1
|
Gautam A, Dabral H, Singh A, Tyagi S, Tyagi N, Srivastava D, Kushwaha HR, Singh A. Graphene-based metal/metal oxide nanocomposites as potential antibacterial agents: a mini-review. Biomater Sci 2024; 12:4630-4649. [PMID: 39140167 DOI: 10.1039/d4bm00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Antimicrobial resistance (AMR) is a rising issue worldwide, which is increasing prolonged illness and mortality rates in the population. Similarly, bacteria have generated multidrug resistance (MDR) by developing various mechanisms to cope with existing antibiotics and therefore, there is a need to develop new antibacterial and antimicrobial agents. Biocompatible nanomaterials like graphene and its derivatives, graphene oxide (GO), and reduced graphene oxide (rGO) loaded with metal/metal oxide nanoparticles have been explored as potential antibacterial agents. It is observed that nanocomposites of GO/rGO and metal/metal oxide nanoparticles can result in the synthesis of less toxic, more stable, controlled size, uniformly distributed, and cost-effective nanomaterials compared to pure metal nanoparticles. Antibacterial studies of these nanocomposites show their considerable potential as antibacterial and antimicrobial agents, however, issues like the mechanism of antimicrobial action and their cytotoxicity need to be explored in detail. This review highlights a comparative analysis of graphene-based metal and metal oxide nanoparticles as potential antibacterial agents against AMR and MDR.
Collapse
Affiliation(s)
- Akanksha Gautam
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Himanki Dabral
- School of Agriculture Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand-248001, India
| | - Awantika Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sourabh Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Diksha Srivastava
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Hemant R Kushwaha
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
- School of Agriculture Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand-248001, India
| | - Anu Singh
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
2
|
Airapetov M, Eresko S, Ignatova P, Lebedev A, Bychkov E, Shabanov P. Effect of rifampicin on TLR4-signaling pathways in the nucleus accumbens of the rat brain during abstinence of long-term alcohol treatment. Alcohol Alcohol 2024; 59:agae016. [PMID: 38520481 DOI: 10.1093/alcalc/agae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/25/2024] Open
Abstract
AIMS The treatment with the antibiotic rifampicin (Rif) led to a decrease in the frequency of neurodegenerative pathologies. There are suggestions that the mechanism of action of Rif may be mediated by its effect on toll-like receptor (TLR)4-dependent pathways. We evaluated the expression status of TLR4-dependent genes during abstinence from long-term alcohol treatments in the nucleus accumbens (NAc) of the rat brain, and also studied the effects of Rif to correct these changes. METHODS The long-term alcohol treatment was performed by intragastric delivery of ethanol solution. At the end of alcohol treatment intraperitoneal injections of Rif (100 mg/kg) or saline were made. Extraction of the brain structures was performed on the 10th day of abstinence from alcohol. We used the SYBR Green qPCR method to quantitatively analyze the relative expression levels of the studied genes. RESULTS The long-term alcohol treatment promotes an increase in the level of TLR4 mRNA and mRNA of its endogenous ligand high-mobility group protein B1 during abstinence drop alcohol in NAc of rats. The use of Rif in our study led to a decrease in the increased expression of high-mobility group protein B1, Tlr4, and proinflammatory cytokine genes (Il1β, Il6) in the NAc of the rat brain during abstinence of long-term alcohol treatment. In addition, Rif administration increased the decreased mRNA levels of anti-inflammatory cytokines (Il10, Il11). CONCLUSION The data obtained indicate the ability of Rif to correct the mechanisms of the TLR4 system genes in the NAc of the rat brain during alcohol abstinence.
Collapse
Affiliation(s)
- Marat Airapetov
- Department of Neuropharmacology, Institute of Experimental Medicine, P.O. Box 197376, 12 Academician Pavlova str., St. Petersburg, Russian Federation
- Department of Pathological Physiology, Military Medical Academy of S.M. Kirov, P.O. Box 194044, 6G Akademika Lebedeva str., St. Petersburg, Russian Federation
| | - Sergei Eresko
- Department of Neuropharmacology, Institute of Experimental Medicine, P.O. Box 197376, 12 Academician Pavlova str., St. Petersburg, Russian Federation
- Center for Chemical Engineering, Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, P.O. Box 197101, 49 Kronverksky pr., St. Petersburg, Russian Federation
| | - Polina Ignatova
- Department of Neuropharmacology, Institute of Experimental Medicine, P.O. Box 197376, 12 Academician Pavlova str., St. Petersburg, Russian Federation
| | - Andrei Lebedev
- Department of Neuropharmacology, Institute of Experimental Medicine, P.O. Box 197376, 12 Academician Pavlova str., St. Petersburg, Russian Federation
| | - Evgenii Bychkov
- Department of Neuropharmacology, Institute of Experimental Medicine, P.O. Box 197376, 12 Academician Pavlova str., St. Petersburg, Russian Federation
| | - Petr Shabanov
- Department of Neuropharmacology, Institute of Experimental Medicine, P.O. Box 197376, 12 Academician Pavlova str., St. Petersburg, Russian Federation
- Department of Pathological Physiology, Military Medical Academy of S.M. Kirov, P.O. Box 194044, 6G Akademika Lebedeva str., St. Petersburg, Russian Federation
| |
Collapse
|
3
|
Quintanilla ME, Morales P, Santapau D, Ávila A, Ponce C, Berrios-Cárcamo P, Olivares B, Gallardo J, Ezquer M, Herrera-Marschitz M, Israel Y, Ezquer F. Chronic Voluntary Morphine Intake Is Associated with Changes in Brain Structures Involved in Drug Dependence in a Rat Model of Polydrug Use. Int J Mol Sci 2023; 24:17081. [PMID: 38069404 PMCID: PMC10707256 DOI: 10.3390/ijms242317081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic opioid intake leads to several brain changes involved in the development of dependence, whereby an early hedonistic effect (liking) extends to the need to self-administer the drug (wanting), the latter being mostly a prefrontal-striatal function. The development of animal models for voluntary oral opioid intake represents an important tool for identifying the cellular and molecular alterations induced by chronic opioid use. Studies mainly in humans have shown that polydrug use and drug dependence are shared across various substances. We hypothesize that an animal bred for its alcohol preference would develop opioid dependence and further that this would be associated with the overt cortical abnormalities clinically described for opioid addicts. We show that Wistar-derived outbred UChB rats selected for their high alcohol preference additionally develop: (i) a preference for oral ingestion of morphine over water, resulting in morphine intake of 15 mg/kg/day; (ii) marked opioid dependence, as evidenced by the generation of strong withdrawal signs upon naloxone administration; (iii) prefrontal cortex alterations known to be associated with the loss of control over drug intake, namely, demyelination, axonal degeneration, and a reduction in glutamate transporter GLT-1 levels; and (iv) glial striatal neuroinflammation and brain oxidative stress, as previously reported for chronic alcohol and chronic nicotine use. These findings underline the relevance of polydrug animal models and their potential in the study of the wide spectrum of brain alterations induced by chronic morphine intake. This study should be valuable for future evaluations of therapeutic approaches for this devastating condition.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile; (M.E.Q.); (P.M.); (M.H.-M.); (Y.I.)
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile; (M.E.Q.); (P.M.); (M.H.-M.); (Y.I.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 7610658, Chile
| | - Daniela Santapau
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile; (D.S.); (A.Á.); (P.B.-C.); (J.G.); (M.E.)
| | - Alba Ávila
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile; (D.S.); (A.Á.); (P.B.-C.); (J.G.); (M.E.)
| | - Carolina Ponce
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile
| | - Pablo Berrios-Cárcamo
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile; (D.S.); (A.Á.); (P.B.-C.); (J.G.); (M.E.)
| | - Belén Olivares
- Center for Medical Chemistry, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile;
| | - Javiera Gallardo
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile; (D.S.); (A.Á.); (P.B.-C.); (J.G.); (M.E.)
| | - Marcelo Ezquer
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile; (D.S.); (A.Á.); (P.B.-C.); (J.G.); (M.E.)
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile; (M.E.Q.); (P.M.); (M.H.-M.); (Y.I.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile; (M.E.Q.); (P.M.); (M.H.-M.); (Y.I.)
| | - Fernando Ezquer
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 7610658, Chile
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile; (D.S.); (A.Á.); (P.B.-C.); (J.G.); (M.E.)
| |
Collapse
|
4
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
5
|
Airapetov MI, Eresko SO, Skabelkin DA, Iskalieva AR, Lebedev AA, Bychkov ER, Shabanov PD. [The effect of rifampicin on the system of Toll-like receptors in the nucleus accumbens of the brain of long-term alcoholized rats during alcohol withdrawal]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:279-287. [PMID: 36005846 DOI: 10.18097/pbmc20226804279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nucleus accumbens (NAc) is the ventral part of the striatum of the brain; it is an important part of the mesolimbic pathway involved in the reward system that mediates the formation of various forms of addiction, in particular alcohol addiction. Neuroimaging data and in vitro studies indicate the development of a pronounced neurodegenerative process in the NAc, with long-term alcohol use, but the key mechanisms mediating this process remain unknown. In recent years, the attention of researchers has been focused on studying the system of Toll-like receptors (TLRs), the increased activity of which is clearly shown in the cerebral cortex and hippocampus during prolonged alcohol exposure, but there is a need to study the role of this system in other brain structures. In this study, we have shown that prolonged alcohol exposure (2 months) with moderate doses of ethanol (2 g/kg) promotes a pronounced increase in the expression of the Tlr4 gene and its endogenous ligand Hmgb1 in NAc during the period of alcohol withdrawal in rats. Injections of rifampicin (100 mg/kg) reduced the elevated expression level of Hmgb1, Tlr4, as well as pro-inflammatory cytokine genes (IL1β, IL6), while the administration of the drug increased the reduced level of mRNA of anti-inflammatory cytokines (IL10, IL11).
Collapse
Affiliation(s)
- M I Airapetov
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia; Department of Pharmacology, St. Petersburg State Pediatric Medical University
| | - S O Eresko
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia; Research and Training Center of Molecular and Cellular Technologies, St. Petersburg, Russia
| | - D A Skabelkin
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - A R Iskalieva
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - A A Lebedev
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - E R Bychkov
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - P D Shabanov
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia; Department of Pharmacology, Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
6
|
Barhoum A, García-Betancourt ML, Jeevanandam J, Hussien EA, Mekkawy SA, Mostafa M, Omran MM, S. Abdalla M, Bechelany M. Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:177. [PMID: 35055196 PMCID: PMC8780156 DOI: 10.3390/nano12020177] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023]
Abstract
Nanomaterials are becoming important materials in several fields and industries thanks to their very reduced size and shape-related features. Scientists think that nanoparticles and nanostructured materials originated during the Big Bang process from meteorites leading to the formation of the universe and Earth. Since 1990, the term nanotechnology became very popular due to advances in imaging technologies that paved the way to specific industrial applications. Currently, nanoparticles and nanostructured materials are synthesized on a large scale and are indispensable for many industries. This fact fosters and supports research in biochemistry, biophysics, and biochemical engineering applications. Recently, nanotechnology has been combined with other sciences to fabricate new forms of nanomaterials that could be used, for instance, for diagnostic tools, drug delivery systems, energy generation/storage, environmental remediation as well as agriculture and food processing. In contrast with traditional materials, specific features can be integrated into nanoparticles, nanostructures, and nanosystems by simply modifying their scale, shape, and composition. This article first summarizes the history of nanomaterials and nanotechnology. Followed by the progress that led to improved synthesis processes to produce different nanoparticles and nanostructures characterized by specific features. The content finally presents various origins and sources of nanomaterials, synthesis strategies, their toxicity, risks, regulations, and self-aggregation.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland
| | | | - Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Eman A. Hussien
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
| | - Sara A. Mekkawy
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Menna Mostafa
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Mohga S. Abdalla
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, 34000 Montpellier, France
| |
Collapse
|
7
|
Kazmi N, Wallen GR, Yang L, Alkhatib J, Schwandt ML, Feng D, Gao B, Diazgranados N, Ramchandani VA, Barb JJ. An exploratory study of pro-inflammatory cytokines in individuals with alcohol use disorder: MCP-1 and IL-8 associated with alcohol consumption, sleep quality, anxiety, depression, and liver biomarkers. Front Psychiatry 2022; 13:931280. [PMID: 36032219 PMCID: PMC9405018 DOI: 10.3389/fpsyt.2022.931280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND High levels of sleep disturbances reported among individuals with alcohol use disorder (AUD) can stimulate inflammatory gene expression, and in turn, may alter pro-inflammatory cytokines levels. We aimed to investigate associations between pro-inflammatory cytokine markers with subjective measures of sleep quality, psychological variables and alcohol consumption among individuals with AUD. METHODS This exploratory study is comprised of individuals with AUD (n = 50) and healthy volunteers (n = 14). Spearman correlation was used to investigate correlations between plasma cytokine levels and clinical variables of interest (liver and inflammatory markers, sleep quality, patient reported anxiety/depression scores, and presence of mood and/or anxiety disorders (DSM IV/5); and history of alcohol use variables. RESULTS The AUD group was significantly older, with poorer sleep quality, higher anxiety/depression scores, and higher average drinks per day as compared to controls. Within the AUD group, IL-8 and MCP-1 had positive significant correlations with sleep, anxiety, depression and drinking variables. Specifically, higher levels of MCP-1 were associated with poorer sleep (p = 0.004), higher scores of anxiety (p = 0.006) and depression (p < 0.001), and higher number of drinking days (p = 0.002), average drinks per day (p < 0.001), heavy drinking days (p < 0.001) and total number of drinks (p < 0.001). The multiple linear regression model for MCP-1 showed that after controlling for sleep status and heavy drinking days, older participants (p = 0.003) with more drinks per day (p = 0.016), and higher alkaline phosphatase level (p = 0.001) had higher MCP-1 level. CONCLUSION This exploratory analysis revealed associations with cytokines MCP-1 and IL-8 and drinking consumption, sleep quality, and anxiety and depression in the AUD group. Furthermore, inflammatory and liver markers were highly correlated with certain pro-inflammatory cytokines in the AUD group suggesting a possible relationship between chronic alcohol use and inflammation. These associations may contribute to prolonged inflammatory responses and potentially higher risk of co-morbid chronic diseases.
Collapse
Affiliation(s)
- Narjis Kazmi
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, United States
| | - Gwenyth R Wallen
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, United States
| | - Li Yang
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, United States
| | - Jenna Alkhatib
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, United States
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Dechun Feng
- Laboratory of Liver Diseases, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Bin Gao
- Laboratory of Liver Diseases, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Vijay A Ramchandani
- Human Psychopharmacology Laboratory, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer J Barb
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, United States
| |
Collapse
|
8
|
Pairing Binge Drinking and a High-Fat Diet in Adolescence Modulates the Inflammatory Effects of Subsequent Alcohol Consumption in Mice. Int J Mol Sci 2021; 22:ijms22105279. [PMID: 34067897 PMCID: PMC8157004 DOI: 10.3390/ijms22105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol binge drinking (BD) and poor nutritional habits are two frequent behaviors among many adolescents that alter gut microbiota in a pro-inflammatory direction. Dysbiotic changes in the gut microbiome are observed after alcohol and high-fat diet (HFD) consumption, even before obesity onset. In this study, we investigate the neuroinflammatory response of adolescent BD when combined with a continuous or intermittent HFD and its effects on adult ethanol consumption by using a self-administration (SA) paradigm in mice. The inflammatory biomarkers IL-6 and CX3CL1 were measured in the striatum 24 h after BD, 3 weeks later and after the ethanol (EtOH) SA. Adolescent BD increased alcohol consumption in the oral SA and caused a greater motivation to seek the substance. Likewise, mice with intermittent access to HFD exhibited higher EtOH consumption, while the opposite effect was found in mice with continuous HFD access. Biochemical analyses showed that after BD and three weeks later, striatal levels of IL-6 and CX3CL1 were increased. In addition, in saline-treated mice, CX3CL1 was increased after continuous access to HFD. After oral SA procedure, striatal IL-6 was increased only in animals exposed to BD and HFD. In addition, striatal CX3CL1 levels were increased in all BD- and HFD-exposed groups. Overall, our findings show that adolescent BD and intermittent HFD increase adult alcohol intake and point to neuroinflammation as an important mechanism modulating this interaction.
Collapse
|
9
|
Gruol DL, Melkonian C, Huitron-Resendiz S, Roberts AJ. Alcohol alters IL-6 Signal Transduction in the CNS of Transgenic Mice with Increased Astrocyte Expression of IL-6. Cell Mol Neurobiol 2021; 41:733-750. [PMID: 32447612 PMCID: PMC7680720 DOI: 10.1007/s10571-020-00879-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
Neuroimmune factors, including the cytokine interleukin-6 (IL-6), are important chemical regulators of central nervous system (CNS) function under both physiological and pathological conditions. Elevated expression of IL-6 occurs in the CNS in a variety of disorders associated with altered CNS function, including excessive alcohol use. Alcohol-induced production of IL-6 has been reported for several CNS regions including the cerebellum. Cerebellar actions of alcohol occur through a variety of mechanisms, but alcohol-induced changes in signal transduction, transcription, and translation are known to play important roles. IL-6 is an activator of signal transduction that regulates gene expression. Thus, alcohol-induced IL-6 production could contribute to cerebellar effects of alcohol by altering gene expression, especially under conditions of chronic alcohol abuse, where IL-6 levels could be habitually elevated. To gain an understanding of the effects of alcohol on IL-6 signal transduction, we studied activation/expression of IL-6 signal transduction partners STAT3 (Signal Transducer and Activator of Transcription), CCAAT-enhancer binding protein (C/EBP) beta, and p42/p44 mitogen-activated protein kinase (MAPK) at the protein level. Cerebella of transgenic mice that express elevated levels of astrocyte produced IL-6 in the CNS were studied. Results show that the both IL-6 and chronic intermittent alcohol exposure/withdrawal affect IL-6 signal transduction partners and that the actions of IL-6 and alcohol interact to alter activation/expression of IL-6 signal transduction partners. The alcohol/IL-6 interactions may contribute to cerebellar actions of alcohol, whereas the effects of IL-6 alone may have relevance to cerebellar changes occurring in CNS disorders associated with elevated levels of IL-6.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Claudia Melkonian
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
10
|
Popescu A, Marian M, Drăgoi AM, Costea RV. Understanding the genetics and neurobiological pathways behind addiction (Review). Exp Ther Med 2021; 21:544. [PMID: 33815617 PMCID: PMC8014976 DOI: 10.3892/etm.2021.9976] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
The hypothesis issued by modern medicine states that many diseases known to humans are genetically determined, influenced or not by environmental factors, which is applicable to most psychiatric disorders as well. This article focuses on two pending questions regarding addiction: Why do some individuals become addicted while others do not? along with Is it a learned behavior or is it genetically predefined? Recent data suggest that addiction is more than repeated exposure, it is the synchronicity between intrinsic factors (genotype, sex, age, preexisting addictive disorder, or other mental illness), extrinsic factors (childhood, level of education, socioeconomic status, social support, entourage, drug availability) and the nature of the addictive agent (pharmacokinetics, path of administration, psychoactive properties). The dopamine-mesolimbic motivation-reward-reinforcement cycle remains the most coherent physiological theory in addiction. While the common property of addictive substances is that they are dopamine-agonists, each class has individual mechanisms, pharmacokinetics and psychoactive potentials.
Collapse
Affiliation(s)
- Alexandra Popescu
- Department of Psychiatry, 'Prof. Dr. Alex. Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Maria Marian
- Department of Psychiatry, 'Prof. Dr. Alex. Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Ana Miruna Drăgoi
- Department of Psychiatry, 'Prof. Dr. Alex. Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Radu-Virgil Costea
- Department of General Surgery, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
11
|
Airapetov M, Eresko S, Lebedev A, Bychkov E, Shabanov P. The role of Toll-like receptors in neurobiology of alcoholism. Biosci Trends 2021; 15:74-82. [PMID: 33716257 DOI: 10.5582/bst.2021.01041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Alcoholism is a global socially significant problem and still remains one of the leading causes of disability and premature death. One of the main signs of the disease is the loss of cognitive control over the amount of alcohol consumed. Among the mechanisms of the development of this pathology, changes in neuroimmune mechanisms occurring in the brain during prolonged alcohol consumption and its withdrawal have recently become the focus of numerous studies. Ethanol consumption leads to the activation of neuroimmune signaling in the central nervous system through many subtypes of Toll-like receptors (TLRs), as well as release of their endogenous agonists (high-mobility group protein B1 (HMGB1), S100 protein, heat shock proteins (HSPs), and extracellular matrix degradation proteins). TLR activation triggers intracellular molecular cascades of reactions leading to increased expression of genes of the innate immune system, particularly, proinflammatory cytokines, causing further development of a persistent neuroinflammatory process in the central nervous system. This leads to death of neurons and neuroglial cells in various brain structures, primarily in those associated with the development of a pathological craving for alcohol. In addition, there is evidence that some subtypes of TLRs (TLR3, TLR4) are able to form heterodimers with neuropeptide receptors, thereby possibly playing other roles in the central nervous system, in addition to participating in the activation of the innate immune system.
Collapse
Affiliation(s)
- Marat Airapetov
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia.,Department of Pharmacology, St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Sergei Eresko
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia.,Research and Education Center for Molecular and Cellular Technologies, St. Petersburg State Chemical Pharmaceutical University, St Petersburg, Russia
| | - Andrei Lebedev
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Evgenii Bychkov
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Petr Shabanov
- Department of Neuropharmacology, Institute of Experimental Medicine, St. Petersburg, Russia.,Department of Pharmacology, Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
12
|
Qin C, Hu J, Wan Y, Cai M, Wang Z, Peng Z, Liao Y, Li D, Yao P, Liu L, Rong S, Bao W, Xu G, Yang W. Narrative review on potential role of gut microbiota in certain substance addiction. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110093. [PMID: 32898589 DOI: 10.1016/j.pnpbp.2020.110093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
As a neuropsychiatric disorder, substance addiction represents a major public health issue with high prevalence and mortality in many countries. Recently, gut microbiota has been certified to play a part in substance addiction through various mechanisms. Hence, we mainly focused on three substance including alcohol, cocaine and methamphetamine in this review, and summarized their relationships with gut microbiota, respectively. Besides, we also concluded the possible treatments for substance addiction from the perspective of applying gut microbiota. This review aims to build a bridge between substance addiction and gut microbiota according to existing evidences, so as to excavate the possible bi-directional function of microbiota-gut-brain axis in substance addiction for developing therapeutic strategies in the future.
Collapse
Affiliation(s)
- Chenyuan Qin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Jiawei Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yiming Wan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Mengyao Cai
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhenting Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA
| | - Guifeng Xu
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA; Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA 52242, USA
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China.
| |
Collapse
|
13
|
Liu W, Vetreno RP, Crews FT. Hippocampal TNF-death receptors, caspase cell death cascades, and IL-8 in alcohol use disorder. Mol Psychiatry 2021; 26:2254-2262. [PMID: 32139808 PMCID: PMC7483234 DOI: 10.1038/s41380-020-0698-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023]
Abstract
The relationship between increased neuroimmune gene expression and hippocampal degeneration in alcohol use disorder (AUD) and other mental diseases is poorly understood. We report here that tumor necrosis factor receptor superfamily death receptor 3 (TNFRSF25, DR3) and Fas receptors (Fas) that initiate caspase cell death cascades are increased in AUD hippocampus and following a rat adolescent binge drinking model. Death receptors are known inducers of apoptosis and cell death that recruit death domain (DD) proteins FADD and TRADD and caspases to form death-inducing signaling complexes (DISC). In postmortem human AUD hippocampus, mRNA and IHC protein are increased for the entire death receptor cascade. In AUD hippocampus, ligand-death receptor pairs, i.e., TL1A-DR3 and FasL-Fas, were increased, as well as FADD and TRADD, and active caspase-8, -7, -9, and caspase-3. Further, pNFκB p65, a key neuroimmune transcription factor, and IL-8, a chemokine, were significantly increased. Interestingly, across AUD patients, increases in DR3 and Fas correlated with TRADD, and TRADD with active caspase+IR and IL-8+IR, consistent with coordinated activation of neuronal DISC mediated death cascades and neuroimmune gene induction in AUD. These findings support a role for DR3 and Fas neuroimmune signaling in AUD hippocampal neurodegeneration.
Collapse
Affiliation(s)
- Wen Liu
- grid.10698.360000000122483208Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178 USA
| | - Ryan P. Vetreno
- grid.10698.360000000122483208Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178 USA
| | - Fulton T. Crews
- grid.10698.360000000122483208Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178 USA
| |
Collapse
|
14
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Wu R, Li JX. Toll-Like Receptor 4 Signaling and Drug Addiction. Front Pharmacol 2020; 11:603445. [PMID: 33424612 PMCID: PMC7793839 DOI: 10.3389/fphar.2020.603445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
The emphasis of neuronal alterations and adaptations have long been the main focus of the studies of the mechanistic underpinnings of drug addiction. Recent studies have begun to appreciate the role of innate immune system, especially toll-like receptor 4 (TLR4) signaling in drug reward-associated behaviors and physiology. Drugs like opioids, alcohol and psychostimulants activate TLR4 signaling and subsequently induce proinflammatory responses, which in turn contributes to the development of drug addiction. Inhibition of TLR4 or its downstream effectors attenuated the reinforcing effects of opioids, alcohol and psychostimulants, and this effect is also involved in the withdrawal and relapse-like behaviors of different drug classes. However, conflicting results also argue that TLR4-related immune response may play a minimal part in drug addiction. This review discussed the preclinical evidence that whether TLR4 signaling is involved in multiple drug classes action and the possible mechanisms underlying this effect. Moreover, clinical studies which examined the potential efficacy of immune-base pharmacotherapies in treating drug addiction are also discussed.
Collapse
Affiliation(s)
- Ruyan Wu
- School of Medicine, Yangzhou University, Yangzhou, China.,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
16
|
Collier AD, Khalizova N, Chang GQ, Min S, Campbell S, Gulati G, Leibowitz SF. Involvement of Cxcl12a/Cxcr4b Chemokine System in Mediating the Stimulatory Effect of Embryonic Ethanol Exposure on Neuronal Density in Zebrafish Hypothalamus. Alcohol Clin Exp Res 2020; 44:2519-2535. [PMID: 33067812 DOI: 10.1111/acer.14482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Embryonic exposure to ethanol (EtOH) produces marked disturbances in neuronal development and alcohol-related behaviors, with low-moderate EtOH doses stimulating neurogenesis without producing apoptosis and high doses having major cytotoxic effects while causing gross morphological abnormalities. With the pro-inflammatory chemokine system, Cxcl12, and its main receptor Cxcr4, known to promote processes of neurogenesis, we examined here this neuroimmune system in the embryonic hypothalamus to test directly if it mediates the stimulatory effects low-moderate EtOH doses have on neuronal development. METHODS We used the zebrafish (Danio rerio) model, which develops externally and allows one to investigate the developing brain in vivo with precise control of dose and timing of EtOH delivery in the absence of maternal influence. Zebrafish were exposed to low-moderate EtOH doses (0.1, 0.25, 0.5% v/v), specifically during a period of peak hypothalamic development from 22 to 24 hours postfertilization, and in some tests were pretreated from 2 to 22 hpf with the Cxcr4 receptor antagonist, AMD3100. Measurements in the hypothalamus at 26 hpf were taken of cxcl12a and cxcr4b transcription, signaling, and neuronal density using qRT-PCR, RNAscope, and live imaging of transgenic zebrafish. RESULTS Embryonic EtOH exposure, particularly at the 0.5% dose, significantly increased levels of cxcl12a and cxcr4b mRNA in whole embryos, number of cxcl12a and cxcr4b transcripts in developing hypothalamus, and internalization of Cxcr4b receptors in hypothalamic cells. Embryonic EtOH also caused an increase in the number of hypothalamic neurons and coexpression of cxcl12a and cxcr4b transcripts within these neurons. Each of these stimulatory effects of EtOH in the embryo was blocked by pretreatment with the Cxcr4 antagonist AMD3100. CONCLUSIONS These results provide clear evidence that EtOH's stimulatory effects at low-moderate doses on the number of hypothalamic neurons early in development are mediated, in part, by increased transcription and intracellular activation of this chemokine system, likely due to autocrine signaling of Cxcl12a at its Cxcr4b receptor within the neurons.
Collapse
Affiliation(s)
- Adam D Collier
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Nailya Khalizova
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Guo-Qing Chang
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Soe Min
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Samantha Campbell
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Gazal Gulati
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| | - Sarah F Leibowitz
- From the, Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York
| |
Collapse
|
17
|
Airapetov MI, Eresko SO, Lebedev AA, Bychkov ER, Shabanov PD. [Involvement of TOLL-like receptors in the neuroimmunology of alcoholism]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:208-215. [PMID: 32588826 DOI: 10.18097/pbmc20206603208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alcohol use is a global socially significant problem that remains one of the leading risk factors for disability and premature death. One of the main pathological characteristics of alcoholism is the loss of cognitive control over the amount of consumed alcohol. Growing body of evidence suggests that alterations of neuroimmune communication occurring in the brain during prolonged alcoholization are one of the main mechanisms responsible for the development of this pathology. Ethanol consumption leads to activation of neuroimmune signaling in the central nervous system through many types of Toll-like receptors (TLRs), as well as the release of their endogenous agonists (HMGB1 protein, S100 protein, heat shock proteins, extracellular matrix breakdown proteins). Activation of TLRs triggers intracellular molecular cascades leading to increased expression of the innate immune system genes, particularly proinflammatory cytokines, subsequently causing the development of a persistent neuroinflammatory process in the central nervous system, which results in massive death of neurons and glial cells in the brain structures, which are primarily associated with the development of a pathological craving for alcohol. In addition, some subtypes of TLRs are capable of forming heterodimers with neuropeptide receptors (corticoliberin, orexin, ghrelin receptors), and may also have other functional relationships.
Collapse
Affiliation(s)
- M I Airapetov
- Institute of Experimental Medicine, St. Petersburg, Russia; St. Petersburg State Medical Pediatric University, St. Petersburg, Russia
| | - S O Eresko
- University ITMO (National Research University), St. Petersburg, Russia
| | - A A Lebedev
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - E R Bychkov
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - P D Shabanov
- Institute of Experimental Medicine, St. Petersburg, Russia; Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
18
|
Grantham EK, Warden AS, McCarthy GS, DaCosta A, Mason S, Blednov Y, Mayfield RD, Harris RA. Role of toll-like receptor 7 (TLR7) in voluntary alcohol consumption. Brain Behav Immun 2020; 89:423-432. [PMID: 32726684 PMCID: PMC7572874 DOI: 10.1016/j.bbi.2020.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Overactivation of neuroimmune signaling has been linked to excessive ethanol consumption. Toll-like receptors (TLRs) are a major component of innate immune signaling and initiate anti- and pro-inflammatory responses via intracellular signal transduction cascades. TLR7 is upregulated in post-mortem brain tissue from humans with alcohol use disorder (AUD) and animals with prior exposure to ethanol. Despite this evidence, the role of TLR7 in the regulation of voluntary ethanol consumption has not been studied. We test the hypothesis that TLR7 activation regulates voluntary ethanol drinking behavior by administering a TLR7 agonist (R848) during an intermittent access drinking procedure in mice. Acute activation of TLR7 reduced ethanol intake, preference, and total fluid intake due, at least in part, to an acute sickness response. However, chronic pre-treatment with R848 resulted in tolerance to the adverse effects of the drug and a subsequent increase in ethanol consumption. To determine the molecular machinery that mediates these behavioral changes, we evaluated gene expression after acute and chronic TLR7 activation. We found that acute TLR7 activation produces brain region specific changes in expression of immune pathway genes, whereas chronic TLR7 activation causes downregulation of TLRs and blunted cytokine induction, suggesting molecular tolerance. Our results demonstrate a novel role for TLR7 signaling in regulating voluntary ethanol consumption. Taken together, our findings suggest TLR7 may be a viable target for development of therapies to treat AUD.
Collapse
Affiliation(s)
- E K Grantham
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| | - A S Warden
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - G S McCarthy
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - A DaCosta
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA
| | - S Mason
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA
| | - Y Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA
| | - R D Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Stop 14800, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
19
|
Adrienne McGinn M, Edwards KN, Edwards S. Chronic inflammatory pain alters alcohol-regulated frontocortical signaling and associations between alcohol drinking and thermal sensitivity. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100052. [PMID: 33005820 PMCID: PMC7509777 DOI: 10.1016/j.ynpai.2020.100052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing psychiatric disorder that is characterized by the emergence of negative affective states. The transition from recreational, limited intake to uncontrolled, escalated intake is proposed to involve a transition from positive to negative reinforcement mechanisms for seeking alcohol. Past work has identified the emergence of significant hyperalgesia/allodynia in alcohol-dependent animals, which may serve as a key negative reinforcement mechanism. Chronic pain has been associated with enhanced extracellular signal-regulated kinase (ERK) activity in cortical and subcortical nociceptive areas. Additionally, both pain and AUD have been associated with increased activity of the glucocorticoid receptor (GR), a key mediator of stress responsiveness. The objectives of the current study were to first determine relationships between thermal nociceptive sensitivity and alcohol drinking in male Wistar rats. While inflammatory pain induced by complete Freund's adjuvant (CFA) administration did not modify escalation of home cage drinking in animals over four weeks, the relationship between drinking levels and hyperalgesia symptoms reversed between acute (1 week) and chronic (3-4 week) periods post-CFA administration, suggesting that either the motivational or analgesic effects of alcohol may be altered over the time course of chronic pain. We next examined ERK and GR phosphorylation in pain-related brain areas (including the central amygdala and prefrontal cortex subregions) in animals experiencing acute withdrawal from binge alcohol administration (2 g/kg, 6 h withdrawal) and CFA administration (four weeks) to model the neurobiological consequences of binge alcohol exposure in the context of pain. We observed a significant interaction between alcohol and pain state, whereby alcohol withdrawal increased ERK phosphorylation across all four frontocortical areas examined, although this effect was absent in animals experiencing chronic inflammatory pain. Alcohol withdrawal also increased GR phosphorylation across all four frontocortical areas, but these changes were not altered by CFA. Interestingly, we observed significant inter-brain regional correlations in GR phosphorylation between the insula and other regions investigated only in animals exposed to both alcohol and CFA, suggesting coordinated activity in insula circuitry and glucocorticoid signaling in this context. The results of these studies provide a greater understanding of the neurobiology of AUD and will contribute to the development of effective treatment strategies for comorbid AUD and pain.
Collapse
Affiliation(s)
- M. Adrienne McGinn
- Neurobiology of Addiction Section, National Institute on Drug Abuse IRP, United States
| | - Kimberly N. Edwards
- Department of Physiology, LSU Health-New Orleans, United States
- Alcohol & Drug Abuse Center of Excellence, LSU Health-New Orleans, United States
| | - Scott Edwards
- Department of Physiology, LSU Health-New Orleans, United States
- Alcohol & Drug Abuse Center of Excellence, LSU Health-New Orleans, United States
- Neuroscience Center of Excellence, LSU Health-New Orleans, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health-New Orleans, United States
| |
Collapse
|
20
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. CCL2/CCR2 system in neuroepithelial radial glia progenitor cells: involvement in stimulatory, sexually dimorphic effects of maternal ethanol on embryonic development of hypothalamic peptide neurons. J Neuroinflammation 2020; 17:207. [PMID: 32650794 PMCID: PMC7353676 DOI: 10.1186/s12974-020-01875-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/16/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Clinical and animal studies show that alcohol consumption during pregnancy produces lasting behavioral disturbances in offspring, including increased alcohol drinking, which are linked to inflammation in the brain and disturbances in neurochemical systems that promote these behaviors. These include the neuropeptide, melanin-concentrating hormone (MCH), which is mostly expressed in the lateral hypothalamus (LH). Maternal ethanol administration at low-to-moderate doses, while stimulating MCH neurons without affecting apoptosis or gliogenesis, increases in LH the density of neurons expressing the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 and their colocalization with MCH. These neural effects associated with behavioral changes are reproduced by maternal CCL2 administration, reversed by a CCR2 antagonist, and consistently stronger in females than males. The present study investigates in the embryo the developmental origins of this CCL2/CCR2-mediated stimulatory effect of maternal ethanol exposure on MCH neurons. METHODS Pregnant rats from embryonic day 10 (E10) to E15 during peak neurogenesis were orally administered ethanol at a moderate dose (2 g/kg/day) or peripherally injected with CCL2 or CCR2 antagonist to test this neuroimmune system's role in ethanol's actions. Using real-time quantitative PCR, immunofluorescence histochemistry, in situ hybridization, and confocal microscopy, we examined in embryos at E19 the CCL2/CCR2 system and MCH neurons in relation to radial glia progenitor cells in the hypothalamic neuroepithelium where neurons are born and radial glia processes projecting laterally through the medial hypothalamus that provide scaffolds for neuronal migration into LH. RESULTS We demonstrate that maternal ethanol increases radial glia cell density and their processes while stimulating the CCL2/CCR2 system and these effects are mimicked by maternal administration of CCL2 and blocked by a CCR2 antagonist. While stimulating CCL2 colocalization with radial glia and neurons but not microglia, ethanol increases MCH neuronal number near radial glia cells and making contact along their processes projecting into LH. Further tests identify the CCL2/CCR2 system in NEP as a primary source of ethanol's sexually dimorphic actions. CONCLUSIONS These findings provide new evidence for how an inflammatory chemokine pathway functions within neuroprogenitor cells to mediate ethanol's long-lasting, stimulatory effects on peptide neurons linked to adolescent drinking behavior.
Collapse
Affiliation(s)
- Guo-Qing Chang
- The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Olga Karatayev
- The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | | | | |
Collapse
|
21
|
Farokhnia M, Portelli J, Lee MR, McDiarmid GR, Munjal V, Abshire KM, Battista JT, Browning BD, Deschaine SL, Akhlaghi F, Leggio L. Effects of exogenous ghrelin administration and ghrelin receptor blockade, in combination with alcohol, on peripheral inflammatory markers in heavy-drinking individuals: Results from two human laboratory studies. Brain Res 2020; 1740:146851. [PMID: 32339499 PMCID: PMC8715722 DOI: 10.1016/j.brainres.2020.146851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
The ghrelin system has been garnering interest for its role in different neuropsychiatric disorders, including alcohol use disorder (AUD). Accordingly, targeting the ghrelin system is under investigation as a potential novel therapeutic approach. While alcohol provokes the immune system and inflammatory responses, ghrelin has potent immunomodulatory and anti-inflammatory properties. The present study aimed to shed light on the "crosstalk" between ghrelin and inflammation by examining the effects of exogenous ghrelin administration and ghrelin receptor blockade on peripheral inflammatory markers in the context of two human laboratory studies with alcohol administration. Non-treatment-seeking, heavy-drinking individuals with alcohol dependence, the majority of whom were African American males, were enrolled. In the first randomized, crossover, double-blind, placebo-controlled human laboratory study, participants underwent two experimental paradigms - an intravenous alcohol self-administration (IV-ASA) and an intravenous alcohol clamp (IV-AC) - each consisting of two counterbalanced sessions (ghrelin, placebo). A loading dose of intravenous ghrelin (3 mcg/kg) or placebo, followed by a continuous ghrelin (16.9 ng/kg/min) or placebo infusion was administered. In the second dose-escalating, single-blind, placebo-controlled human laboratory phase 1b study, participants were dosed with an oral ghrelin receptor blocker (PF-5190457) and underwent an oral alcohol challenge. Repeated blood samples were collected, and plasma concentrations of the following inflammatory markers were measured: C-reactive protein (CRP), interleukin (IL)-6, IL-10, IL-18, and tumor necrosis factor alpha (TNF-α). During the IV-ASA experiment, significant drug × time interaction effects were observed for IL-6 (F3,36 = 3.345, p = 0.030) and IL-10 (F3,53.2 = 4.638, p = 0.006), indicating that ghrelin, compared to placebo, significantly reduced blood concentrations of the proinflammatory cytokine IL-6, while increasing blood concentrations of the anti-inflammatory cytokine IL-10. No significant drug × time interaction effects were observed during the IV-AC experiment, possibly because of its much shorter duration and/or smaller sample. Treatment with PF-5190457, compared to placebo, had no significant effect on the inflammatory markers investigated. In conclusion, a supraphysiologic pharmacological challenge with exogenous ghrelin in heavy-drinking individuals produced anti-inflammatory effects in the context of intravenous alcohol administration. On the contrary, ghrelin receptor blockade did not lead to any change in the inflammatory markers included in this study. Mechanistic studies are required to better understand the interaction between ghrelin, alcohol, and inflammatory processes.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States; Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, United States; Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jeanelle Portelli
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Mary R Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Gray R McDiarmid
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Vikas Munjal
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Kelly M Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Jillian T Battista
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Brittney D Browning
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, United States; Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, United States; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, United States.
| |
Collapse
|
22
|
Benka-Coker ML, Peel JL, Volckens J, Good N, Bilsback KR, L'Orange C, Quinn C, Young BN, Rajkumar S, Wilson A, Tryner J, Africano S, Osorto AB, Clark ML. Kitchen concentrations of fine particulate matter and particle number concentration in households using biomass cookstoves in rural Honduras. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113697. [PMID: 31875572 PMCID: PMC7068841 DOI: 10.1016/j.envpol.2019.113697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/21/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Cooking and heating with solid fuels results in high levels of household air pollutants, including particulate matter (PM); however, limited data exist for size fractions smaller than PM2.5 (diameter less than 2.5 μm). We collected 24-h time-resolved measurements of PM2.5 (n = 27) and particle number concentrations (PNC, average diameter 10-700 nm) (n = 44; 24 with paired PM2.5 and PNC) in homes with wood-burning traditional and Justa (i.e., with an engineered combustion chamber and chimney) cookstoves in rural Honduras. The median 24-h PM2.5 concentration (n = 27) was 79 μg/m3 (interquartile range [IQR]: 44-174 μg/m3); traditional (n = 15): 130 μg/m3 (IQR: 48-250 μg/m3); Justa (n = 12): 66 μg/m3 (IQR: 44-97 μg/m3). The median 24-h PNC (n = 44) was 8.5 × 104 particles (pt)/cm3 (IQR: 3.8 × 104-1.8 × 105 pt/cm3); traditional (n = 27): 1.3 × 105 pt/cm3 (IQR: 3.3 × 104-2.0 × 105 pt/cm3); Justa (n = 17): 6.3 × 104 pt/cm3 (IQR: 4.0 × 104-1.2 × 105 pt/cm3). The 24-h average PM2.5 and particle number concentrations were correlated for the full sample of cookstoves (n = 24, Spearman ρ: 0.83); correlations between PM2.5 and PNC were higher in traditional stove kitchens (n = 12, ρ: 0.93) than in Justa stove kitchens (n = 12, ρ: 0.67). The 24-h average concentrations of PM2.5 and PNC were also correlated with the maximum average concentrations during shorter-term averaging windows of one-, five-, 15-, and 60-min, respectively (Spearman ρ: PM2.5 [0.65, 0.85, 0.82, 0.71], PNC [0.74, 0.86, 0.88, 0.86]). Given the moderate correlations observed between 24-h PM2.5 and PNC and between 24-h and the shorter-term averaging windows within size fractions, investigators may need to consider cost-effectiveness and information gained by measuring both size fractions for the study objective. Further evaluations of other stove and fuel combinations are needed.
Collapse
Affiliation(s)
- Megan L Benka-Coker
- Department of Health Sciences, Gettysburg College, 300 North Washington Street, Campus Box 432, Gettysburg, PA, 17325, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - John Volckens
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Nicholas Good
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kelsey R Bilsback
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Christian L'Orange
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Casey Quinn
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Bonnie N Young
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sarah Rajkumar
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jessica Tryner
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sebastian Africano
- Trees, Water & People, 633 Remington Street, Fort Collins, CO, 80524, USA
| | - Anibal B Osorto
- Asociación Hondureña para el Desarrollo, Tegucigalpa, Honduras
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
23
|
Chang GQ, Collier AD, Karatayev O, Gulati G, Boorgu DSSK, Leibowitz SF. Moderate Prenatal Ethanol Exposure Stimulates CXCL12/CXCR4 Chemokine System in Radial Glia Progenitor Cells in Hypothalamic Neuroepithelium and Peptide Neurons in Lateral Hypothalamus of the Embryo and Postnatal Offspring. Alcohol Clin Exp Res 2020; 44:866-879. [PMID: 32020622 DOI: 10.1111/acer.14296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prenatal exposure to ethanol (EtOH) has lasting effects on neuropeptide and neuroimmune systems in the brain alongside detrimental alcohol-related behaviors. At low-to-moderate doses, prenatal EtOH stimulates neurogenesis in lateral hypothalamus (LH) and increases neurons that express the orexigenic peptides hypocretin/orexin (Hcrt/OX) and melanin-concentrating hormone (MCH), and the proinflammatory chemokine CCL2, which through its receptor CCR2 stimulates cell differentiation and movement. Our recent studies demonstrated that CCL2 and CCR2 colocalize with MCH neurons and are involved in EtOH's stimulatory effect on their development but show no relation to Hcrt/OX. Here, we investigated another chemokine, CXCL12, and its receptor, CXCR4, which promote neurogenesis and neuroprogenitor cell proliferation, to determine if they also exhibit peptide specificity in their response to EtOH exposure. METHODS Pregnant rats were intraorally administered a moderate dose of EtOH (2 g/kg/d) from embryonic day 10 (E10) to E15. Their embryos and postnatal offspring were examined using real-time quantitative PCR and immunofluorescence histochemistry, to determine if EtOH affects CXCL12 and CXCR4 and the colocalization of CXCR4 with Hcrt/OX and MCH neurons in the LH and with radial glia neuroprogenitor cells in the hypothalamic neuroepithelium (NEP). RESULTS Prenatal EtOH strongly stimulated CXCL12 and CXCR4 in LH neurons of embryos and postnatal offspring. This stimulation was significantly stronger in Hcrt/OX than MCH neurons in LH and also occurred in radial glia neuroprogenitor cells dense in the NEP. These effects were sexually dimorphic, consistently stronger in females than males. CONCLUSIONS While showing prenatal EtOH exposure to have a sexually dimorphic, stimulatory effect on CXCL12 and CXCR4 in LH similar to CCL2 and its receptor, these results reveal their distinct relationship to the peptide neurons, with the former closely related to Hcrt/OX and the latter to MCH, and they link EtOH's actions in LH to a stimulatory effect on neuroprogenitor cells in the NEP.
Collapse
Affiliation(s)
- Guo-Qing Chang
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| | - Adam D Collier
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| | - Olga Karatayev
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| | - Gazal Gulati
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| | | | - Sarah F Leibowitz
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| |
Collapse
|
24
|
De Bellis MD, Morey RA, Nooner KB, Woolley DP, Haswell CC, Hooper SR. A Pilot Study of Neurocognitive Function and Brain Structures in Adolescents With Alcohol Use Disorders: Does Maltreatment History Matter? CHILD MALTREATMENT 2019; 24:374-388. [PMID: 30935216 DOI: 10.1177/1077559518810525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neurocognitive and brain structural differences are associated with adolescent onset alcohol use disorders (AUDs). Maltreatment histories may contribute to current results. To examine these issues, healthy adolescents (n = 31), adolescents without maltreatment and AUD (AUD - MAL, n = 28), and adolescents with AUDs with maltreatment (AUD + MAL, n = 17) underwent comprehensive neurocognitive assessments and MRI structural scans. Controls performed significantly better than the two AUD groups in math and language. The AUD + MAL group performed significantly lower in sustained attention compared to the AUD - MAL and control groups and lower in reading compared to controls. The AUD + MAL group had larger left pars triangularis, a region of the inferior frontal gyrus, compared to the AUD-MAL and control groups, and smaller anterior corpus callosum volumes versus the AUD - MAL group. There were no group differences in other prefrontal cortex, amygdala, hippocampus, and parahippocampal volumes. The AUD + MAL group showed an inverse correlation between hippocampal volumes and age. AUD variables were associated with lower performance in fine-motor and executive function. Cannabis use variables were associated with lower performance in fine-motor, language, visual-spatial, memory, and executive function. Parahippocampal volumes positively correlated with abstinence. The preliminary results suggest adolescent AUD studies should consider examinations of maltreatment history, comorbid substance use disorders, and recovery during abstinence in their analyses.
Collapse
Affiliation(s)
- Michael D De Bellis
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Rajendra A Morey
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mental Illness Research Education and Clinical Center for Post Deployment Mental Health, Durham VA Medical Center, Durham, NC, USA
| | - Kate B Nooner
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA
| | - Donald P Woolley
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Courtney C Haswell
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Stephen R Hooper
- Department of Allied Health Sciences, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Portelli J, Wiers CE, Li X, Deschaine SL, McDiarmid GR, Bermpohl F, Leggio L. Peripheral proinflammatory markers are upregulated in abstinent alcohol-dependent patients but are not affected by cognitive bias modification: Preliminary findings. Drug Alcohol Depend 2019; 204:107553. [PMID: 31541874 PMCID: PMC6913873 DOI: 10.1016/j.drugalcdep.2019.107553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Inflammatory pathways are known to be negatively affected in patients with alcohol use disorder (AUD). Cognitive bias modification (CBM), an emerging behavioral treatment that involves the 're-training' of cognitive biases using computerized tasks, has been reported to reduce alcohol craving and relapse rates. The aim of this study was to compare peripheral concentrations of the proinflammatory biomarkers IL-18, IL-6, IL-1β, TNF-α and CRP in AUD patients versus controls and to identify whether CBM treatment affected these biomarkers in AUD patients. METHODS This 3-week double-blind randomized controlled study tested 36 male abstinent AUD patients receiving CBM or placebo-training, who were also compared to 18 male healthy controls. The approach avoidance task (AAT) was used to test the AUD patients before and after training. CBM training took place over 6 sessions, using a joystick-based approach-avoidance task. Blood samples were collected after the pre- and post-AAT test sessions for the AUD groups, and during an outpatient appointment with the controls. RESULTS AUD patients, versus controls, presented with significantly higher plasma levels of TNF- α (P < 0.0001) and CRP (P = 0.0031). No changes in the CBM versus placebo groups were noted in IL-18, TNF-α and CRP concentrations following pre-post change or within group pretest- posttest analysis. IL-6 and IL-1β levels fell under the lower detection limit, thus were not included in the final analyses. CONCLUSIONS This study confirms that the inflammatory system is altered in AUD. This was the first study that investigated whether CBM training affected proinflammatory markers in AUD patients.
Collapse
Affiliation(s)
- Jeanelle Portelli
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Corinde E. Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Xiaobai Li
- Biostatistics and Clinical Epidemiology Service, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sara L. Deschaine
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Gray R. McDiarmid
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Felix Bermpohl
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Germany.,Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Germany
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Basic Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, USA; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
| |
Collapse
|
26
|
Valiati FE, Hizo GH, Pinto JV, Kauer-Sant`Anna M. The Possible Role of Telomere Length and Chemokines in the Aging Process: A Transdiagnostic Review in Psychiatry. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2019. [DOI: 10.2174/1573400515666190719155906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Psychiatric disorders are common, reaching a worldwide prevalence of 29.2%. They are associated with a high risk of premature death and with accelerated aging in clinical, molecular and neuroimaging studies. Recently, there is strong evidence suggesting a possible role of telomere length and chemokines in aging processes in psychiatric disorders.Objective:We aimed to review the literature on telomere length and chemokines and its association with early aging in mental illnesses on a transdiagnostic approach.Results:The review highlights the association between psychiatric disorders and early aging. Several independent studies have reported shorter telomere length and dysregulations on levels of circulating chemokines in schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders, suggesting a complex interaction between these markers in a transdiagnostic level. However, studies have investigated the inflammatory markers and telomere shortening separately and associated with a particular diagnosis, rather than as a transdiagnostic biological feature.Conclusion:There is consistent evidence supporting the relationship between accelerated aging, telomere length, and chemokines in mental disorders, but they have been studied individually. Thus, more research is needed to improve the knowledge of accelerated senescence and its biomarkers in psychiatry, not only individually in each diagnosis, but also based on a transdiagnostic perspective. Moreover, further research should try to elucidate how the intricate association between the chemokines and telomeres together may contribute to the aging process in psychiatric disorders.
Collapse
Affiliation(s)
- Fernanda Endler Valiati
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriel Henrique Hizo
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jairo Vinícius Pinto
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Márcia Kauer-Sant`Anna
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
27
|
Abstract
Innate immune signaling is an important feature in the pathology of alcohol use disorders. Alcohol abuse causes persistent innate immune activation in the brain. This is seen in postmortem human alcoholic brain specimens, as well as in primate and rodent models of alcohol consumption. Further, in vitro models of alcohol exposure in neurons and glia also demonstrate innate immune activation. The activation of the innate immune system seems to be important in the development of alcohol use pathology, as anti-immune therapies reduce pathology and ethanol self-administration in rodent models. Further, innate immune activation has been identified in each of the stages of addiction: binge/intoxication, withdrawal/negative affect, and preoccupation/craving. This suggests that innate immune activation may play a role both in the development and maintenance of alcoholic pathology. In this chapter, we discuss the known contributions of innate immune signaling in the pathology of alcohol use disorders, and present potential therapeutic interventions that may be beneficial for alcohol use disorders.
Collapse
Affiliation(s)
- Leon G Coleman
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Huf F, Bandiera S, Müller CB, Gea L, Carvalho FB, Rahmeier FL, Reiter KC, Tortorelli LS, Gomez R, da Cruz Fernandes M. Comparative study on the effects of cigarette smoke exposure, ethanol consumption and association: Behavioral parameters, apoptosis, glial fibrillary acid protein and S100β immunoreactivity in different regions of the rat hippocampus. Alcohol 2019; 77:101-112. [PMID: 30870710 DOI: 10.1016/j.alcohol.2018.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 01/17/2023]
Abstract
Exposure to cigarette smoke and ethanol are proposed to trigger neurotoxicity, apoptosis, and to impair neuronal signaling. However, it is little known how the combination of both might trigger astrogliosis and the morphological changes capable of affecting a differential susceptibility of hippocampal regions to these licit drugs. The present study investigated the chronic effects of exposure to cigarette smoke and/or ethanol on behavioral parameters, apoptosis, and alteration in immunoreactivity of glial fibrillary acid protein (GFAP) and S100β in the CA1, CA3, and dentate gyrus (DG) of the rat hippocampus. Adult male Wistar rats (n = 32) were divided into four groups: vehicle (VE, glucose 3% in water, 10 mL/kg), cigarette smoke (TOB, total 12 cigarettes per day), ethanol (ethanol, 2 g/kg), and cigarette smoke plus ethanol (TOB plus ethanol, total 12 cigarettes per day plus ethanol 2 g/kg) for 54 days. The groups were submitted to tail-flick, open-field, and inhibitory avoidance tasks. The results showed that ethanol per se worsened the short-term memory. The association between TOB and ethanol increased the immunoreactivity of cleaved caspase-3 in the CA3 and DG regions. The TOB plus ethanol group showed a lower immunoreactivity to GFAP in all regions of the hippocampus. In addition, ethanol and TOB per se also reduced the immunoreactivity for GFAP in the DG. Ethanol increased S100β immunoreactivity only in the DG. In conclusion, this study showed that only ethanol worsened short-term memory, and the DG became more susceptible to changes in the markers investigated. This evidence suggests that DG is more sensitive to neurotoxicity induced by cigarette smoke and ethanol.
Collapse
Affiliation(s)
- Fernanda Huf
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Solange Bandiera
- Postgraduate Program in Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina B Müller
- Department of Biochemistry, ICBS/Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Gea
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Fabiano B Carvalho
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Francine L Rahmeier
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Keli C Reiter
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Lucas S Tortorelli
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Rosane Gomez
- Postgraduate Program in Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilda da Cruz Fernandes
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
29
|
Sanchez-Alavez M, Nguyen W, Mori S, Wills DN, Otero D, Ehlers CL, Conti B. Time course of microglia activation and brain and blood cytokine/chemokine levels following chronic ethanol exposure and protracted withdrawal in rats. Alcohol 2019; 76:37-45. [PMID: 30554034 DOI: 10.1016/j.alcohol.2018.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/30/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
Alcohol produces complex effects on the immune system. Moderate alcohol use (1-2 drinks per day) has been shown to produce anti-inflammatory responses in human blood monocytes, whereas, the post mortem brains of severe alcoholics show increased immune gene expression and activated microglial markers. The present study was conducted to evaluate the time course of alcohol effects during exposure and after withdrawal, and to determine the relationship between microglial and cytokine responses in brain and blood. Forty-eight adult, male Wistar rats were exposed to chronic ethanol vapors, or air control, for 5 weeks. Following ethanol/air exposure blood and brains were collected at three time points: 1) while intoxicated, following 35 days of air/vapor exposure; 2) following 24 h of withdrawal from exposure, and 3) 28 days after withdrawal. One hemisphere of the brain was flash-frozen for cytokine analysis, and the other was fixed for immunohistochemical analysis. The ionized calcium-binding adapter molecule 1 (Iba-1) was used to evaluate microglia activation at the three time points, and rat cytokine/chemokine Magnetic Bead Panels (Millipore) were used to analyze frontal cortex tissue lysate and serum. Ethanol induced a significant increase in Iba-1 that peaked at day 35, remained significant after 1 day of withdrawal, and was elevated at day 28 in frontal cortex, amygdala, and substantia nigra. Ethanol exposure was associated with a transient reduction of the serum level of the major pro- and anti-inflammatory cytokines and chemokines and a transient increase of effectors of sterile inflammation. Little or no changes in these molecules were seen in the frontal cortex except for HMG1 and fractalkine that were reduced and elevated, respectively, at day 28 following withdrawal. These data show that ethanol exposure produces robust microglial activation; however, measures of inflammation in the blood differ from those in the brain over a protracted time course.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - William Nguyen
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Simone Mori
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Derek N Wills
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Dennis Otero
- Infectious and Inflammatory Disease Center and National Cancer Institute (NCI)-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Research Institute, La Jolla, CA 92037, United States
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | - Bruno Conti
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States; Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States; Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
30
|
Gano A, Vore AS, Sammakia M, Deak T. Assessment of Extracellular Cytokines in the Hippocampus of the Awake Behaving Rat Using Large-Molecule Microdialysis Combined with Multiplex Arrays After Acute and Chronic Ethanol Exposure. Alcohol Clin Exp Res 2019; 43:640-654. [PMID: 30667526 PMCID: PMC6443416 DOI: 10.1111/acer.13963] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Studies have demonstrated persistent changes in central nervous system (CNS) cytokine gene expression following ethanol (EtOH) exposure. However, the low endogenous expression and short half-lives of cytokines in the CNS have made cytokine protein detection challenging. The goal of these studies was to establish parameters for use of large-molecule microdialysis and sensitive multiplexing technology for the simultaneous detection of brain cytokines, corticosterone (CORT), and EtOH concentrations in the awake behaving rat. METHODS Adult (P75+) male Sprague Dawley rats that were either naïve to EtOH (Experiment 1) or had a history of adolescent chronic intermittent EtOH (CIE; Experiment 2) were given an acute EtOH challenge during microdialysis. Experiment 1 examined brain EtOH concentrations, CORT and a panel of neuroimmune analytes, including cytokines associated with innate and adaptive immunity. The natural time course of changes in these cytokines was compared to the effects of an acute 1.5 or 3.0 g/kg intraperitoneal (i.p.) EtOH challenge. In Experiment 2, rats with a history of adolescent CIE or controls exposed to vehicle were challenged with 3.0 g/kg i.p. EtOH during microdialysis in adulthood, and a panel of cytokines was examined in parallel with brain EtOH concentrations and CORT. RESULTS The microdialysis procedure itself induced a cytokine-specific response that replicated across studies, specifically a sequential elevation of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-10. Surprisingly, acute EtOH did not significantly alter this course of cytokine fluctuations in the hippocampus. However, a history of adolescent CIE showed drastic effects on multiple neuroimmune analytes when rechallenged with EtOH as adults. Rats with a history of adolescent EtOH displayed a severely blunted neuroimmune response in adulthood, evinced by suppressed IL-1β, IL-10, and TNF-α. CONCLUSIONS Together, these findings provide a methodological framework for assessment of cytokine release patterns, their modulation by EtOH, and the long-lasting changes to neuroimmune reactivity evoked by a history of adolescent CIE.
Collapse
Affiliation(s)
- Anny Gano
- Medical University of South Carolina, Charleston Alcohol Research Center, Charleston, SC, USA
| | - Andrew S. Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Maryam Sammakia
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| |
Collapse
|
31
|
Xu Z, Wang C, Dong X, Hu T, Wang L, Zhao W, Zhu S, Li G, Hu Y, Gao Q, Wan J, Liu Z, Sun J. Chronic alcohol exposure induced gut microbiota dysbiosis and its correlations with neuropsychic behaviors and brain BDNF/Gabra1 changes in mice. Biofactors 2019; 45:187-199. [PMID: 30417952 DOI: 10.1002/biof.1469] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022]
Abstract
Alcohol addiction can cause brain dysfunction and many other diseases. Recently, increasing evidences have suggested that gut microbiota plays a vital role in regulating alcohol addiction. However, the exact mechanism has not yet been elucidated. Here, our study focused on the intestinal bacteria alternations and their correlations with alcohol-induced neuropsychic behaviors. When consuming alcohol over 3-week period, animals gradually displayed anxiety/depression-like behaviors. Moreover, 16S rRNA sequencing showed significant intestinal microflora dysbiosis and distinct community composition. Actinobacteria and Cyanobacteria were both increased at the phylum level. At the genus level, Adlercreutzia spp., Allobaculum spp., and Turicibacter spp. were increased whereas Helicobacter spp. was decreased. We also found that the distances in inner zone measured by open field test and 4% (v/v) alcohol preference percentages were significantly correlated with Adlercreutzia spp. The possible mechanisms were explored and we found the expression of brain-derived neurotrophic factor (BDNF) and α1 subunit of γ-aminobutyric acid A receptor (Gabra1) were both decreased in prefrontal cortex (PFC). Especially, further correlation analyses demonstrated that decreased Adlercreutzia spp. was positively correlated with alcohol preference and negatively correlated with anxiety-like behavior and BDNF/Gabra1 changes in PFC. Similar relationships were observed between Allobaculum spp. and alcohol preference and BDNF changes. Helicobacter spp. and Turicibacter spp. were also correlated with PFC BDNF and hippocampus Gabra1 level. Taken together, our study showed that gut microbiota dysbiosis during chronic alcohol exposure was closely correlated with alcohol-induced neuropsychic behaviors and BDNF/Gabra1 expression, which provides a new perspective for understanding underlying mechanisms in alcohol addiction. © 2018 BioFactors, 45(2):187-199, 2019.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Can Wang
- School of Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoguang Dong
- Department of Orthopedic, Osteological Hospital of Yishengjian, Qingdao, Shandong, China
| | - Tao Hu
- Department of Orthopedic, Osteological Hospital of Yishengjian, Qingdao, Shandong, China
| | - Lingling Wang
- Department of Hematology, School of Nursing Shandong University, Jinan, Shandong, China
| | - Wenbo Zhao
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Shaowei Zhu
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Guibao Li
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Yanlai Hu
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Qing Gao
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Jiale Wan
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Zengxun Liu
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Jinhao Sun
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| |
Collapse
|
32
|
Reglodi D, Toth D, Vicena V, Manavalan S, Brown D, Getachew B, Tizabi Y. Therapeutic potential of PACAP in alcohol toxicity. Neurochem Int 2019; 124:238-244. [PMID: 30682380 DOI: 10.1016/j.neuint.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/15/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Alcohol addiction is a worldwide concern as its detrimental effects go far beyond the addicted individual and can affect the entire family as well as the community. Considerable effort is being expended in understanding the neurobiological basis of such addiction in hope of developing effective prevention and/or intervention strategies. In addition, organ damage and neurotoxicological effects of alcohol are intensely investigated. Pharmacological approaches, so far, have only provided partial success in prevention or treatment of alcohol use disorder (AUD) including the neurotoxicological consequences of heavy drinking. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino-acid neuropeptide with demonstrated protection against neuronal injury, trauma as well as various endogenous and exogenous toxic agents including alcohol. In this mini-review, following a brief presentation of alcohol addiction and its neurotoxicity, the potential of PACAP as a therapeutic intervention in toxicological consequences of this devastating disorder is discussed.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary.
| | - Denes Toth
- Department of Forensic Medicine, University of Pecs Medical School, Hungary
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary
| | - Sridharan Manavalan
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary; Department of Basic Sciences, National University of Health Sciences, Florida, USA
| | - Dwayne Brown
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
33
|
Nie X, Wang W, Wang Q, Zhu D, Song H. Intranasal erythropoietin ameliorates neurological function impairments and neural pathology in mice with chronic alcoholism by regulating autophagy‑related Nrf2 degradation. Mol Med Rep 2018; 19:1139-1149. [PMID: 30535439 PMCID: PMC6323205 DOI: 10.3892/mmr.2018.9706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
The neurological disorders and neural pathology brought about by chronic alcoholism are difficult to be reversed. Increasing evidence highlights the protective roles of erythropoietin (EPO) in neurodegenerative diseases and injuries of the central nervous system. In the present study, we investigated the therapeutic effects of EPO on the neurological function deficits and neural pathology caused by chronic alcoholism and the regulatory mechanisms. Using the canonical mouse model of chronic alcohol exposure designed to mimic the repeated cycles of heavy abuse typical of chronic alcoholism, it was found that EPO delivered via intranasal route effectively restored the alcohol-impaired motor cooperation in rotarod and beam walk tests, reversed alcoholic cognitive and emotional alterations in the novel location recognition task and open-filed test, and rescued alcohol-disrupted nervous conduction in the somatosensory-evoked potential (SSEP) test. Consistently, the intranasally administered EPO promoted the remyelination and synapse formation in chronic alcohol-affected neocortex and hippocampus as evidenced by immunofluorescence staining and transmission electron microscopy. Additionally, we discovered that the exogenous rhEPO, which entered the cerebrum through intranasal route, activated the erythropoietin receptor (EPOR) and the downstream ERKs and PI3K/AKT signaling, and suppressed autophagy-related degradation of nuclear factor, erythroid 2-like 2 (Nrf2). Furthermore, the intranasal EPO-exerted neuroprotection was almost abolished when the specific Nrf2 antagonist ATRA was administered intraperitoneally prior to intranasal EPO treatment. Collectively, our data demonstrated the repairing potential of EPO for the neurological disorders and neural pathology caused by chronic alcoholism, and identified the Nrf2 activity as the key mechanism mediating the protective effects of EPO.
Collapse
Affiliation(s)
- Xuedan Nie
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenbo Wang
- Intensive Care Unit, The Fifth Affiliated Hospital of Qiqihar Medical University (Daqing Longnan Hospital), Daqing, Heilongjiang 163453, P.R. China
| | - Qin Wang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dan Zhu
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongshan Song
- Department of Neurology, The Fifth Affiliated Hospital of Qiqihar Medical University (Daqing Longnan Hospital), Daqing, Heilongjiang 163453, P.R. China
| |
Collapse
|
34
|
Freire D, Reyes RE, Baghram A, Davies DL, Asatryan L. P2X7 Receptor Antagonist A804598 Inhibits Inflammation in Brain and Liver in C57BL/6J Mice Exposed to Chronic Ethanol and High Fat Diet. J Neuroimmune Pharmacol 2018; 14:263-277. [PMID: 30353422 DOI: 10.1007/s11481-018-9816-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Chronic low-grade neuroinflammation is increasingly implicated in organ damage caused by alcohol abuse. Purinergic P2X7 receptors (P2X7Rs) play an important role in the generation of inflammatory responses during a number of CNS pathologies as evidenced from studies using pharmacological inhibition approach. P2X7Rs antagonism has not been tested during chronic alcohol abuse. In the present study, we tested the potential of P2X7R antagonist A804598 to reduce/abolish alcohol-induced neuroinflammation using chronic intragastric ethanol infusion and high-fat diet (Hybrid) in C57BL/6J mice. We have previously demonstrated an increase in neuroinflammatory response in 8 weeks of Hybrid paradigm. In the present study, we found neuroinflammatory response to 4 weeks of Hybrid exposure. A804598 treatment reversed the changes in microglia and astrocytes, reduced/abolished increases in mRNA levels of number of inflammatory markers, including IL-1β, iNOS, CXCR2, and components of inflammatory signaling pathways, such as TLR2, CASP1, NF-kB1 and CREB1, as well in the protein levels of pro-IL-1β and Nf-kB1. The P2X7R antagonist did not affect the increase in mRNA levels of fraktalkine (CX3CL1) and its receptor CX3CR1, an interaction that plays a neuroprotective role in neuron-glia communication. P2X7R antagonism also resulted in reduction of the inflammatory markers but did not alter steatosis in the liver. Taken together, these findings demonstrate how P2X7R antagonism suppresses inflammatory response in brain and liver but does not alter the neuroprotective response caused by Hybrid exposure. Overall, these findings support an important role of P2X7Rs in inflammation in brain and liver caused by combined chronic alcohol and high-fat diet. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Daniel Freire
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA.,Department of Neurology, Keck School of Medicine, HCT 1520 San Pablo St, Los Angeles, CA, 90033, USA
| | - Rachel E Reyes
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Ared Baghram
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA.
| |
Collapse
|
35
|
Saba W, Goutal S, Auvity S, Kuhnast B, Coulon C, Kouyoumdjian V, Buvat I, Leroy C, Tournier N. Imaging the neuroimmune response to alcohol exposure in adolescent baboons: a TSPO PET study using 18 F-DPA-714. Addict Biol 2018; 23:1000-1009. [PMID: 28944558 DOI: 10.1111/adb.12548] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/08/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022]
Abstract
The effects of acute alcohol exposure to the central nervous system are hypothesized to involve the innate immune system. The neuroimmune response to an initial and acute alcohol exposure was investigated using translocator protein 18 kDa (TSPO) PET imaging, a non-invasive marker of glial activation, in adolescent baboons. Three different alcohol-naive adolescent baboons (3-4 years old, 9 to 14 kg) underwent 18 F-DPA-714 PET experiments before, during and 7-12 months after this initial alcohol exposure (0.7-1.0 g/l). The brain distribution of 18 F-DPA-714 (VT ; in ml/cm3 ) was estimated in several brain regions using the Logan plot analysis and the metabolite-corrected arterial input function. Compared with alcohol-naive animals (VTbrain = 3.7 ± 0.7 ml/cm3 ), the regional VT s of 18 F-DPA-714 were significantly increased during alcohol exposure (VTbrain = 7.2 ± 0.4 ml/cm3 ; p < 0.001). Regional VT s estimated several months after alcohol exposure (VTbrain = 5.7 ± 1.4 ml/cm3 ) were lower (p < 0.001) than those measured during alcohol exposure, but remained significantly higher (p < 0.001) than in alcohol-naive animals. The acute and long-term effects of ethanol exposure were observed globally across all brain regions. Acute alcohol exposure increased the binding of 18 F-DPA-714 to the brain in a non-human primate model of alcohol exposure that reflects the 'binge drinking' situation in adolescent individuals. The effect persisted for several months, suggesting a 'priming' of glial cell function after initial alcohol exposure.
Collapse
Affiliation(s)
- Wadad Saba
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS; Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ; Orsay France
| | - Sébastien Goutal
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS; Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ; Orsay France
| | - Sylvain Auvity
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS; Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ; Orsay France
| | - Bertrand Kuhnast
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS; Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ; Orsay France
| | - Christine Coulon
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS; Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ; Orsay France
| | - Virginie Kouyoumdjian
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS; Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ; Orsay France
| | - Irène Buvat
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS; Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ; Orsay France
| | - Claire Leroy
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS; Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ; Orsay France
| | - Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS; Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ; Orsay France
| |
Collapse
|
36
|
Walter TJ, Vetreno RP, Crews FT. Alcohol and Stress Activation of Microglia and Neurons: Brain Regional Effects. Alcohol Clin Exp Res 2017; 41:2066-2081. [PMID: 28941277 PMCID: PMC5725687 DOI: 10.1111/acer.13511] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Background Cycles of alcohol and stress are hypothesized to contribute to alcohol use disorders. How this occurs is poorly understood, although both alcohol and stress activate the neuroimmune system—the immune molecules and cells that interact with the nervous system. The effects of alcohol and stress on the neuroimmune system are mediated in part by peripheral signaling molecules. Alcohol and stress both enhance immunomodulatory molecules such as corticosterone and endotoxin to impact neuroimmune cells, such as microglia, and may subsequently impact neurons. In this study, we therefore examined the effects of acute and chronic ethanol (EtOH) on the corticosterone, endotoxin, and microglial and neuronal response to acute stress. Methods Male Wistar rats were treated intragastrically with acute EtOH and acutely stressed with restraint/water immersion. Another group of rats was treated intragastrically with chronic intermittent EtOH and acutely stressed following prolonged abstinence. Plasma corticosterone and endotoxin were measured, and immunohistochemical stains for the microglial marker CD11b and neuronal activation marker c‐Fos were performed. Results Acute EtOH and acute stress interacted to increase plasma endotoxin and microglial CD11b, but not plasma corticosterone or neuronal c‐Fos. Chronic EtOH caused a lasting sensitization of stress‐induced plasma endotoxin, but not plasma corticosterone. Chronic EtOH also caused a lasting sensitization of stress‐induced microglial CD11b, but not neuronal c‐Fos. Conclusions These results find acute EtOH combined with acute stress enhanced plasma endotoxin, as well as microglial CD11b in many brain regions. Chronic EtOH followed by acute stress also increased plasma endotoxin and microglial CD11b, suggesting a lasting sensitization to acute stress. Overall, these data suggest alcohol and stress interact to increase plasma endotoxin, resulting in enhanced microglial activation that could contribute to disease progression.
Collapse
Affiliation(s)
- Thomas Jordan Walter
- Bowles Center for Alcohol Studies, The School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, The School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, The School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
37
|
McCarthy GM, Farris SP, Blednov YA, Harris RA, Mayfield RD. Microglial-specific transcriptome changes following chronic alcohol consumption. Neuropharmacology 2017; 128:416-424. [PMID: 29101021 DOI: 10.1016/j.neuropharm.2017.10.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/05/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
Abstract
Microglia are fundamentally important immune cells within the central nervous system (CNS) that respond to environmental challenges to maintain normal physiological processes. Alterations in steady-state cellular function and over-activation of microglia can facilitate the initiation and progression of neuropathological conditions such as Alzheimer's disease, Multiple Sclerosis, and Major Depressive Disorder. Alcohol consumption disrupts signaling pathways including both innate and adaptive immune responses that are necessary for CNS homeostasis. Coordinate expression of these genes is not ascertained from an admixture of CNS cell-types, underscoring the importance of examining isolated cellular populations to reveal systematic gene expression changes arising from mature microglia. Unbiased RNA-Seq profiling was used to identify gene expression changes in isolated prefrontal cortical microglia in response to recurring bouts of voluntary alcohol drinking behavior. The voluntary ethanol paradigm utilizes long-term consumption ethanol that results in escalated alcohol intake and altered cortical plasticity that is seen in humans. Gene coexpression analysis identified a coordinately regulated group of genes, unique to microglia, that collectively are associated with alcohol consumption. Genes within this group are involved in toll-like receptor signaling and transforming growth factor beta signaling. Network connectivity of this group identified Siglech as a putative hub gene and highlighted the potential importance of proteases in the microglial response to chronic ethanol. In conclusion, we identified a distinctive microglial gene expression signature for neuroimmune responses related to alcohol consumption that provides valuable insight into microglia-specific changes underlying the development of substance abuse, and possibly other CNS disorders.
Collapse
Affiliation(s)
- Gizelle M McCarthy
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States
| | - Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, United States
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
38
|
Liu W, Crews FT. Persistent Decreases in Adult Subventricular and Hippocampal Neurogenesis Following Adolescent Intermittent Ethanol Exposure. Front Behav Neurosci 2017; 11:151. [PMID: 28855864 PMCID: PMC5557743 DOI: 10.3389/fnbeh.2017.00151] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 11/25/2022] Open
Abstract
Neurogenesis in hippocampal dentate gyrus (DG) and subventricular zone (SVZ) matures during adolescence to adult levels. Binge drinking is prevalent in adolescent humans, and could alter brain neurogenesis and maturation in a manner that persists into adulthood. To determine the impact of adolescent binge drinking on adult neurogenesis, Wistar rats received adolescent intermittent ethanol (AIE) exposure (5.0 g/kg/day, i.g., 2 days on/2 days off from postnatal day, P25–P54) and sacrificed on P57 or P95. Neural progenitor cell proliferation, differentiation, survival and maturation using immunohistochemistry was determined in the DG and SVZ. We found that AIE exposure decreased neurogenesis in both brain regions in adulthood (P95). In the DG at P57, AIE exposure resulted in a significant reduction of SOX2+, Tbr2+, Prox1+ and parvalbumin (PV)+IR expression, and at P95 decreased DCX+ and PV+IR expression. AIE exposure also reduced the expression of two cell proliferation markers (Ki67+ and BrdU+IR with 300 mg/kg, 2 h) at P95. The immune signaling molecule β-2 microglobulin+ and the cell death marker activated caspase-3+IR were significantly increased in the DG by AIE exposure. In the SVZ, AIE exposure decreased SOX2+, Mash1+, DCX+ and Dlx2+IR expression at P95, but not at P57. Thus, in adulthood both brain regions have reduced neurogenesis following AIE exposure. To assess progenitor cell survival and maturation, rats were treated with BrdU (150 mg/kg/day, 14 days) to label proliferating cells and were sacrificed weeks later on P95. In the hippocampus DG, AIE exposure increased survival BrdU+ cells which differentiated into Iba1+ microglia. In contrast, SVZ had decreased BrdU+ cells similar to decreased DCX+ neurogenesis. These data indicate that AIE exposure causes a lasting decrease in both adult hippocampal DG and forebrain SVZ neurogenesis with brain regional differences in the AIE response that persist into adulthood.
Collapse
Affiliation(s)
- Wen Liu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel HillChapel Hill, NC, United States
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel HillChapel Hill, NC, United States
| |
Collapse
|
39
|
Avila DV, Myers SA, Zhang J, Kharebava G, McClain CJ, Kim HY, Whittemore SR, Gobejishvili L, Barve S. Phosphodiesterase 4b expression plays a major role in alcohol-induced neuro-inflammation. Neuropharmacology 2017; 125:376-385. [PMID: 28807677 DOI: 10.1016/j.neuropharm.2017.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
Abstract
It is increasingly evident that alcohol-induced, gut-mediated peripheral endotoxemia plays a significant role in glial cell activation and neuro-inflammation. Using a mouse model of chronic alcohol feeding, we examined the causal role of endotoxin- and cytokine-responsive Pde4 subfamily b (Pde4b) expression in alcohol-induced neuro-inflammation. Both pharmacologic and genetic approaches were used to determine the regulatory role of Pde4b. In C57Bl/6 wild type (WT) alcohol fed (WT-AF) animals, alcohol significantly induced peripheral endotoxemia and Pde4b expression in brain tissue, accompanied by a decrease in cAMP levels. Further, along with Pde4b, there was a robust activation of astrocytes and microglia accompanied by significant increases in the inflammatory cytokines (Tnfα, Il-1β, Mcp-1 and Il-17) and the generalized inflammatory marker Cox-2. At the cellular level, alcohol and inflammatory mediators, particularly LPS, Tnfα and Hmgb1 significantly activated microglial cells (Iba-1 expression) and selectively induced Pde4b expression with a minimal to no change in Pde4a and d isoforms. In comparison, the alcohol-induced decrease in brain cAMP levels was completely inhibited in WT mice treated with the Pde4 specific pharmacologic inhibitor rolipram and in Pde4b-/- mice. Moreover, all the observed markers of alcohol-induced brain inflammation were markedly attenuated. Importantly, glial cell activation induced by systemic endotoxemia (LPS administration) was also markedly decreased in Pde4b-/- mice. Taken together, these findings strongly support the notion that Pde4b plays a critical role in coordinating alcohol-induced, peripheral endotoxemia mediated neuro-inflammation and could serve as a significant therapeutic target.
Collapse
Affiliation(s)
- Diana V Avila
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Scott A Myers
- Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA; Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - JingWen Zhang
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Giorgi Kharebava
- Laboratory of Molecular Signaling, DICBR, NIAAA, NIH, Bethesda, MD, USA
| | - Craig J McClain
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, DICBR, NIAAA, NIH, Bethesda, MD, USA
| | - Scott R Whittemore
- Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA; Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA; Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Shirish Barve
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
40
|
Montesinos J, Gil A, Guerri C. Nalmefene Prevents Alcohol-Induced Neuroinflammation and Alcohol Drinking Preference in Adolescent Female Mice: Role of TLR4. Alcohol Clin Exp Res 2017; 41:1257-1270. [DOI: 10.1111/acer.13416] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol; Príncipe Felipe Research Center; Valencia Spain
| | - Anabel Gil
- Department of Molecular and Cellular Pathology of Alcohol; Príncipe Felipe Research Center; Valencia Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol; Príncipe Felipe Research Center; Valencia Spain
| |
Collapse
|
41
|
Crews FT, Walter TJ, Coleman LG, Vetreno RP. Toll-like receptor signaling and stages of addiction. Psychopharmacology (Berl) 2017; 234:1483-1498. [PMID: 28210782 PMCID: PMC5420377 DOI: 10.1007/s00213-017-4560-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/03/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Athina Markou and her colleagues discovered persistent changes in adult behavior following adolescent exposure to ethanol or nicotine consistent with increased risk for developing addiction. Building on Dr. Markou's important work and that of others in the field, researchers at the Bowles Center for Alcohol Studies have found that persistent changes in behavior following adolescent stress or alcohol exposure may be linked to induction of immune signaling in brain. AIM This study aims to illuminate the critical interrelationship of the innate immune system (e.g., toll-like receptors [TLRs], high-mobility group box 1 [HMGB1]) in the neurobiology of addiction. METHOD This study reviews the relevant research regarding the relationship between the innate immune system and addiction. CONCLUSION Emerging evidence indicates that TLRs in brain, particularly those on microglia, respond to endogenous innate immune agonists such as HMGB1 and microRNAs (miRNAs). Multiple TLRs, HMGB1, and miRNAs are induced in the brain by stress, alcohol, and other drugs of abuse and are increased in the postmortem human alcoholic brain. Enhanced TLR-innate immune signaling in brain leads to epigenetic modifications, alterations in synaptic plasticity, and loss of neuronal cell populations, which contribute to cognitive and emotive dysfunctions. Addiction involves progressive stages of drug binges and intoxication, withdrawal-negative affect, and ultimately compulsive drug use and abuse. Toll-like receptor signaling within cortical-limbic circuits is modified by alcohol and stress in a manner consistent with promoting progression through the stages of addiction.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - T Jordan Walter
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
42
|
Fernandez GM, Lew BJ, Vedder LC, Savage LM. Chronic intermittent ethanol exposure leads to alterations in brain-derived neurotrophic factor within the frontal cortex and impaired behavioral flexibility in both adolescent and adult rats. Neuroscience 2017; 348:324-334. [PMID: 28257889 DOI: 10.1016/j.neuroscience.2017.02.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 12/18/2022]
Abstract
Chronic intermittent exposure to ethanol (EtOH; CIE) that produces binge-like levels of intoxication has been associated with age-dependent deficits in cognitive functioning. Male Sprague-Dawley rats were exposed to CIE (5g/kg, 25% EtOH, 13 intragastric gavages) beginning at three ages: early adolescence (postnatal day [PD] 28), mid-adolescence (PD35) and adulthood (PD72). In experiment 1, rats were behaviorally tested following CIE. Spatial memory was not affected by CIE, but adult CIE rats were impaired at acquiring a non-spatial discrimination task and subsequent reversal tasks. Rats exposed to CIE during early or mid-adolescence were impaired on the first reversal, demonstrating transient impairment in behavioral flexibility. Blood EtOH concentrations negatively correlated with performance on reversal tasks. Experiment 2 examined changes in brain-derived neurotrophic factor (BDNF) levels within the frontal cortex (FC) and hippocampus (HPC) at four time points: during intoxication, 24 h after the final EtOH exposure (acute abstinence), 3 weeks following abstinence (recovery) and after behavioral testing. HPC BDNF levels were not affected by CIE at any time point. During intoxication, BDNF was suppressed in the FC, regardless of the age of exposure. However, during acute abstinence, reduced FC BDNF levels persisted in early adolescent CIE rats, whereas adult CIE rats displayed an increase in BDNF levels. Following recovery, neurotrophin levels in all CIE rats recovered. Our results indicate that intermittent binge-like EtOH exposure leads to acute disruptions in FC BDNF levels and long-lasting behavioral deficits. However, the type of cognitive impairment and its duration differ depending on the age of exposure.
Collapse
Affiliation(s)
- Gina M Fernandez
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States
| | - Brandon J Lew
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States
| | - Lindsey C Vedder
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States
| | - Lisa M Savage
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States.
| |
Collapse
|
43
|
The role of neuroimmune signaling in alcoholism. Neuropharmacology 2017; 122:56-73. [PMID: 28159648 DOI: 10.1016/j.neuropharm.2017.01.031] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Alcohol consumption and stress increase brain levels of known innate immune signaling molecules. Microglia, the innate immune cells of the brain, and neurons respond to alcohol, signaling through Toll-like receptors (TLRs), high-mobility group box 1 (HMGB1), miRNAs, pro-inflammatory cytokines and their associated receptors involved in signaling between microglia, other glia and neurons. Repeated cycles of alcohol and stress cause a progressive, persistent induction of HMGB1, miRNA and TLR receptors in brain that appear to underlie the progressive and persistent loss of behavioral control, increased impulsivity and anxiety, as well as craving, coupled with increasing ventral striatal responses that promote reward seeking behavior and increase risk of developing alcohol use disorders. Studies employing anti-oxidant, anti-inflammatory, anti-depressant, and innate immune antagonists further link innate immune gene expression to addiction-like behaviors. Innate immune molecules are novel targets for addiction and affective disorders therapies. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
44
|
Neupane SP. Neuroimmune Interface in the Comorbidity between Alcohol Use Disorder and Major Depression. Front Immunol 2016; 7:655. [PMID: 28082989 PMCID: PMC5186784 DOI: 10.3389/fimmu.2016.00655] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Bidirectional communication links operate between the brain and the body. Afferent immune-to-brain signals are capable of inducing changes in mood and behavior. Chronic heavy alcohol drinking, typical of alcohol use disorder (AUD), is one such factor that provokes an immune response in the periphery that, by means of circulatory cytokines and other neuroimmune mediators, ultimately causes alterations in the brain function. Alcohol can also directly impact the immune functions of microglia, the resident immune cells of the central nervous system (CNS). Several lines of research have established the contribution of specific inflammatory mediators in the development and progression of depressive illness. Much of the available evidence in this field stems from cross-sectional data on the immune interactions between isolated AUD and major depression (MD). Given their heterogeneity as disease entities with overlapping symptoms and shared neuroimmune correlates, it is no surprise that systemic and CNS inflammation could be a critical determinant of the frequent comorbidity between AUD and MD. This review presents a summary and analysis of the extant literature on neuroimmune interface in the AUD–MD comorbidity.
Collapse
Affiliation(s)
- Sudan Prasad Neupane
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Brumunddal, Norway; Norwegian Centre for Addiction Research (SERAF), University of Oslo, Oslo, Norway
| |
Collapse
|
45
|
Teppen TL, Krishnan HR, Zhang H, Sakharkar AJ, Pandey SC. The Potential Role of Amygdaloid MicroRNA-494 in Alcohol-Induced Anxiolysis. Biol Psychiatry 2016; 80:711-719. [PMID: 26786313 PMCID: PMC4882267 DOI: 10.1016/j.biopsych.2015.10.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/13/2015] [Accepted: 10/30/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND The antianxiety effects of ethanol appear to be a crucial factor in promoting alcohol intake. Regulation of gene expression by microRNA (miRNA) is an important epigenetic mechanism that affects neuronal pathways and behaviors. We investigated the role of miRNAs underlying the mechanisms of ethanol-induced anxiolysis. METHODS Acute ethanol-induced anxiolysis was measured in adult rats, and amygdaloid tissues were used for miRNA profiling by microarray analysis. The expression of miR-494 and its target genes in the amygdala was measured using real-time quantitative polymerase chain reaction. The direct role of miR-494 in the anxiety phenotype was also investigated via infusion of a miR-494 antagomir into the central nucleus of amygdala. RESULTS Microarray profiling of miRNAs in the amygdala showed significant alteration of several miRNA expression levels by acute ethanol exposure. Expression of miR-494 was significantly decreased, whereas expression of the binding protein of cyclic adenosine monophosphate response element binding protein (CBP), p300, and Cbp/p300-interacting transactivator 2 (Cited2) was increased in the amygdala during ethanol-induced anxiolysis. Inhibition of miR-494 in the central nucleus of amygdala, through infusion of a specific antagomir, provoked anxiolysis, mimicking the action of ethanol. Also, expression of Cited2, CBP, and p300 as well as histone H3-lysine 9 acetylation was significantly increased by miR-494 antagomir infusion, indicating their regulation by miR-494 in the amygdala. CONCLUSIONS These novel results suggest that acute ethanol-induced reduction in miR-494 expression in the amygdala can serve as a key regulatory mechanism for chromatin remodeling possibly leading to anxiolysis.
Collapse
Affiliation(s)
- Tara L. Teppen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL 60612,Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612
| | - Harish R. Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL 60612,Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL 60612,Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612
| | - Amul J. Sakharkar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL 60612,Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL 60612,Anatomy and Cell Biology, University of Illinois at Chicago, Chicago IL 60612,Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612
| |
Collapse
|
46
|
Pfefferbaum A, Rohlfing T, Pohl KM, Lane B, Chu W, Kwon D, Nolan Nichols B, Brown SA, Tapert SF, Cummins K, Thompson WK, Brumback T, Meloy M, Jernigan TL, Dale A, Colrain IM, Baker FC, Prouty D, De Bellis MD, Voyvodic JT, Clark DB, Luna B, Chung T, Nagel BJ, Sullivan EV. Adolescent Development of Cortical and White Matter Structure in the NCANDA Sample: Role of Sex, Ethnicity, Puberty, and Alcohol Drinking. Cereb Cortex 2016; 26:4101-21. [PMID: 26408800 PMCID: PMC5027999 DOI: 10.1093/cercor/bhv205] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Brain structural development continues throughout adolescence, when experimentation with alcohol is often initiated. To parse contributions from biological and environmental factors on neurodevelopment, this study used baseline National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) magnetic resonance imaging (MRI) data, acquired in 674 adolescents meeting no/low alcohol or drug use criteria and 134 adolescents exceeding criteria. Spatial integrity of images across the 5 recruitment sites was assured by morphological scaling using Alzheimer's disease neuroimaging initiative phantom-derived volume scalar metrics. Clinical MRI readings identified structural anomalies in 11.4%. Cortical volume and thickness were smaller and white matter volumes were larger in older than in younger adolescents. Effects of sex (male > female) and ethnicity (majority > minority) were significant for volume and surface but minimal for cortical thickness. Adjusting volume and area for supratentorial volume attenuated or removed sex and ethnicity effects. That cortical thickness showed age-related decline and was unrelated to supratentorial volume is consistent with the radial unit hypothesis, suggesting a universal neural development characteristic robust to sex and ethnicity. Comparison of NCANDA with PING data revealed similar but flatter, age-related declines in cortical volumes and thickness. Smaller, thinner frontal, and temporal cortices in the exceeds-criteria than no/low-drinking group suggested untoward effects of excessive alcohol consumption on brain structural development.
Collapse
Affiliation(s)
- Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Department of Psychiatry and Behavioral Sciences
| | - Torsten Rohlfing
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Current address: Google, Inc
| | - Kilian M. Pohl
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Department of Psychiatry and Behavioral Sciences
| | - Barton Lane
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiwei Chu
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Dongjin Kwon
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - B. Nolan Nichols
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Department of Psychiatry and Behavioral Sciences
| | | | - Susan F. Tapert
- Department of Psychiatry
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | | | | | | | | | | | - Anders Dale
- Center for Human Development
- Departments of Neurosciences and Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Ian M. Colrain
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Devin Prouty
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | | | - James T. Voyvodic
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Duncan B. Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammy Chung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bonnie J. Nagel
- Department of Psychiatry
- Department of Behavioral Neuroscience, Oregon Health and Sciences University, Portland, OR, USA
| | | |
Collapse
|
47
|
Marshall SA, Geil CR, Nixon K. Prior Binge Ethanol Exposure Potentiates the Microglial Response in a Model of Alcohol-Induced Neurodegeneration. Brain Sci 2016; 6:E16. [PMID: 27240410 PMCID: PMC4931493 DOI: 10.3390/brainsci6020016] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
Excessive alcohol consumption results in neurodegeneration which some hypothesize is caused by neuroinflammation. One characteristic of neuroinflammation is microglial activation, but it is now well accepted that microglial activation may be pro- or anti-inflammatory. Recent work indicates that the Majchrowicz model of alcohol-induced neurodegeneration results in anti-inflammatory microglia, while intermittent exposure models with lower doses and blood alcohol levels produce microglia with a pro-inflammatory phenotype. To determine the effect of a repeated binge alcohol exposure, rats received two cycles of the four-day Majchrowicz model. One hemisphere was then used to assess microglia via immunohistochemistry and while the other was used for ELISAs of cytokines and growth factors. A single binge ethanol exposure resulted in low-level of microglial activation; however, a second binge potentiated the microglial response. Specifically, double binge rats had greater OX-42 immunoreactivity, increased ionized calcium-binding adapter molecule 1 (Iba-1+) cells, and upregulated tumor necrosis factor-α (TNF-α) compared with the single binge ethanol group. These data indicate that prior ethanol exposure potentiates a subsequent microglia response, which suggests that the initial exposure to alcohol primes microglia. In summary, repeated ethanol exposure, independent of other immune modulatory events, potentiates microglial activity.
Collapse
Affiliation(s)
- Simon Alex Marshall
- Department of Psychology & Neuroscience; University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Chelsea Rhea Geil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | - Kimberly Nixon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
48
|
Abstract
RATIONALE Alcoholism is a primary, chronic relapsing disease of brain reward, motivation, memory, and related circuitry. It is characterized by an individual's continued drinking despite negative consequences related to alcohol use, which is exemplified by alcohol use leading to clinically significant impairment or distress. Chronic alcohol consumption increases the expression of innate immune signaling molecules (ISMs) in the brain that alter cognitive processes and promote alcohol drinking. OBJECTIVES Unraveling the mechanisms of alcohol-induced neuroimmune gene induction is complicated by positive loops of multiple cytokines and other signaling molecules that converge on nuclear factor kappa-light-chain-enhancer of activated B cells and activator protein-1 leading to induction of additional neuroimmune signaling molecules that amplify and expand the expression of ISMs. RESULTS Studies from our laboratory employing reverse transcription polymerase chain reaction (RT-PCR) to assess mRNA, immunohistochemistry and Western blot analysis to assess protein expression, and others suggest that ethanol increases brain neuroimmune gene and protein expression through two distinct mechanisms involving (1) systemic induction of innate immune molecules that are transported from blood to the brain and (2) the direct release of high-mobility group box 1 (HMGB1) from neurons in the brain. Released HMGB1 signals through multiple receptors, particularly Toll-like receptor (TLR) 4, that potentiate cytokine receptor responses leading to a hyperexcitable state that disrupts neuronal networks and increases excitotoxic neuronal death. Innate immune gene activation in brain is persistent, consistent with the chronic relapsing disease that is alcoholism. Expression of HMGB1, TLRs, and other ISMs is increased several-fold in the human orbital frontal cortex, and expression of these molecules is highly correlated with each other as well as lifetime alcohol consumption and age of drinking onset. CONCLUSIONS The persistent and cumulative nature of alcohol on HMGB1 and TLR gene induction support their involvement in alcohol-induced long-term changes in brain function and neurodegeneration.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, CB# 7178, 1021 Thurston-Bowles Building, Chapel Hill, NC, 27599-7178, USA.
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, CB# 7178, 1021 Thurston-Bowles Building, Chapel Hill, NC, 27599-7178, USA
| |
Collapse
|
49
|
Troutwine BR, Ghezzi A, Pietrzykowski AZ, Atkinson NS. Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway. GENES, BRAIN, AND BEHAVIOR 2016; 15:382-94. [PMID: 26916032 PMCID: PMC4991213 DOI: 10.1111/gbb.12288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 02/02/2023]
Abstract
A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol-related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll-like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila-specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster.
Collapse
Affiliation(s)
- B R Troutwine
- Department of Neuroscience, The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX
| | - A Ghezzi
- Department of Neuroscience, The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX
| | - A Z Pietrzykowski
- The Biologically Inspired Neural & Dynamical Systems (BINDS) Lab, Department of Computer Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - N S Atkinson
- Department of Neuroscience, The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX
| |
Collapse
|
50
|
Marshall SA, Casachahua JD, Rinker JA, Blose AK, Lysle DT, Thiele TE. IL-1 receptor signaling in the basolateral amygdala modulates binge-like ethanol consumption in male C57BL/6J mice. Brain Behav Immun 2016; 51:258-267. [PMID: 26365025 PMCID: PMC4679505 DOI: 10.1016/j.bbi.2015.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/26/2015] [Accepted: 09/09/2015] [Indexed: 12/26/2022] Open
Abstract
Proinflammatory cytokines have been implicated in alcohol-induced neurodegeneration, but the role of the neuroimmune system in alcohol related behaviors has only recently come to the forefront. Herein, the effects of binge-like drinking on IL-1β mRNA and immunoreactivity within the amygdala were measured following the "drinking in the dark" (DID) paradigm, a model of binge-like ethanol drinking in C57BL/6J mice. Moreover, the role of IL-1 receptor signaling in the amygdala on ethanol consumption was assessed. Results indicated that a history of binge-like ethanol drinking promoted a significant increase of IL-1β mRNA expression within the amygdala, and immunohistochemistry analyses revealed that the basolateral amygdala (BLA), but not central amygdala (CeA), exhibited significantly increased IL-1β immunoreactivity. However, Fluoro-Jade® C labeling indicated that multiple cycles of the DID paradigm were not sufficient to elicit neuronal death. Bilateral infusions of IL-1 receptor antagonist (IL-1Ra) reduced ethanol consumption when infused into the BLA but not the CeA. These observations were specific to ethanol drinking as the IL-1Ra did not alter either sucrose drinking or open-field locomotor activity. The current findings highlight a specific role for IL-1 receptor signaling in modulating binge-like ethanol consumption and indicate that proinflammatory cytokines can be induced prior to dependence or any evidence of neuronal cell death. These findings provide a framework in which to understand how neuroimmune adaptations may alter ethanol consumption and therein contribute to alcohol abuse.
Collapse
Affiliation(s)
- S Alex Marshall
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - John D Casachahua
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jennifer A Rinker
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Allyson K Blose
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Donald T Lysle
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|