1
|
Zhang C, Guo Y, Liu Y, Liu K, Hu W, Wang H. Sperm miR-142-3p Reprogramming Mediates Paternal Pre-Pregnancy Caffeine Exposure-Induced Non-Alcoholic Steatohepatitis in Male Offspring Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405592. [PMID: 39291441 PMCID: PMC11558112 DOI: 10.1002/advs.202405592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/28/2024] [Indexed: 09/19/2024]
Abstract
Numerous studies have suggested a strong association between paternal adverse environmental exposure and increased disease susceptibility in offspring. However, the impact of paternal pre-pregnant caffeine exposure (PPCE) on offspring health remains unexplored. This study elucidates the sperm reprogramming mechanism and potential intervention targets for PPCE-induced non-alcoholic steatohepatitis (NASH) in offspring. Here, male rats are administrated caffeine (15-60 mg kg-1/d) by gavage for 8 weeks and then mated with females to produce offspring. This study finds that NASH with transgenerational inheritance occurred in PPCE adult offspring. Mechanistically, a reduction of miR-142-3p is implicated in the occurrence of NASH, characterized by hepatic lipid metabolism dysfunction and chronic inflammation through an increase in ACSL4. Conversely, overexpression of miR-142-3p mitigated these manifestations. The origin of reduced miR-142-3p levels is traced to hypermethylation in the miR-142-3p promoter region of parental sperm, induced by elevated corticosterone levels rather than by caffeine per se. Similar outcomes are confirmed in offspring conceived via in vitro fertilization using miR-142-3pKO sperm. Overall, this study provides the first evidence of transgenerational inheritance of NASH in PPCE offspring and identifies miR-142-3p as a potential therapeutic target for NASH induced by paternal environmental adversities.
Collapse
Affiliation(s)
- Cong Zhang
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Yu Guo
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Yi Liu
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Kexin Liu
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Wen Hu
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
- Department of PharmacyZhongnan Hospital of Wuhan UniversityWuhan430072China
| | - Hui Wang
- Department of PharmacologySchool of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| |
Collapse
|
2
|
Heigwer J, Steenbergen PJ, Gehrig J, Westhoff JH. Corticosteroids alter kidney development and increase glomerular filtration rate in larval zebrafish (Danio rerio). Toxicol Sci 2024; 201:216-225. [PMID: 38964340 DOI: 10.1093/toxsci/kfae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Pharmaceutical drugs and other chemicals can impact organogenesis, either during pregnancy or by postnatal exposure of very preterm infants. Corticosteroids are administered to pregnant women at risk of preterm delivery in order to reduce neonatal morbidity and mortality. In addition, high-dose corticosteroid exposure of very preterm infants regularly serves to maintain blood pressure and to prevent and treat bronchopulmonary dysplasia, a form of chronic lung disease in prematurely born infants. Despite clinical benefits, there is increasing evidence of corticosteroid-mediated short- and long-term detrimental developmental effects, especially in the kidney. Here, we performed a detailed morphological and functional analysis of corticosteroid-mediated effects on pronephros development in larval zebrafish. About 24-h postfertilization (hpf) transgenic Tg(wt1b: EGFP) zebrafish larvae were exposed to a set of natural and synthetic corticosteroids (hydrocortisone, dexamethasone, 6α-methylprednisolone, betamethasone, prednisolone, fludrocortisone, 11-deoxycorticosterone) with varying glucocorticoid and mineralocorticoid potency for 24 h at different concentrations. A semiautomated, multiparametric in vivo workflow enabled simultaneous assessment of kidney morphology, renal FITC-inulin clearance, and heart rate within the same larva. All corticosteroids exerted significant morphological and functional effects on pronephros development, including a significant hypertrophy of the pronephric glomeruli as well as dose-dependent increases in FITC-inulin clearance as a marker of glomerular filtration rate. In conclusion, the present study demonstrates a significant impact of corticosteroid exposure on kidney development and function in larval zebrafish. Hence, these studies underline that corticosteroid exposure of the fetus and the preterm neonate should be carefully considered due to potential short- and long-term harm to the kidney.
Collapse
Affiliation(s)
- Jana Heigwer
- Department I, Center for Pediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Petrus J Steenbergen
- Department I, Center for Pediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Jochen Gehrig
- ACQUIFER Imaging GmbH, Heidelberg 69126, Germany
- Luxendo GmbH, Fluorescence Microscopy Business Unit, Heidelberg 69126, Germany
| | - Jens H Westhoff
- Department I, Center for Pediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, University Hospital Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
3
|
Zheng B, Zheng Y, Hu W, Chen Z. Dissecting the networks underlying diverse brain disorders after prenatal glucocorticoid overexposure. Arch Toxicol 2024; 98:1975-1990. [PMID: 38581585 DOI: 10.1007/s00204-024-03733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
New human life begins in the uterus in a period of both extreme plasticity and sensitivity to environmental disturbances. The fetal stage is also a vital period for central nervous system development, with experiences at this point profoundly and permanently shaping brain structure and function. As such, some brain disorders may originate in utero. Glucocorticoids, a class of essential stress hormones, play indispensable roles in fetal development, but overexposure may have lasting impacts on the brain. In this review, we summarize data from recent clinical and non-clinical studies regarding alterations in fetal brains due to prenatal glucocorticoid overexposure that are associated with nervous system disorders. We discuss relevant changes to brain structure and cellular functions and explore the underlying molecular mechanisms. In addition, we summarize factors that may cause differential outcomes between varying brain regions, and outline clinically feasible intervention strategies that are expected to minimize negative consequences arising from fetal glucocorticoid overexposure. Finally, we highlight the need for experimental evidence aided by new technologies to clearly determine the effects of excessive prenatal glucocorticoid exposure. This review consolidates diverse findings to help researchers better understand the relationship between the prenatal glucocorticoid overexposure and the effects it has on various fetal brain regions, promoting further development of critical intervention strategies.
Collapse
Affiliation(s)
- Baixiu Zheng
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weiwei Hu
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
4
|
Li S, Feng Q, Huang X, Tian X, Zhou Y, Ji Y, Zhai S, Guo W, Zheng R, Wang H. Association of different doses of antenatal corticosteroids exposure with early major outcomes and early weight loss percentage in extremely preterm infants or extremely low birthweight infants: a multicentre cohort study. BMJ Paediatr Open 2024; 8:e002506. [PMID: 38897621 PMCID: PMC11191796 DOI: 10.1136/bmjpo-2024-002506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVES To determine the dose-dependent associations between antenatal corticosteroids (ANS) exposure and the rates of major morbidities, and the early weight loss percentage (EWLP) in hospital among extremely preterm infants (EPI) or extremely low birthweight infants (ELBWI). METHODS A multicentre, retrospective cohort study of EPI or ELBWI born between 2017 and 2018 was conducted. Infants were classified into no ANS, partial ANS and complete ANS exposure group; three subgroups were generated by gestational age and birth weight. Multiple logistic regression and multiple linear regression were performed. RESULTS There were 725 infants included from 32 centres. Among no ANS, partial ANS and complete ANS exposure, there were significant differences in the proportions of bronchopulmonary dysplasia (BPD) (24.5%, 25.4% and 16.1%), necrotising enterocolitis (NEC) (6.7%, 2.0% and 2.0%) and death (29.6%, 18.5% and 13.5%), and insignificant differences in the proportions of intraventricular haemorrhage (IVH) (12.5%, 13.2% and 12.2%), and extrauterine growth restriction (EUGR) (50.0%, 56.6% and 59.5%). In the logistic regression, compared with no ANS exposure, complete ANS reduced the risk of BPD (OR 0.58, 95% CI 0.37 to 0.91), NEC (OR 0.21, 95% CI 0.08 to 0.57) and death (OR 0.36, 95% CI 0.23 to 0.56), and partial ANS reduced the risk of NEC (OR 0.23, 95% CI 0.07 to 0.72) and death (OR 0.54, 95% CI 0.34 to 0.87). Compared with partial ANS exposure, complete ANS decreased the risk of BPD (OR 0.58, 95% CI 0.37 to 0.91). There were insignificant associations between ANS exposure and IVH, EUGR. In the multiple linear regression, partial and complete ANS exposure increased EWLP only in the ≥28 weeks (w) and <1000 g subgroup (p<0.05). CONCLUSIONS Different doses of ANS (dexamethasone) exposure were protectively associated with BPD, NEC, death in hospital, but not EUGR at discharge among EPI or ELBWI. Beneficial dose-dependent associations between ANS (dexamethasone) exposure and BPD existed. ANS exposure increased EWLP only in the ≥28 w and<1000 g subgroup. ANS administration, especially complete ANS, is encouraged before preterm birth. TRIAL REGISTRATION NUMBER NCT06082414.
Collapse
MESH Headings
- Humans
- Infant, Newborn
- Female
- Infant, Extremely Low Birth Weight
- Retrospective Studies
- Infant, Extremely Premature
- Male
- Pregnancy
- Weight Loss/drug effects
- Enterocolitis, Necrotizing/epidemiology
- Enterocolitis, Necrotizing/prevention & control
- Bronchopulmonary Dysplasia/epidemiology
- Bronchopulmonary Dysplasia/prevention & control
- Bronchopulmonary Dysplasia/mortality
- Dose-Response Relationship, Drug
- Adrenal Cortex Hormones/administration & dosage
- Adrenal Cortex Hormones/adverse effects
- Gestational Age
- Infant, Premature, Diseases/epidemiology
- Infant, Premature, Diseases/prevention & control
- Infant, Premature, Diseases/mortality
Collapse
Affiliation(s)
- Shuaijun Li
- Department of Maternal and Child Health, School of Public Health, Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Peking University, Beijing, China
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qi Feng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaofang Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiuying Tian
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Ying Zhou
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Yong Ji
- Neonatal Intensive Care Unit, Children's Hospital of Shanxi, Taiyuan, China
| | - Shufen Zhai
- Department of Neonatology, Handan Central Hospital, Handan, China
| | - Wei Guo
- Department of Neonatology, Xingtai People's Hospital, Xingtai, China
| | - Rongxiu Zheng
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Haijun Wang
- Department of Maternal and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Peking University School of Public Health, Beijing, China
| |
Collapse
|
5
|
Song L, Song J, Wang Y, Wei Y, Zhao Y, Liu D. Systematic Quantitative Analysis of Fetal Dexamethasone Exposure and Fetal Lung Maturation in Pregnant Animals: Model Informed Dexamethasone Precision Dose Study. ACS Pharmacol Transl Sci 2024; 7:1770-1782. [PMID: 38898943 PMCID: PMC11184600 DOI: 10.1021/acsptsci.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 06/21/2024]
Abstract
Dexamethasone (DEX) was applied in neonatal respiratory distress syndrome treatment of pregnant women. We established a pharmacokinetics (PK)/pharmacodynamics(PD)/end point model of pregnant animals based on published data and then extrapolated to simulate fetal exposure and lung maturation in pregnant women. We first established the PK/PD/end point model for DEX in pregnant sheep. We considered the competitive effect of cortisol (Cort) and DEX binding with glucocorticoid receptor and then used the indirect response model to describe disaturated-phosphatidylcholine (DSPC) dynamics. Based on that, we established a regression relationship between DSPC and fetal lung volume (V40). We then extrapolated the PD/end point model of pregnant sheep to pregnant monkeys by corrected stages of morphologic lung maturation in two species. Finally, we utilized the interspecies extrapolation strategy to simulate fetal exposure (AUC0-48h) and V40 relationship in pregnant women. The current model could well describe the maternal-fetal PK of DEX in pregnant animals. Simulated DEX AUC0-24h values of the umbilical venous to maternal plasma ratio in pregnant sheep and monkeys were 0.31 and 0.27, respectively. The simulated Cort curve and V40 in pregnant sheep closely matched the observed data within a 2-fold range. For pregnant monkeys, model-simulated V40 were well fitted with external verification data, which showed good interspecies extrapolation performance. Finally, we simulated fetal exposure-response relationship in pregnant women, which indicated that the fetal AUC0-48h of DEX should not be less than 300 and 100 ng/mL·hr at GW28 and GW34 to ensure fetal lung maturity. The current model preliminarily provided support for clinical DEX dose optimization.
Collapse
Affiliation(s)
- Ling Song
- Department
of Obstetrics and Gynecology, Peking University
Third Hospital, Beijing 100191, China
- Drug
Clinical Trial Center, Peking University
Third Hospital, Beijing 100191, China
| | - Jie Song
- Drug
Clinical Trial Center, Peking University
Third Hospital, Beijing 100191, China
| | - Ying Wang
- Department
of Obstetrics and Gynecology, Peking University
Third Hospital, Beijing 100191, China
| | - Yuan Wei
- Department
of Obstetrics and Gynecology, Peking University
Third Hospital, Beijing 100191, China
| | - Yangyu Zhao
- Department
of Obstetrics and Gynecology, Peking University
Third Hospital, Beijing 100191, China
| | - Dongyang Liu
- Drug
Clinical Trial Center, Peking University
Third Hospital, Beijing 100191, China
- Institute
of Medical Innovation and Research, Peking
University Third Hospital, Beijing 100191, China
| |
Collapse
|
6
|
Han H, Shi H, Jiang L, Zhang D, Wang H, Li J, Chen L. Autophagy activated by GR/miR-421-3p/mTOR pathway as a compensatory mechanism participates in chondrodysplasia induced by prenatal caffeine exposure in male fetal rats. Toxicol Lett 2024; 397:141-150. [PMID: 38759937 DOI: 10.1016/j.toxlet.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Autophagy has been implicated in the developmental toxicity of multiple organs in offspring caused by adverse environmental conditions during pregnancy. We have previously found that prenatal caffeine exposure (PCE) can cause fetal overexposure to maternal glucocorticoids, leading to chondrodysplasia. However, whether autophagy is involved and what role it plays has not been reported. In this study, a PCE rat model was established by gavage of caffeine (120 mg/kg.d) on gestational day 9-20. The results showed that reduced cartilage matrix synthesis in male fetal rats in the PCE group was accompanied by increased autophagy compared to the control group. Furthermore, the expression of mTOR, miR-421-3p, and glucocorticoid receptor (GR) in male fetal rat cartilage of PCE group was increased. At the cellular level, we confirmed that corticosterone inhibited matrix synthesis in fetal chondrocytes while increasing autophagic flux. However, administration of autophagy enhancer (rapamycin) or inhibitor (bafilomycin A1 or 3-methyladenine) partially increased or further decreased aggrecan expression respectively. At the same time, we found that corticosterone could increase the expression of miR-421-3p through GR and target to inhibit the expression of mTOR, thereby enhancing autophagy. In conclusion, PCE can cause chondrodysplasia and autophagy enhancement in male fetal rats. Intrauterine high corticosterone activates GR/miR-421-3p signaling and down-regulates mTOR signaling in fetal chondrocytes, resulting in enhanced autophagy, which can partially compensate for corticosterone-induced fetal chondrodysplasia. This study confirmed the compensatory protective effect of autophagy on the developmental toxicity of fetal cartilage induced by PCE and its epigenetic mechanism, providing novel insights for exploring the early intervention and therapeutic target of fetal-originated osteoarthritis.
Collapse
Affiliation(s)
- Hui Han
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huasong Shi
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lingxiao Jiang
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Jing Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
7
|
Morrison TM, Schiff DM, Olson A, Hunter RG, Agarwal J, Work EC, Muftu S, Shrestha H, Boateng J, Werler MM, Carter G, Jones HE, Wachman EM. Hair Cortisol Concentrations in Opioid-Exposed versus Nonexposed Mother-Infant Dyads. Am J Perinatol 2024; 41:1106-1112. [PMID: 38160676 DOI: 10.1055/s-0043-1778008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To pilot measurement of hair cortisol concentration (HCC) in pregnant women with opioid use disorder and their infants over time and study the potential utility of hair cortisol as a biomarker of chronic stress in this population. STUDY DESIGN In this pilot prospective cohort study of mother-infant dyads with and without prenatal opioid exposure, we obtained mother-infant HCCs at delivery and again within 1 to 3 months' postpartum. HCCs were compared between the opioid and control groups and between the two time points. RESULTS There were no significant differences between opioid and control group maternal or infant HCCs at either time point. However, within the opioid-exposed group, there was a significant increase in infant HCCs across the two time points. CONCLUSION This pilot study describes our experience with the measurement of HCCs in opioid-exposed mother-infant dyads. KEY POINTS · Maternal stress impacts fetal and child health.. · Many stressors in pregnant women with opioid use disorder.. · Hair cortisol may be a useful stress biomarker..
Collapse
Affiliation(s)
- Tierney M Morrison
- Department of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Davida M Schiff
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Abigael Olson
- Department of Obstetrics and Gynecology, Boston University, Boston, Massachusetts
| | - Richard G Hunter
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts
| | - Joel Agarwal
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Erin C Work
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Serra Muftu
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Hira Shrestha
- Department of Pediatrics, Boston Medical Center, Boston, Massachusetts
| | - Jeffery Boateng
- Department of Pediatrics, Boston Medical Center, Boston, Massachusetts
| | - Martha M Werler
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Ginny Carter
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina
| | - Hendree E Jones
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina
| | - Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
8
|
Faienza MF, Urbano F, Anaclerio F, Moscogiuri LA, Konstantinidou F, Stuppia L, Gatta V. Exploring Maternal Diet-Epigenetic-Gut Microbiome Crosstalk as an Intervention Strategy to Counter Early Obesity Programming. Curr Issues Mol Biol 2024; 46:4358-4378. [PMID: 38785533 PMCID: PMC11119222 DOI: 10.3390/cimb46050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Alterations in a mother's metabolism and endocrine system, due to unbalanced nutrition, may increase the risk of both metabolic and non-metabolic disorders in the offspring's childhood and adulthood. The risk of obesity in the offspring can be determined by the interplay between maternal nutrition and lifestyle, intrauterine environment, epigenetic modifications, and early postnatal factors. Several studies have indicated that the fetal bowel begins to colonize before birth and that, during birth and nursing, the gut microbiota continues to change. The mother's gut microbiota is primarily transferred to the fetus through maternal nutrition and the environment. In this way, it is able to impact the establishment of the early fetal and neonatal microbiome, resulting in epigenetic signatures that can possibly predispose the offspring to the development of obesity in later life. However, antioxidants and exercise in the mother have been shown to improve the offspring's metabolism, with improvements in leptin, triglycerides, adiponectin, and insulin resistance, as well as in the fetal birth weight through epigenetic mechanisms. Therefore, in this extensive literature review, we aimed to investigate the relationship between maternal diet, epigenetics, and gut microbiota in order to expand on current knowledge and identify novel potential preventative strategies for lowering the risk of obesity in children and adults.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy
| | - Flavia Urbano
- Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (F.U.); (L.A.M.)
| | - Federico Anaclerio
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
9
|
Salomon R, Weiss S. Relationships Among Number of Stressors, Perceived Stress, and Salivary Cortisol Levels During the Third Trimester of Pregnancy. J Obstet Gynecol Neonatal Nurs 2024; 53:160-171. [PMID: 38048897 PMCID: PMC10939920 DOI: 10.1016/j.jogn.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
OBJECTIVE To examine relationships among the number of stressors, perceived stress, and salivary cortisol levels during the third trimester of pregnancy. DESIGN Secondary analysis of cross-sectional data. SETTING Participants' homes. PARTICIPANTS Women during the third trimester of pregnancy (N = 73). METHODS Participants provided saliva samples at four time points over 2 days for cortisol assay and completed questionnaires to assess stressors and perceived stress. We computed multiple linear regression models to examine the relationships among the number of stressors and perceived stress to cortisol awakening response, diurnal slope, and overall cortisol secretion. We also computed a multiple linear regression model to examine the relationship between perceived stress and the number of stressors. RESULTS Greater perceived stress was associated with reduced overall cortisol secretion across the day (β = -0.41, p = .01). The number of stressors was associated with perceived stress (β = 0.48, p = .002) but not salivary cortisol measures. CONCLUSION Elevated perceived stress and the related cortisol alterations that we identified could represent salient targets for enhancing hypothalamic-pituitary-adrenal axis function during the third trimester. Perceived stress may shape the relationship between exposure to stressors and cortisol response during pregnancy. Future research is warranted to confirm study results and to understand the implications for parturition and fetal development.
Collapse
|
10
|
Chen Y, Wang H. The changes in adrenal developmental programming and homeostasis in offspring induced by glucocorticoids exposure during pregnancy. VITAMINS AND HORMONES 2024; 124:463-490. [PMID: 38408809 DOI: 10.1016/bs.vh.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Clinically, synthetic glucocorticoids are often used to treat maternal and fetal related diseases, such as preterm birth and autoimmune diseases. Although its clinical efficacy is positive, it will expose the fetus to exogenous glucocorticoids. Adverse environments during pregnancy (e.g., exogenous glucocorticoids exposure, malnutrition, infection, hypoxia, and stress) can lead to fetal overexposure to endogenous maternal glucocorticoids. Basal glucocorticoids levels in utero are crucial in determining fetal tissue maturation and its postnatal fate. As the synthesis and secretion organ of glucocorticoids, the adrenal development is crucial for the growth and development of the body. Studies have found that glucocorticoids exposure during pregnancy could cause abnormal fetal adrenal development, which could last after birth or even adulthood. As the key organ of fetal-originated adult disease, the adrenal developmental programming has a profound impact on the health of offspring, which can lead to many chronic diseases in adulthood. However, the aberrant adrenal development in offspring caused by glucocorticoids exposure during pregnancy and its intrauterine programming mechanism have not been systematically clarified. Therefore, this review summarizes recent research progress on the short and long-term hazards of aberrant adrenal development induced by glucocorticoids exposure during pregnancy, which is of great significance for the analysis of aberrant adrenal development and clarify the intrauterine origin mechanism of fetal-originated adult disease.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China; Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, P.R. China.
| |
Collapse
|
11
|
Comas M, De Pietri Tonelli D, Berdondini L, Astiz M. Ontogeny of the circadian system: a multiscale process throughout development. Trends Neurosci 2024; 47:36-46. [PMID: 38071123 DOI: 10.1016/j.tins.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/02/2023] [Accepted: 11/12/2023] [Indexed: 01/12/2024]
Abstract
The 24 h (circadian) timing system develops in mammals during the perinatal period. It carries out the essential task of anticipating daily recurring environmental changes to identify the best time of day for each molecular, cellular, and systemic process. Although significant knowledge has been acquired about the organization and function of the adult circadian system, relatively little is known about its ontogeny. During the perinatal period, the circadian system progressively gains functionality under the influence of the early environment. This review explores current evidence on the development of the circadian clock in mammals, highlighting the multilevel complexity of the process and the importance of gaining a better understanding of its underlying biology.
Collapse
Affiliation(s)
- Maria Comas
- Circadian Physiology of Neurons and Glia Laboratory, Achucarro Basque Center for Neuroscience, 48940 Leioa, Basque Country, Spain
| | | | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Mariana Astiz
- Circadian Physiology of Neurons and Glia Laboratory, Achucarro Basque Center for Neuroscience, 48940 Leioa, Basque Country, Spain; Ikerbasque - Basque Foundation for Science, Bilbao, Spain; Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany.
| |
Collapse
|
12
|
Sheng JA, Handa RJ, Tobet SA. Evaluating different models of maternal stress on stress-responsive systems in prepubertal mice. Front Neurosci 2023; 17:1292642. [PMID: 38130695 PMCID: PMC10733493 DOI: 10.3389/fnins.2023.1292642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Maternal adversity during pregnancy influences neurodevelopment in human and model animal offspring. Adversity can result from stressors coming from many different directions ranging from environmental to nutritional and physiological to immune (e.g., infection). Most stressors result in fetal overexposure to glucocorticoids that have been directly linked to long- and short-term negative impacts on neurological health of offspring. Neuropsychiatric diseases postulated to have fetal origins are diverse and include such things cardiovascular disease, obesity, affective disorders, and metabolic and immune disorders. Methods The experiments in the current study compare 3 stressors: prenatal exposure to dexamethasone (DEX), maternal high fat diet (HFD), and maternal caloric restriction (CR). Offspring of mothers with these treatments were examined prepubertally to evaluate stress responsiveness and stress-related behaviors in in male and female mice. Results Prenatal exposure to synthetic glucocorticoid, DEX, resulted in decreased neonatal body weights, reduced social interaction behavior, and hypoactive stress response offspring exposed to maternal DEX. Maternal CR resulted in decreased body weights and social interaction behavior in males and females and increased anxiety-like behavior and acute stress response only in males. HFD resulted in altered body weight gain in both sex offspring with decreased anxiety-like behavior in a female-biased manner. Discussion The idea that glucocorticoid responses to different stressors might serve as a common stimulus across stress paradigms is insufficient, given that different modes of prenatal stress produced differential effects. Opposite nutritional stressors produced similar outcomes for anxiety-like behavior in both sexes, social-like behavior in females, and a hyperactive adrenal stress response in males. One common theme among the three models of maternal stress (DEX, CR, and HFD) was consistent data showing their role in activating the maternal and fetal immune response. By tuning in on the more immediate immunological aspect on the developing fetus (e.g., hormones, cytokines), additional studies may tease out more direct outcomes of maternal stress in rodents and increase their translational value to human studies.
Collapse
Affiliation(s)
- Julietta A. Sheng
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Robert J. Handa
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Stuart A. Tobet
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Psychiatry, Mass General Hospital, Harvard Medical School, Boston, MA, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Innovation Center on Sex Differences in Medicine, Mass General Hospital, Cambridge, MA, United States
| |
Collapse
|
13
|
Thangaraj SV, Zeng L, Pennathur S, Lea R, Sinclair KD, Bellingham M, Evans NP, Auchus R, Padmanabhan V. Developmental programming: Impact of preconceptional and gestational exposure to a real-life environmental chemical mixture on maternal steroid, cytokine and oxidative stress milieus in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165674. [PMID: 37495149 PMCID: PMC10568064 DOI: 10.1016/j.scitotenv.2023.165674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Gestational exposure to environmental chemicals (ECs) is associated with adverse, sex-specific offspring health effects of global concern. As the maternal steroid, cytokine and oxidative stress milieus can have critical effects on pregnancy outcomes and the programming of diseases in offspring, it is important to study the impact of real-life EC exposure, i.e., chronic low levels of mixtures of ECs on these milieus. Sheep exposed to biosolids, derived from human waste, is an impactful model representing the ECs humans are exposed to in real-life. Offspring of sheep grazed on biosolids-treated pasture are characterized by reproductive and metabolic disruptions. OBJECTIVE To determine if biosolids exposure disrupts the maternal steroid, cytokine and oxidative stress milieus, in a fetal sex-specific manner. METHODS Ewes were maintained before mating and through gestation on pastures fertilized with biosolids (BTP), or inorganic fertilizer (Control). From maternal plasma collected mid-gestation, 19 steroids, 14 cytokines, 6 oxidative stress markers were quantified. Unpaired t-test and ANOVA were used to test for differences between control and BTP groups (n = 15/group) and between groups based on fetal sex, respectively. Correlation between the different markers was assessed by Spearman correlation. RESULTS Concentrations of the mineralocorticoids - deoxycorticosterone, corticosterone, the glucocorticoids - deoxycortisol, cortisol, cortisone, the sex steroids - androstenedione, dehydroepiandrosterone, 16-OH-progesterone and reactive oxygen metabolites were higher in the BTP ewes compared to Controls, while the proinflammatory cytokines IL-1β and IL-17A and anti-inflammatory IL-36RA were decreased in the BTP group. BTP ewes with a female fetus had lower levels of IP-10. DISCUSSION These findings suggest that pre-conceptional and gestational exposure to ECs in biosolids increases steroids, reactive oxygen metabolites and disrupts cytokines in maternal circulation, likely contributors to the aberrant phenotypic outcomes seen in offspring of BTP sheep - a translationally relevant precocial model.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - L Zeng
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - S Pennathur
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - R Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - K D Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - R Auchus
- Departments of Pharmacology & Internal medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Bhaumik S, Lockett J, Cuffe J, Clifton VL. Glucocorticoids and Their Receptor Isoforms: Roles in Female Reproduction, Pregnancy, and Foetal Development. BIOLOGY 2023; 12:1104. [PMID: 37626990 PMCID: PMC10452123 DOI: 10.3390/biology12081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Alterations in the hypothalamic-pituitary-adrenal (HPA) axis and associated changes in circulating levels of glucocorticoids are integral to an organism's response to stressful stimuli. Glucocorticoids acting via glucocorticoid receptors (GRs) play a role in fertility, reproduction, placental function, and foetal development. GRs are ubiquitously expressed throughout the female reproductive system and regulate normal reproductive function. Stress-induced glucocorticoids have been shown to inhibit reproduction and affect female gonadal function by suppressing the hypothalamic-pituitary-gonadal (HPG) axis at each level. Furthermore, during pregnancy, a mother's exposure to prenatal stress or external glucocorticoids can result in long-lasting alterations to the foetal HPA and neuroendocrine function. Several GR isoforms generated via alternative splicing or translation initiation from the GR gene have been identified in the mammalian ovary and uterus. The GR isoforms identified include the splice variants, GRα and GRβ, and GRγ and GR-P. Glucocorticoids can exert both stimulatory and inhibitory effects and both pro- and anti-inflammatory functions in the ovary, in vitro. In the placenta, thirteen GR isoforms have been identified in humans, guinea pigs, sheep, rats, and mice, indicating they are conserved across species and may be important in mediating a differential response to stress. Distinctive responses to glucocorticoids, differential birth outcomes in pregnancy complications, and sex-based variations in the response to stress could all potentially be dependent on a particular GR expression pattern. This comprehensive review provides an overview of the structure and function of the GR in relation to female fertility and reproduction and discusses the changes in the GR and glucocorticoid signalling during pregnancy. To generate this overview, an extensive non-systematic literature search was conducted across multiple databases, including PubMed, Web of Science, and Google Scholar, with a focus on original research articles, meta-analyses, and previous review papers addressing the subject. This review integrates the current understanding of GR variants and their roles in glucocorticoid signalling, reproduction, placental function, and foetal growth.
Collapse
Affiliation(s)
- Sreeparna Bhaumik
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
| | - Jack Lockett
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Brisbane 4102, Australia
| | - James Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane 4067, Australia;
| | - Vicki L. Clifton
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
| |
Collapse
|
15
|
Amoroso F, Ibello E, Saracino F, Cermola F, Ponticelli G, Scalera E, Ricci F, Villetti G, Cobellis G, Minchiotti G, Patriarca EJ, De Cesare D, D'Aniello C. Budesonide Analogues Preserve Stem Cell Pluripotency and Delay 3D Gastruloid Development. Pharmaceutics 2023; 15:1897. [PMID: 37514083 PMCID: PMC10383393 DOI: 10.3390/pharmaceutics15071897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Small molecules that can modulate or stabilize cell-cell interactions are valuable tools for investigating the impact of collective cell behavior on various biological processes such as development/morphogenesis, tissue regeneration and cancer progression. Recently, we showed that budesonide, a glucocorticoid widely used as an anti-asthmatic drug, is a potent regulator of stem cell pluripotency. Here we tested the effect of different budesonide derivatives and identified CHD-030498 as a more effective analogue of budesonide. CHD-030498 was able to prevent stem cell pluripotency exit in different cell-based models, including embryonic stem-to-mesenchymal transition, spontaneous differentiation and 3D gastruloid development, and at lower doses compared to budesonide.
Collapse
Affiliation(s)
- Filomena Amoroso
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Eduardo Ibello
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Federica Saracino
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Federica Cermola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Giovanna Ponticelli
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Enrica Scalera
- Experimental Pharmacology & Translational Science Department, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Francesca Ricci
- Experimental Pharmacology & Translational Science Department, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Gino Villetti
- Experimental Pharmacology & Translational Science Department, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Eduardo Jorge Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Dario De Cesare
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Cristina D'Aniello
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| |
Collapse
|
16
|
Deploey N, Van Moortel L, Rogatsky I, Peelman F, De Bosscher K. The Biologist's Guide to the Glucocorticoid Receptor's Structure. Cells 2023; 12:1636. [PMID: 37371105 PMCID: PMC10297449 DOI: 10.3390/cells12121636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The glucocorticoid receptor α (GRα) is a member of the nuclear receptor superfamily and functions as a glucocorticoid (GC)-responsive transcription factor. GR can halt inflammation and kill off cancer cells, thus explaining the widespread use of glucocorticoids in the clinic. However, side effects and therapy resistance limit GR's therapeutic potential, emphasizing the importance of resolving all of GR's context-specific action mechanisms. Fortunately, the understanding of GR structure, conformation, and stoichiometry in the different GR-controlled biological pathways is now gradually increasing. This information will be crucial to close knowledge gaps on GR function. In this review, we focus on the various domains and mechanisms of action of GR, all from a structural perspective.
Collapse
Affiliation(s)
- Nick Deploey
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Laura Van Moortel
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Z. Rosensweig Genomics Center, New York, NY 10021, USA;
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Frank Peelman
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| |
Collapse
|
17
|
Lehmann M, Haury K, Oster H, Astiz M. Circadian glucocorticoids throughout development. Front Neurosci 2023; 17:1165230. [PMID: 37179561 PMCID: PMC10166844 DOI: 10.3389/fnins.2023.1165230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Glucocorticoids (GCs) are essential drivers of mammalian tissue growth and maturation during one of the most critical developmental windows, the perinatal period. The developing circadian clock is shaped by maternal GCs. GC deficits, excess, or exposure at the wrong time of day leads to persisting effects later in life. During adulthood, GCs are one of the main hormonal outputs of the circadian system, peaking at the beginning of the active phase (i.e., the morning in humans and the evening in nocturnal rodents) and contributing to the coordination of complex functions such as energy metabolism and behavior, across the day. Our article discusses the current knowledge on the development of the circadian system with a focus on the role of GC rhythm. We explore the bidirectional interaction between GCs and clocks at the molecular and systemic levels, discuss the evidence of GC influence on the master clock in the suprachiasmatic nuclei (SCN) of the hypothalamus during development and in the adult system.
Collapse
Affiliation(s)
- Marianne Lehmann
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Katharina Haury
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Mariana Astiz
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
18
|
Long J, Huang Y, Wang G, Tang Z, Shan Y, Shen S, Ni X. Mitochondrial ROS Accumulation Contributes to Maternal Hypertension and Impaired Remodeling of Spiral Artery but Not IUGR in a Rat PE Model Caused by Maternal Glucocorticoid Exposure. Antioxidants (Basel) 2023; 12:antiox12050987. [PMID: 37237853 DOI: 10.3390/antiox12050987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Increased maternal glucocorticoid levels have been implicated as a risk factor for preeclampsia (PE) development. We found that pregnant rats exposed to dexamethasone (DEX) showed hallmarks of PE features, impaired spiral artery (SA) remodeling, and elevated circulatory levels of sFlt1, sEng IL-1β, and TNFα. Abnormal mitochondrial morphology and mitochondrial dysfunction in placentas occurred in DEX rats. Omics showed that a large spectrum of placental signaling pathways, including oxidative phosphorylation (OXPHOS), energy metabolism, inflammation, and insulin-like growth factor (IGF) system were affected in DEX rats. MitoTEMPO, a mitochondria-targeted antioxidant, alleviated maternal hypertension and renal damage, and improved SA remodeling, uteroplacental blood flow, and the placental vasculature network. It reversed several pathways, including OXPHOS and glutathione pathways. Moreover, DEX-induced impaired functions of human extravillous trophoblasts were associated with excess ROS caused by mitochondrial dysfunction. However, scavenging excess ROS did not improve intrauterine growth retardation (IUGR), and elevated circulatory sFlt1, sEng, IL-1β, and TNFα levels in DEX rats. Our data indicate that excess mitochondrial ROS contributes to trophoblast dysfunction, impaired SA remodeling, reduced uteroplacental blood flow, and maternal hypertension in the DEX-induced PE model, while increased sFlt1 and sEng levels and IUGR might be associated with inflammation and an impaired energy metabolism and IGF system.
Collapse
Affiliation(s)
- Jing Long
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Yan Huang
- Reproductive Medicine Center, General Hospital of Southern Theatre Command, Guangzhou 510010, China
| | - Gang Wang
- Department of Physiology, Naval Medical University, Shanghai 200433, China
| | - Zhengshan Tang
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Yali Shan
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Shiping Shen
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Xin Ni
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| |
Collapse
|
19
|
van’t Westeinde A, Karlsson L, Messina V, Wallensteen L, Brösamle M, Dal Maso G, Lazzerini A, Kristensen J, Kwast D, Tschaidse L, Auer MK, Nowotny HF, Persani L, Reisch N, Lajic S. An update on the long-term outcomes of prenatal dexamethasone treatment in congenital adrenal hyperplasia. Endocr Connect 2023; 12:e220400. [PMID: 36752813 PMCID: PMC10083667 DOI: 10.1530/ec-22-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
First-trimester prenatal treatment with glucocorticoid (GC) dexamethasone (DEX) in pregnancies at risk for classic congenital adrenal hyperplasia (CAH) is associated with ethical dilemmas. Though effective in reducing virilisation in girls with CAH, it entails exposure to high doses of GC in fetuses that do not benefit from the treatment. The current paper provides an update on the literature on outcomes of prenatal DEX treatment in CAH cases and unaffected subjects. Long-term follow-up research is still needed to determine treatment safety. In addition, advances in early prenatal diagnostics for CAH and sex-typing as well as studies assessing dosing effects of DEX may avoid unnecessary treatment and improve treatment safety.
Collapse
Affiliation(s)
- Annelies van’t Westeinde
- Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden
| | - Leif Karlsson
- Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden
| | - Valeria Messina
- Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Wallensteen
- Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden
| | - Manuela Brösamle
- European Patient Advocacy Group for Adrenal Diseases, European Reference Network on Rare Endocrine Conditions (Endo ERN), Endo ERN Coordinating Centre, Leiden, The Netherlands
| | - Giorgio Dal Maso
- ArfSAG (Associazione Refionale Famiglie Sindrome Adreno Genitale) c/o Unita Operativa di Pediatria, Azienda Ospedaliero Universitaria di Bologna, Policlinico S Orsala-Malpighi, Bologna, Italy
| | | | - Jette Kristensen
- ePAG & Chair of Danish Addison Patient Association, Aarhus, Denmark
| | - Diana Kwast
- Dutch Adrenal Society NVACP, Nijkerk, The Netherlands
| | - Lea Tschaidse
- Department of Endocrinology, Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - Matthias K Auer
- Department of Endocrinology, Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - Hanna F Nowotny
- Department of Endocrinology, Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Nicole Reisch
- Department of Endocrinology, Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - Svetlana Lajic
- Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatrics, Unit for Pediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Will KJ, Magoga J, De Conti ER, da Rosa Ulguim R, Mellagi APG, Bortolozzo FP. Relationship between dexamethasone treatment around parturition of primiparous sows and farrowing performance and newborn piglet traits. Theriogenology 2023; 198:256-263. [PMID: 36623428 DOI: 10.1016/j.theriogenology.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
This study evaluated the relationship between the steroidal anti-inflammatory action of dexamethasone treatment in primiparous sows and farrowing and piglet performance in the first 5 d of life. For this purpose, 234 gilts were selected on the day of farrowing and distributed among three treatments: CON - control, without dexamethasone treatment; DexaPF - treatment with dexamethasone (20 mg im) per female at the moment of copious colostrum secretion (pre-farrowing); and DexaFO - treatment with dexamethasone (20 mg im), per female when the first piglet was born (farrowing onset). All females and their litters were evaluated regarding farrowing duration, obstetric interventions, colostrum yield and intake, newborn piglet traits, and piglet performance until 5 d of age. A subsample of 79 females (∼26 per treatment) had their blood glucose concentration evaluated hourly shortly after the first piglet was born until the end of farrowing. Additionally, blood samples from 11 litters per treatment were collected for immunocrit evaluation. As a result, faster farrowing was observed in the DexaPF treatment (188.14 min; P = 0.002) compared with CON (229.99 min) and DexaFO (221.79 min). Additionally, lower obstetric intervention rates were observed in sows treated with dexamethasone (DexaPF = 7.69%; DexaFO = 5.13%) compared with CON (19.23%; P = 0.02). The sow's blood glucose concentration during farrowing was higher in DexaPF (90.55 mg/dL) than in CON (73.15 mg/dL) and DexaFO (80.06 mg/dL) treatments (P < 0.01). Besides the effect on farrowing duration, no differences among treatments were observed regarding piglets born alive and stillbirths, newborn piglet vitality, colostrum consumption, immunocrit, and colostrum yield (P ≥ 0.17). Regarding piglet traits, higher percentages of piglets born without meconium staining and lower percentages of piglets with meconium scores 2 and 3 were observed in the groups treated with dexamethasone (DexaPF and DexaFO; P < 0.01) compared with CON. However, piglet weight gain and survival rate until 5 d of age were not affected by the treatment (P ≥ 0.61). In summary, dexamethasone treatment before farrowing onset, in primiparous sows, had the potential to reduce the farrowing duration and the necessity of obstetric intervention, but it did not affect the main productive parameters such as the occurrence of stillbirths, piglet weight gain, and survival rates until 5 d of age.
Collapse
Affiliation(s)
- Kelly Jaqueline Will
- Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Setor de Suínos, Av. Bento Gonçalves, 9090, CEP 91540-000, Porto Alegre, RS, Brazil
| | - Joana Magoga
- Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Setor de Suínos, Av. Bento Gonçalves, 9090, CEP 91540-000, Porto Alegre, RS, Brazil
| | - Elisa Rigo De Conti
- Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Setor de Suínos, Av. Bento Gonçalves, 9090, CEP 91540-000, Porto Alegre, RS, Brazil
| | - Rafael da Rosa Ulguim
- Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Setor de Suínos, Av. Bento Gonçalves, 9090, CEP 91540-000, Porto Alegre, RS, Brazil
| | - Ana Paula Gonçalves Mellagi
- Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Setor de Suínos, Av. Bento Gonçalves, 9090, CEP 91540-000, Porto Alegre, RS, Brazil
| | - Fernando Pandolfo Bortolozzo
- Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Setor de Suínos, Av. Bento Gonçalves, 9090, CEP 91540-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Lu Z, Guo Y, Xu D, Xiao H, Dai Y, Liu K, Chen L, Wang H. Developmental toxicity and programming alterations of multiple organs in offspring induced by medication during pregnancy. Acta Pharm Sin B 2023; 13:460-477. [PMID: 36873163 PMCID: PMC9978644 DOI: 10.1016/j.apsb.2022.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Medication during pregnancy is widespread, but there are few reports on its fetal safety. Recent studies suggest that medication during pregnancy can affect fetal morphological and functional development through multiple pathways, multiple organs, and multiple targets. Its mechanisms involve direct ways such as oxidative stress, epigenetic modification, and metabolic activation, and it may also be indirectly caused by placental dysfunction. Further studies have found that medication during pregnancy may also indirectly lead to multi-organ developmental programming, functional homeostasis changes, and susceptibility to related diseases in offspring by inducing fetal intrauterine exposure to too high or too low levels of maternal-derived glucocorticoids. The organ developmental toxicity and programming alterations caused by medication during pregnancy may also have gender differences and multi-generational genetic effects mediated by abnormal epigenetic modification. Combined with the latest research results of our laboratory, this paper reviews the latest research progress on the developmental toxicity and functional programming alterations of multiple organs in offspring induced by medication during pregnancy, which can provide a theoretical and experimental basis for rational medication during pregnancy and effective prevention and treatment of drug-related multiple fetal-originated diseases.
Collapse
Affiliation(s)
- Zhengjie Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| |
Collapse
|
22
|
Osteen SJ, Yang Z, McKinzie AH, Teal E, Tepper RS, Rhoads E, Quinney SK, Haneline LS, Haas DM. Long-term childhood outcomes for babies born at term who were exposed to antenatal corticosteroids. Am J Obstet Gynecol 2023; 228:80.e1-80.e6. [PMID: 35872037 PMCID: PMC9790027 DOI: 10.1016/j.ajog.2022.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Antenatal corticosteroids improve neonatal outcomes when administered to infants who are at risk of preterm delivery. Many women who receive antenatal corticosteroids for threatened preterm labor proceed to deliver at term. Thus, long-term outcomes should be evaluated for term-born infants who were exposed to antenatal corticosteroids in utero. OBJECTIVE This study aimed to compare long-term outcomes between term-born children aged ≥5 years who were born to women who received antenatal corticosteroids for threatened preterm labor and children whose mothers were also evaluated for threatened preterm labor but did not receive antenatal corticosteroids. STUDY DESIGN We performed a retrospective cohort study of children born at ≥37 weeks' gestation, aged ≥5 years, and born to mothers diagnosed with threatened preterm labor during pregnancy. The primary exposure of interest was receiving antenatal corticosteroids. Among the collected childhood medical conditions, the primary outcome of interest was a diagnosis of asthma. RESULTS Of the 3556 term-born children aged ≥5 years, 629 (17.6%) were exposed to antenatal corticosteroids (all betamethasone), and 2927 (82.3%) were controls whose mothers were evaluated for threatened preterm birth but did not get antenatal corticosteroid injections. Women receiving antenatal corticosteroids had higher rates of maternal comorbidities (diabetes mellitus, hypertension; P≤.01). Antenatal corticosteroid-exposed children had no difference in diagnosis of asthma (12.6% vs 11.6%), attention deficit disorder, or developmental delay (P=.47, .54, and .10, respectively). Controlling for maternal and neonatal characteristics, asthma was not different between those exposed to antenatal corticosteroids and controls (odds ratio, 1.05; 95% confidence interval, 0.79-1.39). The odds of the child's weight percentile being <10% were increased for antenatal corticosteroid-exposed children born at term (odds ratio, 2.00; 95% confidence interval, 1.22-3.25). CONCLUSION Children born at term who were exposed to antenatal corticosteroids may have increased odds of being in a lower growth percentile than those not exposed. However, rates of diagnoses such as asthma, developmental delay, and attention deficit disorders were not different.
Collapse
Affiliation(s)
- Samantha J Osteen
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | - Ziyi Yang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN
| | - Alexandra H McKinzie
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | | | - Robert S Tepper
- Division of Pediatric Pulmonology, Indiana University School of Medicine, Indianapolis, IN
| | - Eli Rhoads
- Division of Pediatric Pulmonology, Indiana University School of Medicine, Indianapolis, IN
| | - Sara K Quinney
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | - Laura S Haneline
- Division of Neonatology, Indiana University School of Medicine, Indianapolis, IN
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN.
| |
Collapse
|
23
|
Khadka S, Druffner SR, Duncan BC, Busada JT. Glucocorticoid regulation of cancer development and progression. Front Endocrinol (Lausanne) 2023; 14:1161768. [PMID: 37143725 PMCID: PMC10151568 DOI: 10.3389/fendo.2023.1161768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Glucocorticoids are steroid hormones that regulate a host of cellular and physiological functions. However, they are arguably best known for their potent anti-inflammatory properties. Chronic inflammation is well-known to promote the development and progression of numerous types of cancer, and emerging evidence suggests that glucocorticoid regulation of inflammation affects cancer development. However, the timing, intensity, and duration of glucocorticoid signaling have important but often contradictory effects on cancer development. Moreover, glucocorticoids are widely used in parallel with radiation and chemotherapy to control pain, dyspnea, and swelling, but their use may compromise anti-tumor immunity. This review will explore the effects of glucocorticoids on cancer development and progression with particular focus on pro and anti-tumor immunity.
Collapse
|
24
|
Maternal Dexamethasone Exposure Induces Sex-Specific Changes in Histomorphology and Redox Homeostasis of Rat Placenta. Int J Mol Sci 2022; 24:ijms24010540. [PMID: 36613982 PMCID: PMC9820254 DOI: 10.3390/ijms24010540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
As the mediator between the mother and fetus, the placenta allows the most appropriate environment and optimal fetal growth. The placenta of one sex sometimes has a greater ability over the other to respond to and protect against possible maternal insults. Here, we characterized sex differences in the placenta’s morphological features and antioxidant status following dexamethasone (Dx) exposure. Pregnant rats were exposed to Dx or saline. The placenta was histologically and stereologically analyzed. The activity of the antioxidant enzymes, lipid peroxides (TBARS), superoxide anion and nitric oxide (NO) was measured. The decrease in placental zone volumes was more pronounced (p < 0.05) in female placentas. The volume density of PCNA-immunopositive nuclei was reduced (p < 0.05) in both sexes. The reduced (p < 0.05) antioxidant enzyme activities, enhanced TBARS and NO concentration indicate that Dx exposure triggered oxidative stress in the placenta of both fetal sexes, albeit stronger in the placenta of female fetuses. In conclusion, maternal Dx treatment reduced the size and volume of placental zones, altered placental histomorphology, decreased cell proliferation and triggered oxidative stress; however, the placentas of female fetuses exerted more significant responses to the treatment effects. The reduced placental size most probably reduced the transport of nutrients and oxygen, thus resulting in the reduced weight of fetuses, similar in both sexes. The lesser ability of the male placenta to detect and react to maternal exposure to environmental challenges may lead to long-standing health effects.
Collapse
|
25
|
Vetrovoy O, Stratilov V, Lomert E, Tyulkova E. Prenatal Hypoxia-Induced Adverse Reaction to Mild Stress is Associated with Depressive-Like Changes in the Glucocorticoid System of Rats. Neurochem Res 2022; 48:1455-1467. [PMID: 36495386 DOI: 10.1007/s11064-022-03837-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
The effects of prenatal hypoxia on neurodevelopment are predominantly associated with impaired maternal glucocorticoid stimulation of the fetus, which is "imprinted" in altered sensitivity of glucocorticoid reception in brain structures of offspring and can affect brain plasticity during lifespan. This study aimed to investigate response of the brain glucocorticoid system to mild stress (MS) in adult rats that survived prenatal severe hypoxia (PSH) on embryonic days 14-16. In response to MS the control (but not PSH) rats demonstrate increased corticosterone levels, a decrease in exploratory activity and increased anxiety. In the raphe nuclei of adult PSH rats the expression of glucocorticoid receptors (GR) is increased without changes in serotonin levels in comparison with the control. MS induces a decrease in GR expression accompanied by up-regulation of tryptophan hydroxylase 2 (tph2) and down-regulation of monoamine oxidase A (maoa) transcription in the raphe nuclei of both control and PSH groups. PSH also causes significant deviations in GR expression and GR-dependent transcription in the hippocampus, the medial prefrontal cortex, but not in the amygdala of rats. However, in response to MS, PSH rats demonstrate mild changes in their activity, while in control animals the MS-induced activity of the glucocorticoid system in these brain structures is similar to intact PSH animals. Impaired activity of the glucocorticoid system in the extrahypothalamic brain structures of PSH rats is accompanied by increase in the hypothalamic corticotropin-releasing hormone (CRH) levels in comparison with the control regardless of MS. Synthesis of proopiomelanocortin (POMC) and release of adrenocorticotropic hormone (ACTH) into the blood are decreased in response to MS in the pituitary of control rats, which demonstrates a negative glucocorticoid feedback mechanism. Meanwhile, in the pituitary of PSH rats reduced POMC levels were found regardless of MS. Thus, prenatal hypoxia causes depression-like patterns in the brain glucocorticoid system with adverse reaction to mild stressors.
Collapse
Affiliation(s)
- Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034, Saint-Petersburg, Russia.
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya Emb. 7-9, 199034, Saint- Petersburg, Russia.
| | - Viktor Stratilov
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034, Saint-Petersburg, Russia
| | - Ekaterina Lomert
- Group of Molecular Genetics of Tumor Cells, Institute of Cytology, Russian Academy of Sciences, Tihoretsky Pr. 4, 194064, Saint-Petersburg, Russia
| | - Ekaterina Tyulkova
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034, Saint-Petersburg, Russia
| |
Collapse
|
26
|
Jiménez-Panizo A, Alegre-Martí A, Tettey T, Fettweis G, Abella M, Antón R, Johnson T, Kim S, Schiltz R, Núñez-Barrios I, Font-Díaz J, Caelles C, Valledor A, Pérez P, Rojas A, Fernández-Recio J, Presman D, Hager G, Fuentes-Prior P, Estébanez-Perpiñá E. The multivalency of the glucocorticoid receptor ligand-binding domain explains its manifold physiological activities. Nucleic Acids Res 2022; 50:13063-13082. [PMID: 36464162 PMCID: PMC9825158 DOI: 10.1093/nar/gkac1119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. We identify four distinct homodimerization interfaces on the GR-LBD surface, which can associate into 20 topologically different homodimers. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution, quantitative fluorescence microscopy in living cells, and transcriptomic analyses. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work illustrates the unique flexibility of GR's LBD and suggests different dimeric conformations within cells. In addition, we unveil pathophysiologically relevant quaternary assemblies of the receptor with important implications for glucocorticoid action and drug design.
Collapse
Affiliation(s)
| | | | | | - Gregory Fettweis
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Montserrat Abella
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Rosa Antón
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Thomas A Johnson
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Sohyoung Kim
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - R Louis Schiltz
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Israel Núñez-Barrios
- Andalusian Center for Developmental Biology (CABD-CSIC). Campus Universitario Pablo de Olavide, 41013 Sevilla, Spain
| | - Joan Font-Díaz
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Annabel F Valledor
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010, Valencia, Spain
| | - Ana M Rojas
- Andalusian Center for Developmental Biology (CABD-CSIC). Campus Universitario Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Diego M Presman
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Gordon L Hager
- Correspondence may also be addressed to Gordon L. Hager. Tel: +1 240 760 6618;
| | | | | |
Collapse
|
27
|
Dai HR, Guo HL, Hu YH, Xu J, Ding XS, Cheng R, Chen F. Precision caffeine therapy for apnea of prematurity and circadian rhythms: New possibilities open up. Front Pharmacol 2022; 13:1053210. [PMID: 36532766 PMCID: PMC9753576 DOI: 10.3389/fphar.2022.1053210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2024] Open
Abstract
Caffeine is the globally consumed psychoactive substance and the drug of choice for the treatment of apnea of prematurity (AOP), but its therapeutic effects are highly variable among preterm infants. Many of the molecular underpinnings of the marked individual response have remained elusive yet. Interestingly, the significant association between Clock gene polymorphisms and the response to caffeine therapy offers an opportunity to advance our understanding of potential mechanistic pathways. In this review, we delineate the functions and mechanisms of human circadian rhythms. An up-to-date advance of the formation and ontogeny of human circadian rhythms during the perinatal period are concisely discussed. Specially, we summarize and discuss the characteristics of circadian rhythms in preterm infants. Second, we discuss the role of caffeine consumption on the circadian rhythms in animal models and human, especially in neonates and preterm infants. Finally, we postulate how circadian-based therapeutic initiatives could open new possibilities to promote precision caffeine therapy for the AOP management in preterm infants.
Collapse
Affiliation(s)
- Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Cheng
- Neonatal Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Wang J, Li X, Shen B, Wang S, He J, Wang Y. The therapeutic effect of glucocorticoids on type II respiratory failure, heart failure, and massive pericardial effusion caused by hypothyroidism: A case report. Front Pharmacol 2022; 13:900701. [DOI: 10.3389/fphar.2022.900701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hypothyroidism is a disease commonly observed in outpatient clinics but can occasionally cause severe cardiovascular and respiratory diseases requiring hospitalization.Case report: The patient reported herein suffered from heart failure, massive pericardial effusion, type II respiratory failure, and hypothyroidism. There was no related basic diseases of respiratory and cardiovascular system in the past. She failed to be weaned from invasive ventilation multiple times after routine treatment and was finally successfully weaned on day five of receiving the combination therapy of a high-dose methylprednisolone intravenous drip and levothyroxine oral administration.Conclusion: This case report indicates that hypothyroidism may be a cause of type II respiratory failure, heart failure, and massive pericardial effusion without cardiac tamponade and that a combination of levothyroxine and corticosteroids could effectively treat the disease. Clinical workers should consider the role of thyroid function in diagnosis, and the admission team should include this aspect in the monitoring scope. Moreover, the role of hormones in the treatment of patients with severe hypothyroidism should not be ignored, and timely treatment should be provided.
Collapse
|
29
|
Niu Z, Habre R, Chavez TA, Yang T, Grubbs BH, Eckel SP, Berhane K, Toledo-Corral CM, Johnston J, Dunton GF, Lerner D, Al-Marayati L, Lurmann F, Pavlovic N, Farzan SF, Bastain TM, Breton CV. Association Between Ambient Air Pollution and Birth Weight by Maternal Individual- and Neighborhood-Level Stressors. JAMA Netw Open 2022; 5:e2238174. [PMID: 36282504 PMCID: PMC9597392 DOI: 10.1001/jamanetworkopen.2022.38174] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
IMPORTANCE Fetal growth is precisely programmed and could be interrupted by environmental exposures during specific times during pregnancy. Insights on potential sensitive windows of air pollution exposure in association with birth weight are needed. OBJECTIVE To examine the association of sensitive windows of ambient air pollution exposure with birth weight and heterogeneity by individual- and neighborhood-level stressors. DESIGN, SETTING, AND PARTICIPANTS Data on a cohort of low-income Hispanic women with singleton term pregnancy were collected from 2015 to 2021 in the ongoing Maternal and Developmental Risks from Environmental and Social Stressors cohort in Los Angeles, California. EXPOSURES Daily ambient particulate matter with aerodynamic diameter less than 10 μm (PM10) and aerodynamic diameter less than 2.5 μm (PM2.5), nitrogen dioxide (NO2), and 8-hour maximum ozone were assigned to residential locations. Weekly averages from 12 weeks before conception to 36 gestational weeks were calculated. Individual-level psychological stressor was measured by the Perceived Stress Scale. Neighborhood-level stressor was measured by the CalEnviroScreen 4.0. MAIN OUTCOMES AND MEASURES Sex-specific birth weight for gestational age z score (BWZ). The associations between air pollutant and BWZ were estimated using distributed lag models to identify sensitive windows of exposure, adjusting for maternal and meteorologic factors. We stratified the analyses by Perceived Stress Scale and CalEnviroScreen 4.0. We converted the effect size estimation in BWZ to grams to facilitate interpretation. RESULTS The study included 628 pregnant women (mean [SD] age, 22.18 [5.92] years) and their newborns (mean [SD] BWZ, -0.08 [1.03]). On average, an interquartile range (IQR) increase in PM2.5 exposure during 4 to 22 gestational weeks was associated with a -9.5 g (95% CI, -10.4 to -8.6 g) change in birth weight. In stratified models, PM2.5 from 4 to 24 gestational weeks was associated with a -34.0 g (95% CI, -35.7 to -32.4 g) change in birth weight and PM10 from 9 to 14 gestational weeks was associated with a -39.4 g (95% CI, -45.4 to -33.4) change in birth weight in the subgroup with high Perceived Stress Scale and high CalEnviroScreen 4.0 scores. In this same group, NO2 from 9 to 14 gestational weeks was associated with a -40.4 g (95% CI, -47.4 to -33.3 g) change in birth weight and, from 33 to 36 gestational weeks, a -117.6 g (95% CI, -125.3 to -83.7 g) change in birth weight. Generally, there were no significant preconception windows for any air pollutants or ozone exposure with birth weight. CONCLUSIONS AND RELEVANCE In this cohort study, early pregnancy to midpregnancy exposures to PM2.5, PM10, and NO2 were associated with lower birth weight, particularly for mothers experiencing higher perceived stress and living in a neighborhood with a high level of stressors from environmental pollution.
Collapse
Affiliation(s)
- Zhongzheng Niu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Thomas A. Chavez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Tingyu Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Brendan H. Grubbs
- Department of Obstetrics and Gynecology, University of Southern California, Los Angeles
| | - Sandrah P. Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York
| | - Claudia M. Toledo-Corral
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
- Department of Health Sciences, California State University, Northridge
| | - Jill Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Genevieve F. Dunton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | | | - Laila Al-Marayati
- Department of Obstetrics and Gynecology, University of Southern California, Los Angeles
| | | | | | - Shohreh F. Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Theresa M. Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
30
|
Uyan Hendem D, Ocal FD, Oluklu D, Besimoglu B, Sinaci S, Atalay A, Menekse Beser D, Tanacan A, Sahin D. Evaluation of fetal middle adrenal artery Doppler and fetal adrenal gland size in pregnancies with fetal growth restriction: a case-control study. J Perinat Med 2022; 51:492-499. [PMID: 36040753 DOI: 10.1515/jpm-2022-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study aims to evaluate sonographic measurements of fetal adrenal gland size and middle adrenal artery Doppler in pregnancies with fetal growth restriction (FGR) and in a healthy control group. METHODS This prospective study included 107 singleton pregnancies with FGR between 24 and 42 weeks of gestation and 107 pregnancies with fetuses whose growth was appropriate for gestational age (AGA). Adrenal gland size and Doppler parameters of the adrenal artery were measured and the values and obstetric outcomes were compared between the study and control groups. RESULTS In the study group, the Z-scores of total adrenal width-length and height, fetal zone width-length and middle adrenal artery-peak systolic velocity (MAA-PSV) were significantly higher than those in the control group (p<0.05). The Z-scores of middle adrenal artery-pulsatility index (MAA-PI) were significantly lower in the study group than in the control group (p<0.05). The rate of neonatal intensive care unit admission in fetuses with high adrenal artery PI scores was higher in the FGR group (p<0.05). CONCLUSIONS In the present study, we observed decreased adrenal artery PI, increased adrenal blood flow, and increased fetal adrenal volume in fetuses diagnosed with fetal growth restriction, most likely in response to placental insufficiency and chronic hypoxia.
Collapse
Affiliation(s)
- Derya Uyan Hendem
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Fatma Doga Ocal
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Deniz Oluklu
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Berhan Besimoglu
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Selcan Sinaci
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Aysegul Atalay
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Dilek Menekse Beser
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Atakan Tanacan
- Department of Obstetrics and Gynecology, Division of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Dilek Sahin
- Department of Obstetrics and Gynecology, Division of Perinatology, University of Health Sciences, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
31
|
Yao YZ, Brennan FE, Carvajal CA, Vecchiola A, Tapia-Castillo A, Fardella CE, Fuller PJ. Cortisol resistance in the degu (Octodon degus). Steroids 2022; 184:109037. [PMID: 35429494 DOI: 10.1016/j.steroids.2022.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022]
Abstract
Cortisol resistance has also been reported in the degu, Octodon degus, a New World hystricomorph endemic to central Chile. The degu is used as a model for studies of stress and diurnal rhythms, parental behaviour and female masculinization. Another New World hystricomorph, the guinea pig, also exhibits glucocorticoid resistance, a result of amino acid sequences that differ from other mammalian glucocorticoid receptors (GR). Mutations in the ligand-binding domain of the human GR have been identified in familial or sporadic generalised cortisol resistance as have variants in the guinea pig. To address the possibility that the high levels of cortisol observed in the degu are a result of the same or similar sequence variations observed in the guinea pig GR, we have cloned, expressed and characterised the ligand-binding domain (LBD) of the degu GR. Somewhat unexpectedly, neither the amino acids nor the region involved in the resistance observed in the guinea pig GR are relevant in the degu GR. The relative resistance to cortisol observed in the degu GR is conferred by the substitution of two isoleucine residues, which are highly conserved in the GR across species, with a valine doublet. These amino acids lie in the region between helices 5 and 6 of the GR LBD, a region known to be important in determining the affinity of ligand-binding in steroid receptors.
Collapse
Affiliation(s)
- Yi-Zhou Yao
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and the Monash University, Department of Molecular Translational Science, Clayton, Victoria 3168, Australia
| | - Francine E Brennan
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and the Monash University, Department of Molecular Translational Science, Clayton, Victoria 3168, Australia
| | - Cristian A Carvajal
- Departamento de Endocrinologia, Facultad de Medicina, and Centro Traslacional de Endocrinología (CETREN UC) Pontificia, Universidad Catolica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Departamento de Endocrinologia, Facultad de Medicina, and Centro Traslacional de Endocrinología (CETREN UC) Pontificia, Universidad Catolica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Departamento de Endocrinologia, Facultad de Medicina, and Centro Traslacional de Endocrinología (CETREN UC) Pontificia, Universidad Catolica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Departamento de Endocrinologia, Facultad de Medicina, and Centro Traslacional de Endocrinología (CETREN UC) Pontificia, Universidad Catolica de Chile, Santiago, Chile
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and the Monash University, Department of Molecular Translational Science, Clayton, Victoria 3168, Australia.
| |
Collapse
|
32
|
Mitochondria Targeted Antioxidant Significantly Alleviates Preeclampsia Caused by 11β-HSD2 Dysfunction via OPA1 and MtDNA Maintenance. Antioxidants (Basel) 2022; 11:antiox11081505. [PMID: 36009224 PMCID: PMC9404992 DOI: 10.3390/antiox11081505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/03/2022] Open
Abstract
We have previously demonstrated that placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) dysfunction contributes to PE pathogenesis. We sought to elucidate molecular mechanisms underlying 11β-HSD2 dysfunction-induced PE and to seek potential therapeutic targets using a 11β-HSD2 dysfunction-induced PE-like rat model as well as cultured extravillous trophoblasts (EVTs) since PE begins with impaired function of EVTs. In 11β-HSD2 dysfunction-induced PE-like rat model, we revealed that placental mitochondrial dysfunction occurred, which was associated with mitDNA instability and impaired mitochondrial dynamics, such as decreased optic atrophy 1 (OPA1) expression. MitoTEMPO treatment significantly alleviated the hallmark of PE-like features and improved mitDNA stability and mitochondrial dynamics in the placentas of rat PE-like model. In cultured human EVTs, we found that 11β-HSD2 dysfunction led to mitochondrial dysfunction and disrupted mtDNA stability. MitoTEMPO treatment improved impaired invasion and migration induced by 11β-HSD2 dysfunction in cultured EVTs. Further, we revealed that OPA1 was one of the key factors that mediated 11β-HSD2 dysfunction-induced excess ROS production, mitochondrial dysfunction and mtDNA reduction. Our data indicates that 11β-HSD2 dysfunction causes mitochondrial dysfunctions, which impairs trophoblast function and subsequently results in PE development. Our study immediately highlights that excess ROS is a potential therapeutic target for PE.
Collapse
|
33
|
Fowden AL, Vaughan OR, Murray AJ, Forhead AJ. Metabolic Consequences of Glucocorticoid Exposure before Birth. Nutrients 2022; 14:nu14112304. [PMID: 35684104 PMCID: PMC9182938 DOI: 10.3390/nu14112304] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids have an important role in development of the metabolic phenotype in utero. They act as environmental and maturational signals in adapting feto-placental metabolism to maximize the chances of survival both before and at birth. They influence placental nutrient handling and fetal metabolic processes to support fetal growth, fuel storage and energy production with respect to nutrient availability. More specifically, they regulate the transport, utilization and production of a range of nutrients by the feto-placental tissues that enables greater metabolic flexibility in utero while minimizing any further drain on maternal resources during periods of stress. Near term, the natural rise in fetal glucocorticoid concentrations also stimulates key metabolic adaptations that prepare tissues for the new energy demanding functions after birth. Glucocorticoids, therefore, have a central role in the metabolic communication between the mother, placenta and fetus that optimizes offspring metabolic phenotype for survival to reproductive age. This review discusses the effects of maternal and fetal glucocorticoids on the supply and utilization of nutrients by the feto-placental tissues with particular emphasis on studies using quantitative methods to assess metabolism in rodents and sheep in vivo during late pregnancy. It considers the routes of glucocorticoid overexposure in utero, including experimental administration of synthetic glucocorticoids, and the mechanisms by which these hormones control feto-placental metabolism at the molecular, cellular and systems levels. It also briefly examines the consequences of intrauterine glucocorticoid overexposure for postnatal metabolic health and the generational inheritance of metabolic phenotype.
Collapse
Affiliation(s)
- Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
- Correspondence:
| | - Owen R. Vaughan
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK;
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
34
|
Saimaiti A, Zhou DD, Li J, Xiong RG, Gan RY, Huang SY, Shang A, Zhao CN, Li HY, Li HB. Dietary sources, health benefits, and risks of caffeine. Crit Rev Food Sci Nutr 2022; 63:9648-9666. [PMID: 35574653 DOI: 10.1080/10408398.2022.2074362] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dietary intake of caffeine has significantly increased in recent years, and beneficial and harmful effects of caffeine have been extensively studied. This paper reviews antioxidant and anti-inflammatory activities of caffeine as well as its protective effects on cardiovascular diseases, obesity, diabetes mellitus, cancers, and neurodegenerative and liver diseases. In addition, we summarize the side effects of long-term or excessive caffeine consumption on sleep, migraine, intraocular pressure, pregnant women, children, and adolescents. The health benefits of caffeine depend on the amount of caffeine intake and the physical condition of consumers. Moderate intake of caffeine helps to prevent and modulate several diseases. However, the long-term or over-consumption of caffeine can lead to addiction, insomnia, migraine, and other side effects. In addition, children, adolescents, pregnant women, and people who are sensitive to caffeine should be recommended to restrict/reduce their intake to avoid potential adverse effects.
Collapse
Affiliation(s)
- Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Li
- School of Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Zhao X, Li B, Xiong Y, Xia Z, Hu S, Sun Z, Wang H, Ao Y. Prenatal caffeine exposure induced renal developmental toxicity and transgenerational effect in rat offspring. Food Chem Toxicol 2022; 165:113082. [PMID: 35537649 DOI: 10.1016/j.fct.2022.113082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/24/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Epidemiological studies revealed that prenatal caffeine exposure (PCE) is associated with adverse gestational outcomes and susceptibility to chronic diseases in offspring, yet the effects of PCE on glomerulosclerosis susceptibility in adult female offspring and its intergenerational transmission remain to be further investigated. Here, we found that PCE caused fetal kidney dysplasia and glomerulosclerosis of the female offspring. Besides, the kidney of F1 offspring in PCE group exhibited the "low expressional programming of AT2R" and "GC-IGF1 programming" alteration. Intergenerational genetic studies revealed that the renal defect and GC-IGF1 programming alteration was inherited to F2 adult female offspring derived from the female germ line, but Low expression of AT2R did not extend to the F2 female offspring. Taken together, PCE caused renal dysplasia and adult glomerulosclerosis in the F1 female offspring, which might be mediated by renal AT2R low expressional programming and GC-IGF1 axis alteration. Furthermore, PCE induced transgenerational toxicity on kidney, and GC-IGF1 programming alteration might be the potential molecular mechanism. This study provided experimental evidence for the mechanism study of the intergenerational inheritance of kidney developmental toxicity caused by PCE.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ying Xiong
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Zhiping Xia
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Shuangshuang Hu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Zhaoxia Sun
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China.
| |
Collapse
|
36
|
Takahashi T, Fee EL, Takahashi Y, Saito M, Yaegashi N, Usuda H, Furfaro L, Carter S, Schmidt AF, Newnham JP, Jobe AH, Kemp MW. Betamethasone phosphate reduces the efficacy of antenatal steroid therapy and is associated with lower birthweights when administered to pregnant sheep in combination with betamethasone acetate. Am J Obstet Gynecol 2022; 226:564.e1-564.e14. [PMID: 34626553 DOI: 10.1016/j.ajog.2021.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Antenatal corticosteroid therapy is a standard of care for women at imminent risk of preterm labor. However, the optimal (maximum benefit and minimal risk of side effects) antenatal corticosteroid dosing strategy remains unclear. Although conveying overall benefit when given to the right patient at the right time, antenatal corticosteroid treatment efficacy is highly variable and is not risk-free. Building on earlier findings, we hypothesized that when administered in combination with slow-release betamethasone acetate, betamethasone phosphate and the high maternal-fetal betamethasone concentrations it generates are redundant for fetal lung maturation. OBJECTIVE Using an established sheep model of prematurity and postnatal ventilation of the preterm lamb, we aimed to compare the pharmacodynamic effects of low-dosage treatment with betamethasone acetate only against a standard dosage of betamethasone phosphate and betamethasone acetate as recommended by the American College of Obstetricians and Gynecologists for women at risk of imminent preterm delivery between 24 0/7 and 35 6/7 weeks' gestation. STUDY DESIGN Ewes carrying a single fetus at 122±1 days' gestation (term=150 days) were randomized to receive either (1) maternal intramuscular injections of sterile saline (the saline negative control group, n=12), (2) 2 maternal intramuscular injections of 0.25 mg/kg betamethasone phosphate+betamethasone acetate administered at 24-hour dosing intervals (the betamethasone phosphate+betamethasone acetate group, n=12); or (3) 2 maternal intramuscular injections of 0.125 mg/kg betamethasone acetate administered at 24-hour dosing intervals (the betamethasone acetate group, n=11). The fetuses were surgically delivered 48 hours after treatment initiation and ventilated for 30 minutes to determine functional lung maturation. The fetuses were euthanized after ventilation, and the lungs were collected for analysis using quantitative polymerase chain reaction and Western blot assays. Fetal plasma adrenocorticotropic hormone levels were measured in the cord blood samples taken at delivery. RESULTS Preterm lambs were defined as either antenatal corticosteroid treatment responders or nonresponders using an arbitrary cutoff, being a PaCO2 level at 30 minutes of ventilation being more extreme than 2 standard deviations from the mean value of the normally distributed saline control group values. Compared with the animals in the saline control group, the animals in the antenatal corticosteroid treatment groups showed significantly improved lung physiological responses (blood gas and ventilation data) and had a biochemical signature (messenger RNA and surfactant protein assays) consistent with functional maturation. However, the betamethasone acetate group had a significantly higher treatment response rate than the betamethasone phosphate+betamethasone acetate group. These physiological results were strongly correlated to the amount of surfactant protein A. Birthweight was lower in the betamethasone phosphate+betamethasone acetate group and the fetal hypothalamic-pituitary-adrenal axis was suppressed to a greater extent in the betamethasone phosphate+betamethasone acetate group. CONCLUSION Low-dosage antenatal corticosteroid therapy solely employing betamethasone acetate was sufficient for fetal lung maturation. The elevated maternal-fetal betamethasone concentrations associated with the coadministration of betamethasone phosphate did not in addition improve lung maturation but were associated with greater fetal hypothalamic-pituitary-adrenal axis suppression, a lower antenatal corticosteroid treatment response rate, and lower birthweight-outcomes not desirable in a clinical setting. These data warranted a clinical investigation of sustained low-dosage antenatal corticosteroid treatments that avoid high maternal-fetal betamethasone exposures.
Collapse
Affiliation(s)
- Tsukasa Takahashi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan.
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Yuki Takahashi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Nobuo Yaegashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Haruo Usuda
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Lucy Furfaro
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Sean Carter
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Augusto F Schmidt
- Perinatal Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH; Miller School of Medicine, University of Miami, Miami, FL
| | - John P Newnham
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Alan H Jobe
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Perinatal Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH
| | - Matthew W Kemp
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan; School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
37
|
Wang J, Chen F, Zhu S, Li X, Shi W, Dai Z, Hao L, Wang X. Adverse effects of prenatal dexamethasone exposure on fetal development. J Reprod Immunol 2022; 151:103619. [DOI: 10.1016/j.jri.2022.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/20/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
|
38
|
Ge C, Xu D, Yu P, Fang M, Guo J, Xu D, Qiao Y, Chen S, Zhang Y, Wang H. P-gp expression inhibition mediates placental glucocorticoid barrier opening and fetal weight loss. BMC Med 2021; 19:311. [PMID: 34876109 PMCID: PMC8653610 DOI: 10.1186/s12916-021-02173-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prenatal adverse environments can cause fetal intrauterine growth retardation (IUGR) and higher susceptibility to multiple diseases after birth, related to multi-organ development programming changes mediated by intrauterine overexposure to maternal glucocorticoids. As a glucocorticoid barrier, P-glycoprotein (P-gp) is highly expressed in placental syncytiotrophoblasts; however, the effect of P-gp on the occurrence of IUGR remains unclear. METHODS Human placenta and fetal cord blood samples of IUGR fetuses were collected, and the related indexes were detected. Pregnant Wistar rats were administered with 30 mg/kg·d (low dose) and 120 mg/kg·d (high dose) caffeine from gestational day (GD) 9 to 20 to construct the rat IUGR model. Pregnant mice were administered with caffeine (120 mg/kg·d) separately or combined with sodium ferulate (50 mg/kg·d) from gestational day GD 9 to 18 to confirm the intervention target on fetal weight loss caused by prenatal caffeine exposure (PCE). The fetal serum/placental corticosterone level, placental P-gp expression, and related indicator changes were analyzed. In vitro, primary human trophoblasts and BeWo cells were used to confirm the effect of caffeine on P-gp and its mechanism. RESULTS The placental P-gp expression was significantly reduced, but the umbilical cord blood cortisol level was increased in clinical samples of the IUGR neonates, which were positively and negatively correlated with the neonatal birth weight, respectively. Meanwhile, in the PCE-induced IUGR rat model, the placental P-gp expression of IUGR rats was decreased while the corticosterone levels of the placentas/fetal blood were increased, which were positively and negatively correlated with the decreased placental/fetal weights, respectively. Combined with the PCE-induced IUGR rat model, in vitro caffeine-treated placental trophoblasts, we confirmed that caffeine decreased the histone acetylation and expression of P-gp via RYR/JNK/YB-1/P300 pathway, which inhibited placental and fetal development. We further demonstrated that P-gp inducer sodium ferulate could reverse the inhibitory effect of caffeine on the fetal body/placental weight. Finally, clinical specimens and other animal models of IUGR also confirmed that the JNK/YB-1 pathway is a co-regulatory mechanism of P-gp expression inhibition, among which the expression of YB-1 is the most stable. Therefore, we proposed that YB-1 could be used as the potential early warning target for the opening of the placental glucocorticoid barrier, the occurrence of IUGR, and the susceptibility of a variety of diseases. CONCLUSIONS This study, for the first time, clarified the critical role and epigenetic regulation mechanism of P-gp in mediating the opening mechanism of the placental glucocorticoid barrier, providing a novel idea for exploring the early warning, prevention, and treatment strategies of IUGR.
Collapse
Affiliation(s)
- Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Juanjuan Guo
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dan Xu
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuan Qiao
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Sijia Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
39
|
Liu Y, Ding Q, Guo W. Life Course Impact of Glucocorticoids During Pregnancy on Muscle Development and Function. FRONTIERS IN ANIMAL SCIENCE 2021; 2. [PMID: 36325303 PMCID: PMC9624510 DOI: 10.3389/fanim.2021.788930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal stress, such as maternal obesity, can induce severe gestational disease and hormonal disorder which may disrupt fetal organ maturation and further cause endangered early or future health in offspring. During fetal development, glucocorticoids are essential for the maturation of organ systems. For instance, in clinical applications, glucocorticoids are commonly utilized to pregnant women with the risk of preterm delivery to reduce mortality of the newborns. However, exposure of excessive glucocorticoids at embryonic and fetal developmental stages can cause diseases such as cardiovascular disease and muscle atrophy in adulthood. Effects of excessive glucocorticoids on human health are well-recognized and extensively studied. Nonetheless, effects of these hormones on farm animal growth and development, particularly on prenatal muscle development, and postnatal growth, did not attract much attention until the last decade. Here, we provided a short review of the recent progress relating to the effect of glucocorticoids on prenatal skeletal muscle development and postnatal muscle growth as well as heart muscle development and cardiovascular disease during life course.
Collapse
|
40
|
Liu L, Yao L, Dong M, Liu T, Lai W, Yin X, Zhou S, Lv L, Li L, Wang J, Jiang X, Parveen B, Chen J, Sun X. Maternal urinary cadmium concentrations in early pregnancy in relation to prenatal and postpartum size of offspring. J Trace Elem Med Biol 2021; 68:126823. [PMID: 34293648 DOI: 10.1016/j.jtemb.2021.126823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/21/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The impacts of environmental cadmium (Cd) exposure on birth size parameters including weight, length and head circumference (HC) have been reported in multiple studies. However, little remains known of the impacts of maternal Cd exposure during pregnancy on size during in utero development and during early childhood. The aim of this study was to comprehensively investigate impacts of maternal Cd exposure during pregnancy on the size of offspring in utero (from 24 weeks pregnancy) until six months of age. METHODS Pregnant mothers were recruited as part of an ongoing prospective birth cohort study based in Guangdong, China. Maternal urine samples were collected in the first and third trimesters of pregnancy, in which Cd concentrations were measured by inductively couple plasma mass spectrometry (ICPMS). In utero size indicators at 24 and 32 week of gestation, including biparietal diameter (BPD), abdominal circumference (AC), femur length (FL) and HC were derived from ultrasound examinations. Anthropometric measures of weight, height and HC at birth and one, three and six months of age were also collected. Associations of size measures at the various time points with maternal urinary Cd concentrations were assessed using linear regression models. RESULTS The median urinary Cd concentration was 1.00 and 0.98 μg/g creatinine in the first and third trimesters respectively. In univariate analysis, increased maternal Cd levels in the first trimester were associated with decreased HC (-0.17 cm/ug/g urinary Cd) at birth, and the association was particularly pronounced among males (-0.30 cm/ug/g urinary Cd). First trimester Cd exposure was also found to be significantly associated with decreased infant weight at three and six months of age among girls (-101 g/ug/g and -97 g/ug/g urinary Cd, respectively). Associations of similar magnitude were observed after adjustment for various maternal factors. No significant associations were observed with infant size measures or with measures of Cd in the third trimester. CONCLUSIONS Our detailed study suggests that the first trimester is particularly critical window of susceptibility to sex-specific effects of Cd on size parameters at birth, with some effects persisting to six months of age. These compelling sex-dependent effects on HC and body weight warrant future studies examining longer-term health effects of pregnancy-related Cd exposures.
Collapse
Affiliation(s)
- Lili Liu
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Lena Yao
- Fred Hutchison Cancer Research Center, Seattle, USA
| | - Ming Dong
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Ting Liu
- Huzhou Center for Disease Control and Prevention, Zhenjiang, China
| | - Weina Lai
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xiao Yin
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Shanyu Zhou
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Lijuan Lv
- Guangdong Maternal and Child Hospital, Guangzhou, China
| | - Lifang Li
- Nanhai Maternity and Child Healthcare Hospital of Foshan, Foshan, China
| | - Jin Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao Jiang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bhatti Parveen
- Fred Hutchison Cancer Research Center, Seattle, USA; Cancer Control Research, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Jiabin Chen
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China.
| | - Xin Sun
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
41
|
Astiz M, Delgado-García LM, López-Mascaraque L. Astrocytes as essential time-keepers of the central pacemaker. Glia 2021; 70:808-819. [PMID: 34816453 DOI: 10.1002/glia.24121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Since the early observations made by Santiago Ramon y Cajal more than a century ago till now, astrocytes have gradually gained protagonism as essential partners of neurons in building brain circuits that regulate complex behavior. In mammals, processes such as sleep-wake cycle, locomotor activity, cognition and memory consolidation, homeostatic and hedonic appetite and stress response (among others), are synchronized in 24-h rhythms by the circadian system. In such a way, physiology efficiently anticipates and adapts to daily recurring changes in the environment. The hypothalamic suprachiasmatic nucleus (SCN) is considered the central pacemaker, it has been traditionally described as a nucleus of around 10,000 neurons nearly all GABAergic able to be entrained by light and to convey time information through multiple neuronal and hormonal pathways. Only recently, this neuro-centered view was challenged by breakthrough discoveries implicating astrocytes as essential time-keepers. In the present review, we will describe the current view on the SCN circuit and discuss whether astrocytic functions described in other brain regions and state-of-the-art experimental approaches, could help explaining better those well- and not so well-known features of the central pacemaker.
Collapse
Affiliation(s)
- Mariana Astiz
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | | | | |
Collapse
|
42
|
Braren SH, Perry RE, Ribner A, Brandes-Aitken A, Brito N, Blair C. Prenatal mother-father cortisol linkage predicts infant executive functions at 24 months. Dev Psychobiol 2021; 63:e22151. [PMID: 34674244 DOI: 10.1002/dev.22151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023]
Abstract
The present study investigated associations between prenatal mother-father cortisol linkage and infant executive functions. Data come from an international sample (N = 358) of predominantly white and middle- to upper-class first-time parents. During late pregnancy, parents collected diurnal salivary cortisol samples and reported on levels of psychological stress. At 24 months, children completed a battery of executive function tasks. Parent cortisol linkage was operationalized as the time-dependent, within-dyad association between maternal and paternal diurnal cortisol. Results indicated that prenatal linkage was positively related to infant executive functions, suggesting that stronger mother-father cortisol linkage was associated with higher executive function scores. Additionally, this relation was moderated by paternal average cortisol levels such that executive function scores were lower when fathers had higher average cortisol levels and linkage was weak. This association suggests that elevated paternal cortisol amplifies the negative relation between lower cortisol linkage and lower infant executive function scores. Importantly, these findings were observed while controlling for observational measures of caregiving and self-report measures of psychosocial functioning and infant social-emotional behavior. These results suggest that prenatal linkage of mother's and father's stress physiology plays a potentially important part in programming and regulating infant neurocognitive development.
Collapse
Affiliation(s)
| | | | - Andrew Ribner
- Department of Applied Psychology, New York University, USA
| | | | - Natalie Brito
- Department of Applied Psychology, New York University, USA
| | - Clancy Blair
- Department of Applied Psychology, New York University, USA
| | -
- Department of Applied Psychology, New York University, USA.,Centre for Family Research, University of Cambridge, UK.,Faculty of Social Sciences, University of Leiden, The Netherlands
| |
Collapse
|
43
|
He Z, Zhang J, Chen G, Cao J, Chen Y, Ai C, Wang H. H19/let-7 axis mediates caffeine exposure during pregnancy induced adrenal dysfunction and its multi-generation inheritance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148440. [PMID: 34465058 DOI: 10.1016/j.scitotenv.2021.148440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Previously, we systemically confirmed that prenatal caffeine exposure (PCE) could cause intrauterine growth retardation (IUGR) and adrenal steroid synthesis dysfunction in offspring rats. However, the multi-generation inheritance of adrenal dysfunction and its epigenetic mechanism has not been reported. In this study, the PCE rat model was established, part of the pregnant rats were executed on gestational day 20, while the others were delivered normally and the fetal rats were reared into adulthood. The PCE female rats of filial generation 1 (F1) were mated with wild males to produce F2 offspring, and the same way to produce F3 offspring. All the adult female rats of three generations were sacrificed for the related detection. Results showed that PCE could decrease fetal weight, increase IUGR rate, and elevate serum corticosterone level. Meanwhile, the expression of fetal adrenal GR, DNMT3a/3b, miRNA let-7c increased while those of CTCF, H19, and StAR decreased, and the total methylation rate of the H19 promoter region was enhanced. We used SW-13 cells to clarify the molecular mechanism and found that cortisol-induced in vitro changes of these indexes were consistent with those in vivo. We confirmed that high level of cortisol through activating GR, on the one hand, promoted let-7 expression and inhibited StAR expression; on the other hand, caused high methylation and low expression of H19 by down-regulating CTCF and up-regulating DNMT3a/3b, then enhanced let-7 inhibitory effect on StAR by "molecular sponge" effect. Finally, in vivo experiments showed that the adrenal steroid synthesis function and H19/let-7 axis presented the glucocorticoid-dependent changes in the adult female F1, F2, and F3. In conclusion, PCE can cause female adrenal dysfunction with matrilineal multi-generation inheritance, which is related to the programming alteration of the H19/let-7 axis. This study provides a novel perspective to explain the multi-generation inheritance of fetal-originated disease in IUGR offspring.
Collapse
Affiliation(s)
- Zheng He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinzhi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jiangang Cao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Can Ai
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China.
| |
Collapse
|
44
|
Grilo LF, Tocantins C, Diniz MS, Gomes RM, Oliveira PJ, Matafome P, Pereira SP. Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond. Eur J Clin Invest 2021; 51:e13625. [PMID: 34060076 DOI: 10.1111/eci.13625] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
Embryonic and foetal development are critical periods of development in which several environmental cues determine health and disease in adulthood. Maternal conditions and an unfavourable intrauterine environment impact foetal development and may programme the offspring for increased predisposition to metabolic diseases and other chronic pathologic conditions throughout adult life. Previously, non-communicable chronic diseases were only associated with genetics and lifestyle. Now the origins of non-communicable chronic diseases are associated with early-life adaptations that produce long-term dysfunction. Early-life environment sets the long-term health and disease risk and can span through multiple generations. Recent research in developmental programming aims at identifying the molecular mechanisms responsible for developmental programming outcomes that impact cellular physiology and trigger adulthood disease. The identification of new therapeutic targets can improve offspring's health management and prevent or overcome adverse consequences of foetal programming. This review summarizes recent biomedical discoveries in the Developmental Origins of Health and Disease (DOHaD) hypothesis and highlight possible developmental programming mechanisms, including prenatal structural defects, metabolic (mitochondrial dysfunction, oxidative stress, protein modification), epigenetic and glucocorticoid signalling-related mechanisms suggesting molecular clues for the causes and consequences of programming of increased susceptibility of offspring to metabolic disease after birth. Identifying mechanisms involved in DOHaD can contribute to early interventions in pregnancy or early childhood, to re-set the metabolic homeostasis and break the chain of subsequent events that could lead to the development of disease.
Collapse
Affiliation(s)
- Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Carolina Tocantins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo Mello Gomes
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
45
|
Ponticelli C, Zaina B, Moroni G. Planned Pregnancy in Kidney Transplantation. A Calculated Risk. J Pers Med 2021; 11:jpm11100956. [PMID: 34683097 PMCID: PMC8537874 DOI: 10.3390/jpm11100956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Pregnancy is not contraindicated in kidney transplant women but entails risks of maternal and fetal complications. Three main conditions can influence the outcome of pregnancy in transplant women: preconception counseling, maternal medical management, and correct use of drugs to prevent fetal toxicity. Preconception counseling is needed to prevent the risks of an unplanned untimely pregnancy. Pregnancy should be planned ≥2 years after transplantation. The candidate for pregnancy should have normal blood pressure, stable serum creatinine <1.5 mg/dL, and proteinuria <500 mg/24 h. Maternal medical management is critical for early detection and treatment of complications such as hypertension, preeclampsia, thrombotic microangiopathy, graft dysfunction, gestational diabetes, and infection. These adverse outcomes are strongly related to the degree of kidney dysfunction. A major issue is represented by the potential fetotoxicity of drugs. Moderate doses of glucocorticoids, azathioprine, and mTOR inhibitors are relatively safe. Calcineurin inhibitors (CNIs) are not associated with teratogenicity but may increase the risk of low birth weight. Rituximab and eculizumab should be used in pregnancy only if the benefits outweigh the risk for the fetus. Renin-angiotensin system inhibitors, mycophenolate, bortezomib, and cyclophosphamide can lead to fetal toxicity and should not be prescribed to pregnant women.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Nephrology, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence:
| | - Barbara Zaina
- Department of Obstetrics and Gynecology, IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Gabriella Moroni
- Department of Biomedical Sciences, IRCCS Humanitas Research Hospital, Humanitas University, 20122 Milan, Italy;
| |
Collapse
|
46
|
Citrate Synthase and OGDH as Potential Biomarkers of Atherosclerosis under Chronic Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9957908. [PMID: 34539976 PMCID: PMC8445721 DOI: 10.1155/2021/9957908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Background Pathological changes of the adrenal gland and the possible underlying molecular mechanisms are currently unclear in the case of atherosclerosis (AS) combined with chronic stress (CS). Methods New Zealand white rabbits were used to construct a CS and AS animal model. Proteomics and bioinformatics were employed to identify hub proteins in the adrenal gland related to CS and AS. Hub proteins were detected using immunohistochemistry, immunofluorescence assays, and Western blotting. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to analyze the expression of genes. In addition, a neural network model was constructed. The quantitative relationships were inferred by cubic spline interpolation. Enzymatic activity of mitochondrial citrate synthase and OGDH was detected by the enzymatic assay kit. Function of citrate synthase and OGDH with knockdown experiments in the adrenal cell lines was performed. Furthermore, target genes-TF-miRNA regulatory network was constructed. Coimmunoprecipitation (IP) assay and molecular docking study were used to detect the interaction between citrate synthase and OGDH. Results Two most significant hub proteins (citrate synthase and OGDH) that were related to CS and AS were identified in the adrenal gland using numerous bioinformatic methods. The hub proteins were mainly enriched in mitochondrial proton transport ATP synthase complex, ATPase activation, and the AMPK signaling pathway. Compared with the control group, the adrenal glands were larger and more disordered, irregular, and necrotic in the AS+CS group. The expression of citrate synthase and OGDH was higher in the AS+CS group than in the control group, both at the protein and mRNA levels (P < 0.05). There were strong correlations among the cross-sectional areas of adrenal glands, citrate synthase, and OGDH (P < 0.05) via Spearman's rho analysis, receiver operating characteristic curves, a neural network model, and cubic spline interpolation. Enzymatic activity of citrate synthase and OGDH increased under the situation of atherosclerosis and chronic stress. Through the CCK8 assay, the adrenal cell viability was downregulated significantly after the knockdown experiment of citrate synthase and OGDH. Target genes-TF-miRNA regulatory network presented the close interrelations among the predicted microRNA, citrate synthase and OGDH. After Coimmunoprecipitation (IP) assay, the result manifested that the citrate synthase and OGDH were coexpressed in the adrenal gland. The molecular docking study showed that the docking score of optimal complex conformation between citrate synthase and OGDH was -6.15 kcal/mol. Conclusion AS combined with CS plays a significant role on the hypothalamic–pituitary–adrenal (HPA) axis, promotes adrenomegaly, increases the release of glucocorticoid (GC), and might enhance ATP synthesis and energy metabolism in the body through citrate synthase and OGDH gene targets, providing a potential research direction for future related explorations into this mechanism.
Collapse
|
47
|
Genomic and Non-Genomic Actions of Glucocorticoids on Adipose Tissue Lipid Metabolism. Int J Mol Sci 2021; 22:ijms22168503. [PMID: 34445209 PMCID: PMC8395154 DOI: 10.3390/ijms22168503] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids (GCs) are hormones that aid the body under stress by regulating glucose and free fatty acids. GCs maintain energy homeostasis in multiple tissues, including those in the liver and skeletal muscle, white adipose tissue (WAT), and brown adipose tissue (BAT). WAT stores energy as triglycerides, while BAT uses fatty acids for heat generation. The multiple genomic and non-genomic pathways in GC signaling vary with exposure duration, location (adipose tissue depot), and species. Genomic effects occur directly through the cytosolic GC receptor (GR), regulating the expression of proteins related to lipid metabolism, such as ATGL and HSL. Non-genomic effects act through mechanisms often independent of the cytosolic GR and happen shortly after GC exposure. Studying the effects of GCs on adipose tissue breakdown and generation (lipolysis and adipogenesis) leads to insights for treatment of adipose-related diseases, such as obesity, coronary disease, and cancer, but has led to controversy among researchers, largely due to the complexity of the process. This paper reviews the recent literature on the genomic and non-genomic effects of GCs on WAT and BAT lipolysis and proposes research to address the many gaps in knowledge related to GC activity and its effects on disease.
Collapse
|
48
|
Stead SM, Bădescu I, Boonstra R. Of mammals and milk: how maternal stress affects nursing offspring. Mamm Rev 2021. [DOI: 10.1111/mam.12267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Samantha M. Stead
- Department of Anthropology University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| | - Iulia Bădescu
- Département d’Anthropologie Université de Montréal 3150 Rue Jean‐Brillant Montréal QCH3T 1N8Canada
| | - Rudy Boonstra
- Department of Biological Sciences University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| |
Collapse
|
49
|
Al Tanoury Z, Zimmerman JF, Rao J, Sieiro D, McNamara HM, Cherrier T, Rodríguez-delaRosa A, Hick-Colin A, Bousson F, Fugier-Schmucker C, Marchiano F, Habermann B, Chal J, Nesmith AP, Gapon S, Wagner E, Gupta VA, Bassel-Duby R, Olson EN, Cohen AE, Parker KK, Pourquié O. Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent stem cell-derived skeletal muscle in vitro. Proc Natl Acad Sci U S A 2021; 118:e2022960118. [PMID: 34260377 PMCID: PMC8285911 DOI: 10.1073/pnas.2022960118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating genetic disease leading to degeneration of skeletal muscles and premature death. How dystrophin absence leads to muscle wasting remains unclear. Here, we describe an optimized protocol to differentiate human induced pluripotent stem cells (iPSC) to a late myogenic stage. This allows us to recapitulate classical DMD phenotypes (mislocalization of proteins of the dystrophin-associated glycoprotein complex, increased fusion, myofiber branching, force contraction defects, and calcium hyperactivation) in isogenic DMD-mutant iPSC lines in vitro. Treatment of the myogenic cultures with prednisolone (the standard of care for DMD) can dramatically rescue force contraction, fusion, and branching defects in DMD iPSC lines. This argues that prednisolone acts directly on myofibers, challenging the largely prevalent view that its beneficial effects are caused by antiinflammatory properties. Our work introduces a human in vitro model to study the onset of DMD pathology and test novel therapeutic approaches.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67411 Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - John F Zimmerman
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134
| | - Jyoti Rao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Daniel Sieiro
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Harold M McNamara
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Thomas Cherrier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67411 Illkirch Graffenstaden, France
| | - Alejandra Rodríguez-delaRosa
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | | | - Fanny Bousson
- Anagenesis Biotechnologies, 67400 Illkirch Graffenstaden, France
| | | | - Fabio Marchiano
- Aix-Marseille University, CNRS, Institut de Biologie du Développement de Marseille UMR 7288, The Turing Center for Living Systems, 13009 Marseille, France
| | - Bianca Habermann
- Aix-Marseille University, CNRS, Institut de Biologie du Développement de Marseille UMR 7288, The Turing Center for Living Systems, 13009 Marseille, France
| | - Jérome Chal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67411 Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Alexander P Nesmith
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134
| | - Svetlana Gapon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Erica Wagner
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Vandana A Gupta
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Kevin Kit Parker
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67411 Illkirch Graffenstaden, France;
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| |
Collapse
|
50
|
Laulhé M, Dumeige L, Vu TA, Hani I, Pussard E, Lombès M, Viengchareun S, Martinerie L. Sexual Dimorphism of Corticosteroid Signaling during Kidney Development. Int J Mol Sci 2021; 22:ijms22105275. [PMID: 34069759 PMCID: PMC8155845 DOI: 10.3390/ijms22105275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Sexual dimorphism involves differences between biological sexes that go beyond sexual characteristics. In mammals, differences between sexes have been demonstrated regarding various biological processes, including blood pressure and predisposition to develop hypertension early in adulthood, which may rely on early events during development and in the neonatal period. Recent studies suggest that corticosteroid signaling pathways (comprising glucocorticoid and mineralocorticoid signaling pathways) have distinct tissue-specific expression and regulation during this specific temporal window in a sex-dependent manner, most notably in the kidney. This review outlines the evidence for a gender differential expression and activation of renal corticosteroid signaling pathways in the mammalian fetus and neonate, from mouse to human, that may favor mineralocorticoid signaling in females and glucocorticoid signaling in males. Determining the effects of such differences may shed light on short term and long term pathophysiological consequences, markedly for males.
Collapse
Affiliation(s)
- Margaux Laulhé
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Laurence Dumeige
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
- Pediatric Endocrinology Department, Hôpital Universitaire Robert Debre, France & Université de Paris, 75019 Paris, France
| | - Thi An Vu
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Imene Hani
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Eric Pussard
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Say Viengchareun
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Laetitia Martinerie
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
- Pediatric Endocrinology Department, Hôpital Universitaire Robert Debre, France & Université de Paris, 75019 Paris, France
- Correspondence:
| |
Collapse
|