1
|
Ma GL, Liu WQ, Huang H, Yan XF, Shen W, Visitsatthawong S, Prakinee K, Tran H, Fan X, Gao YG, Chaiyen P, Li J, Liang ZX. An Enzymatic Oxidation Cascade Converts δ-Thiolactone Anthracene to Anthraquinone in the Biosynthesis of Anthraquinone-Fused Enediynes. JACS AU 2024; 4:2925-2935. [PMID: 39211597 PMCID: PMC11350584 DOI: 10.1021/jacsau.4c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Anthraquinone-fused enediynes are anticancer natural products featuring a DNA-intercalating anthraquinone moiety. Despite recent insights into anthraquinone-fused enediyne (AQE) biosynthesis, the enzymatic steps involved in anthraquinone biogenesis remain to be elucidated. Through a combination of in vitro and in vivo studies, we demonstrated that a two-enzyme system, composed of a flavin adenine dinucleotide (FAD)-dependent monooxygenase (DynE13) and a cofactor-free enzyme (DynA1), catalyzes the final steps of anthraquinone formation by converting δ-thiolactone anthracene to hydroxyanthraquinone. We showed that the three oxygen atoms in the hydroxyanthraquinone originate from molecular oxygen (O2), with the sulfur atom eliminated as H2S. We further identified the key catalytic residues of DynE13 and A1 by structural and site-directed mutagenesis studies. Our data support a catalytic mechanism wherein DynE13 installs two oxygen atoms with concurrent desulfurization and decarboxylation, whereas DynA1 acts as a cofactor-free monooxygenase, installing the final oxygen atom in the hydroxyanthraquinone. These findings establish the indispensable roles of DynE13 and DynA1 in AQE biosynthesis and unveil novel enzymatic strategies for anthraquinone formation.
Collapse
Affiliation(s)
- Guang-Lei Ma
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National
Key Laboratory of Chinese Medicine Modernization, Innovation Center
of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Wan-Qiu Liu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Huawei Huang
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| | - Xin-Fu Yan
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| | - Wei Shen
- National
Key Laboratory of Chinese Medicine Modernization, Innovation Center
of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Surawit Visitsatthawong
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Hoa Tran
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| | - Xiaohui Fan
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National
Key Laboratory of Chinese Medicine Modernization, Innovation Center
of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Yong-Gui Gao
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| | - Pimchai Chaiyen
- School
of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Jian Li
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Zhao-Xun Liang
- School
of Biological Sciences, Nanyang Technological
University, Singapore 637551, Singapore
| |
Collapse
|
2
|
He L, Xiang Y. Interrogating the Presence of RNA Phosphorothioate in Nature by a Highly Selective and Sensitive Fluorescence Method. Anal Chem 2024. [PMID: 39138966 DOI: 10.1021/acs.analchem.4c01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In nature, DNA phosphorothioate (PT) is found in the genomic materials of some prokaryotes. In contrast, whether there is natural RNA PT is still a question under debate. A groundbreaking study reported the discovery of RNA PT in cellular RNA samples from both prokaryotes and eukaryotes at contents of >100 PT per million nucleotides (PPM-nt) according to liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis. However, this finding was challenged by a later work showing that other RNA modifications, such as 2'-O-methylation, could give almost the same LC-MS/MS signal patterns as RNA PT. As the LC-MS/MS technique led to contradicting conclusions, another independent method is thus needed to interrogate the presence of RNA PT in nature. In this work, we have developed a highly selective and sensitive fluorescence method for RNA PT quantification based on a new RNA PT-specific conversion reaction. It can detect as low as 2.8 PPM-nt in RNA without interference from RNA thiobases or protein cysteines. We measured the total RNA samples from some bacteria and human cells using this method. None of these samples gave any RNA PT signal above the detection limit (2.8 PPM-nt), suggesting that the widespread presence of natural RNA PT at the 100 PPM-nt level or above is highly unlikely. Nevertheless, due to the limited number of cell species tested in this work, the possible existence of natural RNA PT cannot be excluded. The fluorescence method reported here is simple and low-cost; therefore, it should be an ideal assay for broadly screening various types of cells to search for the clue of RNA PT in nature.
Collapse
Affiliation(s)
- Luo He
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Shang H, Zhang X, Ding M, Zhang A, Du J, Zhang R. Smartphone Imaging Device for Multimodal Detection of Hydrogen Sulfide Using Cu-Doped MOF Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30890-30899. [PMID: 38843539 DOI: 10.1021/acsami.4c05021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Multimodal sensing platforms may offer reliable, fast results, but it is still challenging to incorporate biosensors with high discriminating ability in complex biological samples. Herein, we established a highly sensitive dual colorimetric/electrochemical monitoring approach for the detection of hydrogen sulfide (H2S) utilizing Cu-doped In-based metal-organic frameworks (Cu/In-MOFs) combined with a versatile color selector software-based smartphone imaging device. H2S can result in the enhancement of the electrochemical signal because of the electroactive substance copper sulfide (CuxS), the decrease of the colorimetric signal of the characteristic absorption response caused by the strong coordination effect on Cu/In-MOFs, and the obvious changes of red-green-blue (RGB) values of images acquired via an intelligent smartphone. Attractively, the Cu/In-MOFs-based multimodal detection guarantees precise and sensitive detection of H2S with triple-signal detection limits of 0.096 μM (electrochemical signals), 0.098 μM (colorimetric signals), and 0.099 μM (smartphone signals) and an outstanding linear response. This analytical toolkit provides an idea for fabricating a robust, sensitive, tolerant matrix and reliable sensing platform for rapidly monitoring H2S in clinical disease diagnosis and visual supervision.
Collapse
Affiliation(s)
- Hongyuan Shang
- Department of Radiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan 030032, China
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaofei Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Meili Ding
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Aiping Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jinwen Du
- Stomatological Department, Taiyuan Municipal No. 2 People's Hospital, Taiyuan 030002, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
4
|
Koike S, Ogasawara Y. Analysis and characterization of sulfane sulfur. Anal Biochem 2024; 687:115458. [PMID: 38182032 DOI: 10.1016/j.ab.2024.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
In the late 1970s, sulfane sulfur was defined as sulfur atoms covalently bound only to sulfur atoms. However, this definition was not generally accepted, as it was slightly vague and difficult to comprehend. Thus, in the early 1990s, it was defined as "bound sulfur," which easily converts to hydrogen sulfide upon reduction with a thiol-reducing agent. H2S-related bound sulfur species include persulfides (R-SSH), polysulfides (H2Sn, n ≥ 2 or R-S(S)nS-R, n ≥ 1), and protein-bound elemental sulfur (S0). Many of the biological effects currently associated with H2S may be attributed to persulfides and polysulfides. In the 20th century, quantitative determination of "sulfane sulfur" was conventionally performed using a reaction called cyanolysis. Several methods have been developed over the past 30 years. Current methods used for the detection of H2S and polysulfides include colorimetric assays for methylene blue formation, sulfide ion-selective or polarographic electrodes, gas chromatography with flame photometric or sulfur chemiluminescence detection, high-performance liquid chromatography analysis with fluorescent derivatization of sulfides, liquid chromatography with tandem mass spectrometry, the biotin switch technique, and the use of sulfide or polysulfide-sensitive fluorescent probes. In this review, we discuss the methods reported to date for measuring sulfane sulfur and the results obtained using these methods.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
5
|
Okolie A, Nigro MR, Polk S, Stubbs K, Chelliah S, Ohia SE, Liang D, Mbye YFN. Development and application of LC-MS/MS method for the quantification of hydrogen sulfide in the eye. Anal Biochem 2024; 687:115448. [PMID: 38158106 PMCID: PMC11359680 DOI: 10.1016/j.ab.2023.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
There are limited studies that report the physiological levels of H2S in the eye. The currently available UV/Vis methods lack the required sensitivity and precision. Hence, the purpose of this study was to develop and validate a sensitive and robust pre-column derivatization LC-MS/MS method to measure changes in H2S levels in tissues from isolated porcine eyes. H2S was derivatized and an LC-MS/MS method was developed to monitor the derivatized product, Sulfide-dibimane (Sdb) using a reverse phase Waters Acquity BEH C18 column (1.7 μm, 2.1 × 100 mm). H2S quantification was performed using multiple-ion reaction monitoring (MRM) in positive mode, with the transitions of m/z 415.0 → m/z 223.0 for Sdb and m/z 353.0 → m/z 285.0 for internal standard (griseofulvin). This method provided a suitable way to quantify H2S and was then successfully adapted to measure H2S levels in isolated porcine iris-ciliary body tissues previously treated in the presence or absence of varying concentrations of lipopolysaccharide (LPS, 5-100 ng/ml), a pro-inflammatory agent. Isolated iris-ciliary bodies (ICB) from porcine eyes were cut into quadrants of approximately 50 mg and homogenized using a 1:3 volume of homogenizing buffer. H2S in the supernatant was then derivatized with monobromobimane and quantified.
Collapse
Affiliation(s)
- Anthonia Okolie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Maria Rincon Nigro
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA; Karuna Therapeutics, Inc., Boston, 02110, USA
| | - Sharhazad Polk
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Keyona Stubbs
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Selvam Chelliah
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Dong Liang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA.
| | - Ya Fatou Njie Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA.
| |
Collapse
|
6
|
Mhatre S, Rai A, Ali H, Patil A, Singh N, Verma R, Auden J, Chandler C, Dash A, Opere C, Singh S. Comparison of colorimetric, spectroscopic and electrochemical techniques for quantification of hydrogen sulfide. Biotechniques 2024; 76:71-80. [PMID: 38059376 PMCID: PMC10910492 DOI: 10.2144/btn-2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
Background: Hydrogen sulfide (H2S), an endogenous gasotransmitter, has potential applications in several conditions. However, its quantification in simulated physiological solutions is a major challenge due to its gaseous nature and other physicochemical properties. Aim: This study was designed to compare four commonly used H2S detection and quantification methods in aqueous solutions. Methods: The four techniques compared were one colorimetric, one chromatographic and two electrochemical methods. Results: Colorimetric and chromatographic methods quantified H2S in millimolar and micromole ranges, respectively. The electrochemical methods quantified H2S in the nanomole and picomole ranges and were less time-consuming. Conclusion: The H2S quantification method should be selected based on the specific requirements of a research project in terms of sensitivity, response time and cost-effectiveness.
Collapse
Affiliation(s)
- Susmit Mhatre
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Anjali Rai
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Hatim Ali
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
- Hikma Pharmaceuticals, Bedford, OH 44146, USA
| | - Akash Patil
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
- Large Molecule Product Development, Johnson & Johnson Greater Philadelphia, Philadelphia, PA 19355, USA
| | - Neetu Singh
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Richa Verma
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
- Cardiovascular & Metabolic Research Unit, York University, Toronto, ON, M3J 1P3, Canada
- Department of Biomolecular Sciences, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - John Auden
- Department of Chemistry & Biochemistry, College of Arts & Sciences, Creighton University, Omaha, NE 68178, USA
| | - Cole Chandler
- Department of Biology, College of Arts & Sciences, Creighton University, Omaha, NE 68178, USA
| | - Alekha Dash
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Catherine Opere
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Somnath Singh
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
7
|
Alam S, Pardue S, Shen X, Glawe JD, Yagi T, Bhuiyan MAN, Patel RP, Dominic PS, Virk CS, Bhuiyan MS, Orr AW, Petit C, Kolluru GK, Kevil CG. Hypoxia increases persulfide and polysulfide formation by AMP kinase dependent cystathionine gamma lyase phosphorylation. Redox Biol 2023; 68:102949. [PMID: 37922764 PMCID: PMC10641705 DOI: 10.1016/j.redox.2023.102949] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023] Open
Abstract
Hydropersulfide and hydropolysulfide metabolites are increasingly important reactive sulfur species (RSS) regulating numerous cellular redox dependent functions. Intracellular production of these species is known to occur through RSS interactions or through translational mechanisms involving cysteinyl t-RNA synthetases. However, regulation of these species under cell stress conditions, such as hypoxia, that are known to modulate RSS remain poorly understood. Here we define an important mechanism of increased persulfide and polysulfide production involving cystathionine gamma lyase (CSE) phosphorylation at serine 346 and threonine 355 in a substrate specific manner, under acute hypoxic conditions. Hypoxic phosphorylation of CSE occurs in an AMP kinase dependent manner increasing enzyme activity involving unique inter- and intramolecular interactions within the tetramer. Importantly, both cellular hypoxia and tissue ischemia result in AMP Kinase dependent CSE phosphorylation that regulates blood flow in ischemic tissues. Our findings reveal hypoxia molecular signaling pathways regulating CSE dependent persulfide and polysulfide production impacting tissue and cellular response to stress.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | - Sibile Pardue
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | - Xinggui Shen
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | - John D Glawe
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | - Takashi Yagi
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | | | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Paari S Dominic
- Internal Medicine-Cardiovascular Medicine, University of Iowa Healthcare, Iowa, USA
| | - Chiranjiv S Virk
- Department of Surgery, LSU Health Sciences Center, Shreveport, USA
| | | | - A Wayne Orr
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | - Chad Petit
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, USA
| | - Gopi K Kolluru
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA
| | - Christopher G Kevil
- Department of Pathology, LSU Health Sciences Center, Shreveport, USA; Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, USA; Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, USA.
| |
Collapse
|
8
|
Islam MZ, Shackelford RE. Pioglitazone treatment increases the cellular acid-labile and protein-bound sulfane sulfur fractions. Biochem Biophys Res Commun 2023; 670:79-86. [PMID: 37285721 DOI: 10.1016/j.bbrc.2023.05.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Iron-sulfur clusters play a central role in cellular function and are regulated by the ATM protein. Iron-sulfur clusters are part of the cellular sulfide pool, which functions to maintain cardiovascular health, and consists of free hydrogen sulfide, iron-sulfur clusters, protein bound sulfides, which constitute the total cellular sulfide fraction. ATM protein signaling and the drug pioglitazone share some cellular effects, which led us to examine the effects of this drug on cellular iron-sulfur cluster formation. Additionally, as ATM functions in the cardiovasculature and its signaling may be diminished in cardiovascular disease, we examined pioglitazone in the same cell type, with and without ATM protein expression. METHODS We examined the effects of pioglitazone treatment on the total cellular sulfide profile, the glutathione redox state, cystathionine gamma-lyase enzymatic activity, and on double-stranded DNA break formation in cells with and without ATM protein expression. RESULTS Pioglitazone increased the acid-labile (iron-sulfur cluster) and bound sulfur cellular fractions and reduced cystathionine gamma-lyase enzymatic activity in cells with and without ATM protein expression. Interestingly, pioglitazone also increased reduced glutathione and lowered DNA damage in cells without ATM protein expression, but not in ATM wild-type cells. These results are interesting as the acid-labile (iron-sulfur cluster), bound sulfur cellular fractions, and reduced glutathione are low in cardiovascular disease. CONCLUSION Here we found that pioglitazone increased the acid-labile (iron-sulfur cluster) and bound sulfur cellular fractions, impinges on hydrogen sulfide synthesis, and exerts beneficial effect on cells with deficient ATM protein signaling. Thus, we show a novel pharmacologic action for pioglitazone.
Collapse
Affiliation(s)
- Mohammad Z Islam
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA, 71130, United States
| | - Rodney E Shackelford
- Department of Pathology, University of South Alabama, 2451 University Hospital Dr, Mobile, AL, 37717, United States.
| |
Collapse
|
9
|
Le Corre L, Padovani D. Mechanism-based and computational modeling of hydrogen sulfide biogenesis inhibition: interfacial inhibition. Sci Rep 2023; 13:7287. [PMID: 37142727 PMCID: PMC10160035 DOI: 10.1038/s41598-023-34405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that participates in various signaling functions in health and diseases. The tetrameric cystathionine γ-lyase (CSE) contributes to H2S biogenesis and several investigations provide evidence on the pharmacological modulation of CSE as a potential target for the treatment of a multitude of conditions. D-penicillamine (D-pen) has recently been reported to selectively impede CSE-catalyzed H2S production but the molecular bases for such inhibitory effect have not been investigated. In this study, we report that D-pen follows a mixed-inhibition mechanism to inhibit both cystathionine (CST) cleavage and H2S biogenesis by human CSE. To decipher the molecular mechanisms underlying such a mixed inhibition, we performed docking and molecular dynamics (MD) simulations. Interestingly, MD analysis of CST binding reveals a likely active site configuration prior to gem-diamine intermediate formation, particularly H-bond formation between the amino group of the substrate and the O3' of PLP. Similar analyses realized with both CST and D-pen identified three potent interfacial ligand-binding sites for D-pen and offered a rational for D-pen effect. Thus, inhibitor binding not only induces the creation of an entirely new interacting network at the vicinity of the interface between enzyme subunits, but it also exerts long range effects by propagating to the active site. Overall, our study paves the way for the design of new allosteric interfacial inhibitory compounds that will specifically modulate H2S biogenesis by cystathionine γ-lyase.
Collapse
Affiliation(s)
- Laurent Le Corre
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 75006, Paris, France
| | - Dominique Padovani
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 75006, Paris, France.
| |
Collapse
|
10
|
Wu X, Fan K, Wang Q, Cao Q, Chen C, Xun L, Liu H. Investigating the debrominations of a subset of brominated flame retardants by biogenic reactive sulfur species. ENVIRONMENT INTERNATIONAL 2023; 174:107873. [PMID: 36933304 DOI: 10.1016/j.envint.2023.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Brominated flame retardants (BFRs) are persistent organic pollutants. Many bacteria are able to debrominate BFRs, but the underlying mechanism is unclear. Herein, we discovered that reactive sulfur species (RSS), which have strong reductive activity and are commonly present in bacteria, might be one of the reasons leading to such ability. Experiments performed with RSS (H2S and HSSH) and BFRs indicated that RSS can debrominate BFRs via two different mechanisms simultaneously: the substitutive debromination that generates thiol-BFRs and the reductive debromination that generates hydrogenated BFRs. Debromination reactions rapidly happened under neutral pH and ambient temperature, and the debromination degree was around 30% - 55% in one hour. Two Pseudomonas strains, Pseudomonas sp. C27 and Pseudomonas putida B6-2 both produced extracellular RSS and showed debromination activity. C27 debrominated HBCD, TBECH, and TBP by 5.4%, 17.7%, and 15.9% in two days. Whereas, B6-2 debrominated the three BFRs by 0.4%, 0.6%, and 0.3% in two days. The two bacteria produced different amounts and species of RSS, which were likely responsible for the contrasted degrees of the debromination. Our finding unveiled a novel, non-enzymatic debromination mechanism that many bacteria may possess. RSS producing bacteria have potentials to contribute to bioremediation of BFRs-polluted environments.
Collapse
Affiliation(s)
- Xiaohua Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China
| | - Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China
| | - Qun Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China; School of Molecular Biosciences, Washington State University, Pullman, WA 991647520, USA.
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China.
| |
Collapse
|
11
|
Liu Q, Liu Y, Wan Q, Lu Q, Liu J, Ren Y, Tang J, Su Q, Luo Y. Label-Free, Reusable, Equipment-Free, and Visual Detection of Hydrogen Sulfide Using a Colorimetric and Fluorescent Dual-Mode Sensing Platform. Anal Chem 2023; 95:5920-5926. [PMID: 36989391 DOI: 10.1021/acs.analchem.2c05364] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
In this work, we have found for the first time that the fluorescence of rhodamine B (RhB) would be dramatically reduced after it bound to hemin/G-quadruplex and reacted with •OH. Based on this finding, we have designed a colorimetric and fluorescent dual-mode sensing platform for visual detection of hydrogen sulfide (H2S). The constructed sensor is based on the formation of dsDNA and the G-quadruplex structure by the cytosine-Ag+-cytosine mismatch, causing H2O2-mediated catalysis to oxidize ABTS or RhB to induce a colorimetric or fluorescent change. In the presence of H2S, the solution color for colorimetric and fluorescent assays would change from dark green to pink and from green (fluorescence off) to bright yellow (fluorescence on), respectively. This dual-mode assay showed high selectivity toward H2S over other interference materials with a low measurable detection limit value (below than 2.5 μM), and it has been successfully applied to H2S visual detection in real samples. Moreover, the dual-mode sensing strategy presented an excellent reutilization character both in colorimetric and fluorescent assays. This method was employed as a label-free, simple, fast, and equipment-free platform for H2S detection with high selectivity and reusability. This work realized naked-eye detection both in colorimetric and fluorescent analysis at a lower concentration of H2S, demonstrating a promising strategy for on-site visual detection of H2S.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yue Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qing Wan
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qinrui Lu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Jun Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yonggang Ren
- Department of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Jiancai Tang
- Department of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qiang Su
- Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, Sichuan 637000, P. R. China
| | - Yingping Luo
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| |
Collapse
|
12
|
Hou J, Huang Y, Fu L, Sun M, Wang L, Guo R, Chen L, Lv C. Evaluating the Effect of Hydrogen Sulfide in the Idiopathic Pulmonary Fibrosis Model with a Fluorescent Probe. Anal Chem 2023; 95:5514-5521. [PMID: 36943917 DOI: 10.1021/acs.analchem.2c03640] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Hydrogen sulfide (H2S), a gaseous signaling molecule, is involved in a wide range of physiological and pathological processes. H2S has been proven to play a beneficial role in lung diseases, and the relationship between perturbations in endogenous H2S synthesis and degree with idiopathic pulmonary fibrosis (IPF) has attacted increasing attention. However, the changes in endogenous lung H2S levels in the pathological progression of chronic pulmonary diseases remain unclear. To this end, we synthesized a fluorescent probe (Bcy-HS) for the selective imaging of H2S in living cells and mice. This probe was mainly used for in situ in vivo and cellular imaging as well as a systematic assessment of intrapulmonary H2S levels at different stages of IPF. In addition, we also discussed the potential of H2S supplementation in the treatment of pulmonary fibrotic diseases. Our results confirmed the key role of H2S in pulmonary fibrosis. In cellular and mice models of pulmonary fibrosis, intracellular H2S levels are reduced. However, the severity of oxidative damage and pulmonary fibrosis decreased after NaSH (H2S donor). Therefore, we concluded that increasing the H2S content in vivo may be a novel strategy for IPF treatment.
Collapse
Affiliation(s)
- Junjun Hou
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Yan Huang
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Lili Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Mingzhao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxiao Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Runjing Guo
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Changjun Lv
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| |
Collapse
|
13
|
Liguori A, Petri E, Gualandi C, Dolci LS, Marassi V, Petretta M, Zattoni A, Roda B, Grigolo B, Olivotto E, Grassi F, Focarete ML. Controlled Release of H 2S from Biomimetic Silk Fibroin-PLGA Multilayer Electrospun Scaffolds. Biomacromolecules 2023; 24:1366-1376. [PMID: 36749903 PMCID: PMC10015463 DOI: 10.1021/acs.biomac.2c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The possibility of incorporating H2S slow-release donors inside biomimetic scaffolds can pave the way to new approaches in the field of tissue regeneration and anti-inflammatory treatment. In the present work, GYY4137, an easy-to-handle commercially available Lawesson's reagent derivative, has been successfully incorporated inside biomimetic silk fibroin-based electrospun scaffolds. Due to the instability of GYY4137 in the solvent needed to prepare silk fibroin solutions (formic acid), the electrospinning of the donor together with the silk fibroin turned out to be impossible. Therefore, a multilayer structure was realized, consisting of a PLGA mat containing GYY4137 sandwiched between two silk fibroin nanofibrous layers. Before their use in the multilayer scaffold, the silk fibroin mats were treated in ethanol to induce crystalline phase formation, which conferred water-resistance and biomimetic properties. The morphological, thermal, and chemical properties of the obtained scaffolds were thoroughly characterized by SEM, TGA, DSC, FTIR, and WAXD. Multilayer devices showing two different concentrations of the H2S donor, i.e., 2 and 5% w/w with respect to the weight of PLGA, were analyzed to study their H2S release and biological properties, and the results were compared with those of the sample not containing GYY4137. The H2S release analysis was carried out according to an "ad-hoc" designed procedure based on a validated high-performance liquid chromatography method. The proposed analytical approach demonstrated the slow-release kinetics of H2S from the multilayer scaffolds and its tunability by acting on the donor's concentration inside the PLGA nanofibers. Finally, the devices were tested in biological assays using bone marrow-derived mesenchymal stromal cells showing the capacity to support cell spreading throughout the scaffold and prevent cytotoxicity effects in serum starvation conditions. The resulting devices can be exploited for applications in the tissue engineering field since they combine the advantages of controlled H2S release kinetics and the biomimetic properties of silk fibroin nanofibers.
Collapse
Affiliation(s)
- Anna Liguori
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Elisabetta Petri
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Chiara Gualandi
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy
- Health
Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia Bologna, Italy
| | - Luisa S. Dolci
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Valentina Marassi
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- byFlow
srl, Bologna 40129, Italy
| | - Mauro Petretta
- RegenHu
Company, Z.I Du Vivier
22, CH-1690 Villaz-St-Pierre, Switzerland
| | - Andrea Zattoni
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- byFlow
srl, Bologna 40129, Italy
| | - Barbara Roda
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- byFlow
srl, Bologna 40129, Italy
| | - Brunella Grigolo
- RAMSES
Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Eleonora Olivotto
- RAMSES
Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- RAMSES
Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Maria Letizia Focarete
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- Health
Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia Bologna, Italy
| |
Collapse
|
14
|
Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG. Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol 2023; 20:109-125. [PMID: 35931887 PMCID: PMC9362470 DOI: 10.1038/s41569-022-00741-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as a gaseous signalling molecule with crucial implications for cardiovascular health. H2S is involved in many biological functions, including interactions with nitric oxide, activation of molecular signalling cascades, post-translational modifications and redox regulation. Various preclinical and clinical studies have shown that H2S and its synthesizing enzymes - cystathionine γ-lyase, cystathionine β-synthase and 3-mercaptosulfotransferase - can protect against cardiovascular pathologies, including arrhythmias, atherosclerosis, heart failure, myocardial infarction and ischaemia-reperfusion injury. The bioavailability of H2S and its metabolites, such as hydropersulfides and polysulfides, is substantially reduced in cardiovascular disease and has been associated with single-nucleotide polymorphisms in H2S synthesis enzymes. In this Review, we highlight the role of H2S, its synthesizing enzymes and metabolites, their roles in the cardiovascular system, and their involvement in cardiovascular disease and associated pathologies. We also discuss the latest clinical findings from the field and outline areas for future study.
Collapse
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Xinggui Shen
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paari Dominic
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
15
|
Tan R, Black M, Home J, Blackwell J, Clark I, Wylie L, Vanhatalo A, Jones AM. Physiological and performance effects of dietary nitrate and N-acetylcysteine supplementation during prolonged heavy-intensity cycling. J Sports Sci 2022; 40:2585-2594. [PMID: 36759944 DOI: 10.1080/02640414.2023.2176052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
The purpose of this study was to investigate effects of concurrent and independent administration of dietary nitrate (NO3-), administered as NO3--rich beetroot juice (BR; ~12.4 mmol of NO3-), and N-acetylcysteine (NAC; 70 mg·kg-1) on physiological responses during prolonged exercise and subsequent high-intensity exercise tolerance. Sixteen recreationally active males supplemented with NO3--depleted beetroot juice (PL) or BR for 6 days and ingested an acute dose of NAC or maltodextrin (MAL) 1 h prior to performing 1 h of heavy-intensity cycling exercise immediately followed by a severe-intensity time-to-exhaustion (TTE) test in four conditions: 1) PL+MAL, 2) PL+NAC, 3) BR+MAL and 4) BR+NAC. Pre-exercise plasma [NO3-] and nitrite ([NO2-]) were elevated following BR+NAC and BR+MAL (both P < 0.01) compared with PL+NAC and PL+MAL; plasma [cysteine] was increased in PL+NAC and BR+NAC (both P < 0.01) compared to PL+MAL. Muscle excitability declined over time during the prolonged cycling bout in all conditions but was better preserved in PL+NAC compared to BR+NAC (P < 0.01) and PL+MAL (P < 0.05). There was no effect of supplementation on subsequent TTE . These findings indicate that co-ingestion of BR and NAC does not appreciably alter physiological responses during prolonged heavy-intensity cycling or enhance subsequent exercise tolerance.
Collapse
Affiliation(s)
- Rachel Tan
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Matthew Black
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Joseph Home
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Jamie Blackwell
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Ida Clark
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Lee Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| |
Collapse
|
16
|
Kolluru GK, Glawe JD, Pardue S, Kasabali A, Alam S, Rajendran S, Cannon AL, Abdullah CS, Traylor JG, Shackelford RE, Woolard MD, Orr AW, Goeders NE, Dominic P, Bhuiyan MSS, Kevil CG. Methamphetamine causes cardiovascular dysfunction via cystathionine gamma lyase and hydrogen sulfide depletion. Redox Biol 2022; 57:102480. [PMID: 36167027 PMCID: PMC9513700 DOI: 10.1016/j.redox.2022.102480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
Methamphetamine (METH) is an addictive illicit drug used worldwide that causes significant damage to blood vessels resulting in cardiovascular dysfunction. Recent studies highlight increased prevalence of cardiovascular disease (CVD) and associated complications including hypertension, vasospasm, left ventricular hypertrophy, and coronary artery disease in younger populations due to METH use. Here we report that METH administration in a mouse model of 'binge and crash' decreases cardiovascular function via cystathionine gamma lyase (CSE), hydrogen sulfide (H2S), nitric oxide (NO) (CSE/H2S/NO) dependent pathway. METH significantly reduced H2S and NO bioavailability in plasma and skeletal muscle tissues co-incident with a significant reduction in flow-mediated vasodilation (FMD) and blood flow velocity revealing endothelial dysfunction. METH administration also reduced cardiac ejection fraction (EF) and fractional shortening (FS) associated with increased tissue and perivascular fibrosis. Importantly, METH treatment selectively decreased CSE expression and sulfide bioavailability along with reduced eNOS phosphorylation and NO levels. Exogenous sulfide therapy or endothelial CSE transgenic overexpression corrected cardiovascular and associated pathological responses due to METH implicating a central molecular regulatory pathway for tissue pathology. These findings reveal that therapeutic intervention targeting CSE/H2S bioavailability may be useful in attenuating METH mediated cardiovascular disease.
Collapse
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | - John D Glawe
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | - Sibile Pardue
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | - Ahmad Kasabali
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | - Shafiul Alam
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | | | - Allison L Cannon
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | | | - James G Traylor
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | | | - Matthew D Woolard
- Department of Microbiology and Immunology, LSU Health Sciences Center- Shreveport, USA
| | - A Wayne Orr
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA; Department of Cellular Biology and Anatomy, LSU Health Sciences Center- Shreveport, USA; Department of Molecular and Cellular Physiology, LSU Health Sciences Center- Shreveport, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center- Shreveport, USA
| | - Paari Dominic
- Division of Cardiology Department of Medicine, LSU Health Sciences Center- Shreveport, USA
| | | | - Christopher G Kevil
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA; Department of Cellular Biology and Anatomy, LSU Health Sciences Center- Shreveport, USA; Department of Molecular and Cellular Physiology, LSU Health Sciences Center- Shreveport, USA.
| |
Collapse
|
17
|
Zhang J, Ma L, Liu Y, Tong X, Zhou Y. Hydrogen sulfide poisoning in forensic pathology and toxicology: mechanism and metabolites quantification analysis. Crit Rev Toxicol 2022; 52:742-756. [PMID: 36803204 DOI: 10.1080/10408444.2023.2168177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Historically, hydrogen sulfide (H2S) poisoning has extremely high and irreparable mortality. Currently, the identification of H2S poisoning needs to combine with the case scene analysis in forensic medicine. The anatomy of the deceased seldom had obvious features. There are also a few reports about H2S poisoning in detail. As a result, we give a comprehensive analysis of the related knowledge on the forensic aspect of H2S poisoning. Furthermore, we provide the analytical methods of H2S and its metabolite-which may assist in H2S poisoning identification.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tong
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Sugiyama E, Higashi T, Nakamura M, Mizuno H, Toyo’oka T, Todoroki K. Precolumn Derivatization LC/MS Method for Observation of Efficient Hydrogen Sulfide Supply to the Kidney via d-Cysteine Degradation Pathway. J Pharm Biomed Anal 2022; 222:115088. [DOI: 10.1016/j.jpba.2022.115088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/15/2022]
|
19
|
Malaeb H, Choucair I, Wang Z, Li XS, Li L, Boyd WC, Hine C, Tang WHW, Gogonea V, Hazen SL. Stable isotope dilution mass spectrometry quantification of hydrogen sulfide and thiols in biological matrices. Redox Biol 2022; 55:102401. [PMID: 35870340 PMCID: PMC9307673 DOI: 10.1016/j.redox.2022.102401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S), a gaseous signaling molecule that impacts multiple physiological processes including aging, is produced via select mammalian enzymes and enteric sulfur-reducing bacteria. H2S research is limited by the lack of an accurate internal standard-containing assay for its quantitation in biological matrices. METHODS After synthesizing [34S]H2S and developing sample preparation protocols that avoid sulfide contamination with the addition of thiol-containing standards or reducing reagents, we developed a stable isotope-dilution high performance liquid chromatography tandem-mass spectrometry (LC-MS/MS) method for the simultaneous quantification of Total H2S and other abundant thiols (cysteine, homocysteine, glutathione, glutamylcysteine, cysteinylglycine) in biological matrices, conducted a 20-day analytical validation/normal range study, and then both analyzed circulating Total H2S and thiols in plasma from 400 subjects, and within 20 volunteers before and after antibiotic-induced suppression of gut microbiota. RESULTS Using the new assay, all analytes showed minimal interference, no carryover, and excellent intra- and inter-day reproducibility (≤7.6%, and ≤12.7%, respectively), linearity (r2 > 0.997), recovery (90.9%-110%) and stability (90.0%-100.5%). Only circulating Total H2S levels showed significant age-associated reductions in both males and females (p < 0.001), and a marked reduction following gut microbiota suppression (mean 33.8 ± 17.7%, p < 0.001), with large variations in gut microbiota contribution among subjects (range 6.0-66.7% reduction with antibiotics). CONCLUSIONS A stable-isotope-dilution LC-MS/MS method is presented for the simultaneous quantification of Total H2S and multiple thiols in biological matrices. We then use this assay panel to show a striking age-related decline and gut microbiota contribution to circulating Total H2S levels in humans.
Collapse
Affiliation(s)
- Hind Malaeb
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Chemistry, Cleveland State University, Cleveland, OH, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - Ibrahim Choucair
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA
| | | | - Christopher Hine
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA; Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Valentin Gogonea
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Chemistry, Cleveland State University, Cleveland, OH, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA.
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Chemistry, Cleveland State University, Cleveland, OH, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA; Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
20
|
A Caveat When Using Alkyl Halides as Tagging Agents to Detect/Quantify Reactive Sulfur Species. Antioxidants (Basel) 2022; 11:antiox11081583. [PMID: 36009302 PMCID: PMC9405219 DOI: 10.3390/antiox11081583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Using alkyl halides to tag reactive sulfur species (RSSs) (H2S, per/polysulfide, and protein-SSH) is an extensively applied approach. The underlying supposition is that, as with thiols, RSS reacts with alkyl halides via a nucleophilic substitution reaction. We found that this supposition is facing a challenge. RSS also initiates a reductive dehalogenation reaction, which generates the reduced unloaded tag and oxidized RSS. Therefore, RSS content in bio-samples might be underestimated, and its species might not be precisely determined when using alkyl halide agents for its analysis. To calculate to the extent of this underestimation, further studies are still required.
Collapse
|
21
|
Islam MZ, Shen X, Pardue S, Kevil CG, Shackelford RE. The ataxia-telangiectasia mutated gene product regulates the cellular acid-labile sulfide fraction. DNA Repair (Amst) 2022; 116:103344. [PMID: 35696854 PMCID: PMC11118069 DOI: 10.1016/j.dnarep.2022.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
Abstract
The ataxia-telangiectasia mutated (ATM) protein regulates cell cycle checkpoints, the cellular redox state, and double-stranded DNA break repair. ATM loss causes the disorder ataxia-telangiectasia (A-T), distinguished by ataxia, telangiectasias, dysregulated cellular redox and iron responses, and an increased cancer risk. We examined the sulfur pool in A-T cells, with and without an ATM expression vector. While free and bound sulfide levels were not changed with ATM expression, the acid-labile sulfide faction was significantly increased. ATM expression also increased cysteine desulfurase (NFS1), NFU1 iron-sulfur cluster scaffold homolog protein, and several mitochondrial complex I proteins' expression. Additionally, ATM expression suppressed cystathionine β-synthase and cystathionine γ-synthase protein expression, cystathionine γ-synthase enzymatic activity, and increased the reduced to oxidized glutathione ratio. This last observation is interesting, as dysregulated glutathione is implicated in A-T pathology. As ATM expression increases the expression of proteins central in initiating 2Fe-2S and 4Fe-4S cluster formation (NFS1 and NFU1, respectively), and the acid-labile sulfide faction is composed of sulfur incorporated into Fe-S clusters, our data indicates that ATM regulates aspects of Fe-S cluster biosynthesis, the transsulfuration pathway, and glutathione redox cycling. Thus, our data may explain some of the redox- and iron-related pathologies seen in A-T.
Collapse
Affiliation(s)
- Mohammad Z Islam
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States
| | - Xinggui Shen
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States
| | - Sibile Pardue
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States
| | - Christopher G Kevil
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States
| | - Rodney E Shackelford
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States.
| |
Collapse
|
22
|
Ni SJ, Yao ZY, Wei X, Heng X, Qu SY, Zhao X, Qi YY, Ge PY, Xu CP, Yang NY, Cao Y, Zhu HX, Guo R, Zhang QC. Vagus nerve stimulated by microbiota-derived hydrogen sulfide mediates the regulation of berberine on microglia in transient middle cerebral artery occlusion rats. Phytother Res 2022; 36:2964-2981. [PMID: 35583808 DOI: 10.1002/ptr.7490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 11/05/2022]
Abstract
Amelioration of neuroinflammation via modulating microglia is a promising approach for cerebral ischemia therapy. The aim of the present study was to explore gut-brain axis signals in berberine-modulating microglia polarization following cerebral ischemia. The potential pathway was determined through analyzing the activation of the vagus nerve, hydrogen sulfide (H2 S) metabolism, and cysteine persulfides of transient receptor potential vanilloid 1 (TRPV1) receptor. The cerebral microenvironment feature was explored with a metabolomics assay. The data indicated that berberine ameliorated behavioral deficiency in transient middle cerebral artery occlusion rats through modulating microglia polarization and neuroinflammation depending on microbiota. Enhanced vagus nerve activity following berberine treatment was blocked by antibiotic cocktails, capsazepine, or sodium molybdate, respectively. Berberine-induced H2 S production was responsible for vagus nerve stimulation achieved through assimilatory and dissimilatory sulfate reduction with increased synthetic enzymes. Sulfation of the TRPV1 receptor resulted in vagus nerve activation and promoted the c-fos and ChAT in the nucleus tractus solitaries with berberine. Sphingolipid metabolism is the primary metabolic characteristic with berberine in the cerebral cortex, hippocampus, and cerebral spinal fluid disrupted by antibiotics. Berberine, in conclusion, modulates microglia polarization in a microbiota-dependent manner. H2 S stimulates the vagus nerve through TRPV1 is responsible for the berberine-induced gut-brain axis signal transmission. Sphingolipid metabolism might mediate the neuroinflammation amelioration following vagus afferent fiber activation.
Collapse
Affiliation(s)
- Sai-Jia Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zeng-Ying Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaotong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Heng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Yue Qu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi-Yu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping-Yuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cai-Ping Xu
- Nanjing Sinolife Bio-tech Co., Ltd, Nanjing, China
| | - Nian-Yun Yang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Cao
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua-Xu Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Chun Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Mhatre S, Opere CA, Singh S. Unmet needs in glaucoma therapy: The potential role of hydrogen sulfide and its delivery strategies. J Control Release 2022; 347:256-269. [PMID: 35526614 DOI: 10.1016/j.jconrel.2022.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022]
Abstract
Glaucoma is an optic neuropathy disorder marked by progressive degeneration of the retinal ganglion cells (RGC). It is a leading cause of blindness worldwide, prevailing in around 2.2% of the global population. The hallmark of glaucoma, intraocular pressure (IOP), is governed by the aqueous humor dynamics which plays a crucial role in the pathophysiology of the diesease. Glaucomatous eye has an IOP of more than 22 mmHg as compared to normotensive pressure of 10-21 mmHg. Currently used treatments focus on reducing the elevated IOP through use of classes of drugs that either increase aqueous humor outflow and/or decrease its production. However, effective treatments should not only reduce IOP, but also offer neuroprotection and regeneration of RGCs. Hydrogen Sulfide (H2S), a gasotransmitter with several endogenous functions in mammalian tissues, is being investigated for its potential application in glaucoma. In addition to decreasing IOP by increasing aqueous humor outflow, it scavenges reactive oxygen species, upregulates the cellular antioxidant glutathione and protects RGCs from excitotoxicity. Despite the potential of H2S in glaucoma, its delivery to anterior and posterior regions of the eye is a challenge due to its unique physicochemical properties. Firstly, development of any delivery system should not require an aqueous environment since many H2S donors are susceptible to burst release of the gas in contact with water, causing potential toxicity and adverse effects owing to its inherent toxicity at higher concentrations. Secondly, the release of the gas from the donor needs to be sustained for a prolonged period of time to reduce dosing frequency as per the requirements of regulatory bodies. Lastly, the delivery system should provide adequate bioavailability throughout its period of application. Hence, an ideal delivery system should aim to tackle all the above challenges related to barriers of ocular delivery and physicochemical properties of H2S itself. This review discusses the therapeutic potential of H2S, its delivery challenges and strategies to overcome the associated chalenges.
Collapse
Affiliation(s)
- Susmit Mhatre
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.
| | - Catherine A Opere
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.
| | - Somnath Singh
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
24
|
Roda B, Zhang N, Gambari L, Grigolo B, Eller-Vainicher C, Gennari L, Zappi A, Giordani S, Marassi V, Zattoni A, Reschiglian P, Grassi F. Optimization of a Monobromobimane (MBB) Derivatization and RP-HPLC-FLD Detection Method for Sulfur Species Measurement in Human Serum after Sulfur Inhalation Treatment. Antioxidants (Basel) 2022; 11:antiox11050939. [PMID: 35624802 PMCID: PMC9138032 DOI: 10.3390/antiox11050939] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Hydrogen sulfide (H2S) is a widely recognized gasotransmitter, with key roles in physiological and pathological processes. The accurate quantification of H2S and reactive sulfur species (RSS) may hold important implications for the diagnosis and prognosis of diseases. However, H2S species quantification in biological matrices is still a challenge. Among the sulfide detection methods, monobromobimane (MBB) derivatization coupled with reversed phase high-performance liquid chromatography (RP-HPLC) is one of the most reported. However, it is characterized by a complex preparation and time-consuming process, which may alter the actual H2S level; moreover, a quantitative validation has still not been described. (2) Methods: We developed and validated an improved analytical protocol for the MBB RP-HPLC method. MBB concentration, temperature and sample handling were optimized, and the calibration method was validated using leave-one-out cross-validation and tested in a clinical setting. (3) Results: The method shows high sensitivity and allows the quantification of H2S species, with a limit of detection of 0.5 µM. Finally, it can be successfully applied in measurements of H2S levels in the serum of patients subjected to inhalation with vapors rich in H2S. (4) Conclusions: These data demonstrate that the proposed method is precise and reliable for measuring H2S species in biological matrices and can be used to provide key insights into the etiopathogenesis of several diseases and sulfur-based treatments.
Collapse
Affiliation(s)
- Barbara Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (N.Z.); (A.Z.); (S.G.); (V.M.); (A.Z.); (P.R.)
- byFlow SRL, 40129 Bologna, Italy
- Correspondence: (B.R.); (F.G.)
| | - Nan Zhang
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (N.Z.); (A.Z.); (S.G.); (V.M.); (A.Z.); (P.R.)
| | - Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.G.); (B.G.)
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.G.); (B.G.)
| | - Cristina Eller-Vainicher
- Unit of Endocrinology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy;
| | - Alessandro Zappi
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (N.Z.); (A.Z.); (S.G.); (V.M.); (A.Z.); (P.R.)
| | - Stefano Giordani
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (N.Z.); (A.Z.); (S.G.); (V.M.); (A.Z.); (P.R.)
| | - Valentina Marassi
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (N.Z.); (A.Z.); (S.G.); (V.M.); (A.Z.); (P.R.)
- byFlow SRL, 40129 Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (N.Z.); (A.Z.); (S.G.); (V.M.); (A.Z.); (P.R.)
- byFlow SRL, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (N.Z.); (A.Z.); (S.G.); (V.M.); (A.Z.); (P.R.)
- byFlow SRL, 40129 Bologna, Italy
| | - Francesco Grassi
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.G.); (B.G.)
- Correspondence: (B.R.); (F.G.)
| |
Collapse
|
25
|
Bahadoran Z, Jeddi S, Mirmiran P, Kashfi K, Azizi F, Ghasemi A. Association between serum hydrogen sulfide concentrations and dysglycemia: a population-based study. BMC Endocr Disord 2022; 22:79. [PMID: 35351094 PMCID: PMC8962595 DOI: 10.1186/s12902-022-00995-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIM Hydrogen sulfide (H2S), a signaling gasotransmitter, is involved in carbohydrate metabolism. Here, we aimed to assess the potential association between serum H2S and dysglycemia in the framework of a population-based study. METHODS Adults men and women with completed data (n = 798), who participated in the Tehran Lipid and Glucose Study (2014-2017) were included in the study. Medians of fasting serum H2S concentration were compared across the glycemic status of the participants, defined as type 2 diabetes mellitus (T2DM), isolated impaired fasting glucose (IIFG), isolated impaired glucose tolerance (IIGT), combined IFG-IGT, and normal glycemia [i.e., those with both normal fasting glucose (NFG) and normal glucose tolerance (NGT)]. Multinomial logistic regression was used to assess potential associations between serum H2S and the defined glycemic status. RESULTS Mean age of the participants was 45.1 ± 14.0 y, and 48.1% were men. Prevalence of T2DM, IIFG, IIGT, and combined IFG-IGT was 13.9, 9.1, 8.1, and 4.8% respectively. No significant difference was observed in serum H2S concentrations between the groups. Lower serum H2S (< 39.6 µmol/L) was associated with an increased chance of having IIGT (OR = 1.96, 95% CI = 1.15-3.34) in the adjusted model. CONCLUSION Reduced serum H2S level may be associated with impaired glucose tolerance.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, P.O.Box: 19395-4763, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, P.O.Box: 19395-4763, Tehran, Iran.
| |
Collapse
|
26
|
Han J, Zhang Y. Exploring the Cardioprotective Effects of Pharmacological Inhibitors of 6-Phosphofructo-2-kinase/Fructose-2,6- Bisphosphatase-3 in Ischemia-Reperfusion-Subjected Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.346.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Deng P, Liu Y, Xu R, Li L, Zou G, Liu Z. Exploring the Cardioprotective Effects of Pharmacological Inhibitors of PFKFB3 in Ischemia-Reperfusion-Subjected Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.36.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Scrivner O, Ismaeel A, Kumar MR, Sorokolet K, Koutakis P, Farmer PJ. Expanding the Reactive Sulfur Metabolome: Intracellular and Efflux Measurements of Small Oxoacids of Sulfur (SOS) and H 2S in Human Primary Vascular Cell Culture. Molecules 2021; 26:7160. [PMID: 34885743 PMCID: PMC8659008 DOI: 10.3390/molecules26237160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous signaling molecule which is important for cardiovascular health, but its mechanism of action remains poorly understood. Here, we report measurements of H2S as well as its oxidized metabolites, termed small oxoacids of sulfur (SOS = HSOH and HOSOH), in four human primary vascular cell lines: smooth muscle and endothelial cells derived from both human arterial and coronary tissues. We use a methodology that targets small molecular weight sulfur species; mass spectrometric analysis allows for species quantification to report cellular concentrations based on an H2S calibration curve. The production of H2S and SOS is orders of magnitude higher in smooth muscle (nanomolar) as compared to endothelial cell lines (picomolar). In all the primary lines measured, the distributions of these three species were HOSOH >H2S > HSOH, with much higher SOS than seen previously in non-vascular cell lines. H2S and SOS were effluxed from smooth muscle cells in higher concentrations than endothelial cells. Aortic smooth muscle cells were used to examine changes under hypoxic growth conditions. Hypoxia caused notable increases in HSOH and ROS, which we attribute to enhanced sulfide quinone oxidase activity that results in reverse electron transport.
Collapse
Affiliation(s)
- Ottis Scrivner
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (O.S.); (M.R.K.); (K.S.)
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (P.K.)
| | - Murugaeson R. Kumar
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (O.S.); (M.R.K.); (K.S.)
| | - Kristina Sorokolet
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (O.S.); (M.R.K.); (K.S.)
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (P.K.)
| | - Patrick J. Farmer
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (O.S.); (M.R.K.); (K.S.)
| |
Collapse
|
29
|
Takata T, Jung M, Matsunaga T, Ida T, Morita M, Motohashi H, Shen X, Kevil CG, Fukuto JM, Akaike T. Methods in sulfide and persulfide research. Nitric Oxide 2021; 116:47-64. [PMID: 34534626 PMCID: PMC8486624 DOI: 10.1016/j.niox.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022]
Abstract
Sulfides and persulfides/polysulfides (R-Sn-R', n > 2; R-Sn-H, n > 1) are endogenously produced metabolites that are abundant in mammalian and human cells and tissues. The most typical persulfides that are widely distributed among different organisms include various reactive persulfides-low-molecular-weight thiol compounds such as cysteine hydropersulfide, glutathione hydropersulfide, and glutathione trisulfide as well as protein-bound thiols. These species are generally more redox-active than are other simple thiols and disulfides. Although hydrogen sulfide (H2S) has been suggested for years to be a small signaling molecule, it is intimately linked biochemically to persulfides and may actually be more relevant as a marker of functionally active persulfides. Reactive persulfides can act as powerful antioxidants and redox signaling species and are involved in energy metabolism. Recent evidence revealed that cysteinyl-tRNA synthetases (CARSs) act as the principal cysteine persulfide synthases in mammals and contribute significantly to endogenous persulfide/polysulfide production, in addition to being associated with a battery of enzymes including cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, which have been described as H2S-producing enzymes. The reactive sulfur metabolites including persulfides/polysulfides derived from CARS2, a mitochondrial isoform of CARS, also mediate not only mitochondrial biogenesis and bioenergetics but also anti-inflammatory and immunomodulatory functions. The physiological roles of persulfides, their biosynthetic pathways, and their pathophysiology in various diseases are not fully understood, however. Developing basic and high precision techniques and methods for the detection, characterization, and quantitation of sulfides and persulfides is therefore of great importance so as to thoroughly understand and clarify the exact functions and roles of these species in cells and in vivo.
Collapse
Affiliation(s)
- Tsuyoshi Takata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Xinggui Shen
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA; Department of Chemistry, Johns Hopkins University, Baltimore, MD, 212118, USA.
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
30
|
Mendiola PJ, Naik JS, Gonzalez Bosc LV, Gardiner AS, Birg A, Kanagy NL. Hydrogen Sulfide Actions in the Vasculature. Compr Physiol 2021; 11:2467-2488. [PMID: 34558672 DOI: 10.1002/cphy.c200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hydrogen sulfide (H2 S) is a small, gaseous molecule with poor solubility in water that is generated by multiple pathways in many species including humans. It acts as a signaling molecule in many tissues with both beneficial and pathological effects. This article discusses its many actions in the vascular system and the growing evidence of its role to regulate vascular tone, angiogenesis, endothelial barrier function, redox, and inflammation. Alterations in some disease states are also discussed including potential roles in promoting tumor growth and contributions to the development of metabolic disease. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.
Collapse
Affiliation(s)
| | - Jay S Naik
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Amy S Gardiner
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Aleksandr Birg
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Nancy L Kanagy
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
31
|
Abstract
Hibernation is a powerful response of a number of mammalian species to reduce energy during the cold winter season, when food is scarce. Mammalian hibernators survive winter by spending most of the time in a state of torpor, where basal metabolic rate is strongly suppressed and body temperature comes closer to ambient temperature. These torpor bouts are regularly interrupted by short arousals, where metabolic rate and body temperature spontaneously return to normal levels. The mechanisms underlying these changes, and in particular the strong metabolic suppression of torpor, have long remained elusive. As summarized in this Commentary, increasing evidence points to a potential key role for hydrogen sulfide (H2S) in the suppression of mitochondrial respiration during torpor. The idea that H2S could be involved in hibernation originated in some early studies, where exogenous H2S gas was found to induce a torpor-like state in mice, and despite some controversy, the idea persisted. H2S is a widespread signaling molecule capable of inhibiting mitochondrial respiration in vitro and studies found significant in vivo changes in endogenous H2S metabolites associated with hibernation or torpor. Along with increased expression of H2S-synthesizing enzymes during torpor, H2S degradation catalyzed by the mitochondrial sulfide:quinone oxidoreductase (SQR) appears to have a key role in controlling H2S availability for inhibiting respiration. Specifically, in thirteen-lined squirrels, SQR is highly expressed and inhibited in torpor, possibly by acetylation, thereby limiting H2S oxidation and causing inhibition of respiration. H2S may also control other aspects associated with hibernation, such as synthesis of antioxidant enzymes and of SQR itself.
Collapse
Affiliation(s)
| | - Angela Fago
- Department of Biology, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
32
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
33
|
Scrivner O, Kumar MR, Sorokolet K, Wong A, Kebaara B, Farmer PJ. Characterization of Endogenous and Extruded H 2S and Small Oxoacids of Sulfur (SOS) in Cell Cultures. ACS Chem Biol 2021; 16:1413-1424. [PMID: 34374506 DOI: 10.1021/acschembio.1c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This report characterizes and quantifies endogenous hydrogen sulfide (H2S) and small oxoacids of sulfur (SOS = HOSH, HOSOH) in a panel of cell lines including human cancer (A375 melanoma cells, HeLa cervical cells) and noncancer (HEK293 embryonic kidney cells), as well as E. coli DH5α and S. cerevisiae S288C. The methodology used is a translation of well-studied nucleophilic and electrophilic traps for cysteine and oxidized cysteines residues to target small molecular weight sulfur species; mass spectrometric analysis allows for species quantification. The observed intracellular concentrations of H2S and SOS vary in different cell types, from nanomolar to femtomolar, typically with H2S > HOSOH > HOSH. We propose the term sulfome, a subset of the metabolome, describing the nonproteinaceous metabolites of H2S; the sulfomic index is as a measure of the S-oxide redox status, which gives a profile of endogenous sulfur at different oxidation states. An important observation is that H2S and SOS were found to be continuously extruded into surrounding media against a concentration gradient, implying an active efflux process. Small molecule inhibition of several H2S generating enzymes suggest that SOS are not derived solely from H2S oxidation. Even after successful inhibition of H2S production, cells maintain constant efflux and repopulate H2S and SOS over time. This work proves that these small sulfur oxoacids are generated in cells of all types, and their efflux implies that they play a role in cell signaling and possibly other vascular physiology attributed to H2S.
Collapse
Affiliation(s)
- Ottis Scrivner
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Murugaeson R. Kumar
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Kristina Sorokolet
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Angelo Wong
- Department of Biology, Baylor University, Waco, Texas 76898, United States
| | - Bessie Kebaara
- Department of Biology, Baylor University, Waco, Texas 76898, United States
| | - Patrick J. Farmer
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
34
|
Shatalin K, Nuthanakanti A, Kaushik A, Shishov D, Peselis A, Shamovsky I, Pani B, Lechpammer M, Vasilyev N, Shatalina E, Rebatchouk D, Mironov A, Fedichev P, Serganov A, Nudler E. Inhibitors of bacterial H 2S biogenesis targeting antibiotic resistance and tolerance. Science 2021; 372:1169-1175. [PMID: 34112687 PMCID: PMC10723041 DOI: 10.1126/science.abd8377] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)-mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.
Collapse
Affiliation(s)
- Konstantin Shatalin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ashok Nuthanakanti
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Abhishek Kaushik
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Mirna Lechpammer
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Elena Shatalina
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Alexander Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow 119991, Russia
| | | | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
35
|
Jensen BS, Pardue S, Duffy B, Kevil CG, Staples JF, Fago A. Suppression of mitochondrial respiration by hydrogen sulfide in hibernating 13-lined ground squirrels. Free Radic Biol Med 2021; 169:181-186. [PMID: 33887435 PMCID: PMC8809085 DOI: 10.1016/j.freeradbiomed.2021.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022]
Abstract
Hibernating mammals may suppress their basal metabolic rate during torpor by up to 95% to reduce energy expenditure during winter, but the underlying mechanisms remain poorly understood. Here we show that hydrogen sulfide (H2S), a ubiquitous signaling molecule, is a powerful inhibitor of respiration of liver mitochondria isolated from torpid 13-lined ground squirrels, but has a weak effect on mitochondria isolated during summer and hibernation arousals, where metabolic rate is normal. Consistent with these in vitro effects, we find strong seasonal variations of in vivo levels of H2S in plasma and increases of H2S levels in the liver of squirrels during torpor compared to levels during arousal and summer. The in vivo changes of liver H2S levels correspond with low activity of the mitochondrial H2S oxidizing enzyme sulfide:quinone oxidoreductase (SQR) during torpor. Taken together, these results suggest that during torpor, H2S accumulates in the liver due to a low SQR activity and contributes to inhibition of mitochondrial respiration, while during arousals and summer these effects are reversed, H2S is degraded by active SQR and mitochondrial respiration rates increase. This study provides novel insights into mechanisms underlying mammalian hibernation, pointing to SQR as a key enzyme involved in the control of mitochondrial function.
Collapse
Affiliation(s)
- Birgitte S Jensen
- Department of Biology, Aarhus University, Aarhus C, 8000, Denmark; Department of Biology, University of Western Ontario, London, ON N6A 5B8, Canada
| | - Sibile Pardue
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Brynne Duffy
- Department of Biology, University of Western Ontario, London, ON N6A 5B8, Canada
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - James F Staples
- Department of Biology, University of Western Ontario, London, ON N6A 5B8, Canada
| | - Angela Fago
- Department of Biology, Aarhus University, Aarhus C, 8000, Denmark.
| |
Collapse
|
36
|
Marutani E, Morita M, Hirai S, Kai S, Grange RMH, Miyazaki Y, Nagashima F, Traeger L, Magliocca A, Ida T, Matsunaga T, Flicker DR, Corman B, Mori N, Yamazaki Y, Batten A, Li R, Tanaka T, Ikeda T, Nakagawa A, Atochin DN, Ihara H, Olenchock BA, Shen X, Nishida M, Hanaoka K, Kevil CG, Xian M, Bloch DB, Akaike T, Hindle AG, Motohashi H, Ichinose F. Sulfide catabolism ameliorates hypoxic brain injury. Nat Commun 2021; 12:3108. [PMID: 34035265 PMCID: PMC8149856 DOI: 10.1038/s41467-021-23363-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury.
Collapse
Affiliation(s)
- Eizo Marutani
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichi Hirai
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shinichi Kai
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert M H Grange
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fumiaki Nagashima
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lisa Traeger
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aurora Magliocca
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daniel R Flicker
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Corman
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Naohiro Mori
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yumiko Yamazaki
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Annabelle Batten
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca Li
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tomohiro Tanaka
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences & Exploratory Research Center on Life and Living Systems & Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan
| | - Takamitsu Ikeda
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Akito Nakagawa
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Dmitriy N Atochin
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hideshi Ihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| | - Benjamin A Olenchock
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, The Brigham and Women's Hospital, Boston, MA, USA
| | - Xinggui Shen
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences & Exploratory Research Center on Life and Living Systems & Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Allyson G Hindle
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Metal-organic frameworks for therapeutic gas delivery. Adv Drug Deliv Rev 2021; 171:199-214. [PMID: 33561450 DOI: 10.1016/j.addr.2021.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are gaseous signaling molecules (gasotransmitters) that regulate both physiological and pathological processes and offer therapeutic potential for the treatment of many diseases, such as cancer, cardiovascular disease, renal disease, bacterial and viral infections. However, the inherent labile nature of therapeutic gases results in difficulties in direct gases administration and their controlled delivery at clinically relevant ranges. Metal-organic frameworks (MOFs) with highly porous, stable, and easy-to-tailor properties have shown promising therapeutic gas delivery potential. Herein, we highlight the recent advances of MOF-based platforms for therapeutic gas delivery, either by endogenous (i.e., direct transfer of gases to targets) or exogenous (i.e., stimulating triggered release of gases) means. Reports that involve in vitro and/or in vivo studies are highlighted due to their high potential for clinical translation. Current challenges for clinical requirements and possible future innovative designs to meet variable healthcare needs are discussed.
Collapse
|
38
|
Maldonato BJ, Russell DA, Totah RA. Human METTL7B is an alkyl thiol methyltransferase that metabolizes hydrogen sulfide and captopril. Sci Rep 2021; 11:4857. [PMID: 33649426 PMCID: PMC7921093 DOI: 10.1038/s41598-021-84218-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/12/2021] [Indexed: 11/15/2022] Open
Abstract
Methylation of alkyl thiols is a biotransformation pathway designed to reduce thiol reactivity and potential toxicity, yet the gene and protein responsible for human alkyl thiol methyltransferase (TMT) activity remain unknown. Here we demonstrate with a range of experimental approaches using cell lines, in vitro systems, and recombinantly expressed enzyme, that human methyltransferase-like protein 7B (METTL7B) catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to hydrogen sulfide (H2S) and other exogenous thiol small molecules. METTL7B gene modulation experiments, including knockdown in HepG2 cells and overexpression in HeLa cells, directly alter the methylation of the drug captopril, a historic probe substrate for TMT activity. Furthermore, recombinantly expressed and purified wild-type METTL7B methylates several thiol compounds, including H2S, 7α-thiospironolactone, L-penicillamine, and captopril, in a time- and concentration-dependent manner. Typical for AdoMet-dependent small molecule methyltransferases, S-adenosyl-L-homocysteine (AdoHcy) inhibited METTL7B activity in a competitive fashion. Similarly, mutating a conserved aspartate residue, proposed to anchor AdoMet into the active site, to an alanine (D98A) abolished methylation activity. Endogenous thiols such as glutathione and cysteine, or classic substrates for other known small molecule S-, N-, and O-methyltransferases, were not substrates for METTL7B. Our results confirm, for the first time, that METTL7B, a gene implicated in multiple disease states including rheumatoid arthritis and breast cancer, encodes a protein that methylates small molecule alkyl thiols. Identifying the catalytic function of METTL7B will enable future pharmacological research in disease pathophysiology where altered METTL7B expression and, potentially H2S levels, can disrupt cell growth and redox state.
Collapse
Affiliation(s)
- Benjamin J Maldonato
- Department of Medicinal Chemistry, University of Washington, 1959 NE Pacific Ave, Box 357610, Seattle, WA, 98195, USA
| | - Drake A Russell
- Department of Medicinal Chemistry, University of Washington, 1959 NE Pacific Ave, Box 357610, Seattle, WA, 98195, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, 1959 NE Pacific Ave, Box 357610, Seattle, WA, 98195, USA.
| |
Collapse
|
39
|
Zhou J, Cao L, Feng X, Zhou B, Li L. Octreotide-mediated neurofunctional recovery in rats following traumatic brain injury. Role of H2S, Nrf2 and TNF-α. Acta Cir Bras 2021; 36:e361204. [PMID: 35239813 PMCID: PMC8867716 DOI: 10.1590/acb361204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose: To explore the role and mechanisms of octreotide in neurofunctional recovery in the traumatic brain injury (TBI) model. Methods: Rats were subjected to midline incision followed by TBI in the prefrontal cortex region. After 72 hours, the behavioural and neurological deficits tests were performed, which included memory testing on Morris water maze for 5 days. Octreotide (15 and 30 mg/kg i.p.) was administered 30 minutes before subjecting to TBI, and its administration was continued for three days. Results: In TBI-subjected rats, administration of octreotide restored on day 4 escape latency time (ELT) and increased the time spent in the target quadrant (TSTQ) on day 5, suggesting the improvement in learning and memory. It also increased the expression of H2S, Nrf2, and cystathionine-γ-lyase (CSE) in the prefrontal cortex, without any significant effect on cystathionine-β-synthase. Octreotide also decreased the TNF-α levels and neurological severity score. However, co-administration of CSE inhibitor (D,L-propargylglycine) abolished octreotide-mediated neurofunctional recovery, decreased the levels of H2S and Nrf2 and increased the levels of TNF-α. Conclusions: Octreotide improved the neurological functions in TBI-subjected rats, which may be due to up-regulation of H2S biosynthetic enzyme (CSE), levels of H2S and Nrf2 and down-regulation of neuroinflammation.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Neurosurgery - General Hospital of TISCO, China
| | - Li Cao
- The 940th Hospital of Joint Logistics Support Force of PLA, China
| | - Xia Feng
- Tianjin First Central Hospital, China
| | | | - Linshan Li
- Shuangqiao Economic and Technological Development Zone People’s Hospital, China
| |
Collapse
|
40
|
Dos Santos APA, da Silva JK, Neri JM, Neves ACO, de Lima DF, Menezes FG. Nucleophilicity of cysteine and related biothiols and the development of fluorogenic probes and other applications. Org Biomol Chem 2020; 18:9398-9427. [PMID: 33200155 DOI: 10.1039/d0ob01754j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biothiols such as l-cysteine, l-homocysteine, and glutathione play essential roles in many biological processes, and are directly associated with several health conditions. Therefore, the development of fast, selective, sensitive, and inexpensive methods for quantitatively analyzing biothiols in aqueous solution, but especially in biological samples, is a very attractive research field. In this feature review, we have approached the relevance of biothiols' nucleophilicity to develop selective fluorogenic probes. Since biothiols have considerable structural similarity, relevant strategies are in full development, including several fluorescent molecular platforms, specific receptor sites, reaction conditions, and optical responses. All of these features are properly presented and discussed. Biothiol sensing protocols are based on traditional organic chemistry reactions such as (hetero)aromatic nucleophilic substitution, addition, and substitution at carbonyl carbon, conjugate addition, and nucleophilic substitution at saturated carbon, amongst others including combined processes; furthermore, mechanistic aspects are detailed herein, including some interesting historical contexts. The feasibility of related fluorogenic probes is illustrated by analysis in complex matrices such as serum, cells, tissues, and animal models. Applications of these reactions in more complex systems such as sulfhydryl-based peptides and proteins are also presented, aiming at functionalizing and detecting these nucleophiles. Most literature cited in this review is recent; however, some other prominent works are also detailed. It is believed that this review may be accessible for many academic levels and may efficiently contribute not only to popularizing science but also to the rational development of fluorogenic probes for biothiol sensing.
Collapse
Affiliation(s)
- Alane P A Dos Santos
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Jordan K da Silva
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Jannyely M Neri
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Ana C O Neves
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Djalan F de Lima
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Fabrício G Menezes
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| |
Collapse
|
41
|
Ng SY, Ong KX, Surendran ST, Sinha A, Lai JJH, Chen J, Liang J, Tay LKS, Cui L, Loo HL, Ho P, Han J, Moreira W. Hydrogen Sulfide Sensitizes Acinetobacter baumannii to Killing by Antibiotics. Front Microbiol 2020; 11:1875. [PMID: 32849459 PMCID: PMC7427342 DOI: 10.3389/fmicb.2020.01875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/25/2023] Open
Abstract
The production of endogenous hydrogen sulfide (H2S) has been shown to confer antibiotic tolerance in all bacteria studied to date. Therefore, this mediator has been speculated to be a universal defense mechanism against antibiotics in bacteria. This is assuming that all bacteria produce endogenous H2S. In this study, we established that the pathogenic bacteria Acinetobacter baumannii does not produce endogenous H2S, giving us the opportunity to test the effect of exogenous H2S on antibiotic tolerance in a bacterium that does not produce it. By using a H2S-releasing compound to modulate the sulfide content in A. baumannii, we demonstrated that instead of conferring antibiotic tolerance, exogenous H2S sensitized A. baumannii to multiple antibiotic classes, and was able to revert acquired resistance to gentamicin. Exogenous H2S triggered a perturbation of redox and energy homeostasis that translated into hypersensitivity to antibiotic killing. We propose that H2S could be used as an antibiotic-potentiator and resistance-reversion agent in bacteria that do not produce it.
Collapse
Affiliation(s)
- Say Yong Ng
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Kai Xun Ong
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Smitha Thamarath Surendran
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.,Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group (CAMP IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Ameya Sinha
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Joey Jia Hui Lai
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Jacqueline Chen
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Jiaqi Liang
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Leona Kwan Sing Tay
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Hooi Linn Loo
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Jongyoon Han
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Wilfried Moreira
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| |
Collapse
|
42
|
Lan LA, Wu SY, Meng XG, Jiang JJ, Zheng MY, Fan GR. A simple liquid chromatography tandem mass spectrometric method for fast detection of hydrogen sulfide based on thiolysis of 7-nitro-2, 1, 3-benzoxadiazole ether. J Chromatogr A 2020; 1625:461243. [DOI: 10.1016/j.chroma.2020.461243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
|
43
|
Chen L, Shi R, She X, Gu C, Chong L, Zhang L, Li R. Mineralocorticoid receptor antagonist‐mediated cognitive improvement in a mouse model of Alzheimer's type: possible involvement of BDNF‐H
2
S‐Nrf2 signaling. Fundam Clin Pharmacol 2020; 34:697-707. [PMID: 32484999 DOI: 10.1111/fcp.12576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Li Chen
- Department of Neurology Shaanxi Provincial People’s Hospital 256 Friendship West Road, Beilin District Xi’an Shaanxi 710068 China
| | - Rui Shi
- Department of Ophthalmology Shaanxi Provincial People's Hospital No. 256 Youyi West Road, Beilin District Xi'an City Shaanxi Province 710068 China
| | - Xia She
- Nuclear Magnetic Resonance Room Shaanxi Provincial People’s Hospital 256 Friendship West Road, Beilin District Xi’an Shaanxi 710068 China
| | - Chaochao Gu
- Department of Neurology Shaanxi Provincial People’s Hospital 256 Friendship West Road, Beilin District Xi’an Shaanxi 710068 China
| | - Li Chong
- Department of Neurology Shaanxi Provincial People’s Hospital 256 Friendship West Road, Beilin District Xi’an Shaanxi 710068 China
| | - Lina Zhang
- Department of Neurology Shaanxi Provincial People’s Hospital 256 Friendship West Road, Beilin District Xi’an Shaanxi 710068 China
| | - Rui Li
- Department of Neurology Shaanxi Provincial People’s Hospital 256 Friendship West Road, Beilin District Xi’an Shaanxi 710068 China
| |
Collapse
|
44
|
6-Dithio-2'-deoxyguanosine analogs induce reactive oxygen species-mediated tumor cell apoptosis via bi-targeting thioredoxin 1 and telomerase. Toxicol Appl Pharmacol 2020; 401:115079. [PMID: 32497534 DOI: 10.1016/j.taap.2020.115079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/16/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Thioredoxin 1 (Trx1) and telomerase play key roles in the development and progression process of most tumors, and they both are promising drug therapy targets. We have, for the first time, discovered that Trx1 and telomerase had a dual-target synergistic effect. Based on that results, we designed a series of 6-dithio-2'-deoxyguanosine analogs (named as YLS00X) and verified whether they can inhibit Trx1 and telomerase simultaneously. TrxR1/Trx1 system activity and telomerase expression were significantly inhibited by 6-dithio-2'-deoxyguanosine analogs, especially YLS004. YLS004 can also cause ROS accumulation, and induce tumor cell apoptosis. The vitro antitumor activity of 6-dithio-2'-deoxyguanosine analogs using MTT assay on 11 different human cancer cells and found that human colon cancer cells(HCT116) and melanoma cells (A375) were the most sensitive cells to 6-dithio-2'-deoxyguanosine analogs treatment and vivo xenografts models also confirmed that. The serum biochemical parameters and multiple organs HE staining results of subacute experiments indicated that YLS004 might be mildly toxic to immune organs, including the thymus, spleen, and hematopoietic system. Besides, YLS004 was rapidly metabolized in the rats' blood. Our study revealed that YLS004, a Trx1 and telomerase inhibitor, has strong anti-tumor effects to colon cancer and melanoma cells and is a promising new candidate drug.
Collapse
|
45
|
Li Y, Wang C, Wang J, Tao L. Exploring the beneficial effects and possible mechanisms of repeated episodes of whole-body hypoxic perconditioning in rat model of preeclampsia. Hypertens Pregnancy 2020; 39:267-282. [PMID: 32397773 DOI: 10.1080/10641955.2020.1761378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM The study explored the beneficial effects of repeated episodes of whole body hypoxic perconditioning (WHPC) on preeclampsia (PE)-like symptoms in rats. MATERIAL AND METHODS PE was induced by administration of L-NAME (75 mg/kg) and WHPC was performed by exposing rats to low O2 (8%) and normal O2 of 10 min each in four alternate cycles. RESULTS L-NAME induced PE like symptoms in rats along with a decrease in the cystathionine-β-synthase (CBS) activity in the placental tissue, plasma levels of H2S and NO metabolites in pregnant rats. Two (GD9, GD14) and three episodes (GD9, GD14 and GD18) of WHPC improved PE-like symptoms with an increase in CBS activity and H2S levels. CBS inhibitor, amino-oxyacetic acid abolished the beneficial effects of three episodes of WHPC; while H2S donor, 4-methylbenzenecarbothioamide, 4-MBC attenuated PE-like symptoms. CONCLUSION WHPC attenuates L-NAME-induced PE-like symptoms due to increase in CBS activity and H2S-production.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics, Jinan Seventh People's Hospital of Shandong , Jinan City, Shandong Province, China
| | - Chunyun Wang
- Department of Obstetrics, Jinan Seventh People's Hospital of Shandong , Jinan City, Shandong Province, China
| | - Jing Wang
- Department of Obstetrics, Jinan Seventh People's Hospital of Shandong , Jinan City, Shandong Province, China
| | - Leisi Tao
- Department of Gynecology, Jinan Seventh People's Hospital of Shandong , Jinan City, Shandong Province, China
| |
Collapse
|
46
|
Marozkina N, Gaston B. An Update on Thiol Signaling: S-Nitrosothiols, Hydrogen Sulfide and a Putative Role for Thionitrous Acid. Antioxidants (Basel) 2020; 9:antiox9030225. [PMID: 32164188 PMCID: PMC7139563 DOI: 10.3390/antiox9030225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
Long considered vital to antioxidant defenses, thiol chemistry has more recently been recognized to be of fundamental importance to cell signaling. S-nitrosothiols—such as S-nitrosoglutathione (GSNO)—and hydrogen sulfide (H2S) are physiologic signaling thiols that are regulated enzymatically. Current evidence suggests that they modify target protein function primarily through post-translational modifications. GSNO is made by NOS and other metalloproteins; H2S by metabolism of cysteine, homocysteine and cystathionine precursors. GSNO generally acts independently of NO generation and has a variety of gene regulatory, immune modulator, vascular, respiratory and neuronal effects. Some of this physiology is shared with H2S, though the mechanisms differ. Recent evidence also suggests that molecules resulting from reactions between GSNO and H2S, such as thionitrous acid (HSNO), could also have a role in physiology. Taken together, these data suggest important new potential targets for thiol-based drug development.
Collapse
Affiliation(s)
- Nadzeya Marozkina
- Herman Wells Center for Pediatric Research, Riley Hospital for Children, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
- Indiana University, School of Medicine, 1044 W. Walnut Street, R4-474 Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +317-274-7427
| | - Benjamin Gaston
- Herman Wells Center for Pediatric Research, Riley Hospital for Children, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| |
Collapse
|
47
|
Kolluru GK, Shen X, Kevil CG. Reactive Sulfur Species: A New Redox Player in Cardiovascular Pathophysiology. Arterioscler Thromb Vasc Biol 2020; 40:874-884. [PMID: 32131614 PMCID: PMC7098439 DOI: 10.1161/atvbaha.120.314084] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hydrogen sulfide has emerged as an important gaseous signaling molecule and a regulator of critical biological processes. However, the physiological significance of hydrogen sulfide metabolites such as persulfides, polysulfides, and other reactive sulfur species (RSS) has only recently been appreciated. Emerging evidence suggests that these RSS molecules may have similar or divergent regulatory roles compared with hydrogen sulfide in various biological activities. However, the chemical nature of persulfides and polysulfides is complex and remains poorly understood within cardiovascular and other pathophysiological conditions. Recent reports suggest that RSS can be produced endogenously, with different forms having unique chemical properties and biological implications involving diverse cellular responses such as protein biosynthesis, cell-cell barrier functions, and mitochondrial bioenergetics. Enzymes of the transsulfuration pathway, CBS (cystathionine beta-synthase) and CSE (cystathionine gamma-lyase), may also produce RSS metabolites besides hydrogen sulfide. Moreover, CARSs (cysteinyl-tRNA synthetase) are also able to generate protein persulfides via cysteine persulfide (CysSSH) incorporation into nascently formed polypeptides suggesting a new biologically relevant amino acid. This brief review discusses the biochemical nature and potential roles of RSS, associated oxidative stress redox signaling, and future research opportunities in cardiovascular disease.
Collapse
Affiliation(s)
- Gopi K Kolluru
- From the Department of Pathology and Translational Pathobiology, Shreveport, LA
| | - Xinggui Shen
- From the Department of Pathology and Translational Pathobiology, Shreveport, LA
| | - Christopher G Kevil
- From the Department of Pathology and Translational Pathobiology, Shreveport, LA
| |
Collapse
|
48
|
Abstract
Often in redox biology experiments there is a need to add compounds which impinge on the redox of the cellular environment cell. Such compounds may include reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), reactive nitrogen species such as nitric oxide (NO), hydrogen sulfide (H2S), or even hydrogen gas (H2). It is not always easy or obvious how such compounds should be used. Gases may be supplied and used in the gaseous form, but this is often not convenient. Alternative methods may involve donor molecules that release into solution the relevant compound, but the actual compound released needs to be considered, along with the kinetics of that release and the by-products that might be remain. Therefore, the method of delivery of redox active compounds needs to have careful consideration before more complex experiments are undertaken. This chapter covers some of the more common methods employed and discusses some of the pros and cons of such methods.
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, UK.
| |
Collapse
|
49
|
Yuan S, Yurdagul A, Peretik JM, Alfaidi M, Al Yafeai Z, Pardue S, Kevil CG, Orr AW. Cystathionine γ-Lyase Modulates Flow-Dependent Vascular Remodeling. Arterioscler Thromb Vasc Biol 2019; 38:2126-2136. [PMID: 30002061 DOI: 10.1161/atvbaha.118.311402] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective- Flow patterns differentially regulate endothelial cell phenotype, with laminar flow promoting vasodilation and disturbed flow promoting endothelial proinflammatory activation. CSE (cystathionine γ-lyase), a major source of hydrogen sulfide (H2S) in endothelial cells, critically regulates cardiovascular function, by both promoting vasodilation and reducing endothelial activation. Therefore, we sought to investigate the role of CSE in the endothelial response to flow. Approach and Results- Wild-type C57Bl/6J and CSE knockout ( CSE-/-) mice underwent partial carotid ligation to induce disturbed flow in the left carotid. In addition, endothelial cells isolated from wild-type and CSE -/- mice were exposed to either laminar or oscillatory flow, an in vitro model of disturbed flow. Interestingly, laminar flow significantly reduced CSE expression in vitro, and only disturbed flow regions show discernable CSE protein expression in vivo, correlating with enhanced H2S production in wild-type C57BL/6J but not CSE-/- mice. Lack of CSE limited disturbed flow-induced proinflammatory gene expression (ICAM-1[intercellular adhesion molecule 1], VCAM-1 [vascular cell adhesion molecular 1]) and monocyte infiltration and CSE-/- endothelial cells showed reduced NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and proinflammatory gene expression in response to oscillatory flow in vitro. In addition, CSE-/- mice showed reduced inward remodeling after partial carotid ligation. CSE-/- mice showed elevated vascular nitrite levels (measure of nitric oxide [NO]) in the unligated carotids, suggesting an elevation in baseline NO production, and the NO scavenger 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide normalized the reduced inward remodeling, but not inflammation, of ligated carotids in CSE-/- mice. Conclusions- CSE expression in disturbed flow regions critically regulates both endothelial activation and flow-dependent vascular remodeling, in part through altered NO availability.
Collapse
Affiliation(s)
- Shuai Yuan
- From the Department of Cellular Biology and Anatomy (S.Y., A.Y., C.G.K., A.W.O.)
| | - Arif Yurdagul
- From the Department of Cellular Biology and Anatomy (S.Y., A.Y., C.G.K., A.W.O.)
| | - Jonette M Peretik
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.)
| | - Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.)
| | - Zaki Al Yafeai
- Department of Cellular and Molecular Physiology (Z.A.Y., C.G.K., A.W.O.)
| | - Sibile Pardue
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.)
| | - Christopher G Kevil
- From the Department of Cellular Biology and Anatomy (S.Y., A.Y., C.G.K., A.W.O.).,Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.).,Department of Cellular and Molecular Physiology (Z.A.Y., C.G.K., A.W.O.).,Center for Cardiovascular Diseases and Sciences (C.G.K., A.W.O.), Louisiana State University Health Sciences Center, Shreveport
| | - A Wayne Orr
- From the Department of Cellular Biology and Anatomy (S.Y., A.Y., C.G.K., A.W.O.).,Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.).,Department of Cellular and Molecular Physiology (Z.A.Y., C.G.K., A.W.O.).,Center for Cardiovascular Diseases and Sciences (C.G.K., A.W.O.), Louisiana State University Health Sciences Center, Shreveport
| |
Collapse
|
50
|
Jensen B, Pardue S, Kevil CG, Fago A. Tissue-dependent variation of hydrogen sulfide homeostasis in anoxic freshwater turtles. ACTA ACUST UNITED AC 2019; 222:jeb.203976. [PMID: 31109970 DOI: 10.1242/jeb.203976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022]
Abstract
Hydrogen sulfide (H2S) controls numerous physiological responses. To understand its proposed role in metabolic suppression, we measured free H2S and bound sulfane sulfur (BSS) in tissues of the freshwater turtle Trachemys scripta elegans, a species undergoing strong metabolic suppression when cold and anoxic. In warm normoxic turtles, free H2S was higher in red blood cells (RBCs) and kidney (∼9-10 µmol l-1) than in brain, liver and lung (∼1-2 µmol l-1). These values overall aligned with the tissue H2S-generating enzymatic activity. BSS levels were similar in all tissues (∼0.5 µmol l-1) but ∼100-fold higher in RBCs, which have a high thiol content, suggesting that RBCs function as a circulating H2S reservoir. Cold acclimation caused significant changes in free and bound H2S in liver, brain and RBCs, but anoxia had no further effect, except in the brain. These results show tissue-dependent sulfide signaling with a potential role in brain metabolic suppression during anoxia in turtles.
Collapse
Affiliation(s)
- Birgitte Jensen
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark.,Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Sibile Pardue
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Angela Fago
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|