1
|
Kalaiponmani K, Parameswari B, Tripathi A, Celia Chalam V. Development of simplex and quintuplex RT-PCR for simultaneous detection of soybean viruses. J Virol Methods 2024; 330:115010. [PMID: 39222751 DOI: 10.1016/j.jviromet.2024.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Five simplex and a multiplex-RT-PCR (m-RT-PCR) protocols were developed for detection and differentiation of bean pod mottle virus (BPMV), cherry leaf roll virus (CLRV), raspberry ringspot virus (RpRSV), soybean mosaic virus (SMV) and tomato ringspot virus (ToRSV) infecting soybean. The simplex RT-PCR protocols produced virus-specific amplicons of 538 bp for BPMV, 139 bp for CLRV, 298 bp for RpRSV, 403 bp for SMV, and 282 bp for ToRSV, with sensitivity down to 10-4 diluted cDNA. Further, to detect all the five viruses simultaneously in a single tube a quintuplex RT-PCR protocol was optimized with as low as 10-3 diluted cDNA and 0.05 µM primer. To validate the reliability of the simplex RT-PCR protocol, imported soybean samples were tested by ELISA as well as RT-PCR. The results revealed that the developed protocol could detect the viruses in imported soybean, and found to be efficient than ELISA in resolving ambiguity in detection of seed borne viruses. The developed simplex and quintuplex RT-PCR protocol will be quite helpful for the diagnosis of soybean germplasm co-infected with viruses during the quarantine processing for ensuring virus free long term seed conservation in the National Gene Bank as well as for quarantine certification.
Collapse
Affiliation(s)
- K Kalaiponmani
- Division of Plant Quarantine, ICAR-NBPGR, New Delhi, India
| | | | - A Tripathi
- Division of Plant Quarantine, ICAR-NBPGR, New Delhi, India
| | - V Celia Chalam
- Division of Plant Quarantine, ICAR-NBPGR, New Delhi, India.
| |
Collapse
|
2
|
Li X, Tan P, Xiong G, Ma R, Gao W, Jiang A, Liu J, Du C, Zhang J, Zhang X, Zhang L, Yi Z, Fang X, Zhang J. Densification of Genetic Map and Stable Quantitative Trait Locus Analysis for Amino Acid Content of Seed in Soybean ( Glycine max L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2020. [PMID: 39124138 PMCID: PMC11314226 DOI: 10.3390/plants13152020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Soybean, a primary vegetable protein source, boasts favorable amino acid profiles; however, its composition still falls short of meeting human nutritional demands. The soybean amino acid content is a quantitative trait controlled by multiple genes. In this study, an F2 population of 186 individual plants derived from the cross between ChangJiangChun2 and JiYu166 served as the mapping population. Based on the previously published genetic map of our lab, we increased the density of the genetic map and constructed a new genetic map containing 518 SSR (simple sequence repeats) markers and 64 InDel (insertion-deletion) markers, with an average distance of 5.27 cm and a total length of 2881.2 cm. The content of eight essential amino acids was evaluated in the F2:5, F2:6, and BLUP (best linear unbiased prediction). A total of 52 QTLs (quantitative trait loci) were identified, and 13 QTL clusters were identified, among which loci02.1 and loci11.1 emerged as stable QTL clusters, exploring candidate genes within these regions. Through GO enrichment and gene annotation, 16 candidate genes associated with soybean essential amino acid content were predicted. This study would lay the foundation for elucidating the regulatory mechanisms of essential amino acid content and contribute to germplasm innovation in soybeans.
Collapse
Affiliation(s)
- Xi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Pingting Tan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guoxi Xiong
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ronghan Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Weiran Gao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Aohua Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jiaqi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Chengzhang Du
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Jijun Zhang
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Xiaochun Zhang
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Li Zhang
- Chongqing Three Gorges Academy of Agricultural Sciences, Chongqing 404100, China
| | - Zelin Yi
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaomei Fang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jian Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Meziadi C, Alvarez-Diaz JC, Thareau V, Gratias A, Marande W, Soler-Garzon A, Miklas PN, Pflieger S, Geffroy V. Fine-mapping and evolutionary history of R-BPMV, a dominant resistance gene to Bean pod mottle virus in Phaseolus vulgaris L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:8. [PMID: 38092992 DOI: 10.1007/s00122-023-04513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE R-BPMV is located within a recently expanded TNL cluster in the Phaseolus genus with suppressed recombination and known for resistance to multiple pathogens including potyviruses controlled by the I gene. Bean pod mottle virus (BPMV) is a comovirus that infects common bean and legumes in general. BPMV is distributed throughout the world and is a major threat on soybean, a closely related species of common bean. In common bean, BAT93 was reported to carry the R-BPMV resistance gene conferring resistance to BPMV and linked with the I resistance gene. To fine map R-BPMV, 182 recombinant inbred lines (RILs) derived from the cross BAT93 × JaloEEP558 were genotyped with polymerase chain reaction (PCR)-based markers developed using genome assemblies from G19833 and BAT93, as well as BAT93 BAC clone sequences. Analysis of RILs carrying key recombination events positioned R-BPMV to a target region containing at least 16 TIR-NB-LRR (TNL) sequences in BAT93. Because the I cluster presents a suppression of recombination and a large number of repeated sequences, none of the 16 TNLs could be excluded as R-BPMV candidate gene. The evolutionary history of the TNLs for the I cluster were reconstructed using microsynteny and phylogenetic analyses within the legume family. A single I TNL was present in Medicago truncatula and lost in soybean, mirroring the absence of complete BPMV resistance in soybean. Amplification of TNLs in the I cluster predates the divergence of the Phaseolus species, in agreement with the emergence of R-BPMV before the separation of the common bean wild centers of diversity. This analysis provides PCR-based markers useful in marker-assisted selection (MAS) and laid the foundation for cloning of R-BPMV resistance gene in order to transfer the resistance into soybean.
Collapse
Affiliation(s)
- Chouaïb Meziadi
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Juan-Camilo Alvarez-Diaz
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Ariane Gratias
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | | | - Alvaro Soler-Garzon
- Irrigated Agriculture Research and Extension Center, Washington State Univ, Prosser, WA, USA
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA ARS, Prosser, WA, USA
| | - Stéphanie Pflieger
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France.
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France.
| |
Collapse
|
4
|
Hu T, Guo D, Li B, Wang L, Liu H, Yin J, Jin T, Luan H, Sun L, Liu M, Zhi H, Li K. Soybean 40S Ribosomal Protein S8 (GmRPS8) Interacts with 6K1 Protein and Contributes to Soybean Susceptibility to Soybean Mosaic Virus. Viruses 2023; 15:2362. [PMID: 38140603 PMCID: PMC10748009 DOI: 10.3390/v15122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Soybean mosaic virus (SMV), a member of Potyvirus, is the most destructive and widespread viral disease in soybean production. Our earlier studies identified a soybean 40S ribosomal protein S8 (GmRPS8) using the 6K1 protein of SMV as the bait to screen a soybean cDNA library. The present study aims to identify the interactions between GmRPS8 and SMV and characterize the role of GmRPS8 in SMV infection in soybean. Expression analysis showed higher SMV-induced GmRPS8 expression levels in a susceptible soybean cultivar when compared with a resistant cultivar, suggesting that GmRPS8 was involved in the response to SMV in soybean. Subcellular localization showed that GmRPS8 was localized in the nucleus. Moreover, the yeast two-hybrid (Y2H) experiments showed that GmRPS8 only interacted with 6K1 among the eleven proteins encoded by SMV. The interaction between GmRPS8 and 6K1 was further verified by a bimolecular fluorescence complementation (BiFC) assay, and the interaction was localized in the nucleus. Furthermore, knockdown of GmRPS8 by a virus-induced gene silencing (VIGS) system retarded the growth and development of soybeans and inhibited the accumulation of SMV in soybeans. Together, these results showed that GmRPS8 interacts with 6K1 and contributes to soybean susceptibility to SMV. Our findings provide new insights for understanding the role of GmRPS8 in the SMV infection cycle, which could help reveal potyviral replication mechanisms.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (T.H.); (B.L.); (L.W.); (H.L.); (J.Y.); (T.J.); (L.S.); (M.L.)
| | - Dongquan Guo
- Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Bowen Li
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (T.H.); (B.L.); (L.W.); (H.L.); (J.Y.); (T.J.); (L.S.); (M.L.)
| | - Liqun Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (T.H.); (B.L.); (L.W.); (H.L.); (J.Y.); (T.J.); (L.S.); (M.L.)
| | - Hui Liu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (T.H.); (B.L.); (L.W.); (H.L.); (J.Y.); (T.J.); (L.S.); (M.L.)
| | - Jinlong Yin
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (T.H.); (B.L.); (L.W.); (H.L.); (J.Y.); (T.J.); (L.S.); (M.L.)
| | - Tongtong Jin
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (T.H.); (B.L.); (L.W.); (H.L.); (J.Y.); (T.J.); (L.S.); (M.L.)
| | - Hexiang Luan
- Institute of Plant Genetic Engineering, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China;
| | - Lei Sun
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (T.H.); (B.L.); (L.W.); (H.L.); (J.Y.); (T.J.); (L.S.); (M.L.)
| | - Mengzhuo Liu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (T.H.); (B.L.); (L.W.); (H.L.); (J.Y.); (T.J.); (L.S.); (M.L.)
| | - Haijian Zhi
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (T.H.); (B.L.); (L.W.); (H.L.); (J.Y.); (T.J.); (L.S.); (M.L.)
| | - Kai Li
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (T.H.); (B.L.); (L.W.); (H.L.); (J.Y.); (T.J.); (L.S.); (M.L.)
| |
Collapse
|
5
|
Aboughanem-Sabanadzovic N, Stephenson RC, Allen TW, Henn A, Moore WF, Lawrence A, Sabanadzovic S. Characterization of a Putative New Member of the Genus Potyvirus from Kudzu ( Pueraria montana var. lobata) in Mississippi. Viruses 2023; 15:2145. [PMID: 38005823 PMCID: PMC10675740 DOI: 10.3390/v15112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Kudzu (Pueraria montana var. lobata), a plant native to Southeastern Asia, has become a major noxious weed covering millions of hectares in the Southern United States. A kudzu patch displaying virus-like symptoms located in Ackerman, northeastern Mississippi (MS), was used as a source for virus isolation and characterization involving mechanical and vector transmission, ultrastructural observation, surveys, Sanger and high-throughput genome sequencing, and sequence analyses. The results revealed the presence of a new potyvirus in infected kudzu, closely related to wisteria vein mosaic virus (WVMV) and provisionally named kudzu chlorotic ring blotch virus (KudCRBV). Genome features and pairwise comparison with six WVMV genomes currently available in GenBank and three additional isolates from MS sequenced in this work suggest that KudCRBV is likely a member of a new species in the genus Potyvirus. Furthermore, under experimental conditions, KudCRBV was successfully transmitted by cotton and potato aphids and mechanically to soybean and beans. A state-wide survey revealed several kudzu patches infected by the virus in northern MS.
Collapse
Affiliation(s)
- Nina Aboughanem-Sabanadzovic
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA;
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (R.C.S.); (A.H.)
| | - Ronald Christian Stephenson
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (R.C.S.); (A.H.)
| | - Thomas W. Allen
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776, USA;
| | - Alan Henn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (R.C.S.); (A.H.)
| | - William F. Moore
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (R.C.S.); (A.H.)
| | - Amanda Lawrence
- Institute for Imaging and Analytical Technologies, Mississippi State University, Mississippi State, MS 39762, USA;
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (R.C.S.); (A.H.)
| |
Collapse
|
6
|
Li H, Liu J, Yuan X, Chen X, Cui X. Comparative transcriptome analysis reveals key pathways and regulatory networks in early resistance of Glycine max to soybean mosaic virus. Front Microbiol 2023; 14:1241076. [PMID: 38033585 PMCID: PMC10687721 DOI: 10.3389/fmicb.2023.1241076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023] Open
Abstract
As a high-value oilseed crop, soybean [Glycine max (L.) Merr.] is limited by various biotic stresses during its growth and development. Soybean mosaic virus (SMV) is a devastating viral infection of soybean that primarily affects young leaves and causes significant production and economic losses; however, the synergistic molecular mechanisms underlying the soybean response to SMV are largely unknown. Therefore, we performed RNA sequencing on SMV-infected resistant and susceptible soybean lines to determine the molecular mechanism of resistance to SMV. When the clean reads were aligned to the G. max reference genome, a total of 36,260 genes were identified as expressed genes and used for further research. Most of the differentially expressed genes (DEGs) associated with resistance were found to be enriched in plant hormone signal transduction and circadian rhythm according to Kyoto Encyclopedia of Genes and Genomes analysis. In addition to salicylic acid and jasmonic acid, which are well known in plant disease resistance, abscisic acid, indole-3-acetic acid, and cytokinin are also involved in the immune response to SMV in soybean. Most of the Ca2+ signaling related DEGs enriched in plant-pathogen interaction negatively influence SMV resistance. Furthermore, the MAPK cascade was involved in either resistant or susceptible responses to SMV, depending on different downstream proteins. The phytochrome interacting factor-cryptochrome-R protein module and the MEKK3/MKK9/MPK7-WRKY33-CML/CDPK module were found to play essential roles in soybean response to SMV based on protein-protein interaction prediction. Our findings provide general insights into the molecular regulatory networks associated with soybean response to SMV and have the potential to improve legume resistance to viral infection.
Collapse
Affiliation(s)
- Han Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinyang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoyan Cui
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Choi H, Jo Y, Chung H, Choi SY, Kim SM, Hong JS, Lee BC, Cho WK. Investigating Variability in Viral Presence and Abundance across Soybean Seed Development Stages Using Transcriptome Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3257. [PMID: 37765420 PMCID: PMC10535271 DOI: 10.3390/plants12183257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Plant transcriptomes offer a valuable resource for studying viral communities (viromes). In this study, we explore how plant transcriptome data can be applied to virome research. We analyzed 40 soybean transcriptomes across different growth stages and identified six viruses: broad bean wilt virus 2 (BBWV2), brassica yellow virus (BrYV), beet western yellow virus (BWYV), cucumber mosaic virus (CMV), milk vetch dwarf virus (MDV), and soybean mosaic virus (SMV). SMV was the predominant virus in both Glycine max (GM) and Glycine soja (GS) cultivars. Our analysis confirmed its abundance in both, while BBWV2 and CMV were more prevalent in GS than GM. The viral proportions varied across developmental stages, peaking in open flowers. Comparing viral abundance measured by viral reads and fragments per kilobase of transcript per million (FPKM) values revealed insights. SMV showed similar FPKM values in GM and GS, but BBWV2 and CMV displayed higher FPKM proportions in GS. Notably, the differences in viral abundance between GM and GS were generally insignificant based on the FPKM values across developmental stages, except for the apical bud stage in four GM cultivars. We also detected MDV, a multi-segmented virus, in two GM samples, with variable proportions of its segments. In conclusion, our study demonstrates the potential of plant transcriptomes for virome research, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- Hoseong Choi
- Plant Health Center, Seoul National University, Seoul 08826, Republic of Korea;
| | - Yeonhwa Jo
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Hyunjung Chung
- Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.C.); (S.Y.C.); (S.-M.K.)
| | - Soo Yeon Choi
- Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.C.); (S.Y.C.); (S.-M.K.)
| | - Sang-Min Kim
- Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.C.); (S.Y.C.); (S.-M.K.)
| | - Jin-Sung Hong
- Department of Applied Biology, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Bong Choon Lee
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
8
|
Rao W, Wan L, Wang E. Plant immunity in soybean: progress, strategies, and perspectives. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:52. [PMID: 37323469 PMCID: PMC10267034 DOI: 10.1007/s11032-023-01398-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is one of the most important commercial crops worldwide. Soybean hosts diverse microbes, including pathogens that may cause diseases and symbionts that contribute to nitrogen fixation. Study on soybean-microbe interactions to understand pathogenesis, immunity, and symbiosis represents an important research direction toward plant protection in soybean. In terms of immune mechanisms, current research in soybean lags far behind that in the model plants Arabidopsis and rice. In this review, we summarized the shared and unique mechanisms involved in the two-tiered plant immunity and the virulence function of pathogen effectors between soybean and Arabidopsis, providing a molecular roadmap for future research on soybean immunity. We also discussed disease resistance engineering and future perspectives in soybean.
Collapse
Affiliation(s)
- Weiwei Rao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Dell’Olmo E, Tiberini A, Sigillo L. Leguminous Seedborne Pathogens: Seed Health and Sustainable Crop Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:2040. [PMID: 37653957 PMCID: PMC10221191 DOI: 10.3390/plants12102040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
Pulses have gained popularity over the past few decades due to their use as a source of protein in food and their favorable impact on soil fertility. Despite being essential to modern agriculture, these species face a number of challenges, such as agronomic crop management and threats from plant seed pathogens. This review's goal is to gather information on the distribution, symptomatology, biology, and host range of seedborne pathogens. Important diagnostic techniques are also discussed as a part of a successful process of seed health certification. Additionally, strategies for sustainable control are provided. Altogether, the data collected are suggested as basic criteria to set up a conscious laboratory approach.
Collapse
Affiliation(s)
- Eliana Dell’Olmo
- Council for Agricultural Research and Economics, Research Center for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Antonio Tiberini
- Council for Agricultural Research and Economics, Research Center for Plant Protection and Certification (CREA-DC), Via C. G. Bertero, 22, 00156 Rome, Italy
| | - Loredana Sigillo
- Council for Agricultural Research and Economics, Research Center for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
10
|
Che Z, Zhang S, Pu Y, Yang Y, Liu H, Yang H, Wang L, Zhang Y, Liu B, Zhang H, Wang H, Cheng H, Yu D. A novel soybean malectin-like receptor kinase-encoding gene, GmMLRK1, provides resistance to soybean mosaic virus. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2692-2706. [PMID: 36728590 DOI: 10.1093/jxb/erad046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Soybean mosaic virus (SMV) severely damages soybean [Glycine max (L.) Merr.] yield and seed quality. Moreover, the underlying genetic determinants of resistance to SMV remain largely unknown. Here, we performed a genome-wide association study (GWAS) of SMV resistance in a panel of 219 diverse soybean accessions across four environments and identified a new resistance-related gene, GmMLRK1, at the major resistance locus Rsv4 on chromosome 2. GmMLRK1 encodes a malectin-like receptor kinase (RK) that was induced earlier and to a greater degree in leaves of the SMV-resistant cultivar Kefeng No. 1 than in those of the susceptible cultivar Nannong 1138-2 after inoculation. We demonstrated that soybean plants overexpressing GmMLRK1 show broad-spectrum resistance to both strains SC7 and SC3 on the basis of reduced viral accumulation, increased reactive oxygen species production, and local cell death associated with the hypersensitive response. In contrast, GmMLRK1 knockout mutants were more susceptible to both pathotypes. Haplotype analysis revealed the presence of five haplotypes (H1-H5) within the soybean population, and only H1 provided SMV resistance, which was independent of its tightly linked SMV resistance gene RNase-H at the same locus. These results report a novel gene that adds new understanding of SMV resistance and can be used for breeding resistant soybean accessions.
Collapse
Affiliation(s)
- Zhijun Che
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuyu Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yixiang Pu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yuming Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Hailun Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yuhang Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hengyou Zhang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Zhao T, Zhang Y, Wang F, Zhang B, Chen Q, Liu L, Yan L, Yang Y, Meng Q, Huang J, Zhang M, Lin J, Qin J. Transcriptome mapping related genes encoding PR1 protein involved in necrotic symptoms to soybean mosaic virus infection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:7. [PMID: 37313127 PMCID: PMC10248650 DOI: 10.1007/s11032-022-01351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/24/2022] [Indexed: 06/15/2023]
Abstract
Necrosis caused by soybean mosaic virus (SMV) has not been specifically distinguished from susceptible symptoms. The molecular mechanism for the occurrence of necrosis is largely overlooked in soybean genetic research. Field evaluation reveals that SMV disease seriously influences soybean production as indicated by decreasing 22.4% ~ 77.0% and 8.8% ~ 17.0% of yield and quality production, respectively. To expand molecular mechanism behind necrotic reactions, transcriptomic data obtained from the asymptomatic, mosaic, and necrotic pools were assessed. Compared between asymptomatic and mosaic plants, 1689 and 1752 up- and down-regulated differentially expressed genes (DEGs) were specifically found in necrotic plants. Interestingly, the top five enriched pathways with up-regulated DEGs were highly related to the process of the stress response, whereas the top three enriched pathways with down-regulated DEGs were highly related to the process of photosynthesis, demonstrating that defense systems are extensively activated, while the photosynthesis systems were severely destroyed. Further, results of the phylogenetic tree based on gene expression pattern and an amino acid sequence and validation experiments discovered three PR1 genes, Glyma.15G062400, Glyma.15G062500, and Glyma.15G062700, which were especially expressed in necrotic leaves. Meanwhile, exogenous salicylic acid (SA) but not methyl jasmonate (MeJA) could induce the three PR1 gene expressions on healthy leaves. Contrastingly, exogenous SA obviously decreased the expression level of Glyma.15G062400, Glyma.15G062500, and concentration of SMV, but increased Glyma.15G062700 expression in necrotic leaves. These results showed that GmPR1 is associated with the development of SMV-induced necrotic symptoms in soybean. Glyma.15G062400, Glyma.15G062500, and Glyma.15G062700 is up-regulated in necrotic leaves at the transcriptional levels, which will greatly facilitate a better understanding of the mechanism behind necrosis caused by SMV disease. Supplementary information The online version contains supplementary material available at 10.1007/s11032-022-01351-3.
Collapse
Affiliation(s)
- Tiantian Zhao
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Yuhang Zhang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Waihuanxi Road, 510006 Guangzhou, China
| | - Fengmin Wang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061 USA
| | - Qiang Chen
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Luping Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Long Yan
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Yue Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Qingmin Meng
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Jinan Huang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Jing Lin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Jun Qin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| |
Collapse
|
12
|
Maclot FJ, Mandujano M, Nakasato K, Byrne J, Paudel S, Guyer D, Malmstrom C. First Report of Tobacco Ringspot Virus Infecting Pawpaw Orchard (Asimina triloba (L.) Dunal) in North America. PLANT DISEASE 2022; 107. [PMID: 36572972 DOI: 10.1094/pdis-11-22-2639-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Pawpaw (Asimina triloba (L.) Dunal, Annonaceae) is a fruit tree native to eastern North America, increasingly grown for commercial production in the United States (Callaway, 1992; Layne, 1996), Europe, and Western Asia (Brannan and Coyle, 2021; Lolletti et al., 2021). In 2012, virus-like symptoms were noticed in a 0.3 ha pawpaw orchard at Michigan State University Plant Pathology Research Station; ~30% of the trees presented symptoms which included foliar mosaic, vein yellowing, and necrosis, and were first mistaken for nutrient (magnesium/zinc) deficiency. Trees were treated for magnesium/zinc deficiency but continued to decline in fruit yield and overall vigor, and typically died within 3─4years after symptoms were first observed (Fig. S1). Preliminary testing using Agdia ImmunoStrips for cucumber mosaic virus, impatiens necrotic spot virus, tobacco mosaic virus, tomato spotted wilt virus and the genus Potyvirus were negative. However, icosahedral virus particles were observed by TEM (Fig. S2). To establish virus identity, we deep-sequenced tissue from a symptomatic pawpaw obtained from same site in summer 2021. Virus particles were purified , and virion-associated nucleic acids (VANA) were extracted using the Purelink viral RNA/DNA kit (Invitrogen) (Maclot et al., 2021). Both viral RNA and DNA were subjected to high-throughput sequencing (HTS) on the Illumina NextSeq 500 platform (GIGA, University of Liege, Belgium). A total of 574,274 trimmed reads (150 nt read length) were de novo assembled using Geneious Prime 2022.2.2 software (https://www.geneious.com) and subjected to BLASTn analysis. Two contigs of 7511 bp (average coverage: 1048) and 3924 bp (average coverage: 3012) showed 94% and 95% nt identities with tobacco ringspot virus (TRSV) RNA1 isolate YW (MT042825) and RNA2 isolate OH19 (MT561435) respectively. These two contigs (Accession no. OP589177 and OP589178) covered the complete TRSV genome for each segment. HTS found no other plant-associated viral / virus-like sequences in this symptomatic pawpaw sample. To further confirm TRSV infection, leaf extract from this sample was tested with RT-PCR using primers specific to the RdRp gene of TRSV RNA1 (Forward, 5'-TAACCTCATTGCAGTTGATCCTT-3'; Reverse, 5'-TAATTCAAGCTCAGGTCTCTTCT-3'; 739 bp amplicon) and the coat protein of TRSV RNA2 (Forward, 5'-TCATGCTTAAAGATGCAGATGTG-3'; Reverse, 5'-TATAAAGCTCCGCACTAGAAAACA-3'; 753 bp amplicon). Sanger sequence analysis showed 99.5% and 99.8% nt identity between the amplicons and the HTS contigs (RNA1 and RNA2 respectively) assembled from the pawpaw sample, and the amplicons likewise matched GenBank TRSV sequences (91.7% and 95.6% nt identities respectively with TRSV RNA1 isolate CmTX-H (MN504766) and TRSV RNA2 isolate IA-1-2017 (MT563079)). We further screened for TRSV infection in leaves from four symptomatic and three non-symptomatic pawpaw trees collected from the same site in 2022. RT-PCR revealed positive infection in all four symptomatic samples and one of the three (33%) non-symptomatic samples. Our results confirm the presence of TRSV infection in symptomatic pawpaw trees and emphasize the importance of also monitoring non-symptomatic trees. We confirmed graft transmission with 100% transmission rate observed in 200 trees grafted from a TRSV-infected pawpaw (Shenandoah cultivar), and investigation of other transmission vectors is on going. Because of TRSV's wide host range (Tolin, 2008), its broad transmission profile in other crops (via nematodes, thrips, seeds, sap inoculation, and grafting) (Hill and Whitham, 2014), and the notable decline observed in infected pawpaws from different cultivars (10-35, NC-1, Overleese, Pennsylvania-Golden, Shenandoah, Sunflower, Wabash), TRSV appears to pose a new threat to pawpaw orchards. To the best of our knowledge, this is the first report of TRSV infecting pawpaw in North America and the world.
Collapse
Affiliation(s)
- François Jules Maclot
- Michigan State University, 3078, Plant Biology, East Lansing, Michigan, United States;
| | - Mario Mandujano
- Michigan State University, 3078, Plant, Soil and Microbial Science, East Lansing, Michigan, United States;
| | - Kota Nakasato
- Michigan State University, 3078, Plant Biology, East Lansing, Michigan, United States;
| | - Jan Byrne
- Michigan State University, 3078, Plant, Soil, and Microbial Sciences, East Lansing, Michigan, United States;
| | - Sita Paudel
- University of Minnesota College of Food Agricultural and Natural Resource Sciences, 123768, Plant Pathology, Saint Paul, Minnesota, United States;
| | - Daniel Guyer
- Michigan State University, 3078, Biosystems and Agricultural Engineering, East Lansing, Michigan, United States;
| | - Carolyn Malmstrom
- Michigan State University, 3078, Plant Biology, East Lansing, Michigan, United States;
| |
Collapse
|
13
|
Overexpression of a Cinnamyl Alcohol Dehydrogenase-Coding Gene, GsCAD1, from Wild Soybean Enhances Resistance to Soybean Mosaic Virus. Int J Mol Sci 2022; 23:ijms232315206. [PMID: 36499529 PMCID: PMC9740156 DOI: 10.3390/ijms232315206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Soybean mosaic virus (SMV) is the most prevalent soybean viral disease in the world. As a critical enzyme in the secondary metabolism of plants, especially in lignin synthesis, cinnamyl alcohol dehydrogenase (CAD) is widely involved in plant growth and development, and in defense against pathogen infestation. Here, we performed RNAseq-based transcriptome analyses of a highly SMV-resistant accession (BYO-15) of wild soybean (Glycine soja) and a SMV-susceptible soybean cultivar (Williams 82), also sequenced together with a resistant plant and a susceptible plant of their hybrid descendants at the F3 generation at 7 and 14 days post-inoculation with SMV. We found that the expression of GsCAD1 (from G. soja) was significantly up-regulated in the wild soybean and the resistant F3 plant, while the GmCAD1 from the cultivated soybean (G. max) did not show a significant and persistent induction in the soybean cultivar and the susceptible F3 plant, suggesting that GsCAD1 might play an important role in SMV resistance. We cloned GsCAD1 and overexpressed it in the SMV-susceptible cultivar Williams 82, and we found that two independent GsCAD1-overexpression (OE) lines showed significantly enhanced SMV resistance compared with the non-transformed wild-type (WT) control. Intriguingly, the lignin contents in both OE lines were higher than the WT control. Further liquid chromatography (HPLC) analysis showed that the contents of salicylic acid (SA) were significantly more improved in the OE lines than that of the wild-type (WT), coinciding with the up-regulated expression of an SA marker gene. Finally, we observed that GsCAD1-overexpression affected the accumulation of SMV in leaves. Collectively, our results suggest that GsCAD1 enhances resistance to SMV in soybeans, most likely by affecting the contents of lignin and SA.
Collapse
|
14
|
Tangudu CS, Hargett AM, Laredo-Tiscareño SV, Smith RC, Blitvich BJ. Isolation of a novel rhabdovirus and detection of multiple novel viral sequences in Culex species mosquitoes in the United States. Arch Virol 2022; 167:2577-2590. [PMID: 36056958 DOI: 10.1007/s00705-022-05586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022]
Abstract
To increase our understanding of the diversity of the mosquito virome, 6956 mosquitoes of five species (Culex erraticus, Culex pipiens, Culex restuans, Culex tarsalis, and Culex territans) collected in Iowa in the United States in 2017 and 2020 were assayed for novel viruses by performing polyethylene glycol precipitation, virus isolation in cell culture, and unbiased high-throughput sequencing. A novel virus, provisionally named "Walnut Creek virus", was isolated from Cx. tarsalis, and its genomic sequence and organization are characteristic of viruses in the genus Hapavirus (family Rhabdoviridae). Replication of Walnut Creek virus occurred in avian, mammalian, and mosquito, but not tick, cell lines. A novel virus was also isolated from Cx. restuans, and partial genome sequencing revealed that it is distantly related to an unclassified virus of the genus Phytoreovirus (family Sedoreoviridae). Two recognized viruses were also isolated: Culex Y virus (family Birnaviridae) and Houston virus (family Mesoniviridae). We also identified sequences of eight novel viruses from six families (Amalgaviridae, Birnaviridae, Partitiviridae, Sedoreoviridae, Tombusviridae, and Totiviridae), two viruses that do not belong to any established families, and many previously recognized viruses. In summary, we provide evidence of multiple novel and recognized viruses in Culex spp. mosquitoes in the United States.
Collapse
Affiliation(s)
- Chandra S Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Alissa M Hargett
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - S Viridiana Laredo-Tiscareño
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ryan C Smith
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
15
|
Elmore MG, Groves CL, Hajimorad MR, Stewart TP, Gaskill MA, Wise KA, Sikora E, Kleczewski NM, Smith DL, Mueller DS, Whitham SA. Detection and discovery of plant viruses in soybean by metagenomic sequencing. Virol J 2022; 19:149. [PMID: 36100874 PMCID: PMC9472442 DOI: 10.1186/s12985-022-01872-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viruses negatively impact soybean production by causing diseases that affect yield and seed quality. Newly emerging or re-emerging viruses can also threaten soybean production because current control measures may not be effective against them. Furthermore, detection and characterization of new plant viruses requires major efforts when no sequence or antibody-based resources are available. METHODS In this study, soybean fields were scouted for virus-like disease symptoms during the 2016-2019 growing seasons. Total RNA was extracted from symptomatic soybean parts, cDNA libraries were prepared, and RNA sequencing was performed using high-throughput sequencing (HTS). A custom bioinformatic workflow was used to identify and assemble known and unknown virus genomes. RESULTS Several viruses were identified in single or mixed infections. Full- or nearly full-length genomes were generated for tobacco streak virus (TSV), alfalfa mosaic virus (AMV), tobacco ringspot virus (TRSV), soybean dwarf virus (SbDV), bean pod mottle virus (BPMV), soybean vein necrosis virus (SVNV), clover yellow vein virus (ClYVV), and a novel virus named soybean ilarvirus 1 (SIlV1). Two distinct ClYVV isolates were recovered, and their biological properties were investigated in Nicotiana benthamiana, broad bean, and soybean. In addition to infections by individual viruses, we also found that mixed viral infections in various combinations were quite common. CONCLUSIONS Taken together, the results of this study showed that HTS-based technology is a valuable diagnostic tool for the identification of several viruses in field-grown soybean and can provide rapid information about expected viruses as well as viruses that were previously not detected in soybean.
Collapse
Affiliation(s)
- Manjula G Elmore
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Drive, Ames, IA, 50011-1101, USA.
| | - Carol L Groves
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - M R Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tracey P Stewart
- Roy J. Carver High Resolution Microscopy Facility, Iowa State University, Ames, IA, 50011, USA
| | - Mikaela A Gaskill
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Drive, Ames, IA, 50011-1101, USA
| | - Kiersten A Wise
- Department of Plant Pathology, University of Kentucky, Princeton, KY, 43445, USA
| | - Edward Sikora
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | | | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daren S Mueller
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Drive, Ames, IA, 50011-1101, USA
| | - Steven A Whitham
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Drive, Ames, IA, 50011-1101, USA.
| |
Collapse
|
16
|
Wang D, Chen S, Huang Z, Lin J. Identification and mapping of genetic locus conferring resistance to multiple plant viruses in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3293-3305. [PMID: 35932330 DOI: 10.1007/s00122-022-04187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
A reliable locus confers broad-spectrum resistance to multiple plant viruses in soybean under field conditions. Soybean mosaic disease (SMD) can be caused by a variety of viruses, most of which have been largely overlooked in breeding programs. Effective mitigation of the adverse of SMD might result from breeding cultivars with broad-spectrum resistance. However, reports on broad-spectrum resistance to multiple virus have been limited. To catalog viral community members behind SMD, virus samples were collected from symptomatic field plots, and pathogenicity of component strains was assessed. Preliminary ELISA and PCR detection revealed that 39.58% and 66.67% of samples contained two or more virus strains, respectively. Only three soybean accessions were completely asymptomatic, while 42% exhibited moderate or severe susceptibility, indicating that co-infection of multiple virus remains a significant threat in current soybean production systems. Further, a RIL population consisting of 150 F7:9 strains derived from two soybean genotypes with contrasting reactions to virus infection was constructed and explored for significant markers and resistance genes. QTL analysis returned a reliable locus, named GmRmv, on chromosome 13. Significance of GmRmv in imparting resistance to SMD was further confirmed in NIL lines and delimited into a 157-kb interval that contains 17 annotated genes. Among these genes, three, Glyma.13G190000, Glyma.13G190300 and Glyma.13G190400, each contained LRR domains, as well as significant variation in coding sequences between resistant and susceptible parents. Hence, these three genes are considered strong candidate genes for explaining GmRmv significance. In summary, this research opens a new avenue for formulating strategies to breed soybean varieties with broad-spectrum resistance to multiple virus associated with SMD.
Collapse
Affiliation(s)
- Dagang Wang
- Crop Institute of Anhui Academy of Agricultural Sciences/Key Laboratory of Crop Quality Improvement of Anhui Province, Hefei, 230031, China
| | - Shengnan Chen
- Crop Institute of Anhui Academy of Agricultural Sciences/Key Laboratory of Crop Quality Improvement of Anhui Province, Hefei, 230031, China
| | - Zhiping Huang
- Crop Institute of Anhui Academy of Agricultural Sciences/Key Laboratory of Crop Quality Improvement of Anhui Province, Hefei, 230031, China.
| | - Jing Lin
- Institute of Cereal and Oil Crops, The Key Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China.
| |
Collapse
|
17
|
Todd JC, Stewart LR, Redinbaugh MG, Wilson JR. Soybean Aphid (Hemiptera: Aphididae) Feeding Behavior is Largely Unchanged by Soybean Mosaic Virus but Significantly Altered by the Beetle-Transmitted Bean Pod Mottle Virus. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1059-1068. [PMID: 35569031 DOI: 10.1093/jee/toac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 06/15/2023]
Abstract
The soybean aphid (Aphis glycines Matsumura) is an economically important invasive pest of soybean. In addition to damage caused by soybean aphid feeding on the phloem sap, this insect also transmits many plant viruses, including soybean mosaic virus (SMV). Previous work has shown that plant viruses can change plant host phenotypes to alter the behavior of their insect vectors to promote virus spread, known as the vector manipulation hypothesis. In this study, we used electropenetography (EPG) to examine the effects of two plant viruses on soybean aphid feeding behavior: SMV, which is transmitted by many aphid species including the soybean aphid, and bean pod mottle virus (BPMV), which is transmitted by chrysomelid and some coccinellid beetles but not aphids. These two viruses often co-occur in soybean production and can act synergistically. Surprisingly, our results showed little to no effect of SMV on soybean aphid feeding behaviors measured by EPG, but profound differences were observed in aphids feeding on BPMV-infected plants. Aphids took longer to find the vascular bundle of BPMV-infected plants, and once found, spent more time entering and conditioning the phloem than ingesting phloem sap. Interestingly, these observed alterations are similar to those of aphids feeding on insect-resistant soybean plants. The cause of these changes in feeding behavior is not known, and how they impact virus transmission and soybean aphid populations in the field will require further study.
Collapse
Affiliation(s)
- Jane C Todd
- USDA-ARS Corn, Soybean & Wheat Quality Research Unit, Wooster, OH, USA
| | - Lucy R Stewart
- USDA-ARS Corn, Soybean & Wheat Quality Research Unit, Wooster, OH, USA
| | | | - Jennifer R Wilson
- USDA-ARS Corn, Soybean & Wheat Quality Research Unit, Wooster, OH, USA
| |
Collapse
|
18
|
Li Q, Zhang Y, Lu W, Han X, Yang L, Shi Y, Li H, Chen L, Liu Y, Yang X, Shi Y. Identification and characterization of a new geminivirus from soybean plants and determination of V2 as a pathogenicity factor and silencing suppressor. BMC PLANT BIOLOGY 2022; 22:362. [PMID: 35869422 PMCID: PMC9308217 DOI: 10.1186/s12870-022-03745-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Soybean is one of the four major crops in China. The occurrence of viruses in soybean causes significant economic losses. RESULTS In this study, the soybean leaves from stay-green plants showing crinkle were collected for metatranscriptomic sequencing. A novel geminivirus, tentatively named soybean geminivirus A (SGVA), was identified in soybean stay-green plants. Sequence analysis of the full-length SGVA genome revealed a genome of 2762 nucleotides that contain six open reading frames. Phylogenetic analyses revealed that SGVA was located adjacent to the clade of begomoviruses in both the full genome-based and C1-based phylogenetic tree, while in the CP-based phylogenetic tree, SGVA was located adjacent to the clade of becurtoviruses. SGVA was proposed as a new recombinant geminivirus. Agroinfectious clone of SGVA was constructed. Typical systemic symptoms of curly leaves were observed at 11 dpi in Nicotiana benthamiana plants and severe dwarfism was observed after 3 weeks post inoculation. Expression of the SGVA encoded V2 and C1 proteins through a potato virus X (PVX) vector caused severe symptoms in N. benthamiana. The V2 protein inhibited local RNA silencing in co-infiltration assays in GFP transgenic 16C N. benthamiana plants. Further study revealed mild symptoms in N. benthamiana plants inoculated with SGVA-ZZ V2-STOP and SGVA-ZZ V2-3738AA mutants. Both the relative viral DNA and CP protein accumulation levels significantly decreased when compared with SGVA-inoculated plants. CONCLUSIONS This work identified a new geminivirus in soybean stay-green plants and determined V2 as a pathogenicity factor and silencing suppressor.
Collapse
Affiliation(s)
- Qinglun Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuyang Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weiguo Lu
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/ National Centre for Plant Breeding, Zhengzhou, 450002, China
| | - Xiaoyu Han
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lingling Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yajuan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yiqing Liu
- Guangdong Baiyun University, Guangzhou, 510550, China
| | - Xue Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
19
|
Read DA, Strydom E, Slippers B, Steenkamp E, Pietersen G. Genomic characterization of soybean blotchy mosaic virus, a cytorhabdovirus from South Africa. Arch Virol 2022; 167:2359-2363. [PMID: 35857145 DOI: 10.1007/s00705-022-05526-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Samples showing blotchy mottle symptoms were collected from soybeans in North-West province, South Africa. The assembly of high-throughput sequencing data from three samples yielded contigs of 13,426 to 13,435nt, which represent the first complete genome sequences of soybean blotchy mosaic virus (SbBMV). SbBMV shows a typical cytorhabdovirus gene organization (3'-N-P-P3-M-G-L-5'), with each putative gene product being most similar, but with only 49.1-71.1% sequence identity, to those of cucurbit cytorhabdovirus 1. Given the species demarcation thresholds for rhabdoviruses, SbBMV is thus a distinct member of the genus Cytorhabdovirus.
Collapse
Affiliation(s)
- David A Read
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Elrea Strydom
- Macadamias South Africa (SAMAC), Ben Vista Office Park, Jansen Park, Boksburg, 1459, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
20
|
Song S, Wang J, Yang X, Zhang X, Xin X, Liu C, Zou J, Cheng X, Zhang N, Hu Y, Wang J, Chen Q, Xin D. GsRSS3L, a Candidate Gene Underlying Soybean Resistance to Seedcoat Mottling Derived from Wild Soybean (Glycine soja Sieb. and Zucc). Int J Mol Sci 2022; 23:ijms23147577. [PMID: 35886929 PMCID: PMC9318458 DOI: 10.3390/ijms23147577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
Soybeans are a major crop that produce the best vegetable oil and protein for use in food and beverage products worldwide. However, one of the most well-known viral infections affecting soybeans is the Soybean Mosaic Virus (SMV), a member of the Potyviridae family. A crucial method for preventing SMV damage is the breeding of resistant soybean cultivars. Adult resistance and resistance of seedcoat mottling are two types of resistance to SMV. Most studies have focused on adult-plant resistance but not on the resistance to seedcoat mottling. In this study, chromosome segment-substituted lines derived from a cross between Suinong14 (cultivated soybean) and ZYD00006 (wild soybean) were used to identify the chromosome region and candidate genes underlying soybean resistance to seed coat mottling. Herein, two quantitative trait loci (QTLs) were found on chromosome 17, and eighteen genes were found in the QTL region. RNA-seq was used to evaluate the differentially expressed genes (DEGs) among the eighteen genes located in the QTLs. According to the obtained data, variations were observed in the expression of five genes following SMV infection. Furthermore, Nicotiana benthamiana was subjected to an Agrobacterium-mediated transient expression assay to investigate the role of the five candidate genes in SMV resistance. It has also been revealed that Glyma.17g238900 encoding a RICE SALT SENSITIVE 3-like protein (RSS3L) can inhibit the multiplication of SMV in N.benthamiana. Moreover, two nonsynonymous single-nucleotide polymorphisms (SNPs) were found in the coding sequence of Glyma.17g238900 derived from the wild soybean ZYD00006 (GsRSS3L), and the two amino acid mutants may be associated with SMV resistance. Hence, it has been suggested that GsRSS3L confers seedcoat mottling resistance, shedding light on the mechanism of soybean resistance to SMV.
Collapse
|
21
|
Complete Genome Sequence of a Novel Monopartite Mastrevirus, Soybean Geminivirus B, Isolated from Soybean (Glycine max (L.) Merrill). PLANTS 2022; 11:plants11131768. [PMID: 35807721 PMCID: PMC9269612 DOI: 10.3390/plants11131768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Soybean is one of the most important crops in Korea. To identify the viruses infecting soybean, we conducted RNA sequencing with samples displaying symptoms of viral disease. A contig displaying sequence similarity to the known Geminivirus was identified. A polymerase chain reaction (PCR) using two different pairs of back-to-back primers and rolling circle amplification (RCA) confirmed the complete genome of a novel virus named soybean geminivirus B (SGVB), consisting of a circular monopartite DNA genome measuring 2616 nucleotides (nt) in length. SGVB contains four open reading frames (ORFs) and three intergenic regions (IRs). IR1 includes a nonanucleotide origin of replication in the stem-loop structure. Phylogenetic and BLAST analyses demonstrated that SGVB could be a novel virus belonging to the genus Mastrevirus in the family Geminiviridae. We generated infectious clones for SGVB by adding a copy of the IR1 region of SGVB, comparing the V-ori in addition to the full-length genome of SGVB. Using the infectious clones, we observed chlorosis and leaf curling with a latent infection in the inoculated Nicotiana benthamiana plants, while none of the inoculated soybean plants showed any visible symptoms of disease. This study provides the complete genome sequence and infectious clones of a novel Mastrevirus referred to as SGVB from soybean in Korea.
Collapse
|
22
|
Ngatat S, Hanna R, Lienou J, Ghogomu RT, Nguidang SPK, Enoh AC, Ndemba B, Korie S, Fotso Kuate A, Nanga Nanga S, Fiaboe KKM, Kumar PL. Musa Germplasm A and B Genomic Composition Differentially Affects Their Susceptibility to Banana Bunchy Top Virus and Its Aphid Vector, Pentalonia nigronervosa. PLANTS (BASEL, SWITZERLAND) 2022; 11:1206. [PMID: 35567207 PMCID: PMC9100355 DOI: 10.3390/plants11091206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Banana bunchy top disease (BBTD), caused by the banana bunchy top virus (BBTV, genus Babuvirus), is the most destructive viral disease of banana and plantain (Musa spp.). The virus is transmitted persistently by the banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae). While research efforts have focused on screening Musa genotypes for BBTD resistance, comparatively little work has been carried out to identify resistance to banana aphids. This study assessed 44 Musa germplasm of different A and B genome composition for the performance of banana aphids under semicontrolled environmental screenhouse conditions and in a field trial established in a BBTD endemic location. In the screenhouse, the AA diploid Calcutta 4 had the lowest apterous aphid density per plant (9.7 ± 4.6) compared with AAB triploid Waema, which had the highest aphid densities (395.6 ± 20.8). In the field, the highest apterous aphid density per plant (29.2 ± 6.7) occurred on the AAB triploid Batard and the lowest (0.4 ± 0.2) on the AA diploid Pisang Tongat. The AA diploid Tapo was highly susceptible to BBTD (100% infection) compared with the genotypes Balonkawe (ABB), PITA 21 (AAB), Calcutta 4 (AA), and Balbisiana Los Banos (BB), which remained uninfected. The Musa genotypes with apparent resistance to BBTD and least susceptibility to aphid population growth provide options for considering aphid and BBTD resistance in banana and plantain breeding programs.
Collapse
Affiliation(s)
- Sergine Ngatat
- International Institute of Tropical Agriculture (IITA), Messa-Yaoundé P.O. Box 2008, Cameroon; (R.H.); (J.L.); (S.P.K.N.); (A.C.E.); (A.F.K.); (S.N.N.); (K.K.M.F.)
- Department of Plant Protection, University of Dschang, Dschang P.O. Box 96, Cameroon;
| | - Rachid Hanna
- International Institute of Tropical Agriculture (IITA), Messa-Yaoundé P.O. Box 2008, Cameroon; (R.H.); (J.L.); (S.P.K.N.); (A.C.E.); (A.F.K.); (S.N.N.); (K.K.M.F.)
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Jules Lienou
- International Institute of Tropical Agriculture (IITA), Messa-Yaoundé P.O. Box 2008, Cameroon; (R.H.); (J.L.); (S.P.K.N.); (A.C.E.); (A.F.K.); (S.N.N.); (K.K.M.F.)
| | - Richard T. Ghogomu
- Department of Plant Protection, University of Dschang, Dschang P.O. Box 96, Cameroon;
| | - Sidonie Prisca K. Nguidang
- International Institute of Tropical Agriculture (IITA), Messa-Yaoundé P.O. Box 2008, Cameroon; (R.H.); (J.L.); (S.P.K.N.); (A.C.E.); (A.F.K.); (S.N.N.); (K.K.M.F.)
- Department of Plant Protection, University of Dschang, Dschang P.O. Box 96, Cameroon;
| | - Aime C. Enoh
- International Institute of Tropical Agriculture (IITA), Messa-Yaoundé P.O. Box 2008, Cameroon; (R.H.); (J.L.); (S.P.K.N.); (A.C.E.); (A.F.K.); (S.N.N.); (K.K.M.F.)
- Departments of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon
| | - Bertrand Ndemba
- National Program of Fruit Crops (NPFC), Ministry of Agriculture and Rural Development (MINADER), Yaoundé P.O. Box 57, Cameroon;
| | - Sam Korie
- IITA, PMB 5320 Oyo Road, Ibadan 200285, Nigeria; (S.K.); (P.L.K.)
| | - Apollin Fotso Kuate
- International Institute of Tropical Agriculture (IITA), Messa-Yaoundé P.O. Box 2008, Cameroon; (R.H.); (J.L.); (S.P.K.N.); (A.C.E.); (A.F.K.); (S.N.N.); (K.K.M.F.)
| | - Samuel Nanga Nanga
- International Institute of Tropical Agriculture (IITA), Messa-Yaoundé P.O. Box 2008, Cameroon; (R.H.); (J.L.); (S.P.K.N.); (A.C.E.); (A.F.K.); (S.N.N.); (K.K.M.F.)
| | - Komi K. M. Fiaboe
- International Institute of Tropical Agriculture (IITA), Messa-Yaoundé P.O. Box 2008, Cameroon; (R.H.); (J.L.); (S.P.K.N.); (A.C.E.); (A.F.K.); (S.N.N.); (K.K.M.F.)
| | - P. Lava Kumar
- IITA, PMB 5320 Oyo Road, Ibadan 200285, Nigeria; (S.K.); (P.L.K.)
| |
Collapse
|
23
|
Ferguson C, Ali A. First Report of Tobacco Ringspot Virus Naturally Infecting Cotton (Gossypium hirsutum L.) in the United States. PLANT DISEASE 2022; 106:2764. [PMID: 35350893 DOI: 10.1094/pdis-02-22-0303-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cotton (Gossypium hirsutum L.) is one of the major cash crops grown in the United States (U.S.) with a total acreage of over 11.5 million acres in 2021 (NASS, 2021). In Oklahoma, cotton represents an important economic crop and was grown on 490,000 acres during the 2021 growing season (NASS, 2021). In 2021, during a survey of a cotton field in Beckham County of Oklahoma, cotton plants showed typical virus-like symptoms including mosaic, yellow ring spots, discoloration and short internodes (Supplementary Fig. 1). Thirteen symptomatic and five asymptomatic samples were collected from cotton plants and brought to the University of Tulsa for further processing. Total RNA was extracted from all samples using the Spectrum Plant Total RNA Kit (Sigma-Aldrich). Total RNA from two symptomatic samples (named EC3 and EC4) were subjected to high-throughput sequencing (HTS) on the NextSeq 500/550 High-Output kit v2.5 (Illumina, USA) at the genomic facility, Oklahoma State University (Stillwater, OK, USA). A total of 17,542,322 and 22,572,118 trimmed pair-ends reads for both samples were assembled using CLC Genomics Workbench (v12.0.3) (Qiagen, Inc) and subjected to BLASTn analysis. Two contigs of 556 bp and 1062 bp (average coverage 2,799X) for sample EC3 showed 99% and 91% nucleotide (nt) identities with 3'-UTR, 5'-UTR and P1A gene respectively of the Tobacco ringspot virus (TRSV) RNA1 of isolates WA-AM1 (MW495243.1), and IA-1-2017 (MT563078.1) respectively. The other two contigs, 221 bp and 561 bp (average coverage 23,070X) for sample EC4 showed, 100% and 96% nt identities with 3'-UTR, protease, and RdRp genes of TRSV RNA1, isolates WA-AM1 and YW (MT042825.1) respectively. The HTS data did not reveal any other viral sequence in these two cotton samples. To further confirm the presence of TRSV in these samples, previously designed specific primers to TRSV (Forward: 5'-GGAAATTAACTGGGATGATTT-3' and Reverse: 5'-GAGCTCCAACCTTAAAACCA-3') for RNA1, targeting the P1A and helicase genes, and another primer pair (Forward: 5'-GCATCCTCCCATGTTTTCT-3' and Reverse: 5'-GGGACAAACACGACACTA-3') for RNA2, targeting the coat protein and 3'-untranslated region, of TRSV were tested by RT-PCR assay. The sizes of amplified PCR products obtained from both isolates (EC3 and EC4) on 1% agarose gel were approximately 1,000 bp for RNA1 and 1,100 bp for RNA2. The amplified PCR products were cloned and three independent recombinant clones for each primer set were analyzed by Sanger sequencing. The resulting consensus sequences were used in a BLASTn search against the Genbank and matched with TRSV sequences. Consensus nt sequences analysis specific to RNA1 of EC3 isolate (Accession no. OM563300) and EC4 isolate (Accession no OM563301) showed 97% nt identities with TRSV isolate IA-1-2017. Consensus nt sequences specific to RNA 2 of EC3 isolate (Accession no. OM630605) and EC4 isolate (Accession no OM5630606) showed 92% and 90% nt identities with the corresponding sequences of WA-AM1 and IA-1-2017 isolates respectively. Further screening of the remaining 11 symptomatic samples resulted in two more positive TRSV samples that were co-infected with Cotton leafroll dwarf virus (CLRDV), six were positive to only CLRDV, and three were negative to both viruses by RT-PCR assay using the above TRSV specific primers and CLRDV specific primers AL674F/1407R (Avelar et al. 2019). None of the asymptomatic cotton samples were positive by RT-PCR to TRSV or CLRDV. Our results confirmed the presence of TRSV infection in these symptomatic cotton plants. The presence of TRSV could pose a new threat to cotton crops in Oklahoma and the U.S. due to its wide host range (Adam and Antoniw, 2005), and transmission through many vectors including nematodes, (Keinath et al. 2017), and seed (Hill and Whitman, 2014). To the best of our knowledge, this is the first report of TRSV infecting cotton naturally in the U.S. and in the world.
Collapse
Affiliation(s)
- Connor Ferguson
- University of Tulsa, 8050, Biological Science, Tulsa, Oklahoma, United States;
| | - Akhtar Ali
- University of Tulsa, 8050, Biological Science, 800 S Tucker Dr, Tulsa, Oklahoma, United States, 74104-9700;
| |
Collapse
|
24
|
Widyasari K, Tran PT, Shin J, Son H, Kim KH. Overexpression of purple acid phosphatase GmPAP2.1 confers resistance to Soybean mosaic virus in a susceptible soybean cultivar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1623-1642. [PMID: 34758072 DOI: 10.1093/jxb/erab496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
A purple acid phosphatase, GmPAP2.1, from the soybean (Glycine max) cultivar L29 may function as a resistance factor acting against specific strains of Soybean mosaic virus (SMV). In this study, we found that overexpression of GmPAP2.1 from L29 conferred SMV resistance to a susceptible cultivar, Lee 74. We determined that GmPAP2.1 interacted with the SMV protein P1 in the chloroplasts, resulting in the up-regulation of the ICS1 gene, which in turn promoted the pathogen-induced salicylic acid (SA) pathway. SA accumulation was elevated in response to the co-expression of GmPAP2.1 and SMV, while transient knockdown of endogenous SA-related genes resulted in systemic infection by SMV strain G5H, suggesting that GmPAP2.1-derived resistance depended on the SA-pathway for the activation of a defense response. Our findings thus suggest that GmPAP2.1 purple acid phosphatase of soybean cultivar L29 functions as an SA-pathway-dependent resistance factor acting against SMV.
Collapse
Affiliation(s)
- Kristin Widyasari
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Phu-Tri Tran
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jiyoung Shin
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
25
|
Li B, Karthikeyan A, Wang L, Yin J, Jin T, Liu H, Li K, Gai J, Zhi H. Discovery and characterization of differentially expressed soybean miRNAs and their targets during soybean mosaic virus infection unveils novel insight into Soybean-SMV interaction. BMC Genomics 2022; 23:171. [PMID: 35236286 PMCID: PMC8889786 DOI: 10.1186/s12864-022-08385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/07/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Soybean mosaic virus (SMV) is one of the most devastating pathogens of soybean. MicroRNAs (miRNAs) are a class of non-coding RNAs (21-24 nucleotides) which are endogenously produced by the plant host as part of a general gene expression regulatory mechanisms, but also play roles in regulating plant defense against pathogens. However, miRNA-mediated plant response to SMV in soybean is not as well documented. RESULT In this study, we analyzed 18 miRNA libraries, including three biological replicates from two soybean lines (Resistant and susceptible lines to SMV strain SC3 selected from the near-isogenic lines of Qihuang No. 1 × Nannong1138-2) after virus infection at three different time intervals (0 dpi, 7 dpi and 14 dpi). A total of 1,092 miRNAs, including 608 known miRNAs and 484 novel miRNAs were detected. Differential expression analyses identified the miRNAs profile changes during soybean-SMV interaction. Then, miRNAs potential target genes were predicted via data mining, and functional annotation was done by Gene Ontology (GO) analysis. The expression patterns of several miRNAs were validated by quantitative real-time PCR. We also validated the miRNA-target gene interaction by agrobacterium-mediated transient expression in Nicotiana benthamiana. CONCLUSION We have identified a large number of miRNAs and their target genes and also functional annotations. We found that multiple miRNAs were differentially expressed in the two lines and targeted a series of NBS-LRR resistance genes. It is worth mentioning that many of these genes exist in the previous fine-mapping interval of the resistance gene locus. Our study provides additional information on soybean miRNAs and an insight into the role of miRNAs during SMV-infection in soybean.
Collapse
Affiliation(s)
- Bowen Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Liqun Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinlong Yin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tongtong Jin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Kai Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Haijian Zhi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
26
|
Du M, Wang Y, Chen C, Li X, Feng R, Zhou X, Yang X. Molecular Characterization and Pathogenicity of a Novel Soybean-Infecting Monopartite Geminivirus in China. Viruses 2022; 14:341. [PMID: 35215936 PMCID: PMC8877103 DOI: 10.3390/v14020341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
Soybean is a major legume crop that plays an important role in food production, industrial production, and animal husbandry. Here, we characterize a novel soybean-infecting monopartite geminivirus identified in China. Analysis of the contigs de novo assembled from sequenced small interfering RNAs, followed by PCR, cloning, and sequencing, the complete viral genome was determined to be 2782 nucleotides. The genome contains the conserved nonanucleotide sequence, TAATATTAC and other sequence features typical of the family Geminiviridae, and encodes two and four open reading frames in the virion-sense and the complementary-sense strands, respectively. Genome-wide pairwise identity analysis revealed that the novel virus shares less than 65.6% identity with previously characterized geminiviruses. Phylogenetic and recombination analysis indicated that this virus was placed in a unique taxon within the family Geminiviridae and potentially arose from recombination. An infectious clone of this virus was further constructed and its infectivity was tested in different species of plants. Successful infection and characteristic symptoms were observed in Glycine max, Nicotiana benthamiana, N. tabacum, N. glutinosa, and N. tabacum cv. Samsun plants. Taken together, this virus represents a member of an unclassified genus of the family Geminiviridae, for which the name soybean yellow leaf curl virus is proposed.
Collapse
Affiliation(s)
- Min Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.D.); (Y.W.); (C.C.); (R.F.)
| | - Yongzhi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.D.); (Y.W.); (C.C.); (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Cheng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.D.); (Y.W.); (C.C.); (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Institute of Plant Protection, Ministry of Agriculture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiaoyu Li
- Key Laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Runzi Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.D.); (Y.W.); (C.C.); (R.F.)
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.D.); (Y.W.); (C.C.); (R.F.)
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.D.); (Y.W.); (C.C.); (R.F.)
| |
Collapse
|
27
|
Gao L, Wu Y, An J, Huang W, Liu X, Xue Y, Luan X, Lin F, Sun L. Pathogenicity and genome-wide sequence analysis reveals relationships between soybean mosaic virus strains. Arch Virol 2022; 167:517-529. [PMID: 35024966 PMCID: PMC8755985 DOI: 10.1007/s00705-021-05271-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/27/2021] [Indexed: 11/06/2022]
Abstract
Soybean mosaic virus (SMV) is the most prevalent viral pathogen in soybean. In China, the SMV strains SC and N are used simultaneously in SMV resistance assessments of soybean cultivars, but the pathogenic relationship between them is unclear. In this study, SMV strains N1 and N3 were found to be the most closely related to SC18. Moreover, N3 was found to be more virulent than N1. A global pathotype classification revealed the highest level of genetic diversity in China. The N3 type was the most frequent and widespread worldwide, implying that SMV possibly originated in China and spread across continents through the dissemination of infected soybean. It also suggests that the enhanced virulence of N3 facilitated its spread and adaptability in diverse geographical and ecological regions worldwide. Phylogenetic analysis revealed prominent geographical associations among SMV strains/isolates, and genomic nucleotide diversity analysis and neutrality tests demonstrated that the whole SMV genome is under negative selection, with the P1 gene being under the greatest selection pressure. The results of this study will facilitate the nationwide use of SMV-resistant soybean germplasm and could provide useful insights into the molecular variability, geographical distribution, phylogenetic relationships, and evolutionary history of SMV around the world.
Collapse
Affiliation(s)
- Le Gao
- Department of Horticulture, Beijing Vocational College of Agriculture, Beijing, 102442, China.
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Yueying Wu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie An
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wenxuan Huang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xinlei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yongguo Xue
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaoyan Luan
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Lianjun Sun
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Xue B, Shang J, Yang J, Zhang L, Du J, Yu L, Yang W, Naeem M. Development of a multiplex RT-PCR assay for the detection of soybean mosaic virus, bean common mosaic virus and cucumber mosaic virus in field samples of soybean. J Virol Methods 2021; 298:114278. [PMID: 34499966 DOI: 10.1016/j.jviromet.2021.114278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/17/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
Soybean is susceptible to viral diseases which are often present as mixed infections. The individual simplex RT-PCR methods used for the identification of multiple viruses are more tedious and time-consuming than the corresponding multiplex RT-PCR. This study used soybean mosaic virus (SMV), bean common mosaic virus (BCMV) and cucumber mosaic virus (CMV)-infected leaf samples from southern China as the test materials to evaluate a multiplex RT-PCR assay developed for the simultaneous detection of these viruses. The parameters optimised included the annealing temperature, extension time, number of cycles, and primer type and concentration. The specific fragments sizes obtained by the multiplex RT-PCR were 550 bp (SMV), 288 bp (BCMV) and 99 bp (CMV). The assay was tested using infected soybean samples obtained from farmers' fields in Sichuan Province, China. The multiplex RT-PCR assay had high sensitivity, was rapid and simple, and could be used for the diagnosis of soybean infected with various combinations of these viruses in the field.
Collapse
Affiliation(s)
- Bing Xue
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Shang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jie Yang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Zhang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - JunBo Du
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Yu
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - WenYu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammd Naeem
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
29
|
Xun H, Zhang X, Yu J, Pang J, Wang S, Liu B, Dong Y, Jiang L, Guo D. Analysis of expression characteristics of soybean leaf and root tissue-specific promoters in Arabidopsis and soybean. Transgenic Res 2021; 30:799-810. [PMID: 34115286 DOI: 10.1007/s11248-021-00266-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
The characterization of tissue-specific promoters is critical for studying the functions of genes in a given tissue/organ. To study tissue-specific promoters in soybean, we screened tissue-specific expressed genes using published soybean RNA-Seq-based transcriptome data coupled with RT-PCR analysis. We cloned the promoters of three genes, GmADR1, GmBTP1, and GmGER1, and constructed their corresponding β-Glucuronidase (GUS) promoter-GUS reporter vectors. We generated transgenic Arabidopsis plants and examined the expression patterns of these promoters by GUS staining and RT-PCR analysis. We also transformed the promoter-GUS reporter vectors into soybean to obtain hairy roots, and examined promoter expression by GUS staining. We found a root-specific expression pattern of GmADR1 and GmBTP1 in both Arabidopsis and soybean, and the promoter of GmGER1 showed a leaf-specific pattern in transgenic Arabidopsis plants. To test the potential utility of these promoters in soybean improvement by transgenic means, we used the GmADR1 promoter to drive expression of a salt resistance gene in soybean, GmCaM4, by generating transgenic soybean plants. We found that the transgenic plants had significantly enhanced salt tolerance compared to non-transformed wild-type, suggesting that introducing endogenous promoters by transgenic means can drive the expression of functional genes in specific tissues and organs in soybean.
Collapse
Affiliation(s)
- Hongwei Xun
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, 130033, Changchun, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Xue Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Jiamiao Yu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, 276000, Linyi, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Yingshan Dong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, 130033, Changchun, China
| | - Lili Jiang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China.
| | - Dongquan Guo
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, 130033, Changchun, China.
| |
Collapse
|
30
|
Jiang H, Li K, Gai J. Optimizing RNAi-Target by Nicotiana benthamiana-Soybean Mosaic Virus System Drives Broad Resistance to Soybean Mosaic Virus in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:739971. [PMID: 34880883 PMCID: PMC8645994 DOI: 10.3389/fpls.2021.739971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Soybean mosaic virus (SMV) is a prevalent pathogen of soybean (Glycine max). Pyramiding multiple SMV-resistance genes into one individual is tedious and difficult, and even if successful, the obtained multiple resistance might be broken by pathogen mutation, while targeting viral genome via host-induced gene silencing (HIGS) has potential to explore broad-spectrum resistance (BSR) to SMV. We identified five conserved target fragments (CTFs) from S1 to S5 using multiple sequence alignment of 30 SMV genome sequences and assembled the corresponding target-inverted-repeat constructs (TIRs) from S1-TIR to S5-TIR. Since the inefficiency of soybean genetic transformation hinders the function verification of batch TIRs in SMV-resistance, the Nicotiana benthamiana-chimeric-SMV and N. benthamiana-pSMV-GUS pathosystems combined with Agrobacterium-mediated transient expression assays were invented and used to test the efficacy of these TIRs. From that, S1-TIR assembled from 462 bp CTF-S1 with 92% conservation rate performed its best on inhibiting SMV multiplication. Accordingly, S1-TIR was transformed into SMV-susceptible soybean NN1138-2, the resistant-healthy transgenic T1-plants were then picked out via detached-leaf inoculation assay with the stock-plants continued for progeny reproduction (T1 dual-utilization). All the four T3 transgenic progenies showed immunity to all the inoculated 11 SMV strains under individual or mixed inoculation, achieving a strong BSR. Thus, optimizing target for HIGS via transient N. benthamiana-chimeric-SMV and N. benthamiana-pSMV-GUS assays is crucial to drive robust resistance to SMV in soybean and the transgenic S1-TIR-lines will be a potential breeding source for SMV control in field.
Collapse
|
31
|
Jiang H, Gu S, Li K, Gai J. Two TGA Transcription Factor Members from Hyper-Susceptible Soybean Exhibiting Significant Basal Resistance to Soybean mosaic virus. Int J Mol Sci 2021; 22:11329. [PMID: 34768757 PMCID: PMC8583413 DOI: 10.3390/ijms222111329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022] Open
Abstract
TGA transcription factors (TFs) exhibit basal resistance in Arabidopsis, but susceptibility to a pathogen attack in tomatoes; however, their roles in soybean (Glycine max) to Soybean mosaic virus (SMV) are unknown. In this study, 27 TGA genes were isolated from a SMV hyper-susceptible soybean NN1138-2, designated GmTGA1~GmTGA27, which were clustered into seven phylogenetic groups. The expression profiles of GmTGAs showed that the highly expressed genes were mainly in Groups I, II, and VII under non-induction conditions, while out of the 27 GmTGAs, 19 responded to SMV-induction. Interestingly, in further transient N. benthamiana-SMV pathosystem assay, all the 19 GmTGAs overexpressed did not promote SMV infection in inoculated leaves, but they exhibited basal resistance except one without function. Among the 18 functional ones, GmTGA8 and GmTGA19, with similar motif distribution, nuclear localization sequence and interaction proteins, showed a rapid response to SMV infection and performed better than the others in inhibiting SMV multiplication. This finding suggested that GmTGA TFs may support basal resistance to SMV even from a hyper-susceptible source. What the mechanism of the genes (GmTGA8, GmTGA19, etc.) with basal resistance to SMV is and what their potential for the future improvement of resistance to SMV in soybeans is, are to be explored.
Collapse
Affiliation(s)
- Hua Jiang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyu Gu
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Li
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
32
|
Jones RAC, Sharman M, Trębicki P, Maina S, Congdon BS. Virus Diseases of Cereal and Oilseed Crops in Australia: Current Position and Future Challenges. Viruses 2021; 13:2051. [PMID: 34696481 PMCID: PMC8539440 DOI: 10.3390/v13102051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/22/2022] Open
Abstract
This review summarizes research on virus diseases of cereals and oilseeds in Australia since the 1950s. All viruses known to infect the diverse range of cereal and oilseed crops grown in the continent's temperate, Mediterranean, subtropical and tropical cropping regions are included. Viruses that occur commonly and have potential to cause the greatest seed yield and quality losses are described in detail, focusing on their biology, epidemiology and management. These are: barley yellow dwarf virus, cereal yellow dwarf virus and wheat streak mosaic virus in wheat, barley, oats, triticale and rye; Johnsongrass mosaic virus in sorghum, maize, sweet corn and pearl millet; turnip yellows virus and turnip mosaic virus in canola and Indian mustard; tobacco streak virus in sunflower; and cotton bunchy top virus in cotton. The currently less important viruses covered number nine infecting nine cereal crops and 14 infecting eight oilseed crops (none recorded for rice or linseed). Brief background information on the scope of the Australian cereal and oilseed industries, virus epidemiology and management and yield loss quantification is provided. Major future threats to managing virus diseases effectively include damaging viruses and virus vector species spreading from elsewhere, the increasing spectrum of insecticide resistance in insect and mite vectors, resistance-breaking virus strains, changes in epidemiology, virus and vectors impacts arising from climate instability and extreme weather events, and insufficient industry awareness of virus diseases. The pressing need for more resources to focus on addressing these threats is emphasized and recommendations over future research priorities provided.
Collapse
Affiliation(s)
- Roger A. C. Jones
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Murray Sharman
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, P.O. Box 267, Brisbane, QLD 4001, Australia;
| | - Piotr Trębicki
- Grains Innovation Park, Agriculture Victoria, Department of Jobs, Precincts and Regions, Horsham, VIC 3400, Australia; (P.T.); (S.M.)
| | - Solomon Maina
- Grains Innovation Park, Agriculture Victoria, Department of Jobs, Precincts and Regions, Horsham, VIC 3400, Australia; (P.T.); (S.M.)
| | - Benjamin S. Congdon
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia;
| |
Collapse
|
33
|
Zhao X, Jing Y, Luo Z, Gao S, Teng W, Zhan Y, Qiu L, Zheng H, Li W, Han Y. GmST1, which encodes a sulfotransferase, confers resistance to soybean mosaic virus strains G2 and G3. PLANT, CELL & ENVIRONMENT 2021; 44:2777-2792. [PMID: 33866595 DOI: 10.1111/pce.14066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
Soybean mosaic virus (SMV) is one of the most widespread and devastating viral diseases worldwide. The genetic architecture of qualitative resistance to SMV in soybean remains unclear. Here, the Rsvg2 locus was identified as underlying soybean resistance to SMV by genome-wide association and linkage analyses. Fine mapping results showed that soybean resistance to SMV strains G2 and G3 was controlled by a single dominant gene, GmST1, on chromosome 13, encoding a sulfotransferase (SOT). A key variation at position 506 in the coding region of GmST1 associated with the structure of the encoded SOT and changed SOT activity levels between RSVG2-S and RSVG2-R alleles. In RSVG2-S allele carrier "Hefeng25", the overexpression of GmST1 carrying the RSVG2-R allele from the SMV-resistant line "Dongnong93-046" conferred resistance to SMV strains G2 and G3. Compared to Hefeng25, the accumulation of SMV was decreased in transgenic plants carrying the RSVG2-R allele. SMV infection differentiated both the accumulation of jasmonates and expression patterns of genes involved in jasmonic acid (JA) signalling, biosynthesis and catabolism in RSVG2-R and RSVG2-S allele carriers. This characterization of GmST1 suggests a new scenario explaining soybean resistance to SMV.
Collapse
Affiliation(s)
- Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yan Jing
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Zhenghui Luo
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Sainan Gao
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Lijuan Qiu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongkun Zheng
- Bioinformatics Division, Biomarker Technologies Corporation, Beijing, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| |
Collapse
|
34
|
van Bentum S, van Bekkum PJ, Strijk PA, van Pelt JA, Bakker PAHM, Berendsen RL, van der Vlugt RA. First report of Soybean Mosaic Virus in commercially grown soybean in the Netherlands. PLANT DISEASE 2021; 106:775. [PMID: 34319768 DOI: 10.1094/pdis-06-21-1181-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In July 2020, plants with crinkled, chlorotic, occasionally necrotic leaves, typical for Soybean Mosaic Virus (SMV), were observed in eight soybean fields (Glycine max L.) in Flevoland, The Netherlands (Supp. Fig. 1). Disease incidence varied from 5-50% and the plants affected often occurred in small or extensive patches. Leaves from several symptomatic plants were sampled from each of two fields planted with soybean variety Green Shell or Summer Shell. Total RNA was extracted from one plant leaf sample per field using InviTrap Spin Plant RNA Mini Kit (Invitek, Germany). One-tube RT-PCRs employing potyvirus generic primers P9502 and CPUP (Van der Vlugt et al, 1999) and SMV-specific primers SMV-dT (5'-TTTTTTTTTTTTTTTAGGACAAC-3') and SMV-Nib-Fw (5'-CAAGGATGARTTTAAGGAG-3') combined with Sanger sequencing confirmed the presence of SMV in all leaf samples. To exclude the presence of other agents in the samples, total RNA from each cultivar was used in standard Illumina library preparation with ribosomal RNA depletion followed by sequencing on an Illumina NovaSeq6000 (paired-end, 150 bp) which yielded 66,579,158 reads (Summer Shell) and 223,953,206 reads (Green Shell). After quality trimming in CLC Genomics Workbench 20.0.4 (CLC-GWB; Qiagen, Hilden), four million reads were randomly sampled for de novo assembly. Contigs over 500 nucleotides (nts) in length with a minimum of 500 reads were annotated by BLASTn against NCBI GenBank. This identified one contig of 9,883 nts (6,233,397 reads) in Summer Shell and one contig of 9,727 nts (3,139,927 reads) in Green Shell with clear homology to SMV (E-value = 0.0). No other viruses were identified in the datasets. Reference assemblies against the SMV reference sequence (NC_002634) mapped 24,090,763 reads (36.2%) for Summer Shell and 175,459,637 reads (78.3%) for Green Shell. Extracted consensus sequences for SMV in both soybean cultivars were 9,584 nts long (excluding the poly-A tail). Sequence data from the de novo and reference assemblies were combined into consensus sequences which showed over 98% overall nt sequence identity to NC_002634 and 99.6% to each other. Both consensus sequences were deposited in GenBank under accession numbers MW822167 (SMV-Summer Shell) and MW822168 (SMV-Green Shell). In addition, the presence of SMV in the field samples was confirmed with an inoculation assay. Leaf samples from both fields were ground in phosphate buffer (0.1M, pH 7.2) and inoculated on cotyledons and first expanded leaves of soybean plants (unknown cv.) 12 days post-germination. Plants showed veinal chlorosis in systemic leaves from 12 days post-inoculation, which developed into veinal necrosis. SMV infections were confirmed by RT-PCR in systemic, chlorotic leaf samples of all symptomatic plants using the SMV-specific primers described above. To our knowledge, this is the first report of SMV in The Netherlands. As soybean is a relatively new but expanding crop in this country, information about emerging diseases is highly relevant. SMV can be transmitted via seeds and aphids, where seeds can serve as primary source of virus inoculum (Cui et al., 2011; Hartman et al., 2016; Hajimorad et al., 2018). Weeds and non-commercial plants can also serve as origin of SMV, particularly in subsequent growing seasons, although this virus infects a limited host range of six plant families (Cui et al., 2011; Hill & Whitham, 2014). Special monitoring would be advised for the recurrence and possible damage by SMV in Dutch soybean fields.
Collapse
Affiliation(s)
- Sietske van Bentum
- Utrecht University, 8125, Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht, Utrecht, Netherlands;
| | - Petra J van Bekkum
- Wageningen University & Research, 4508, Biointeractions and Plant Health, Wageningen, Gelderland, Netherlands;
| | | | - Johan A van Pelt
- Utrecht University, 8125, Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht, Utrecht, Netherlands;
| | - Peter A H M Bakker
- Utrecht University Faculty of Science, 84889, Biology, Padualaan 8, Utrecht, Netherlands, 3508 TA;
| | - Roeland Lucas Berendsen
- Utrecht University, 8125, Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht, Utrecht, Netherlands;
| | - Rene A van der Vlugt
- Wageningen University & Research, 4508, Biointeractions and Plant Health, Wageningen, Gelderland, Netherlands;
| |
Collapse
|
35
|
Antixenosis in Glycine max (L.) Merr against Acyrthosiphon pisum (Harris). Sci Rep 2021; 11:15289. [PMID: 34315988 PMCID: PMC8316357 DOI: 10.1038/s41598-021-94703-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
To reveal the antixenosis potential against the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) we analyzed the pea aphid survival and probing behavior, and the quantitative and qualitative variation of flavonoids in the leaves of selected soybean Glycine max (L.) Merr (Fabaceae) cultivars 'Aldana', 'Annushka', 'Augusta', 'Madlen', 'Mavka', 'Simona', 'Violetta', and 'Viorica'. Aphid survival was drastically impeded on all cultivars. The electronic monitoring of aphid probing using the Electrical Penetration Graph (EPG) technique revealed that on all soybean cultivars, A. pisum readily probed into leaf tissues but the probes were usually terminated before reaching vascular tissues, which demonstrates the activity of antixenosis mechanisms in peripheral tissues epidermis and/or mesophyll in soybean leaves. The potency of antixenosis factors differed among soybean cultivars, which was reflected in differences in aphid survival and frequency and duration of phloem sap ingestion. Seven flavonoids were found: apigenin, daidzein, genistein, glycitein, isorhamnetin, kaempferol, and rutin, which occurred in different amount and proportion in individual cultivars. The content of apigenin and genistein in all soybean cultivars studied probably made them relatively unacceptable to A. pisum. Kaempferol in 'Aldana' might be responsible for the observed strong antixenosis resistance of this cultivar to A. pisum. The results of our survey provide the first detailed data that can be used for future studies.
Collapse
|
36
|
Chatzivassiliou EK. An Annotated List of Legume-Infecting Viruses in the Light of Metagenomics. PLANTS 2021; 10:plants10071413. [PMID: 34371616 PMCID: PMC8309371 DOI: 10.3390/plants10071413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Legumes, one of the most important sources of human food and animal feed, are known to be susceptible to a plethora of plant viruses. Many of these viruses cause diseases which severely impact legume production worldwide. The causal agents of some important virus-like diseases remain unknown. In recent years, high-throughput sequencing technologies have enabled us to identify many new viruses in various crops, including legumes. This review aims to present an updated list of legume-infecting viruses. Until 2020, a total of 168 plant viruses belonging to 39 genera and 16 families, officially recognized by the International Committee on Taxonomy of Viruses (ICTV), were reported to naturally infect common bean, cowpea, chickpea, faba-bean, groundnut, lentil, peas, alfalfa, clovers, and/or annual medics. Several novel legume viruses are still pending approval by ICTV. The epidemiology of many of the legume viruses are of specific interest due to their seed-transmission and their dynamic spread by insect-vectors. In this review, major aspects of legume virus epidemiology and integrated control approaches are also summarized.
Collapse
Affiliation(s)
- Elisavet K Chatzivassiliou
- Plant Pathology Laboratory, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
37
|
Wei Z, Mao C, Jiang C, Zhang H, Chen J, Sun Z. Identification of a New Genetic Clade of Cowpea Mild Mottle Virus and Characterization of Its Interaction With Soybean Mosaic Virus in Co-infected Soybean. Front Microbiol 2021; 12:650773. [PMID: 33897664 PMCID: PMC8060446 DOI: 10.3389/fmicb.2021.650773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Cowpea mild mottle virus (CPMMV; genus Carlavirus) can be a destructive pathogen of soybean but there is little information about its distribution on soybean in China. Here, we collected soybean plants with virus-like symptoms from 11 fields widely scattered within China, and used high-throughput sequencing to determine their virome. Most samples (8/11) were co-infected by the well-studied potyvirus soybean mosaic virus (SMV) and CPMMV, and the remaining three samples were singly infected with CPMMV. The near-complete genome sequences of the 11 CPMMV isolates were determined and phylogenetic analysis showed that they constituted a new genetic clade. One recombination event was detected among the CPMMV sequences, and the isolate CPMMV_JL_CC was identified as recombinant. In mechanical inoculation assays, co-infection by CPMMV and SMV resulted in an enhancement of disease symptoms, but decreased the expression level of the genomic RNAs and CP of CPMMV, without significantly affecting SMV accumulation. The interaction between these viruses needs further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
38
|
Ku YS, Cheng SS, Gerhardt A, Cheung MY, Contador CA, Poon LYW, Lam HM. Secretory Peptides as Bullets: Effector Peptides from Pathogens against Antimicrobial Peptides from Soybean. Int J Mol Sci 2020; 21:E9294. [PMID: 33291499 PMCID: PMC7730307 DOI: 10.3390/ijms21239294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Soybean is an important crop as both human food and animal feed. However, the yield of soybean is heavily impacted by biotic stresses including insect attack and pathogen infection. Insect bites usually make the plants vulnerable to pathogen infection, which causes diseases. Fungi, oomycetes, bacteria, viruses, and nematodes are major soybean pathogens. The infection by pathogens and the defenses mounted by soybean are an interactive and dynamic process. Using fungi, oomycetes, and bacteria as examples, we will discuss the recognition of pathogens by soybean at the molecular level. In this review, we will discuss both the secretory peptides for soybean plant infection and those for pathogen inhibition. Pathogenic secretory peptides and peptides secreted by soybean and its associated microbes will be included. We will also explore the possible use of externally applied antimicrobial peptides identical to those secreted by soybean and its associated microbes as biopesticides.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Aisha Gerhardt
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ming-Yan Cheung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Lok-Yiu Winnie Poon
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| |
Collapse
|
39
|
Soybean Viromes in the Republic of Korea Revealed by RT-PCR and Next-Generation Sequencing. Microorganisms 2020; 8:microorganisms8111777. [PMID: 33198273 PMCID: PMC7698195 DOI: 10.3390/microorganisms8111777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022] Open
Abstract
Soybean (Glycine max L.) is one of the most important crop plants in the Republic of Korea. Here, we conducted a soybean virome study. We harvested a total of 172 soybean leaf samples showing disease symptoms from major soybean-growing regions in the Republic of Korea. Individual samples were examined for virus infection by RT-PCR. Moreover, we generated eight libraries representing eight provinces by pooling samples and four libraries from single samples. RNA-seq followed by bioinformatics analyses revealed 10 different RNA viruses infecting soybean. The proportion of viral reads in each transcriptome ranged from 0.2 to 31.7%. Coinfection of different viruses in soybean plants was very common. There was a single dominant virus in each province, and this geographical difference might be related to the soybean seeds that transmit viruses. In this study, 32 viral genome sequences were assembled and successfully used to analyze the phylogenetic relationships and quasispecies nature of the identified RNA viruses. Moreover, RT-PCR with newly developed primers confirmed infection of the identified viruses in each library. Taken together, our soybean virome study provides a comprehensive overview of viruses infecting soybean in eight geographical regions in the Republic of Korea and four single soybean plants in detail.
Collapse
|
40
|
Understanding the interaction of isoleucine paired with other amino acids in soy whey alcohol fermentation using Torulaspora delbrueckii. Int J Food Microbiol 2020; 333:108802. [DOI: 10.1016/j.ijfoodmicro.2020.108802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022]
|
41
|
Bao W, Yan T, Deng X, Wuriyanghan H. Synthesis of Full-Length cDNA Infectious Clones of Soybean Mosaic Virus and Functional Identification of a Key Amino Acid in the Silencing Suppressor Hc-Pro. Viruses 2020; 12:E886. [PMID: 32823665 PMCID: PMC7472419 DOI: 10.3390/v12080886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Soybean mosaic virus (SMV), which belongs to the Potyviridae, causes significant reductions in soybean yield and seed quality. In this study, both tag-free and reporter gene green fluorescent protein (GFP)-containing infectious clones for the SMV N1 strain were constructed by Gibson assembly and with the yeast homologous recombination system, respectively. Both infectious clones are suitable for agroinfiltration on the model host N. benthamiana and show strong infectivity for the natural host soybean and several other legume species. Both infectious clones were seed transmitted and caused typical virus symptoms on seeds and progeny plants. We used the SMV-GFP infectious clone to further investigate the role of key amino acids in the silencing suppressor helper component-proteinase (Hc-Pro). Among twelve amino acid substitution mutants, the co-expression of mutant 2-with an Asparagine→Leucine substitution at position 182 of the FRNK (Phe-Arg-Asn-Lys) motif-attenuated viral symptoms and alleviated the host growth retardation caused by SMV. Moreover, the Hc-Prom2 mutant showed stronger oligomerization than wild-type Hc-Pro. Taken together, the SMV infectious clones will be useful for studies of host-SMV interactions and functional gene characterization in soybeans and related legume species, especially in terms of seed transmission properties. Furthermore, the SMV-GFP infectious clone will also facilitate functional studies of both virus and host genes in an N. benthamiana transient expression system.
Collapse
Affiliation(s)
- Wenhua Bao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Yan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaoyi Deng
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
42
|
Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R, Yang H, Cheng H, Yu D. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1384-1395. [PMID: 31769589 PMCID: PMC7206993 DOI: 10.1111/pbi.13302] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 11/18/2019] [Indexed: 05/18/2023]
Abstract
Isoflavonoids, which include a variety of secondary metabolites, are derived from the phenylpropanoid pathway and are distributed predominantly in leguminous plants. These compounds play a critical role in plant-environment interactions and are beneficial to human health. Isoflavone synthase (IFS) is a key enzyme in isoflavonoid synthesis and shares a common substrate with flavanone-3-hydroxylase (F3H) and flavone synthase II (FNS II). In this study, CRISPR/Cas9-mediated multiplex gene-editing technology was employed to simultaneously target GmF3H1, GmF3H2 and GmFNSII-1 in soya bean hairy roots and plants. Various mutation types and frequencies were observed in hairy roots. Higher mutation efficiencies were found in the T0 transgenic plants, with a triple gene mutation efficiency of 44.44%, and these results of targeted mutagenesis were stably inherited in the progeny. Metabolomic analysis of T0 triple-mutants leaves revealed significant improvement in isoflavone content. Compared with the wild type, the T3 generation homozygous triple mutants had approximately twice the leaf isoflavone content, and the soya bean mosaic virus (SMV) coat protein content was significantly reduced by one-third after infection with strain SC7, suggesting that increased isoflavone content enhanced the leaf resistance to SMV. The isoflavone content in the seeds of T2 triple mutants was also significantly increased. This study provides not only materials for the improvement of soya bean isoflavone content and resistance to SMV but also a simple system to generate multiplex mutations in soya bean, which may be beneficial for further breeding and metabolic engineering.
Collapse
Affiliation(s)
- Peipei Zhang
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Hongyang Du
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural ScienceHefeiChina
| | - Jiao Wang
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yixiang Pu
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Changyun Yang
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Rujuan Yan
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Hui Yang
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Hao Cheng
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Deyue Yu
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
43
|
Lin J, Lan Z, Hou W, Yang C, Wang D, Zhang M, Zhi H. Identification and fine-mapping of a genetic locus underlying soybean tolerance to SMV infections. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110367. [PMID: 32005375 DOI: 10.1016/j.plantsci.2019.110367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/22/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Soybean mosaic virus (SMV) is a major pathogen causing yield loss. Developing soybean plants tolerant or resistant to SMV is important for mitigating the adverse effects of the viral infection. However, most studies have focused on the resistance to normal SMV strains. Thus, investigations of the resistance or tolerance to the novel recombinant SMV strain have been limited. To address the threat of the recombinant SMV, two soybean parent genotypes with contrasting reactions to the recombinant SMV and 211 F9:11 recombinant inbred lines were evaluated under artificial inoculation conditions. The JD12 plants are resistant to the recombinant SMV, whereas HT is highly tolerant, but still susceptible. Genetic analyses suggested that the resistance of JD12 is controlled by a single dominant gene and the tolerance is a quantitative trait. The QTL mapping results revealed one QTL (qTsmv-13) for resistance and two QTLs (qTsmv-2 and qTsmv-3) for tolerance. A comparison between known resistance genes and the QTLs identified in this study suggested that qTsmv-13 and qTsmv-2 may correspond to Rsv1 and Rsv4, respectively, whereas qTsmv-3 represents a newly identified QTL for SMV tolerance. We further delimited qTsmv-3 to an interval of approximately 86 kb with a map-based cloning strategy. Only two of five candidate genes, Glyma.03G00550 and Glyma.03G00570, varied between the parents. Additionally, Glyma.03G00550, which is a multidrug and toxic compound extrusion transporter gene, is the likely candidate gene for qTsmv-3. In summary, our research opens a new avenue for formulating strategies to breed soybean varieties tolerant to SMV.
Collapse
Affiliation(s)
- Jing Lin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Zejun Lan
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Wenhuan Hou
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Dagang Wang
- Crop Institute of Anhui Academy of Agricultural Sciences /Key Laboratory of Crop Quality Improvement of Anhui Province, Hefei 230031, China
| | - Mengchen Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China.
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
44
|
Gao L, Luo J, Ding X, Wang T, Hu T, Song P, Zhai R, Zhang H, Zhang K, Li K, Zhi H. Soybean RNA interference lines silenced for eIF4E show broad potyvirus resistance. MOLECULAR PLANT PATHOLOGY 2020; 21:303-317. [PMID: 31860775 PMCID: PMC7036369 DOI: 10.1111/mpp.12897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 05/27/2023]
Abstract
Soybean mosaic virus (SMV), a potyvirus, is the most prevalent and destructive viral pathogen in soybean-planting regions of China. Moreover, other potyviruses, including bean common mosaic virus (BCMV) and watermelon mosaic virus (WMV), also threaten soybean farming. The eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in controlling resistance/susceptibility to potyviruses in plants. In the present study, much higher SMV-induced eIF4E1 expression levels were detected in a susceptible soybean cultivar when compared with a resistant cultivar, suggesting the involvement of eIF4E1 in the response to SMV by the susceptible cultivar. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that soybean eIF4E1 interacted with SMV VPg in the nucleus and with SMV NIa-Pro/NIb in the cytoplasm, revealing the involvement of VPg, NIa-Pro, and NIb in SMV infection and multiplication. Furthermore, transgenic soybeans silenced for eIF4E were produced using an RNA interference approach. Through monitoring for viral symptoms and viral titers, robust and broad-spectrum resistance was confirmed against five SMV strains (SC3/7/15/18 and SMV-R), BCMV, and WMV in the transgenic plants. Our findings represent fresh insights for investigating the mechanism underlying eIF4E-mediated resistance in soybean and also suggest an effective alternative for breeding soybean with broad-spectrum viral resistance.
Collapse
Affiliation(s)
- Le Gao
- National Center for Soybean ImprovementNanjing Agricultural UniversityNanjingChina
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jinyan Luo
- National Center for Soybean ImprovementNanjing Agricultural UniversityNanjingChina
| | - Xueni Ding
- National Center for Soybean ImprovementNanjing Agricultural UniversityNanjingChina
| | - Tao Wang
- National Center for Soybean ImprovementNanjing Agricultural UniversityNanjingChina
- Institute of Cereal and Oil CropsHandan Academy of Agricultural SciencesHandanChina
| | - Ting Hu
- National Center for Soybean ImprovementNanjing Agricultural UniversityNanjingChina
| | - Puwen Song
- National Center for Soybean ImprovementNanjing Agricultural UniversityNanjingChina
| | - Rui Zhai
- National Center for Soybean ImprovementNanjing Agricultural UniversityNanjingChina
| | - Hongyun Zhang
- National Center for Soybean ImprovementNanjing Agricultural UniversityNanjingChina
| | - Kai Zhang
- National Center for Soybean ImprovementNanjing Agricultural UniversityNanjingChina
| | - Kai Li
- National Center for Soybean ImprovementNanjing Agricultural UniversityNanjingChina
| | - Haijian Zhi
- National Center for Soybean ImprovementNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
45
|
Soybean Resistance to Soybean Mosaic Virus. PLANTS 2020; 9:plants9020219. [PMID: 32046350 PMCID: PMC7076706 DOI: 10.3390/plants9020219] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/18/2020] [Accepted: 02/06/2020] [Indexed: 11/26/2022]
Abstract
Soybean mosaic virus (SMV) occurs in all soybean-growing areas in the world and causes huge losses in soybean yields and seed quality. During early viral infection, molecular interactions between SMV effector proteins and the soybean resistance (R) protein, if present, determine the development of resistance/disease in soybean plants. Depending on the interacting strain and cultivar, R-protein in resistant soybean perceives a specific SMV effector, which triggers either the extreme silent resistance or the typical resistance manifested by hypersensitive responses and induction of salicylic acid and reactive oxygen species. In this review, we consider the major advances that have been made in understanding the soybean–SMV arms race. We also focus on dissecting mechanisms SMV employs to establish infection and how soybean perceives and then responds to SMV attack. In addition, progress on soybean R-genes studies, as well as those addressing independent resistance genes, are also addressed.
Collapse
|
46
|
Zhang L, Shang J, Wang W, Du J, Li K, Wu X, Yu L, Liu C, Khaskheli MI, Yang W. Comparison of Transcriptome Differences in Soybean Response to Soybean Mosaic Virus under Normal Light and in the Shade. Viruses 2019; 11:E793. [PMID: 31470502 PMCID: PMC6784153 DOI: 10.3390/v11090793] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 01/02/2023] Open
Abstract
Shading in the intercropping system is a major abiotic factor which influences soybean growth and development, while soybean mosaic virus (SMV) is a biotic factor that limits the yield and quality of soybean. However, little is known about the defense response of soybean to SMV in the shade. Thus, in the current study, both intensity and quality (red:far-red, R:FR) of the light were changed to simulate the shaded environment and comparative transcriptome analysis was performed. Morphologically, plant growth was inhibited by SMV, which decreased 35.93% of plant height and 8.97% of stem diameter in the shade. A total of 3548 and 4319 differentially expressed genes (DEGs) were identified in soybean plants infected with SMV under normal light and in the shade. Enrichment analysis showed that the plant defense-related genes were upregulated under normal light but downregulated in the shade. Pathways that were repressed include plant-pathogen interaction, secondary metabolism, sugar metabolism, and vitamin metabolism. In addition, genes associated with signaling pathways such as salicylic acid (SA), jasmonic acid (JA), and ethylene (ETH) were also downregulated in the shade. A qRT-PCR assay of 15 DEGs was performed to confirm transcriptome results. According to our knowledge, this is the first report on soybean response to dual stress factors. These results provide insights into the molecular mechanisms in which soybean plants were infected with SMV in the shade.
Collapse
Affiliation(s)
- Lei Zhang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Shang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wenming Wang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Junbo Du
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaoling Wu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Yu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyan Liu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Ibrahim Khaskheli
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
47
|
Abe J, Wang Y, Yamada T, Sato M, Ono T, Atsumi G, Abe J, Hajimorad MR, Nakahara KS. Recessive Resistance Governed by a Major Quantitative Trait Locus Restricts Clover Yellow Vein Virus in Mechanically but Not Graft-Inoculated Cultivated Soybeans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1026-1037. [PMID: 30830836 DOI: 10.1094/mpmi-12-18-0331-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Clover yellow vein virus (ClYVV) infects and causes disease in legume plants. However, here, we found that ClYVV isolate No. 30 (ClYVV-No.30) inefficiently multiplied or spread via cell-to-cell movement in mechanically inoculated leaves of a dozen soybean (Glycine max) cultivars and resulted in failure to spread systemically. Soybean plants also had a similar resistance phenotype against additional ClYVV isolates. In contrast, all but one of 24 tested accessions of wild soybeans (G. soja) were susceptible to ClYVV-No.30. Graft inoculation of cultivated soybean TK780 with ClYVV-No.30-infected wild soybean B01167 scion resulted in systemic infection of the cultivated soybean rootstock. This suggests that, upon mechanical inoculation, the cultivated soybean inhibits ClYVV-No.30, at infection steps prior to the systemic spread of the virus, via vascular systems. Systemic infection of all F1 plants from crossing between TK780 and B01167 and of 68 of 76 F2 plants with ClYVV-No.30 indicated recessive inheritance of the resistance. Further genetic analysis using 64 recombinant inbred lines between TK780 and B01167 detected one major quantitative trait locus, designated d-cv, for the resistance that was positioned in the linkage group D1b (chromosome 2). The mapped region on soybean genome suggests that d-cv is not an allele of the known resistance genes against soybean mosaic virus.
Collapse
Affiliation(s)
- Junya Abe
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yongzhi Wang
- 2Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
- 3Jilin Academy of Agricultural Sciences, 1363 Caiyu Street, Changchun 130033, Jilin, China
| | - Tetsuya Yamada
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Masako Sato
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Takuya Ono
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Go Atsumi
- 4National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, Japan
| | - Jun Abe
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - M R Hajimorad
- 2Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Kenji S Nakahara
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
48
|
Figueira ADR, Geraldino-Duarte PS, Pinzón Nuñez AM, Lent JV, Galvino-Costa SBF, Farman M, Goodin MM. Characterization of Soybean yellow shoot virus, a New Member of the Family Potyviridae Infecting Soybean Plants in Brazil. PLANT DISEASE 2019; 103:1172-1180. [PMID: 30907693 DOI: 10.1094/pdis-06-18-1067-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new virus species, belonging to the family Potyviridae and capable of infecting most of the soybean cultivars grown in Brazil, was collected in Lavras, Minas Gerais, Brazil, and named Soybean yellow shoot virus (SoyYSV). In this study, the complete 9,052-nucleotide genome of SoyYSV was determined and the structural, biological, and molecular properties of the virus were investigated. The SoyYSV genome encoded a single polyprotein that could be subsequently cleaved, generating 11 proteins. The SoyYSV genome shared 49% nucleotide and 36% amino acid sequence identity with Blackberry virus Y. However, the P1 protein of SoyYSV was much smaller and lacked the ALK1 domain characteristic of the genus Brambyvirus. Electron microscopy revealed flexuous filamentous virus particles, 760 to 780 nm in length, and cytoplasmic inclusions typical of those found in plant cells infected with Potyviridae species. In addition to soybean, SoyYSV infected species in the Amaranthaceae, Caricaceae, Fabaceae, and Solanaceae families. Among the most common potyviruses present in Brazil, only SoyYSV induced local necrotic lesions in Carica papaya L. SoyYSV was transmissible by Myzus persicae and Aphis gossypii but lacked the HC-Pro domain required for aphid transmission in other potyviruses. No seed transmission in soybean was observed.
Collapse
Affiliation(s)
- Antonia Dos Reis Figueira
- 1 Department of Fitopatologia, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-000, Brazil
| | | | | | - Jan van Lent
- 2 Department of Plant Science, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; and
| | - Suellen B F Galvino-Costa
- 1 Department of Fitopatologia, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-000, Brazil
| | - M Farman
- 3 Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Michael M Goodin
- 3 Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| |
Collapse
|
49
|
Jiang H, Li K, Gai J. Agrobacterium rhizogenes-induced soybean hairy roots versus Soybean mosaic virus (ARISHR-SMV) is an efficient pathosystem for studying soybean-virus interactions. PLANT METHODS 2019; 15:56. [PMID: 31149022 PMCID: PMC6534890 DOI: 10.1186/s13007-019-0442-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/22/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Soybean mosaic virus (SMV), a Potyvirus, is the most prevalent viral pathogen of soybean that causes severe yield and seed quality reductions in world soybean production. So far, multiple resistance loci for different SMV strains have been fine-mapped while the candidate genes' functions need to be verified. However, identification of the resistance or susceptibility genes via stable genetic transformation is time-consuming and labor-intensive, which hinders further exploration of these genes' functions in soybean. Thus we tried to explore a rapid and efficient method for verification of SMV-related target gene function in soybean. RESULTS An Agrobacterium rhizogenes (A. rhizogenes) induced soybean hairy roots versus Soybean mosaic virus (ARISHR-SMV) pathosystem was established. The procedure is characterized with that (1) the soybean hairy roots that can be infected by SMV are induced by A. rhizogenes K599 using soybean cotyledons as explants, (2) the gene to be examined for its function, which may be the endogenous SMV-resistance or -susceptible gene or exogenous SMV-related gene, is transformed into soybean calluses mediated by A. rhizogenes, (3) the transformed calluses on explants further inoculated with the purified tester-SMV virions using pricking method under aseptic conditions, and (4) the measurement of the SMV content in positive hairy roots for evaluating the SMV-related target gene function. The procedure takes about 30 days for one cycle. Utilizing the established procedure, the soybean hairy roots induced by A. rhizogenes was efficiently infected by multiple different SMV strains, the SMV infectivity in soybean hairy roots can be retained at least twice successive transfer cultures and Tomato bushy stunt virus (TBSV) P19 promoting and SMV CP suppressing SMV infection in soybean hairy roots was demonstrated, respectively. This procedure can also be used for identification of resistance to SMV strains for soybean germplasms. CONCLUSION The ARISHR-SMV is an efficient pathosystem that allows a quick and convenient identification of SMV-related target gene function in soybean.
Collapse
Affiliation(s)
- Hua Jiang
- Soybean Research Institute; MARA National Center for Soybean Improvement; MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General); National Key Laboratory for Crop Genetics and Germplasm Enhancement; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Kai Li
- Soybean Research Institute; MARA National Center for Soybean Improvement; MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General); National Key Laboratory for Crop Genetics and Germplasm Enhancement; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Junyi Gai
- Soybean Research Institute; MARA National Center for Soybean Improvement; MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General); National Key Laboratory for Crop Genetics and Germplasm Enhancement; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| |
Collapse
|
50
|
Zhang L, Shang J, Jia Q, Li K, Yang H, Liu H, Tang Z, Chang X, Zhang M, Wang W, Yang W. Genetic evolutionary analysis of soybean mosaic virus populations from three geographic locations in China based on the P1 and CP genes. Arch Virol 2019; 164:1037-1048. [PMID: 30747339 DOI: 10.1007/s00705-019-04165-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
Soybean mosaic virus (SMV) is one of the major pathogens causing serious soybean losses. Little is known about the genetic structure and evolutionary biology of the SMV population in southwestern China. In this study, 29 SMV isolates were obtained from Sichuan Province, and the genomic regions encoding the first protein (P1) and coat protein (CP) were sequenced. Combined with SMV isolates from the southeastern and northeastern regions of China, the genetic and molecular evolution of SMV was studied. Recombination analysis revealed that intraspecific and interspecific recombination had occurred in the SMV population. A phylogenetic tree based on the P1 gene reflected the geographic origin of the non-interspecific recombinant SMV (SMV-NI), while a tree based on the CP gene did not. Though frequent gene flow of the SMV-NI populations was found between the southeastern and northeastern populations, the southwestern population was relatively independent. Genetic differentiation was significant between the SMV interspecific recombinant (SMV-RI) and the non-interspecific recombinant (SMV-NI) populations. It was interesting to note that there was an almost identical recombination breakpoint in SMV-RI and Watermelon mosaic virus (WMV). Population dynamics showed that SMV-RI might be in an expanding state, while the SMV-NI population is relatively stable.
Collapse
Affiliation(s)
- Lei Zhang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Shang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qi Jia
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Hui Yang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanhuan Liu
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongqin Tang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Chang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Zhang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenming Wang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|