:119. [PMID: 32831068 PMCID: PMC7444195 DOI: 10.1186/s12920-020-00767-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/12/2020] [Indexed: 11/22/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a complex multifactorial disease with a high prevalence worldwide. Insulin resistance and impaired insulin secretion are the two major abnormalities in the pathogenesis of T2DM. Skeletal muscle is responsible for over 75% of the glucose uptake and plays a critical role in T2DM. Here, we sought to provide a better understanding of the abnormalities in this tissue. Methods The muscle gene expression patterns were explored in healthy and newly diagnosed T2DM individuals using supervised and unsupervised classification approaches. Moreover, the potential of subtyping T2DM patients was evaluated based on the gene expression patterns. Results A machine-learning technique was applied to identify a set of genes whose expression patterns could discriminate diabetic subjects from healthy ones. A gene set comprising of 26 genes was found that was able to distinguish healthy from diabetic individuals with 94% accuracy. In addition, three distinct clusters of diabetic patients with different dysregulated genes and metabolic pathways were identified. Conclusions This study indicates that T2DM is triggered by different cellular/molecular mechanisms, and it can be categorized into different subtypes. Subtyping of T2DM patients in combination with their real clinical profiles will provide a better understanding of the abnormalities in each group and more effective therapeutic approaches in the future.
Collapse
Affiliation(s)
- Maryam Khoshnejat
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.,The UNESCO Chair on Interdisciplinary Research in Diabetes, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran. .,The UNESCO Chair on Interdisciplinary Research in Diabetes, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Ali Mohammad Banaei-Moghaddam
- The UNESCO Chair on Interdisciplinary Research in Diabetes, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.,Laboratory of Genomics and Epigenomics (LGE), Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ali Akbar Moosavi-Movahedi
- The UNESCO Chair on Interdisciplinary Research in Diabetes, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.,Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
49
|
Petäistö T, Vicente D, Mäkelä KA, Finnilä MA, Miinalainen I, Koivunen J, Izzi V, Aikio M, Karppinen S, Devarajan R, Thevenot J, Herzig K, Heljasvaara R, Pihlajaniemi T. Lack of collagen XVIII leads to lipodystrophy and perturbs hepatic glucose and lipid homeostasis. J Physiol 2020; 598:3373-3393. [DOI: 10.1113/jp279559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023] Open
Affiliation(s)
- Tiina Petäistö
- Oulu Center for Cell‐Matrix Research Faculty of Biochemistry and Molecular Medicine University of Oulu Oulu Finland
| | - David Vicente
- Oulu Center for Cell‐Matrix Research Faculty of Biochemistry and Molecular Medicine University of Oulu Oulu Finland
| | - Kari A. Mäkelä
- Research Unit of Biomedicine Biocenter Oulu and Faculty of Medicine University of Oulu Oulu Finland
| | - Mikko A. Finnilä
- Research Unit of Medical Imaging Physics and Technology Faculty of Medicine University of Oulu Oulu Finland
| | | | - Jarkko Koivunen
- Oulu Center for Cell‐Matrix Research Faculty of Biochemistry and Molecular Medicine University of Oulu Oulu Finland
| | - Valerio Izzi
- Oulu Center for Cell‐Matrix Research Faculty of Biochemistry and Molecular Medicine University of Oulu Oulu Finland
| | - Mari Aikio
- Oulu Center for Cell‐Matrix Research Faculty of Biochemistry and Molecular Medicine University of Oulu Oulu Finland
| | - Sanna‐Maria Karppinen
- Oulu Center for Cell‐Matrix Research Faculty of Biochemistry and Molecular Medicine University of Oulu Oulu Finland
| | - Raman Devarajan
- Oulu Center for Cell‐Matrix Research Faculty of Biochemistry and Molecular Medicine University of Oulu Oulu Finland
| | - Jerome Thevenot
- Research Unit of Medical Imaging Physics and Technology Faculty of Medicine University of Oulu Oulu Finland
| | - Karl‐Heinz Herzig
- Research Unit of Biomedicine Biocenter Oulu and Faculty of Medicine University of Oulu Oulu Finland
| | - Ritva Heljasvaara
- Oulu Center for Cell‐Matrix Research Faculty of Biochemistry and Molecular Medicine University of Oulu Oulu Finland
- Department of Biomedicine Centre for Cancer Biomarkers (CCBIO) University of Bergen Bergen Norway
| | - Taina Pihlajaniemi
- Oulu Center for Cell‐Matrix Research Faculty of Biochemistry and Molecular Medicine University of Oulu Oulu Finland
| |
Collapse
|
50
|
Szczuko M, Kaczkan M, Małgorzewicz S, Rutkowski P, Dębska-Ślizień A, Stachowska E. The C18:3n6/C22:4n6 ratio is a good lipid marker of chronic kidney disease (CKD) progression. Lipids Health Dis 2020; 19:77. [PMID: 32303226 PMCID: PMC7164198 DOI: 10.1186/s12944-020-01258-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
Background Chronic kidney disease (CKD) is a major challenge for public health due to increased risk of cardiovascular diseases (CVD) and premature death. The aim of this study was to determine the clinical picture of FA and the course of the pathophysiological mechanisms of CKD. Methods The study involved 149 patients with CKD and a control group including 43 people. Fatty acid profiles were investigated using gas chromatography. A total of 30 fatty acids and their derivatives were identified and quantified. The omega3, omega6, SFA, MUFA, and PUFA fatty acid contents were calculated. The correlation matrix was obtained for parameters relating to patients with CKD vs. FA, taking patients’ sex into consideration. The index C18:3n6/C22:4n6 was calculated according to the length of the treatment. Statistica 12.0 software (Tulsa, Oklahoma, USA) was used for the statistical analyses. Results The results showed decreased levels of total PUFA and increased concentrations of MUFA, including the activation of the palmitic and oleic acid pathway. An increase in the levels of n-6 9C22: 4n6 family fatty acids in all the patients and a reduction in the n-3 family (EPA, DHA) were observed. C18:3n6 was negatively correlated and C22:4n6 was positively correlated with the duration of the treatment. The index C18:3n6/C22:4n6 was defined as a new marker in the progression of the disease. Moreover, the index C18:3n6/ C22:4n6 was drastically decreased in later period. Nervonic acid was higher in the CKD group. In the group of men with CKD, there was a negative correlation between the excretion of K+, anthropometric measurements, and the levels of EPA and DHA. Conclusions The course of inflammation in CKD occurs through the decrease in PUFA and the synthesis of MUFA. The dominating cascade of changes is the elongation of GLA-C18:3n6 into DGLA-C20:3n6 and AA-C20:4n6. As CKD progresses, along with worsening anthropometrical parameters and increased secretion of potassium, the activity of Ʌ6-desaturase decreases, reducing the synthesis of EPA and DHA. The synthesis of AdA-C22:4n6 increases and the ratio C18:3n6/C22:4n6 drastically decreases after 5 years. This parameter can be used to diagnose disease progression.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Małgorzata Kaczkan
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Przemysław Rutkowski
- Department of General Nursery, Medical University of Gdańsk and Diaverum Hemodialysis Unit, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|