1
|
Imokawa T, Yokoyama K, Takahashi K, Oyama J, Tsuchiya J, Sanjo N, Tateishi U. Brain perfusion SPECT in dementia: what radiologists should know. Jpn J Radiol 2024; 42:1215-1230. [PMID: 38888851 DOI: 10.1007/s11604-024-01612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The findings of brain perfusion single-photon emission computed tomography (SPECT), which detects abnormalities often before changes manifest in morphological imaging, mainly reflect neurodegeneration and contribute to dementia evaluation. A major shift is about to occur in dementia practice to the approach of diagnosing based on biomarkers and treating with disease-modifying drugs. Accordingly, brain perfusion SPECT will be required to serve as a biomarker of neurodegeneration. Hypoperfusion in Alzheimer's disease (AD) is typically seen in the posterior cingulate cortex and precuneus early in the disease, followed by the temporoparietal cortices. On the other hand, atypical presentations of AD such as the posterior variant, logopenic variant, frontal variant, and corticobasal syndrome exhibit hypoperfusion in areas related to symptoms. Additionally, hypoperfusion especially in the precuneus and parietal association cortex can serve as a predictor of progression from mild cognitive impairment to AD. In dementia with Lewy bodies (DLB), the differentiating feature is the presence of hypoperfusion in the occipital lobes in addition to that observed in AD. Hypoperfusion of the occipital lobe is not a remarkable finding, as it is assumed to reflect functional loss due to impairment of the cholinergic and dopaminergic systems rather than degeneration per se. Moreover, the cingulate island sign reflects the degree of AD pathology comorbid in DLB. Frontotemporal dementia is characterized by regional hypoperfusion according to the three clinical types, and the background pathology is diverse. Idiopathic normal pressure hydrocephalus shows apparent hypoperfusion around the Sylvian fissure and corpus callosum and apparent hyperperfusion in high-convexity areas. The cortex or striatum with diffusion restriction on magnetic resonance imaging in prion diseases reflects spongiform degeneration and brain perfusion SPECT reveals hypoperfusion in the same areas. Brain perfusion SPECT findings in dementia should be carefully interpreted considering background pathology.
Collapse
Affiliation(s)
- Tomoki Imokawa
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
- Department of Radiology, Japanese Red Cross Omori Hospital, Ota-Ku, Tokyo, Japan
| | - Kota Yokoyama
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan.
| | - Kanae Takahashi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Jun Oyama
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Junichi Tsuchiya
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Nobuo Sanjo
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| |
Collapse
|
2
|
Konstantinopoulou E, Aretouli E, Sioka C, Douli E, Petrikis P, Iakovou I, Ioannidis P. Regional cerebral blood flow in behavioral variant of FTD: hypoperfusion patterns and clinical associations. Acta Neurol Belg 2024:10.1007/s13760-024-02584-z. [PMID: 39453559 DOI: 10.1007/s13760-024-02584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/14/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Findings from functional neuroimaging techniques, such as single-photon emission computed tomography (SPECT), may add useful evidence improving Frontotemporal Dementia (FTD) diagnosis. The aim of the present study was to investigate patterns of hypoperfusion in a group of patients diagnosed with the behavioral variant of FTD (bvFTD) and to explore the relationship between brain perfusion and clinical characteristics. MATERIALS AND METHODS Brain perfusion of 23 bvFTD patients was measured with SPECT scintigraphy in lobes and Brodmann areas (BAs) and the NeurogamTM software was used for image analysis. To assess behavioral disturbances and dementia severity, patients' informants completed the Frontotempotal Behavioral Inventory and the Frontotemporal Dementia Rating Scale. Descriptive statistics were used for the detection of pathological hypoperfusion in lobes and selected BAs. Associations among patients' clinical characteristics and perfusion in lobes were explored via non-parametric correlations. RESULTS Participants presented pathological hypoperfusion in frontal, limbic and temporal lobes. The most prominent deficit was observed in limbic lobes, where all participants showed pathological hypoperfusion. Decreased perfusion was also observed in limbic, frontal and temporal BAs. Perfusion in the left and right frontal lobe was associated with behavioral disturbances and disease severity, which was also correlated with perfusion in right limbic, left and right temporal areas. CONCLUSION Patterns of limbic, frontal and temporal hypopefusion were reported in the present study, along with associations between brain perfusion, behavioral disturbance and severity of dementia. Perfusion patterns can help to understand further associated brain biomarkers, contributing to early diagnosis and intervention in bvFTD.
Collapse
Affiliation(s)
- Eleni Konstantinopoulou
- School of Psychology and 2nd Department of Neurology, Aristotle University of Thessaloniki, Thessaloníki, Greece.
| | - Eleni Aretouli
- Psychology Department, University of Ioannina, Ioannina, Greece
| | - Chrissa Sioka
- Laboratory of Nuclear Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Eleni Douli
- School of Psychology, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Petros Petrikis
- Department of Psychiatry, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Ioannis Iakovou
- Laboratory of Nuclear Medicine, School of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Panagiotis Ioannidis
- 2nd Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| |
Collapse
|
3
|
Khan AF, Iturria-Medina Y. Beyond the usual suspects: multi-factorial computational models in the search for neurodegenerative disease mechanisms. Transl Psychiatry 2024; 14:386. [PMID: 39313512 PMCID: PMC11420368 DOI: 10.1038/s41398-024-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
From Alzheimer's disease to amyotrophic lateral sclerosis, the molecular cascades underlying neurodegenerative disorders remain poorly understood. The clinical view of neurodegeneration is confounded by symptomatic heterogeneity and mixed pathology in almost every patient. While the underlying physiological alterations originate, proliferate, and propagate potentially decades before symptomatic onset, the complexity and inaccessibility of the living brain limit direct observation over a patient's lifespan. Consequently, there is a critical need for robust computational methods to support the search for causal mechanisms of neurodegeneration by distinguishing pathogenic processes from consequential alterations, and inter-individual variability from intra-individual progression. Recently, promising advances have been made by data-driven spatiotemporal modeling of the brain, based on in vivo neuroimaging and biospecimen markers. These methods include disease progression models comparing the temporal evolution of various biomarkers, causal models linking interacting biological processes, network propagation models reproducing the spatial spreading of pathology, and biophysical models spanning cellular- to network-scale phenomena. In this review, we discuss various computational approaches for integrating cross-sectional, longitudinal, and multi-modal data, primarily from large observational neuroimaging studies, to understand (i) the temporal ordering of physiological alterations, i(i) their spatial relationships to the brain's molecular and cellular architecture, (iii) mechanistic interactions between biological processes, and (iv) the macroscopic effects of microscopic factors. We consider the extents to which computational models can evaluate mechanistic hypotheses, explore applications such as improving treatment selection, and discuss how model-informed insights can lay the groundwork for a pathobiological redefinition of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada.
| |
Collapse
|
4
|
Buccellato FR, D'Anca M, Tartaglia GM, Del Fabbro M, Galimberti D. Frontotemporal dementia: from genetics to therapeutic approaches. Expert Opin Investig Drugs 2024; 33:561-573. [PMID: 38687620 DOI: 10.1080/13543784.2024.2349286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) includes a group of neurodegenerative diseases characterized clinically by behavioral disturbances and by neurodegeneration of brain anterior temporal and frontal lobes, leading to atrophy. Apart from symptomatic treatments, there is, at present, no disease-modifying cure for FTD. AREAS COVERED Three main mutations are known as causes of familial FTD, and large consortia have studied carriers of mutations, also in preclinical Phases. As genetic cases are the only ones in which the pathology can be predicted in life, compounds developed so far are directed toward specific proteins or mutations. Herein, recently approved clinical trials will be summarized, including molecules, mechanisms of action and pharmacological testing. EXPERT OPINION These studies are paving the way for the future. They will clarify whether single mutations should be addressed rather than common proteins depositing in the brain to move from genetic to sporadic FTD.
Collapse
Affiliation(s)
- Francesca R Buccellato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marianna D'Anca
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Ducharme S, Pijnenburg Y, Rohrer JD, Huey E, Finger E, Tatton N. Identifying and Diagnosing TDP-43 Neurodegenerative Diseases in Psychiatry. Am J Geriatr Psychiatry 2024; 32:98-113. [PMID: 37741764 PMCID: PMC11270911 DOI: 10.1016/j.jagp.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 09/25/2023]
Abstract
Neuropsychiatric symptoms (NPS) are common manifestations of neurodegenerative disorders and are often early signs of those diseases. Among those neurodegenerative diseases, TDP-43 proteinopathies are an increasingly recognized cause of early neuropsychiatric manifestations. TDP-43-related diseases include frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and Limbic-Predominant Age-Related TDP-43 Encephalopathy (LATE). The majority of TDP-43-related diseases are sporadic, but a significant proportion is hereditary, with progranulin (GRN) mutations and C9orf72 repeat expansions as the most common genetic etiologies. Studies reveal that NPS can be the initial manifestation of those diseases or can complicate disease course, but there is a lack of awareness among clinicians about TDP-43-related diseases, which leads to common diagnostic mistakes or delays. There is also emerging evidence that TDP-43 accumulations could play a role in late-onset primary psychiatric disorders. In the absence of robust biomarkers for TDP-43, the diagnosis remains primarily based on clinical assessment and neuroimaging. Given the association with psychiatric symptoms, clinical psychiatrists have a key role in the early identification of patients with TDP-43-related diseases. This narrative review provides a comprehensive overview of the pathobiology of TDP-43, resulting clinical presentations, and associated neuropsychiatric manifestations to help guide clinical practice.
Collapse
Affiliation(s)
- Simon Ducharme
- Department of Psychiatry (SD), Douglas Mental Health University Institute, McGill University, Montreal, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience (YP), Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease (JDR), UCL Queen Square Institute of Neurology, London, UK
| | - Edward Huey
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Psychiatry (EH), Columbia University, New York, NY
| | - Elizabeth Finger
- London Health Sciences Centre Parkwood Institute (EF), London, ON, Canada
| | | |
Collapse
|
6
|
Michelutti M, Urso D, Gnoni V, Giugno A, Zecca C, Vilella D, Accadia M, Barone R, Dell'Abate MT, De Blasi R, Manganotti P, Logroscino G. Narcissistic Personality Disorder as Prodromal Feature of Early-Onset, GRN-Positive bvFTD: A Case Report. J Alzheimers Dis 2024; 98:425-432. [PMID: 38393901 DOI: 10.3233/jad-230779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Behavioral variant frontotemporal dementia (bvFTD) typically involves subtle changes in personality that can delay a timely diagnosis. Objective Here, we report the case of a patient diagnosed of GRN-positive bvFTD at the age of 52 presenting with a 7-year history of narcissistic personality disorder, accordingly to DSM-5 criteria. Methods The patient was referred to neurological and neuropsychological examination. She underwent 3 Tesla magnetic resonance imaging (MRI) and genetic studies. Results The neuropsychological examination revealed profound deficits in all cognitive domains and 3T brain MRI showed marked fronto-temporal atrophy. A mutation in the GRN gene further confirmed the diagnosis. Conclusions The present case documents an unusual onset of bvFTD and highlights the problematic nature of the differential diagnosis between prodromal psychiatric features of the disease and primary psychiatric disorders. Early recognition and diagnosis of bvFTD can lead to appropriate management and support for patients and their families. This case highlights the importance of considering neurodegenerative diseases, such as bvFTD, in the differential diagnosis of psychiatric disorders, especially when exacerbations of behavioral traits manifest in adults.
Collapse
Affiliation(s)
- Marco Michelutti
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
- Department of Medicine, Surgery and Health Sciences, Clinical Unit of Neurology, University Hospital of Trieste, University of Trieste, Trieste, Italy
| | - Daniele Urso
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
- Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Valentina Gnoni
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
- Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessia Giugno
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| | - Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| | - Davide Vilella
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| | - Maria Accadia
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| | - Roberta Barone
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| | - Roberto De Blasi
- Department of Diagnostic Imaging, Pia Fondazione di Culto e Religione "Card. G.Panico", Tricase, Italy
| | - Paolo Manganotti
- Department of Medicine, Surgery and Health Sciences, Clinical Unit of Neurology, University Hospital of Trieste, University of Trieste, Trieste, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| |
Collapse
|
7
|
Prelog PR, Palandacic AK. Hypersexuality during treatment with cariprazine in a patient with schizophrenia? A case report. BMC Psychiatry 2023; 23:935. [PMID: 38082232 PMCID: PMC10714445 DOI: 10.1186/s12888-023-05432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cariprazine is a third-generation antipsychotic with a unique mechanism of action. It functions as a partial agonist with high affinity for dopamine D2 and D3 and serotonin 5-HT1A receptors, an antagonist for 5-HT2A (moderate affinity) and 5-HT2B (high affinity) receptors. It binds to histamine H1 receptors and has a low affinity for 5-HT2C and alpha 1A-adrenergic receptors and no affinity for muscarinic (cholinergic) receptors. Among the troubling side effects, symptoms related to impulse control, such as hypersexuality, pathological gambling, compulsive shopping, compulsive eating etc., have been reported with the use of antipsychotic medications. However, no reports have been published regarding impulse control symptoms associated with cariprazine. We report a case of cariprazine-induced hypersexuality in a patient with schizophrenia, which was resolved by discontinuation of the medication. CASE PRESENTATION A 67-year-old Caucasian woman with schizophrenia was admitted to the hospital inpatient unit after she discontinued olanzapine and psychotic symptoms reappeared. Prior to that, she was in remission, taking olanzapine for approximately one year. After discontinuation, she experienced auditory hallucinations with persecutory delusions and became anergic and withdrawn, with blunted affect. Olanzapine was reintroduced, as it was proven successful in her past treatments. However, since there were no changes, especially in negative symptoms, cariprazine was added. Seven days after the introduction of cariprazine, the patient developed compulsive sexual behaviour. Therefore, cariprazine was discontinued, and the hypersexual behaviour was resolved. CONCLUSIONS In this case report, we describe hypersexual behaviour that could potentially be induced by cariprazine. As a single case study, conclusions cannot be drawn. Controlled studies are warranted to better determine causality and the significance of this possible side-effect of cariprazine.
Collapse
Affiliation(s)
- Polona Rus Prelog
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia.
- Medical Faculty Ljubljana, University of Ljubljana, Ljubljana, Slovenia.
| | - Anja Kokalj Palandacic
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Carlos AF, Josephs KA. The Role of Clinical Assessment in the Era of Biomarkers. Neurotherapeutics 2023; 20:1001-1018. [PMID: 37594658 PMCID: PMC10457273 DOI: 10.1007/s13311-023-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Hippocratic Medicine revolved around the three main principles of patient, disease, and physician and promoted the systematic observation of patients, rational reasoning, and interpretation of collected information. Although these remain the cardinal features of clinical assessment today, Medicine has evolved from a more physician-centered to a more patient-centered approach. Clinical assessment allows physicians to encounter, observe, evaluate, and connect with patients. This establishes the patient-physician relationship and facilitates a better understanding of the patient-disease relationship, as the ultimate goal is to diagnose, prognosticate, and treat. Biomarkers are at the core of the more disease-centered approach that is currently revolutionizing Medicine as they provide insight into the underlying disease pathomechanisms and biological changes. Genetic, biochemical, radiographic, and clinical biomarkers are currently used. Here, we define a seven-level theoretical construct for the utility of biomarkers in neurodegenerative diseases. Level 1-3 biomarkers are considered supportive of clinical assessment, capable of detecting susceptibility or risk factors, non-specific neurodegeneration or dysfunction, and/or changes at the individual level which help increase clinical diagnostic accuracy and confidence. Level 4-7 biomarkers have the potential to surpass the utility of clinical assessment through detection of early disease stages and prediction of underlying pathology. In neurodegenerative diseases, biomarkers can potentiate, but cannot substitute, clinical assessment. In this current era, aside from adding to the discovery, evaluation/validation, and implementation of more biomarkers, clinical assessment remains crucial to maintaining the personal, humanistic, and sociocultural aspects of patient care. We would argue that clinical assessment is a custom that should never go obsolete.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, 200 1st St. S.W., Rochester, MN, 55905, USA.
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st St. S.W., Rochester, MN, 55905, USA
| |
Collapse
|
9
|
Diaz-Torres S, Ogonowski N, García-Marín LM, Bonham LW, Duran-Aniotz C, Yokoyama JS, Rentería ME. Genetic overlap between cortical brain morphometry and frontotemporal dementia risk. Cereb Cortex 2023; 33:7428-7435. [PMID: 36813468 PMCID: PMC10267623 DOI: 10.1093/cercor/bhad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Frontotemporal dementia (FTD) has a complex genetic etiology, where the precise mechanisms underlying the selective vulnerability of brain regions remain unknown. We leveraged summary-based data from genome-wide association studies (GWAS) and performed LD score regression to estimate pairwise genetic correlations between FTD risk and cortical brain imaging. Then, we isolated specific genomic loci with a shared etiology between FTD and brain structure. We also performed functional annotation, summary-data-based Mendelian randomization for eQTL using human peripheral blood and brain tissue data, and evaluated the gene expression in mice targeted brain regions to better understand the dynamics of the FTD candidate genes. Pairwise genetic correlation estimates between FTD and brain morphology measures were high but not statistically significant. We identified 5 brain regions with a strong genetic correlation (rg > 0.45) with FTD risk. Functional annotation identified 8 protein-coding genes. Building upon these findings, we show in a mouse model of FTD that cortical N-ethylmaleimide sensitive factor (NSF) expression decreases with age. Our results highlight the molecular and genetic overlap between brain morphology and higher risk for FTD, specifically for the right inferior parietal surface area and right medial orbitofrontal cortical thickness. In addition, our findings implicate NSF gene expression in the etiology of FTD.
Collapse
Affiliation(s)
- Santiago Diaz-Torres
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Natalia Ogonowski
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Centro de Neurociencias Cognitivas (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Luis M García-Marín
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Luke W Bonham
- Memory and Aging Center, University of California, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Claudia Duran-Aniotz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- School of Psychology, Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibanez, Santiago, Chile
| | - Jennifer S Yokoyama
- Memory and Aging Center, University of California, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
- Department of Neurology, Weill Institute of Neurosciences, University of California, San Francisco, CA, United States
| | - Miguel E Rentería
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Gatto RG, Carlos AF, Reichard RR, Lowe VJ, Whitwell JL, Josephs KA. Comparative assessment of regional tau distribution by Tau-PET and Post-mortem neuropathology in a representative set of Alzheimer's & frontotemporal lobar degeneration patients. PLoS One 2023; 18:e0284182. [PMID: 37167210 PMCID: PMC10174492 DOI: 10.1371/journal.pone.0284182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Flortaucipir (FTP) PET is a key imaging technique to evaluate tau burden indirectly. However, it appears to have greater utility for 3R+4R tau found in Alzheimer's disease (AD), compared to other non-AD tauopathies. The purpose of this study is to determine how flortaucipir uptake links to neuropathologically determined tau burden in AD and non-AD tauopathies. We identified nine individuals who had undergone antemortem tau-PET and postmortem neuropathological analyses. The cohort included three patients with low, moderate, and high AD neuropathologic changes (ADNC), five patients with a non-AD tauopathy (one Pick's disease, three progressive supranuclear palsies, and one globular glial tauopathy), and one control without ADNC. We compared regional flortaucipir PET uptake with tau burden using an anti-AT8 antibody. There was a very good correlation between flortaucipir uptake and tau burden in those with ADNC although, in one ADNC patient, flortaucipir uptake and tau burden did not match due to the presence of argyrophilic grains disease. Non-AD patients showed lower flortaucipir uptake globally compared to ADNC patients. In the non-AD patients, some regional associations between flortaucipir uptake and histopathological tau burden were observed. Flortaucipir uptake is strongly linked to underlying tau burden in patients with ADNC but there are instances where they do not match. On-the-other hand, flortaucipir has a limited capacity to represent histopathological tau burden in non-AD patients although there are instances where regional uptake correlates with regional tau burden. There is a definite need for the development of future generations of tau-PET ligands that can detect non-AD tau.
Collapse
Affiliation(s)
- Rodolfo G. Gatto
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Arenn F. Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - R. Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, United States of America
| | | | - Keith A. Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
11
|
Risacher SL, Apostolova LG. Neuroimaging in Dementia. Continuum (Minneap Minn) 2023; 29:219-254. [PMID: 36795879 DOI: 10.1212/con.0000000000001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE Neurodegenerative diseases are significant health concerns with regard to morbidity and social and economic hardship around the world. This review describes the state of the field of neuroimaging measures as biomarkers for detection and diagnosis of both slowly progressing and rapidly progressing neurodegenerative diseases, specifically Alzheimer disease, vascular cognitive impairment, dementia with Lewy bodies or Parkinson disease dementia, frontotemporal lobar degeneration spectrum disorders, and prion-related diseases. It briefly discusses findings in these diseases in studies using MRI and metabolic and molecular-based imaging (eg, positron emission tomography [PET] and single-photon emission computerized tomography [SPECT]). LATEST DEVELOPMENTS Neuroimaging studies with MRI and PET have demonstrated differential patterns of brain atrophy and hypometabolism in different neurodegenerative disorders, which can be useful in differential diagnoses. Advanced MRI sequences, such as diffusion-based imaging, and functional MRI (fMRI) provide important information about underlying biological changes in dementia and new directions for development of novel measures for future clinical use. Finally, advancements in molecular imaging allow clinicians and researchers to visualize dementia-related proteinopathies and neurotransmitter levels. ESSENTIAL POINTS Diagnosis of neurodegenerative diseases is primarily based on symptomatology, although the development of in vivo neuroimaging and fluid biomarkers is changing the scope of clinical diagnosis, as well as the research into these devastating diseases. This article will help inform the reader about the current state of neuroimaging in neurodegenerative diseases, as well as how these tools might be used for differential diagnoses.
Collapse
Affiliation(s)
- Shannon L Risacher
- Address correspondence to Dr Shannon L. Risacher, 355 W 16th St, Indianapolis, IN 46202,
| | | |
Collapse
|
12
|
Gonzalez-Gomez R, Ibañez A, Moguilner S. Multiclass characterization of frontotemporal dementia variants via multimodal brain network computational inference. Netw Neurosci 2023; 7:322-350. [PMID: 37333999 PMCID: PMC10270711 DOI: 10.1162/netn_a_00285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/03/2022] [Indexed: 04/03/2024] Open
Abstract
Characterizing a particular neurodegenerative condition against others possible diseases remains a challenge along clinical, biomarker, and neuroscientific levels. This is the particular case of frontotemporal dementia (FTD) variants, where their specific characterization requires high levels of expertise and multidisciplinary teams to subtly distinguish among similar physiopathological processes. Here, we used a computational approach of multimodal brain networks to address simultaneous multiclass classification of 298 subjects (one group against all others), including five FTD variants: behavioral variant FTD, corticobasal syndrome, nonfluent variant primary progressive aphasia, progressive supranuclear palsy, and semantic variant primary progressive aphasia, with healthy controls. Fourteen machine learning classifiers were trained with functional and structural connectivity metrics calculated through different methods. Due to the large number of variables, dimensionality was reduced, employing statistical comparisons and progressive elimination to assess feature stability under nested cross-validation. The machine learning performance was measured through the area under the receiver operating characteristic curves, reaching 0.81 on average, with a standard deviation of 0.09. Furthermore, the contributions of demographic and cognitive data were also assessed via multifeatured classifiers. An accurate simultaneous multiclass classification of each FTD variant against other variants and controls was obtained based on the selection of an optimum set of features. The classifiers incorporating the brain's network and cognitive assessment increased performance metrics. Multimodal classifiers evidenced specific variants' compromise, across modalities and methods through feature importance analysis. If replicated and validated, this approach may help to support clinical decision tools aimed to detect specific affectations in the context of overlapping diseases.
Collapse
Affiliation(s)
- Raul Gonzalez-Gomez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andres, Buenos Aires, Argentina
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
- Trinity College Dublin, Dublin, Ireland
| | - Sebastian Moguilner
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andres, Buenos Aires, Argentina
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Souza LCD, Hosogi ML, Machado TH, Carthery-Goulart MT, Yassuda MS, Smid J, Barbosa BJAP, Schilling LP, Balthazar MLF, Frota NAF, Vale FAC, Caramelli P, Bertolucci PHF, Chaves MLF, Brucki SMD, Nitrini R, Bahia VS, Takada LT. Diagnóstico da demência frontotemporal: recomendações do Departamento Científico de Neurologia Cognitiva e do Envelhecimento da Academia Brasileira de Neurologia. Dement Neuropsychol 2022; 16:40-52. [DOI: 10.1590/1980-5764-dn-2022-s103pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/08/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
RESUMO A “demência frontotemporal” (DFT) é uma síndrome clínica, cujo denominador comum é o acometimento focal dos lobos frontais e/ou temporais. A DFT tem três fenótipos clínicos distintos: a variante comportamental e dois subtipos linguísticos, a saber, a afasia progressiva primária não-fluente/agramática (APP-NF/A) e a afasia progressiva primária semântica (APP-S). A DFT é a segunda causa mais comum de demência em indivíduos com idade inferior a 65 anos, após a doença de Alzheimer. O presente artigo apresenta recomendações para diagnóstico da DFT no cenário brasileiro, considerando os três níveis de complexidade do sistema de saúde: atenção primária à saúde e níveis secundários. São propostos protocolos de investigação diagnóstica abrangendo testagem cognitiva, avaliação comportamental, avaliação fonoaudiológica, exames laboratoriais e de neuroimagem.
Collapse
Affiliation(s)
- Leonardo Cruz de Souza
- Universidade Federal de Minas Gerais, Brasil; Universidade Federal de Minas Gerais, Brasil
| | | | - Thais Helena Machado
- Universidade Federal de Minas Gerais, Brasil; Universidade Federal de Minas Gerais, Brasil
| | | | | | | | - Breno José Alencar Pires Barbosa
- Universidade de São Paulo, Brasil; Universidade Federal de Pernambuco, Brasil; Instituto de Medicina Integral Prof. Fernando Figueira, Brasil
| | - Lucas Porcello Schilling
- Pontifícia Universidade do Rio Grande do Sul, Brasil; Pontifícia Universidade do Rio Grande do Sul, Brasil; Pontifícia Universidade do Rio Grande do Sul, Brasil
| | | | | | | | - Paulo Caramelli
- Universidade Federal de Minas Gerais, Brasil; Universidade Federal de Minas Gerais, Brasil
| | | | | | | | | | | | | |
Collapse
|
14
|
Souza LCD, Hosogi ML, Machado TH, Carthery-Goulart MT, Yassuda MS, Smid J, Barbosa BJAP, Schilling LP, Balthazar MLF, Frota NAF, Vale FAC, Caramelli P, Bertolucci PHF, Chaves MLF, Brucki SMD, Nitrini R, Bahia VS, Takada LT. Diagnosis of frontotemporal dementia: recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Dement Neuropsychol 2022. [DOI: 10.1590/1980-5764-dn-2022-s103en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
ABSTRACT “Frontotemporal dementia” (FTD) is a clinical syndrome characterized by the focal involvement of the frontal and/or temporal lobes. FTD has three clinical phenotypes: the behavioral variant and two linguistic subtypes, namely, non-fluent/agrammatic primary progressive aphasia (PPA-NF/A) and semantic PPA (PPA-S). FTD is the second most common cause of dementia in individuals under the age of 65 years. This article presents recommendations for the diagnosis of FTD in the Brazilian scenario, considering the three levels of complexity of the health system: primary health care, secondary and tertiary levels. Diagnostic guidelines are proposed, including cognitive testing, behavioral and language assessments, laboratory tests, and neuroimaging.
Collapse
Affiliation(s)
- Leonardo Cruz de Souza
- Universidade Federal de Minas Gerais, Brasil; Universidade Federal de Minas Gerais, Brasil
| | | | - Thais Helena Machado
- Universidade Federal de Minas Gerais, Brasil; Universidade Federal de Minas Gerais, Brasil
| | | | | | | | - Breno José Alencar Pires Barbosa
- Universidade de São Paulo, Brasil; Universidade Federal de Pernambuco, Brasil; Instituto de Medicina Integral Prof. Fernando Figueira, Brasil
| | - Lucas Porcello Schilling
- Pontifícia Universidade do Rio Grande do Sul, Brasil; Pontifícia Universidade do Rio Grande do Sul, Brasil; Pontifícia Universidade do Rio Grande do Sul, Brasil
| | | | | | | | - Paulo Caramelli
- Universidade Federal de Minas Gerais, Brasil; Universidade Federal de Minas Gerais, Brasil
| | | | | | | | | | | | | |
Collapse
|
15
|
Kidambi NS, Meza-Venegas J, Leontieva L. Frontotemporal Dementia: Dilemma in Discrimination From Similarly Presenting Neurological and Psychiatric Conditions. Cureus 2022; 14:e28166. [PMID: 36158417 PMCID: PMC9484296 DOI: 10.7759/cureus.28166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/08/2022] Open
Abstract
Frontotemporal dementia (FTD) is the most common cause of neurocognitive decline, second to Alzheimer’s disease (AD) and Lewy body dementia. Its presence offers a unique challenge to physicians trying to detect cognitive deficits, as it not only arises in middle age but also can be misdiagnosed as a primary psychiatric disorder. The following case describes the clinical course of a 50-year-old male with a recent history of sporadic visual and auditory hallucinations, followed by a gradual decline in cognitive function including declining memory, apathy and behavioral disinhibition, and social functioning, which are suggestive of FTD-type. Apart from the gradual decline of his cognitive function, the patient had multiple clinical encounters, during which he was misdiagnosed with schizophrenia. Furthermore, the report showcases the handful of conditions that FTD can be misdiagnosed and discusses the thorough clinical/psychological examination and investigations to be done to arrive at FTD.
Collapse
|
16
|
Frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43): its journey of more than 100 years. J Neurol 2022; 269:4030-4054. [PMID: 35320398 PMCID: PMC10184567 DOI: 10.1007/s00415-022-11073-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) with TDP-43-immunoreactive inclusions (FTLD-TDP) is a neurodegenerative disease associated with clinical, genetic, and neuropathological heterogeneity. An association between TDP-43, FTLD and amyotrophic lateral sclerosis (ALS) was first described in 2006. However, a century before immunohistochemistry existed, atypical dementias displaying behavioral, language and/or pyramidal symptoms and showing non-specific FTLD with superficial cortical neuronal loss, gliosis and spongiosis were often confused with Alzheimer's or Pick's disease. Initially this pathology was termed dementia lacking distinctive histopathology (DLDH), but this was later renamed when ubiquitinated inclusions originally found in ALS were also discovered in (DLDH), thus warranting a recategorization as FTLD-U (ubiquitin). Finally, the ubiquitinated protein was identified as TDP-43, which aggregates in cortical, subcortical, limbic and brainstem neurons and glial cells. The topography and morphology of TDP-43 inclusions associate with specific clinical syndromes and genetic mutations which implies different pathomechanisms that are yet to be discovered; hence, the TDP-43 journey has actually just begun. In this review, we describe how FTLD-TDP was established and defined clinically and neuropathologically throughout the past century.
Collapse
|
17
|
Manera AL, Dadar M, Collins DL, Ducharme S. Ventricular features as reliable differentiators between bvFTD and other dementias. Neuroimage Clin 2022; 33:102947. [PMID: 35134704 PMCID: PMC8856914 DOI: 10.1016/j.nicl.2022.102947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Our results showed a consistent pattern of ventricle enlargement in the bvFTD patients, particularly in the anterior parts of the frontal and temporal horns of the lateral ventricles. The estimation of the proposed ventricular anteroposterior ratio (APR) resulted in statistically significant difference compared to all other groups. Our study proposes an easy to obtain and generalizable ventricle-based feature (APR) from T1-weighted structural MRI (routinely acquired and available in the clinic) that can be used not only to differentiate bvFTD from normal subjects, but also from other FTD variants (SV and PNFA), MCI, and AD patients. We have made our ventricle feature estimation and bvFTD diagnosis tool (VentRa) publicly available, allowing application of our model in other studies. If validated in a prospective study, VentRa has the potential to aid bvFTD diagnosis, particularly in settings where access to specialized FTD care is limited.
Introduction Lateral ventricles are reliable and sensitive indicators of brain atrophy and disease progression in behavioral variant frontotemporal dementia (bvFTD). We aimed to investigate whether an automated tool using ventricular features could improve diagnostic accuracy in bvFTD across neurodegenerative diseases. Methods Using 678 subjects −69 bvFTD, 38 semantic variant, 37 primary non-fluent aphasia, 218 amyloid + mild cognitive impairment, 74 amyloid + Alzheimer’s Dementia and 242 normal controls- with a total of 2750 timepoints, lateral ventricles were segmented and differences in ventricular features were assessed between bvFTD, normal controls and other dementia cohorts. Results Ventricular antero-posterior ratio (APR) was the only feature that was significantly different and increased faster in bvFTD compared to all other cohorts. We achieved a 10-fold cross-validation accuracy of 80% (77% sensitivity, 82% specificity) in differentiating bvFTD from all other cohorts with other ventricular features (i.e., total ventricular volume and left–right lateral ventricle ratios), and 76% accuracy using only the single APR feature. Discussion Ventricular features, particularly the APR, might be reliable and easy-to-implement markers for bvFTD diagnosis. We have made our ventricle feature estimation and bvFTD diagnostic tool publicly available, allowing application of our model in other studies.
Collapse
Affiliation(s)
- Ana L Manera
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec (QC), Canada.
| | - Mahsa Dadar
- Department of Psychiatry, Douglas Mental Health University Health Centre, McGill University, Montreal, Quebec (QC), Canada; Douglas Mental Health University Institute, Verdun, QC, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec (QC), Canada
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec (QC), Canada; Department of Psychiatry, Douglas Mental Health University Health Centre, McGill University, Montreal, Quebec (QC), Canada
| | | | | |
Collapse
|
18
|
Shapiro NL, Todd EG, Billot B, Cash DM, Iglesias JE, Warren JD, Rohrer JD, Bocchetta M. In vivo hypothalamic regional volumetry across the frontotemporal dementia spectrum. Neuroimage Clin 2022; 35:103084. [PMID: 35717886 PMCID: PMC9218583 DOI: 10.1016/j.nicl.2022.103084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a spectrum of diseases characterised by language, behavioural and motor symptoms. Among the different subcortical regions implicated in the FTD symptomatology, the hypothalamus regulates various bodily functions, including eating behaviours which are commonly present across the FTD spectrum. The pattern of specific hypothalamic involvement across the clinical, pathological, and genetic forms of FTD has yet to be fully investigated, and its possible associations with abnormal eating behaviours have yet to be fully explored. METHODS Using an automated segmentation tool for volumetric T1-weighted MR images, we measured hypothalamic regional volumes in a cohort of 439 patients with FTD (197 behavioural variant FTD [bvFTD]; 7 FTD with associated motor neurone disease [FTD-MND]; 99 semantic variant primary progressive aphasia [svPPA]; 117 non-fluent variant PPA [nfvPPA]; 19 PPA not otherwise specified [PPA-NOS]) and 118 age-matched controls. We compared volumes across the clinical, genetic (29 MAPT, 32 C9orf72, 23 GRN), and pathological diagnoses (61 tauopathy, 40 TDP-43opathy, 4 FUSopathy). We correlated the volumes with presence of abnormal eating behaviours assessed with the revised version of the Cambridge Behavioural Inventory (CBI-R). RESULTS On average, FTD patients showed 14% smaller hypothalamic volumes than controls. The groups with the smallest hypothalamic regions were FTD-MND (20%), MAPT (25%) and FUS (33%), with differences mainly localised in the anterior and posterior regions. The inferior tuberal region was only significantly smaller in tauopathies (MAPT and Pick's disease) and in TDP-43 type C compared to controls and was the only regions that did not correlate with eating symptoms. PPA-NOS and nfvPPA were the groups with the least frequent eating behaviours and the least hypothalamic involvement. CONCLUSIONS Abnormal hypothalamic volumes are present in all the FTD forms, but different hypothalamic regions might play a different role in the development of abnormal eating behavioural and metabolic symptoms. These findings might therefore help in the identification of different underlying pathological mechanisms, suggesting the potential use of hypothalamic imaging biomarkers and the research of potential therapeutic targets within the hypothalamic neuropeptides.
Collapse
Affiliation(s)
- Noah L Shapiro
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| | - Benjamin Billot
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK; UK Dementia Research Institute at UCL, UCL, London, UK
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK; Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK.
| |
Collapse
|
19
|
Geraudie A, Battista P, García AM, Allen IE, Miller ZA, Gorno-Tempini ML, Montembeault M. Speech and language impairments in behavioral variant frontotemporal dementia: A systematic review. Neurosci Biobehav Rev 2021; 131:1076-1095. [PMID: 34673112 DOI: 10.1016/j.neubiorev.2021.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023]
Abstract
Although behavioral variant frontotemporal dementia (bvFTD) is classically defined by behavioral and socio-emotional changes, impairments often extend to other cognitive functions. These include early speech and language deficits related to the disease's core neural disruptions. Yet, their scope and clinical relevance remains poorly understood. This systematic review characterizes such disturbances in bvFTD, considering clinically, neuroanatomically, genetically, and neuropathologically defined subgroups. We included 181 experimental studies, with at least 5 bvFTD patients diagnosed using accepted criteria, comparing speech and language outcomes between bvFTD patients and healthy controls or between bvFTD subgroups. Results reveal extensive and heterogeneous deficits across cohorts, with (a) consistent lexico-semantic, reading & writing, and prosodic impairments; (b) inconsistent deficits in motor speech and grammar; and (c) relative preservation of phonological skills. Also, preliminary findings suggest that the severity of speech and language deficits might be associated with global cognitive impairment, predominantly temporal or fronto-temporal atrophy and MAPT mutations (vs C9orf72). Although under-recognized, these impairments contribute to patient characterization and phenotyping, while potentially informing diagnosis and management.
Collapse
Affiliation(s)
- Amandine Geraudie
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA; Neurology Department, Toulouse University Hospital, Toulouse, France
| | - Petronilla Battista
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, USA; Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Via Generale Nicola Bellomo, Bari, Italy
| | - Adolfo M García
- Global Brain Health Institute, University of California, San Francisco, USA; Universidad De San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Isabel E Allen
- Global Brain Health Institute, University of California, San Francisco, USA; Department of Epidemiology & Biostatistics, University of California San Francisco, CA, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, USA
| | - Maxime Montembeault
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA.
| |
Collapse
|
20
|
Duran-Aniotz C, Orellana P, Leon Rodriguez T, Henriquez F, Cabello V, Aguirre-Pinto MF, Escobedo T, Takada LT, Pina-Escudero SD, Lopez O, Yokoyama JS, Ibanez A, Parra MA, Slachevsky A. Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries. Front Neurol 2021; 12:663407. [PMID: 34248820 PMCID: PMC8263937 DOI: 10.3389/fneur.2021.663407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) includes a group of clinically, genetically, and pathologically heterogeneous neurodegenerative disorders, affecting the fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by progressive deficits in behavior, executive function, and language and its diagnosis relies mainly on the clinical expertise of the physician/consensus group and the use of neuropsychological tests and/or structural/functional neuroimaging, depending on local availability. The modest correlation between clinical findings and FTD neuropathology makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a disease and symptom overlap with psychiatric disorders. Despite advances in understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis for this disease is still lacking. One of the major challenges is to improve diagnosis in FTD patients as early as possible. In this context, biomarkers have emerged as useful methods to provide and/or complement clinical diagnosis for this complex syndrome, although more evidence is needed to incorporate most of them into clinical practice. However, most biomarker studies have been performed using North American or European populations, with little representation of the Latin American and the Caribbean (LAC) region. In the LAC region, there are additional challenges, particularly the lack of awareness and knowledge about FTD, even in specialists. Also, LAC genetic heritage and cultures are complex, and both likely influence clinical presentations and may modify baseline biomarker levels. Even more, due to diagnostic delay, the clinical presentation might be further complicated by both neurological and psychiatric comorbidity, such as vascular brain damage, substance abuse, mood disorders, among others. This systematic review provides a brief update and an overview of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in LAC countries. Our review highlights the need for extensive research on biomarkers in FTD in LAC to contribute to a more comprehensive understanding of the disease and its associated biomarkers. Dementia research is certainly reduced in the LAC region, highlighting an urgent need for harmonized, innovative, and cross-regional studies with a global perspective across multiple areas of dementia knowledge.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon Rodriguez
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Victoria Cabello
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Tamara Escobedo
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
21
|
Cui L, Chen K, Huang L, Sun J, Lv Y, Jia X, Guo Q. Changes in local brain function in mild cognitive impairment due to semantic dementia. CNS Neurosci Ther 2021; 27:587-602. [PMID: 33650764 PMCID: PMC8025655 DOI: 10.1111/cns.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS Mild cognitive impairment due to semantic dementia represents the preclinical stage, involving cognitive decline dominated by semantic impairment below the semantic dementia standard. Therefore, studying mild cognitive impairment due to semantic dementia may identify changes in patients before progression to dementia. However, whether changes in local functional activity occur in preclinical stages of semantic dementia remains unknown. Here, we explored local functional changes in patients with mild cognitive impairment due to semantic dementia using resting-state functional MRI. METHODS We administered a battery of neuropsychological tests to twenty-two patients with mild cognitive impairment due to semantic dementia (MCI-SD group) and nineteen healthy controls (HC group). We performed structural MRI to compare gray matter volumes, and resting-state functional MRI with multiple sub-bands and indicators to evaluate functional activity. RESULTS Neuropsychological tests revealed a significant decline in semantic performance in the MCI-SD group, but no decline in other cognitive domains. Resting-state functional MRI revealed local functional changes in multiple brain regions in the MCI-SD group, distributed in different sub-bands and indicators. In the normal band, local functional changes were only in the gray matter atrophic area. In the other sub-bands, more regions with local functional changes outside atrophic areas were found across various indicators. Among these, the degree centrality of the left precuneus in the MCI-SD group was positively correlated with general semantic tasks (oral sound naming, word-picture verification). CONCLUSION Our study revealed local functional changes in mild cognitive impairment due to semantic dementia, some of which were located outside the atrophic gray matter. Driven by functional connectivity changes, the left precuneus might play a role in preclinical semantic dementia. The study proved the value of frequency-dependent sub-bands, especially the slow-2 and slow-3 sub-bands.
Collapse
Affiliation(s)
- Liang Cui
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| | - Keliang Chen
- Department of NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Lin Huang
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| | - Jiawei Sun
- School of Information and Electronics TechnologyJiamusi UniversityJiamusiChina
| | - Yating Lv
- Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
| | - Xize Jia
- Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
| | - Qihao Guo
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| |
Collapse
|
22
|
Disentangling the Association between the Insula and the Autonomic Nervous System. J Neurosci 2021; 41:3051-3053. [PMID: 33827971 DOI: 10.1523/jneurosci.2225-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 11/21/2022] Open
|
23
|
Peet BT, Spina S, Mundada N, La Joie R. Neuroimaging in Frontotemporal Dementia: Heterogeneity and Relationships with Underlying Neuropathology. Neurotherapeutics 2021; 18:728-752. [PMID: 34389969 PMCID: PMC8423978 DOI: 10.1007/s13311-021-01101-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia encompasses a group of clinical syndromes defined pathologically by degeneration of the frontal and temporal lobes. Historically, these syndromes have been challenging to diagnose, with an average of about three years between the time of symptom onset and the initial evaluation and diagnosis. Research in the field of neuroimaging has revealed numerous biomarkers of the various frontotemporal dementia syndromes, which has provided clinicians with a method of narrowing the differential diagnosis and improving diagnostic accuracy. As such, neuroimaging is considered a core investigative tool in the evaluation of neurodegenerative disorders. Furthermore, patterns of neurodegeneration correlate with the underlying neuropathological substrates of the frontotemporal dementia syndromes, which can aid clinicians in determining the underlying etiology and improve prognostication. This review explores the advancements in neuroimaging and discusses the phenotypic and pathologic features of behavioral variant frontotemporal dementia, semantic variant primary progressive aphasia, and nonfluent variant primary progressive aphasia, as seen on structural magnetic resonance imaging and positron emission tomography.
Collapse
Affiliation(s)
- Bradley T Peet
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
24
|
Dev SI, Dickerson BC, Touroutoglou A. Neuroimaging in Frontotemporal Lobar Degeneration: Research and Clinical Utility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:93-112. [PMID: 33433871 PMCID: PMC8787866 DOI: 10.1007/978-3-030-51140-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Frontotemporal lobar dementia (FTLD) is a clinically and pathologically complex disease. Advances in neuroimaging techniques have provided a specialized set of tools to investigate underlying pathophysiology and identify clinical biomarkers that aid in diagnosis, prognostication, monitoring, and identification of appropriate endpoints in clinical trials. In this chapter, we review data discussing the utility of neuroimaging biomarkers in sporadic FTLD, with an emphasis on current and future clinical applications. Among those modalities readily utilized in clinical settings, T1-weighted structural magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) are best supported in differential diagnosis and as targets for clinical trial endpoints. However, a number of nonclinical neuroimaging modalities, including diffusion tensor imaging and resting-state functional connectivity MRI, show promise as biomarkers to predict progression and as clinical trial endpoints. Other neuroimaging modalities, including amyloid PET, Tau PET, and arterial spin labeling MRI, are also discussed, though more work is required to establish their utility in FTLD in clinical settings.
Collapse
Affiliation(s)
- Sheena I Dev
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA.
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|