1
|
Helal NE, Ali LS, Elsaed WM, Berika M, Elhassan YH, El-Bayoumi KS, Badawy AA, El-Agawy MSED, Dawood AF, Eldesoqui M. Neuroprotective effects of selenium against lithium-induced cerebellar toxicity in rats: The role of apoptosis, gliosis, and aging markers. Tissue Cell 2025; 94:102779. [PMID: 39955833 DOI: 10.1016/j.tice.2025.102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Prolonged lithium therapy in psychiatric disorders may be complicated by multi-organ dysfunction, particularly in the nervous system. Toxicity to the cerebellum is one of these, which, while uncommon, inevitably emerges negatively and permanently. Selenium is a trace element regarded as one of the critical antioxidants. Numerous investigations have validated selenium's neuroprotective properties against various neurotoxic medications. The degree of affliction of the nerve cells is assessed using GFAP, a marker of astrocytosis; Caspase-3, a marker of apoptosis; and klotho, a marker of anti-aging. AIM OF THE STUDY This study is designed to investigate the cerebellar structural and functional changes in lithium-treated rats and the postulated neuroprotective role of selenium. METHODOLOGY A total of 24 adult male albino rats were divided into 4 groups: control, selenium (1 mg/kg in water solution by gavage daily), lithium (by intraperitoneal injection of 25 mg/kg lithium carbonate dissolved in 0.9 % NaCL twice daily for 4 weeks), and lithium-selenium group. Motor coordination was evaluated using the rotarod test. Cerebellar malonaldehyde (MDA) and reduced glutathione (GSH) were measured, and histopathological examination and immunohistochemical expression of Klotho, GFAP, and Caspase 3 were evaluated. RESULTS The lithium-treated group exhibited reduced latency on the rotarod test, elevated oxidative stress indicators, and an altered cerebellar structure in HE and cresyl violet-stained sections. Moreover, there was a diminished Klotho expression and increased levels of both caspase-3 and GFAP expression. Selenium administration reduced latency time, diminished oxidative stress markers, mitigated lithium-induced cerebellar alterations, increased Klotho expression, and lowered the expression of caspase-3 and GFAP. CONCLUSION Lithium exposure causes alterations in the cerebellar cortical structure in albino rats. Selenium protected the cerebellar cortex from such changes by enhancing Klotho expression, diminishing oxidative stress, and reducing apoptosis.
Collapse
Affiliation(s)
- Nora Elshehawy Helal
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Anatomy, Faculty of Medicine, Mansoura National University, Gamasa, Egypt.
| | - Lashin Saad Ali
- Department of Basic Medical Science-Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan; Physiology Department-Mansoura Faculty of Medicine-Mansoura University, Mansoura, Egypt
| | - Wael M Elsaed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Basic Sciences Department, Riyadh Elm University, Riyadh, Saudi Arabia.
| | - Mohamed Berika
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Rehabilitation Science, College of Applied Medical Sciences, King Saud University, Saudi Arabia.
| | - Yasir Hassan Elhassan
- Department of Basic Medical Science, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Khaled S El-Bayoumi
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic Medical Sciences, Ibn Sina University for Medical Sciences, Amman 16197, Jordan
| | - Abdelnaser A Badawy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Mosaab Salah El-Din El-Agawy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Amal Fahmy Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O.Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Abdelnaser M, Attya ME, El-Rehany MA, Fathy M. Clemastine mitigates sepsis-induced acute kidney injury in rats; the role of α-Klotho/TLR-4/MYD-88/NF-κB/ Caspase-3/ p-P38 MAPK signaling pathways. Arch Biochem Biophys 2025; 763:110229. [PMID: 39608427 DOI: 10.1016/j.abb.2024.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Sepsis is a fatal condition, with an annual incidence of more than 48 million cases as well as 11 million deaths resulting from it. Moreover, sepsis continues to rank as the fifth most prevalent cause of mortality globally. The objective of this study is to investigate if Clemastine (CLM) pretreatment protects against acute kidney injury (AKI) caused by cecal ligation and puncture (CLP) via modulating Toll-like receptor-4 (TLR-4), Myeloid differentiation primary response 88 (MYD-88), nuclear factor kappa B (NF-κB), Bcl-2-associated X (Bax), B-cell lymphoma-2 (Bcl-2), and caspase-3 signaling pathways. CLM markedly attenuated sepsis-caused molecular, biochemical, and histopathological alterations. CLM downregulated the levels of the proinflammatory markers, suppressed the expression of cleaved caspase-3, TLR-4 and MYD-88 as well as inactivating NF-κB p-P65 and p-P38 proteins, inhibited Bax, NF-κB, and caspase-3 genes expression, and augmented α-Klotho protein expression as well as Bcl-2 gene expression. Finally, CLM pretreatment protected against acute kidney injury by preventing TLR-4/p-P38 pathway-mediated apoptotic cell death in rats.
Collapse
Affiliation(s)
- Mahmoud Abdelnaser
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt.
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia, 61519, Egypt.
| | - Mahmoud A El-Rehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
3
|
Czajkowski K, Herbet M, Murias M, Piątkowska-Chmiel I. Senolytics: charting a new course or enhancing existing anti-tumor therapies? Cell Oncol (Dordr) 2024:10.1007/s13402-024-01018-5. [PMID: 39633108 DOI: 10.1007/s13402-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Cell senescence is a natural response within our organisms. Initially, it was considered an effective anti-tumor mechanism. However, it is now believed that while cell senescence initially acts as a robust barrier against tumor initiation, the subsequent accumulation of senescent cells can paradoxically promote cancer recurrence and cause damage to neighboring tissues. This intricate balance between cell proliferation and senescence plays a pivotal role in maintaining tissue homeostasis. Moreover, senescence cells secrete many bioactive molecules collectively termed the senescence-associated secretory phenotype (SASP), which can induce chronic inflammation, alter tissue architecture, and promote tumorigenesis through paracrine signaling. Among the myriads of compounds, senotherapeutic drugs have emerged as exceptionally promising candidates in anticancer treatment. Their ability to selectively target senescent cells while sparing healthy tissues represents a paradigm shift in therapeutic intervention, offering new avenues for personalized oncology medicine. Senolytics have introduced new therapeutic possibilities by enabling the targeted removal of senescent cells. As standalone agents, they can clear tumor cells in a senescent state and, when combined with chemo- or radiotherapy, eliminate residual senescent cancer cells after treatment. This dual approach allows for the intentional use of lower-dose therapies or the removal of unintended senescent cells post-treatment. Additionally, by targeting non-cancerous senescent cells, senolytics may help reduce tumor formation risk, limit recurrence, and slow disease progression. This article examines the mechanisms of cellular senescence, its role in cancer treatment, and the importance of senotherapy, with particular attention to the therapeutic potential of senolytic drugs.
Collapse
Affiliation(s)
- Konrad Czajkowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
4
|
Chen X, Wei Y, Li Z, Zhou C, Fan Y. Distinct role of Klotho in long bone and craniofacial bone: skeletal development, repair and regeneration. PeerJ 2024; 12:e18269. [PMID: 39465174 PMCID: PMC11505971 DOI: 10.7717/peerj.18269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024] Open
Abstract
Bone defects are highly prevalent diseases caused by trauma, tumors, inflammation, congenital malformations and endocrine abnormalities. Ideally effective and side effect free approach to dealing with bone defects remains a clinical conundrum. Klotho is an important protein, which plays an essential role in regulating aging and mineral ion homeostasis. More recently, research revealed the function of Klotho in regulating skeleton development and regeneration. Klotho has been identified in mesenchymal stem cells, osteoblasts, osteocytes and osteoclasts in different skeleton regions. The specific function and regulatory mechanisms of Klotho in long bone and craniofacial bone vary due to their different embryonic development, ossification and cell types, which remain unclear and without conclusion. Moreover, studies have confirmed that Klotho is a multifunctional protein that can inhibit inflammation, resist cancer and regulate the endocrine system, which may further accentuate the potential of Klotho to be the ideal molecule in inducing bone restoration clinically. Besides, as an endogenous protein, Klotho has a promising potential for clinical therapy without side effects. In the current review, we summarized the specific function of Klotho in long bone and craniofacial skeleton from phenotype to cellular alternation and signaling pathway. Moreover, we illustrated the possible future clinical application for Klotho. Further research on Klotho might help to solve the existing clinical difficulties in bone healing and increase the life quality of patients with bone injury and the elderly.
Collapse
Affiliation(s)
- Xinyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yali Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zucen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Mata-Monterde M, Serrano-Valcarce A, Almiñana-Pastor PJ, Micó-Martínez P, López-Roldán A. miRNAs as Epigenetic Biomarkers in the Study of the Bidirectional Relationship between Type 2 Diabetes Mellitus and Periodontitis: A Systematic Review. Int J Mol Sci 2024; 25:10723. [PMID: 39409052 PMCID: PMC11477124 DOI: 10.3390/ijms251910723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
The objective of this study is to analyze the miRNA expression of oral fluids such as gingival crevicular fluid (GCF) in patients with periodontitis and Type 2 diabetes mellitus, and how these epigenetic biomarkers can influence the bidirectional relationship of these two inflammatory diseases. This review was conducted following the PRISMA criteria. PubMed, Scopus, Cochrane Library, Embase, and Web of Science databases were searched for clinical studies conducted on humans investigating, through GCF miRNA expression, the relationship between periodontal diseases and type 2 diabetes mellitus. In addition, the etiopathogenic pathways of the studied miRNAs were analyzed using the DIANA MIR path tool. A total of 1436 references were identified in the initial literature search, and seven articles were finally included in this review. Most of the articles included in this review were case-control studies and examined the expression of miRNAs in patients with periodontitis with or without diabetes. Due to their characteristics, miRNAs appear to be the ideal biomarkers for improving the understanding and knowledge of the etiopathogenic pathways that link both diseases. Among all the studied miRNAs, miR-146a, miR-155, miR-200b, miR-223, and miR-203 showed strong involvement in inflammatory and metabolic pathways, making them potential good diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
| | | | - Pedro José Almiñana-Pastor
- Department of Stomatology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | | | | |
Collapse
|
6
|
Prud’homme GJ, Wang Q. Anti-Inflammatory Role of the Klotho Protein and Relevance to Aging. Cells 2024; 13:1413. [PMID: 39272986 PMCID: PMC11394293 DOI: 10.3390/cells13171413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The α-Klotho protein (hereafter Klotho) is an obligate coreceptor for fibroblast growth factor 23 (FGF23). It is produced in the kidneys, brain and other sites. Klotho insufficiency causes hyperphosphatemia and other anomalies. Importantly, it is associated with chronic pathologies (often age-related) that have an inflammatory component. This includes atherosclerosis, diabetes and Alzheimer's disease. Its mode of action in these diseases is not well understood, but it inhibits or regulates multiple major pathways. Klotho has a membrane form and a soluble form (s-Klotho). Cytosolic Klotho is postulated but not well characterized. s-Klotho has endocrine properties that are incompletely elucidated. It binds to the FGF receptor 1c (FGFR1c) that is widely expressed (including endothelial cells). It also attaches to soluble FGF23, and FGF23/Klotho binds to FGFRs. Thus, s-Klotho might be a roaming FGF23 coreceptor, but it has other functions. Notably, Klotho (cell-bound or soluble) counteracts inflammation and appears to mitigate related aging (inflammaging). It inhibits NF-κB and the NLRP3 inflammasome. This inflammasome requires priming by NF-κB and produces active IL-1β, membrane pores and cell death (pyroptosis). In accord, Klotho countered inflammation and cell injury induced by toxins, damage-associated molecular patterns (DAMPs), cytokines, and reactive oxygen species (ROS). s-Klotho also blocks the TGF-β receptor and Wnt ligands, which lessens fibrotic disease. Low Klotho is associated with loss of muscle mass (sarcopenia), as occurs in aging and chronic diseases. s-Klotho counters the inhibitory effects of myostatin and TGF-β on muscle, reduces inflammation, and improves muscle repair following injury. The inhibition of TGF-β and other factors may also be protective in diabetic retinopathy and age-related macular degeneration (AMD). This review examines Klotho functions especially as related to inflammation and potential applications.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 220 Walmer Rd, Toronto, ON M5R 3R7, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai 200030, China
- Shanghai Innogen Pharmaceutical Co., Ltd., Shanghai 201318, China
| |
Collapse
|
7
|
Hosseininasab SS, Dhiaa SM, Shahrtash SA, Lak M, Faghihkhorasani A, Mahdi F. The interaction between klotho protein and epigenetic alteration in diabetes and treatment options. J Diabetes Metab Disord 2024; 23:333-341. [PMID: 38932867 PMCID: PMC11196449 DOI: 10.1007/s40200-024-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/11/2024] [Indexed: 06/28/2024]
Abstract
Introduction Klotho is a membrane protein predominantly expressed in the kidneys, and its discovery was serendipitously made through gene-targeting experiments conducted on mice. Klotho has a favorable role in the regulation of multiple cellular processes, such as aging, oxidative stress, inflammation, and apoptosis. This regulation occurs through the targeting of diverse signaling molecules, cell membrane receptors, and ion channels, achieved by physical contacts or enzymatic activities of Klotho. This review examines the role of Klotho in the epigenetic regulation of molecules associated with diabetes. Methods Authors conducted a thorough literature search using the PubMed®, Web of Science™, and Scopus®. Relevant articles up to September 2023, published in the English language were considered. We reviewed research databases searching for studies that included keywords klotho, epigenetic, and diabetes. Results 14 related papers about epigenetic modification of proteins involved in diabetes pathogenesis were selected to be included in this narrative review. In the studies, the kidney was the most investigated organ regarding this correlation. Also, phosphorylation and methylation were the common epigenetic modifications of proteins by Klotho. Conclusion Klotho has a significant role in the maturation of adipocytes and the regulation of systemic glucose metabolism, exhibiting a strong association with the pathogenesis of diabetes. Both epigenetic alterations and the modulation of protein phosphorylation by Klotho play significant roles in the regulation of Klotho expression and the modulation of other molecules implicated in the etiology of diabetes.
Collapse
Affiliation(s)
| | | | | | - Mehrnoosh Lak
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Mahdi
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
Liu J, Wang H, Liu Q, Long S, Wu Y, Wang N, Lin W, Chen G, Lin M, Wen J. Klotho exerts protection in chronic kidney disease associated with regulating inflammatory response and lipid metabolism. Cell Biosci 2024; 14:46. [PMID: 38584258 PMCID: PMC11000353 DOI: 10.1186/s13578-024-01226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The anti-aging protein Klotho plays a protective role in kidney disease, but its potential as a biomarker for chronic kidney disease (CKD) is controversial. Additionally, the main pathways through which Klotho exerts its effects on CKD remain unclear. Therefore, we used bioinformatics and clinical data analysis to determine its role in CKD. RESULTS We analyzed the transcriptomic and clinical data from the Nephroseq v5 database and found that the Klotho gene was mainly expressed in the tubulointerstitium, and its expression was significantly positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with blood urea nitrogen (BUN) in CKD. We further found that Klotho gene expression was mainly negatively associated with inflammatory response and positively associated with lipid metabolism in CKD tubulointerstitium by analyzing two large sample-size CKD tubulointerstitial transcriptome datasets. By analyzing 10-year clinical data from the National Health and Nutrition Examination Survey (NHANES) 2007-2016, we also found that Klotho negatively correlated with inflammatory biomarkers and triglyceride and positively correlated with eGFR in the CKD population. Mediation analysis showed that Klotho could improve renal function in the general population by modulating the inflammatory response and lipid metabolism, while in the CKD population, it primarily manifested by mediating the inflammatory response. Restricted cubic spline (RCS) analysis showed that the optimal concentration range for Klotho to exert its biological function was around 1000 pg/ml. Kaplan-Meier curves showed that lower cumulative hazards of all-cause mortality in participants with higher levels of Klotho. We also demonstrated that Klotho could reduce cellular inflammatory response and improve cellular lipid metabolism by establishing an in vitro model similar to CKD. CONCLUSIONS Our results suggest that Klotho exerts protection in CKD, which may be mainly related to the regulation of inflammatory response and lipid metabolism, and it can serve as a potential biomarker for CKD.
Collapse
Affiliation(s)
- Junhui Liu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Huaicheng Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Qinyu Liu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shushu Long
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yanfang Wu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Nengying Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China.
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| | - Miao Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China.
- Department of Nephrology, Provincial Clinical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.
| | - Junping Wen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China.
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
9
|
Ghahramanipour Z, Alipour S, Masoumi J, Rostamlou A, Hatami-Sadr A, Heris JA, Naseri B, Jafarlou M, Baradaran B. Regulation of Dendritic Cell Functions by Vitamins as Promising Therapeutic Strategy for Immune System Disorders. Adv Biol (Weinh) 2023; 7:e2300142. [PMID: 37423961 DOI: 10.1002/adbi.202300142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Indexed: 07/11/2023]
Abstract
A functional immune system is crucial for a healthy life, protecting from infections, tumors, or autoimmune disorders; these are accomplished by the interaction between various immune cells. Nourishment, particularly micronutrients, are very important components in the immune system balance, therefore this review emphasizes the vitamins (D, E, A, C) and Dendritic cells' subsets due to vitamins' roles in immune processes, especially on dendritic cells' functions, maturation, and cytokine production. Current studies reveal significant benefits related to vitamins, including vitamin E, which can contribute to the control of dendritic cells' function and maturation. Furthermore, vitamin D plays an immunoregulatory and anti-inflammatory role in the immune system. Metabolite of vitamin A which is called retinoic acid leads to T cells' differentiation to T helper 1 or T helper 17, so low levels of this vitamin exacerbate the menace of infectious diseases, and vitamin C has anti-oxidant effects on dendritic cells and modulate their activation and differentiation program. Additionally, the correlation between the amount of vitamin and the occurrence or progression of allergic diseases and autoimmunity disorders is discussed according to the results of previous studies.
Collapse
Affiliation(s)
- Zahra Ghahramanipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, Izmir, 35040, Turkey
| | | | - Javad Ahmadian Heris
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| |
Collapse
|
10
|
Alem F, Campos-Obando N, Narayanan A, Bailey CL, Macaya RF. Exogenous Klotho Extends Survival in COVID-19 Model Mice. Pathogens 2023; 12:1404. [PMID: 38133288 PMCID: PMC10746004 DOI: 10.3390/pathogens12121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
A striking feature of COVID-19 disease is the broad spectrum of risk factors associated with case severity, as well as the diversity of clinical manifestations. While no central agent has been able to explain the pathogenesis of SARS-CoV-2 infection, the factors that most robustly correlate with severity are risk factors linked to aging. Low serum levels of Klotho, an anti-aging protein, strongly correlate with the pathogenesis of the same risk factors and manifestations of conditions similar to those expressed in severe COVID-19 cases. The current manuscript presents original research on the effects of the exogenous application of Klotho, an anti-aging protein, in COVID-19 model mice. Klotho supplementation resulted in a statistically significant survival benefit in parametric and non-parametric models. Further research is required to elucidate the mechanistic role Klotho plays in COVID-19 pathogenesis as well as the possible modulation SARS-CoV-2 may have on the biological aging process.
Collapse
Affiliation(s)
- Farhang Alem
- Biomedical Research Laboratory, George Mason University, 4400 University Dr., Fairfax, VA 22030, USA; (F.A.); (A.N.); (C.L.B.)
| | - Natalia Campos-Obando
- Formerly at Caja Costarricense de Seguro Social, San José P.O. Box 10105-1000, Costa Rica;
| | - Aarthi Narayanan
- Biomedical Research Laboratory, George Mason University, 4400 University Dr., Fairfax, VA 22030, USA; (F.A.); (A.N.); (C.L.B.)
| | - Charles L. Bailey
- Biomedical Research Laboratory, George Mason University, 4400 University Dr., Fairfax, VA 22030, USA; (F.A.); (A.N.); (C.L.B.)
| | - Roman F. Macaya
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
11
|
Jiang Z, Wang J, Cai X, Wang P, Liu S. L-shaped association of serum α-Klotho and frailty among the middle-aged and older adults: results from NHANES 2007-2016. BMC Geriatr 2023; 23:716. [PMID: 37924002 PMCID: PMC10623765 DOI: 10.1186/s12877-023-04324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/16/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Frailty is common and not limited to older age group. Serum α-Klotho works as a biomarker of anti-aging effect. However, there is limited research about the relationship between them in middle-aged and older people and controversy still exists. METHODS Based on data from National Health and Nutrition Examination Survey (NHANES) 2007-2016, we constructed weighted logistic regression models and conducted sensitivity tests to investigate the correlation between frailty and α-Klotho among people aged 40 to 79. And then their relationship was visualized by Restricted Cubic Spline (RCS). Finally, the stratified analyses and interaction tests of covariables was presented in the forest plot. RESULTS A total of 7052 individuals were involved in this study, with mean age of 62.76 ± 0.18 years and females accounting for 51.05%. 2554 of them were in "frailty". After adjustment for relevant covariables, weighted logistic regression models showed that the odds ratio and 95% confidence interval [ORs (95%CI)] of correlation between frailty and Natural Logarithm(ln)-transformed α- Klotho[ln(α-Klotho)] was 0.63 (0.50, 0.79); we then performed a sensitivity analysis and found that the results remained stable. In model 3, individuals in quartiles 2, 3, and 4 showed statistical differences compared with the lowest ln(α-Klotho) quartiles, ORs (95% CI) were 0.74 (0.59, 0.93), 0.72 (0.57, 0.91), 0.71 (0.57, 0.87), respectively. Subsequently, non-linear associations were exhibited by RCS (p<0.001). The turning point for α-Klotho and ln(α-Klotho) were 785.7(pg/ml) and 6.67, respectively. Finally, analysis of the relationship between different levels of ln(α-Klotho) and frailty in different populations revealed differences between groups. The results of the interaction test showed that no other covariables had significant interaction with serum α-Klotho in our study. CONCLUSION The L-shaped and negative correlation was found between α-Klotho and frailty among people aged 40 to 79 in the NHANES from 2007 to 2016.
Collapse
Affiliation(s)
- Zewei Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiaxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xingdong Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ping Wang
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
12
|
Pańczyszyn-Trzewik P, Czechowska E, Stachowicz K, Sowa-Kućma M. The Importance of α-Klotho in Depression and Cognitive Impairment and Its Connection to Glutamate Neurotransmission-An Up-to-Date Review. Int J Mol Sci 2023; 24:15268. [PMID: 37894946 PMCID: PMC10607524 DOI: 10.3390/ijms242015268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Depression is a serious neuropsychiatric disease affecting an increasing number of people worldwide. Cognitive deficits (including inattention, poor memory, and decision-making difficulties) are common in the clinical picture of depression. Cognitive impairment has been hypothesized to be one of the most important components of major depressive disorder (MDD; referred to as clinical depression), although typical cognitive symptoms are less frequent in people with depression than in people with schizophrenia or bipolar disorder (BD; sometimes referred to as manic-depressive disorder). The importance of α-Klotho in the aging process has been well-documented. Growing evidence points to the role of α-Klotho in regulating other biological functions, including responses to oxidative stress and the modulation of synaptic plasticity. It has been proven that a Klotho deficit may contribute to the development of various nervous system pathologies, such as behavioral disorders or neurodegeneration. Given the growing evidence of the role of α-Klotho in depression and cognitive impairment, it is assumed that this protein may be a molecular link between them. Here, we provide a research review of the role of α-Klotho in depression and cognitive impairment. Furthermore, we propose potential mechanisms (related to oxidative stress and glutamatergic transmission) that may be important in α-Klotho-mediated regulation of mental and cognitive function.
Collapse
Affiliation(s)
- Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (P.P.-T.); (E.C.)
| | - Ewelina Czechowska
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (P.P.-T.); (E.C.)
| | - Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland;
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (P.P.-T.); (E.C.)
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna Street 1A, 35-595 Rzeszow, Poland
| |
Collapse
|
13
|
Chi Z, Teng Y, Liu Y, Gao L, Yang J, Zhang Z. Association between klotho and non-alcoholic fatty liver disease and liver fibrosis based on the NHANES 2007-2016. Ann Hepatol 2023; 28:101125. [PMID: 37286168 DOI: 10.1016/j.aohep.2023.101125] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION AND OBJECTIVES This study aims to explore the association between Klotho and Non-Alcoholic Fatty Liver Disease (NAFLD), a condition affecting millions worldwide. Klotho may have a protective effect against NAFLD mechanisms like inflammation, oxidative stress, and fibrosis. The study will use FLI and FIB-4 score to diagnose NAFLD in a large population for investigating the link between Klotho and NAFLD. MATERIALS AND METHODS The study aimed to explore the association between Klotho and NAFLD by measuring the α-Klotho protein levels in the participants' blood using ELISA. Patients with underlying chronic liver diseases were excluded. The severity of NAFLD was evaluated using FLI and FIB-4, and logistic regression models were used to analyze the data obtained from NHANES. Subgroup analyses were conducted to study Klotho's effect on hepatic steatosis and fibrosis in diverse subpopulations. RESULTS The study found that low levels of α-Klotho were associated with NAFLD, with ORs ranging from 0.72 to 0.83. However, high levels of α-Klotho were associated with NAFLD-related fibrosis. The Q4 group showed significant results in individuals aged 51 years or younger and in females. Non-Hispanic White ethnicity, education level of high school or above, non-smoking, non-hypertension, and non-diabetic groups showed negative correlations. CONCLUSIONS Our study suggests a potential correlation between α-Klotho levels in the blood and NAFLD in adult patients, especially among younger individuals, females and Non-Hispanic Whites. Elevated α-Klotho levels may have therapeutic benefits in treating NAFLD. Further research is required to validate these findings, but they provide new insights for managing this condition.
Collapse
Affiliation(s)
- Zhenfei Chi
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Yun Teng
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Yuting Liu
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Lu Gao
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Junhan Yang
- Liaoning University of Traditional Chinese Medicine, PR China
| | - Zhe Zhang
- Liaoning University of Traditional Chinese Medicine, PR China.
| |
Collapse
|
14
|
Donate-Correa J, Martín-Núñez E, Mora-Fernández C, González-Luis A, Martín-Olivera A, Navarro-González JF. Association of Klotho with Coronary Artery Disease in Subjects with Type 2 Diabetes Mellitus and Preserved Kidney Function: A Case-Control Study. Int J Mol Sci 2023; 24:13456. [PMID: 37686263 PMCID: PMC10488180 DOI: 10.3390/ijms241713456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Circulating Klotho levels are significantly reduced in subjects with type 2 diabetes mellitus (T2DM) and in kidney disease patients. In this work, the relationship between Klotho levels and the coronary artery disease (CAD) burden in subjects with T2DM and preserved kidney function was analyzed. For this, we performed a cross-sectional case-control study involving 133 subjects with T2DM and 200 age-, sex- and CAD-incidence-matched, non-diabetic patients undergoing non-emergency diagnostic coronary angiography. All of them were non-albuminuric and with normal glomerular filtration rates. The concentrations of serum Klotho, fibroblast growth factor 23, and inflammatory markers were also measured. As expected, the serum Klotho concentration was lower in the T2DM group (12.3% lower, p = 0.04). However, within the group of patients with T2DM, those subjects with CAD presented significantly higher Klotho levels than those without significant coronary stenosis (314.5 (6.15-562.81) vs. 458.97 (275.2-667.2) pg/mL; p = 0.02). Multiple regression analysis revealed that serum Klotho was positively related with stenosis values exclusively in subjects with T2DM (adjusted R2 = 0.153, p < 0.01). Moreover, logistic regression analysis showed that Klotho was positively associated with the presence of significant CAD in the group of T2DM patients (OR: 1.001; p = 0.041). Our data suggest that higher levels of circulating Klotho in subjects with T2DM and preserved kidney function are associated with the presence of significant CAD.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.M.-F.); (A.G.-L.); (A.M.-O.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 382500 Santa Cruz de Tenerife, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.M.-F.); (A.G.-L.); (A.M.-O.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.M.-F.); (A.G.-L.); (A.M.-O.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.M.-F.); (A.G.-L.); (A.M.-O.)
| | - Alberto Martín-Olivera
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.M.-F.); (A.G.-L.); (A.M.-O.)
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (E.M.-N.); (C.M.-F.); (A.G.-L.); (A.M.-O.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 382500 Santa Cruz de Tenerife, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| |
Collapse
|
15
|
Jiang J, Liu Q, Mao Y, Wang N, Lin W, Li L, Liang J, Chen G, Huang H, Wen J. Klotho reduces the risk of osteoporosis in postmenopausal women: a cross-sectional study of the National Health and Nutrition Examination Survey (NHANES). BMC Endocr Disord 2023; 23:151. [PMID: 37452417 PMCID: PMC10347835 DOI: 10.1186/s12902-023-01380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is one of the diseases that endanger the health of the elderly population. Klotho protein is a hormone with anti-aging effects. A few studies have discussed the relationship between Klotho and OP. However, there is still a lack of research on larger populations. This study aims to evaluate the association between OP and Klotho in American postmenopausal women. METHODS This is a retrospective study. We searched the National Health and Nutrition Examination Survey (NHANES) database and collected data of 3 survey cycles, finally involving 871 postmenopausal women over 50 years old in the present study. All participants took dual-energy X-ray absorptiometry examination and serum Klotho testing at the time of investigation. After adjusting the possible confounding variables, a multivariate regression model was employed to estimate the relationship between OP and Klotho proteins. Besides, the P for trend and restricted cubic spline (RCS) were applied to examine the threshold effect and calculate the inflection point. RESULTS Factors influencing the occurrence of OP included age, ethnicity, body mass index and Klotho levels. Multivariate regression analysis indicated that the serum Klotho concentration was lower in OP patients than that in participants without OP (OR[log2Klotho] = 0.568, P = 0.027). The C-index of the prediction model built was 0.765, indicating good prediction performance. After adjusting the above-mentioned four variables, P values for trend showed significant differences between groups. RCSs revealed that when the Klotho concentration reached 824.09 pg/ml, the risk of OP decreased drastically. CONCLUSION Based on the analysis of the data collected from the NHANES database, we propose a correlation between Klotho and postmenopausal OP. A higher serum Klotho level is related to a lower incidence of OP. The findings of the present study can provide guidance for research on diagnosis and risk assessment of OP.
Collapse
Affiliation(s)
- Jialin Jiang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Qinyu Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Yaqian Mao
- Department of Internal Medicine, Fujian Provincial Hospital Jinshan Branch, Fuzhou, China
| | - Nengyin Wang
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Wei Lin
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Liantao Li
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Jixing Liang
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical, Fuzhou, China
| | - Huibin Huang
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China.
| | - Junping Wen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China.
| |
Collapse
|
16
|
Al Mahmud A, Shafayet Ahmed Siddiqui, Karim MR, Al-Mamun MR, Akhter S, Sohel M, Hasan M, Bellah SF, Amin MN. Clinically proven natural products, vitamins and mineral in boosting up immunity: A comprehensive review. Heliyon 2023; 9:e15292. [PMID: 37089292 PMCID: PMC10079597 DOI: 10.1016/j.heliyon.2023.e15292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND and Purposes: The terminology "immune boost-up" was the talk of the topic in this Covid-19 pandemic. A significant number of the people took initiative to increase the body's defense capacity through boosting up immunity worldwide. Considering this, the study was designed to explain the natural products, vitamins and mineral that were proved by clinical trail as immunity enhancer. METHODS Information was retrieved from SciVerse Scopus ® (Elsevier Properties S. A, USA), Web of Science® (Thomson Reuters, USA), and PubMed based on immunity, nutrients, natural products in boosting up immunity, minerals and vitamins in boosting up immunity, and immune booster agents. RESULT A well-defined immune cells response provide a-well functioning defense system for the human physiological system. Cells of the immune system must require adequate stimulation so that these cells can prepare themselves competent enough to fight against any unintended onslaught. Several pharmacologically active medicinal plants and plants derived probiotics or micronutrients have played a pivotal role in enhancing the immune boost-up process. Their role has been well established from the previous study. Immune stimulating cells, especially cells of acquired immunity are closely associated with the immune-boosting up process because all the immunological reactions and mechanisms are mediated through these cells. CONCLUSION This article highlighted the mechanism of action of different natural products, vitamins and mineral in boosting up the immunity of the human body and strengthening the body's defense system. Therefore, it is recommended that until the specific immune-boosting drugs are available in pharma markets, anyone can consider the mentioned products as dietary supplements to boost up the immunity.
Collapse
Affiliation(s)
- Abdullah Al Mahmud
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Md Rezaul Karim
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | | | - Shammi Akhter
- Department of Pharmacy, Varendra University, Rajshahi, 6204, Bangladesh
| | - Md Sohel
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, 1213, Bangladesh
| | - Mahedi Hasan
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Sm Faysal Bellah
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Mohammad Nurul Amin
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230, Bangladesh
| |
Collapse
|
17
|
Topal M, Guney I. The association of soluble Klotho levels with anemia and hemoglobin variability in hemodialysis patients. Semin Dial 2023; 36:142-146. [PMID: 35943167 DOI: 10.1111/sdi.13122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/05/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The anti-aging protein Klotho levels are decreased, and Klotho deficiency is associated with cardiovascular diseases in patients with chronic kidney disease. There are recent studies about the relation between soluble Klotho levels and anemia. We aimed to investigate the correlation of anemia and hemoglobin variability with soluble Klotho levels in hemodialysis patients. METHODS Ninety-one hemodialysis patients were included in this study. The mean hemoglobin value, hemoglobin variability, and coefficient of variation of hemoglobin for each patient were calculated. According to mean hemoglobin levels, two groups were defined as under 11 and ≥11 g/dl. Soluble Klotho levels of each patient were studied. RESULTS Mean hemoglobin levels, hemoglobin variability, and coefficient of variation of hemoglobin were not significantly correlated with soluble Klotho levels. According to mean hemoglobin levels under 11 and ≥ 11 g/dl, there was no statistically significant correlation between anemia and soluble Klotho levels. CONCLUSION Soluble Klotho levels were not associated with anemia and hemoglobin variability in hemodialysis patients. Further studies are needed to reveal the complicated relation between anemia and soluble Klotho levels.
Collapse
Affiliation(s)
- Mustafa Topal
- Clinic of Nephrology, Konya City Hospital, University of Health Sciences, Konya, Turkey
| | - Ibrahim Guney
- Clinic of Nephrology, Konya City Hospital, University of Health Sciences, Konya, Turkey
| |
Collapse
|
18
|
Association of circulatory Klotho levels and its expression with miRNA- 339 in patients with schizophrenia. Behav Brain Res 2023; 445:114359. [PMID: 36842554 DOI: 10.1016/j.bbr.2023.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Schizophrenia is one of the major neuropsychiatric disorders affecting 1% of the population worldwide. Neuroinflammation, neurodevelopment, and oxidative stress are some of the crucial factors that can contribute to the pathogenesis of Schizophrenia. Klotho gene is an antiaging gene whose dysregulated expression can lead to Schizophrenia and aging-like symptoms in patients. Klotho gene expression is regulated by miRNA- 339, which might lead to expression changes of the klotho gene in schizophrenia patients. This study aimed to determine the Role of miRNA- 339-5p in the Regulation of Klotho Gene Expression and its Circulatory Levels in Schizophrenia. In this study total of 60 cases, schizophrenia patients and 30 healthy controls were recruited, and written informed consent was obtained from all the study subjects. The klotho gene and miRNA - 339-5p expressions were done using a reverse transcription polymerase chain reaction. And relative fold change expression was calculated by Livaak's method, that is 2^-double delta ct. It was found that the klotho gene is around 2.08 times upregulated as compared to healthy control, and miRNA- 339-5p was downregulated and showed an inverse relationship. The present study is the first to evaluate the klotho gene expression and correlate it with miRNA- 339-5p. Further confirmation of the results study should be planned with a large sample size and with drug naïve patients.
Collapse
|
19
|
Tang A, Zhang Y, Wu L, Lin Y, Lv L, Zhao L, Xu B, Huang Y, Li M. Klotho's impact on diabetic nephropathy and its emerging connection to diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1180169. [PMID: 37143722 PMCID: PMC10151763 DOI: 10.3389/fendo.2023.1180169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide and is a significant burden on healthcare systems. α-klotho (klotho) is a protein known for its anti-aging properties and has been shown to delay the onset of age-related diseases. Soluble klotho is produced by cleavage of the full-length transmembrane protein by a disintegrin and metalloproteases, and it exerts various physiological effects by circulating throughout the body. In type 2 diabetes and its complications DN, a significant decrease in klotho expression has been observed. This reduction in klotho levels may indicate the progression of DN and suggest that klotho may be involved in multiple pathological mechanisms that contribute to the onset and development of DN. This article examines the potential of soluble klotho as a therapeutic agent for DN, with a focus on its ability to impact multiple pathways. These pathways include anti-inflammatory and oxidative stress, anti-fibrotic, endothelial protection, prevention of vascular calcification, regulation of metabolism, maintenance of calcium and phosphate homeostasis, and regulation of cell fate through modulation of autophagy, apoptosis, and pyroptosis pathways. Diabetic retinopathy shares similar pathological mechanisms with DN, and targeting klotho may offer new insights into the prevention and treatment of both conditions. Finally, this review assesses the potential of various drugs used in clinical practice to modulate klotho levels through different mechanisms and their potential to improve DN by impacting klotho levels.
Collapse
Affiliation(s)
- Anqi Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yu Zhang
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Ling Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yong Lin
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Lizeyu Lv
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Liangbin Zhao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Bojun Xu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
- *Correspondence: Mingquan Li,
| |
Collapse
|
20
|
Kale A, Shelke V, Sankrityayan H, Dagar N, Gaikwad AB. Klotho restoration via ACE2 activation: A potential therapeutic strategy against acute kidney injury-diabetes comorbidity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166532. [PMID: 36041714 DOI: 10.1016/j.bbadis.2022.166532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Acute kidney injury (AKI) is a collection of clinical syndromes with persistent increases in morbidity and mortality rates. Hyperglycemia is a risk factor for AKI development. Renin-angiotensin-aldosterone system (RAS) disequilibrium and Klotho downregulation also play a pivotal role in the pathogenesis of AKI. Moreover, the relationship between Klotho and ACE2 (a component of non-conventional RAS) regulation in AKI remains an unexplored area of research. Hence, in this study, we investigated ACE2 and Klotho regulation in AKI using ischemic Wistar rats and NRK52E cells under normal and hyperglycemic conditions. Our findings suggested that hyperglycemia exacerbates renal ischemia-reperfusion injury (IRI)/hypoxia-reperfusion injury (HRI) induced AKI. Systemic and renal Klotho deficiency is a novel hallmark of AKI. Additionally, ACE2 is a protective component of the RAS, and its inhibition/deficiency leads to inflammation, apoptosis, Klotho downregulation, and thus AKI development. However, ACE2 activation resulted in the amelioration of AKI. Importantly, ACE2 plays an important role in Klotho upregulation, which might act as an intermediate for ACE2-mediated reno-protection. In conclusion, ACE2 activator i.e. DIZE restored endogenous ACE2-Ang-(1-7)-Klotho level, inhibited apoptosis and inflammation, and ameliorates IRI/HRI induced AKI under diabetic and non-diabetic conditions. Hence, in future, targeting ACE2-Ang-(1-7)-Klotho axis may prove a novel therapeutic strategy against AKI, where further preclinical and clinical investigations are required to verify the clinical potential of this finding.
Collapse
Affiliation(s)
- Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Neha Dagar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
21
|
Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. FRONTIERS IN AGING 2022; 3:931331. [PMID: 35903083 PMCID: PMC9314780 DOI: 10.3389/fragi.2022.931331] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/06/2022]
Abstract
The α-Klotho protein (henceforth denoted Klotho) has antiaging properties, as first observed in mice homozygous for a hypomorphic Klotho gene (kl/kl). These mice have a shortened lifespan, stunted growth, renal disease, hyperphosphatemia, hypercalcemia, vascular calcification, cardiac hypertrophy, hypertension, pulmonary disease, cognitive impairment, multi-organ atrophy and fibrosis. Overexpression of Klotho has opposite effects, extending lifespan. In humans, Klotho levels decline with age, chronic kidney disease, diabetes, Alzheimer’s disease and other conditions. Low Klotho levels correlate with an increase in the death rate from all causes. Klotho acts either as an obligate coreceptor for fibroblast growth factor 23 (FGF23), or as a soluble pleiotropic endocrine hormone (s-Klotho). It is mainly produced in the kidneys, but also in the brain, pancreas and other tissues. On renal tubular-cell membranes, it associates with FGF receptors to bind FGF23. Produced in bones, FGF23 regulates renal excretion of phosphate (phosphaturic effect) and vitamin D metabolism. Lack of Klotho or FGF23 results in hyperphosphatemia and hypervitaminosis D. With age, human renal function often deteriorates, lowering Klotho levels. This appears to promote age-related pathology. Remarkably, Klotho inhibits four pathways that have been linked to aging in various ways: Transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), Wnt and NF-κB. These can induce cellular senescence, apoptosis, inflammation, immune dysfunction, fibrosis and neoplasia. Furthermore, Klotho increases cell-protective antioxidant enzymes through Nrf2 and FoxO. In accord, preclinical Klotho therapy ameliorated renal, cardiovascular, diabetes-related and neurodegenerative diseases, as well as cancer. s-Klotho protein injection was effective, but requires further investigation. Several drugs enhance circulating Klotho levels, and some cross the blood-brain barrier to potentially act in the brain. In clinical trials, increased Klotho was noted with renin-angiotensin system inhibitors (losartan, valsartan), a statin (fluvastatin), mTOR inhibitors (rapamycin, everolimus), vitamin D and pentoxifylline. In preclinical work, antidiabetic drugs (metformin, GLP-1-based, GABA, PPAR-γ agonists) also enhanced Klotho. Several traditional medicines and/or nutraceuticals increased Klotho in rodents, including astaxanthin, curcumin, ginseng, ligustilide and resveratrol. Notably, exercise and sport activity increased Klotho. This review addresses molecular, physiological and therapeutic aspects of Klotho.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
- *Correspondence: Gérald J. Prud’homme,
| | - Mervé Kurt
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Yinuo Pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|
22
|
Elnoury HA, Elgendy SA, Baloza SH, Ghamry HI, Soliman M, Abdel-Aziz EAM. Synergistic impacts of Montelukast and Klotho against doxorubicin-induced cardiac toxicity in Rats. Toxicol Res (Camb) 2022; 11:592-604. [DOI: 10.1093/toxres/tfac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Accepted: 04/02/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Doxorubicin (DOX) is a powerful antitumor agent with a well-known cardiaotoxic side effects. In the current study, the ameliorative combined impacts of montelukast (Mont) and Klotho against doxorubicin-induced cardiac toxicity were examined. Fifty-six adult male rats (2 months age and weighting 150–200 g) were grouped into 7 groups (8 rats per group). Animals received doxorubicin alone or in combination with either Mont or Klotho. After 2 weeks of treatments, serum samples were examined to assess the changes in cardiac activity biomarkers such as LDH, CK-MB, cardiac troponin-I (cTn-I), and heart fatty acid binding protein (H-FABP). Serum changes of IL-6, inducible nitric oxide synthase (iNOS), and caspase-3 levels were assayed. The oxidative stress biomarkers such as total antioxidant capacity (TAC) and inflammatory (rat IL-1β and rat TNF-α,) and anti-inflammatory (rat IL-10) cytokines were examined. Heart histology and transforming growth factor-β1 (TGF-β1) immunoreactivity were measured. DOX induced cardiomyopathy, which was reflected by the increases in all examined cardiac parameters. Real-time PCR confirmed that DOX upregulated the expression of TNF-α and IL-1β and decreased the expression of IL-10. Moreover, DOX showed marked elevation in the ST segment T wave complex, causing profound tachycardia. Heart histology assessments showed cardiac cell necrosis, inflammatory cell infiltration, interstitial congestion, and increased TGF-β1 immunoreactivity. Montelukast and Klotho administration ameliorated all the altered parameters when administered alone or in combination to DOX-intoxicated rats. Klotho was more effective compared with montelukast in terms of reductions in heart rate, ST segment T wave complex elevation, cardiac enzymes (lactate dehydrogenase; LDH, creatine kinase-MB; CK-MB, cardiac troponin I; cTn-I, heart fatty acid binding protein; H-FABP) cardiac histology, and caspase-3 levels and increases in TAC activity. Montelukast was more effective in reducing serum levels of IL6 and iNOS, expression of TNF-α and IL-1β, and the upregulation of IL-10 expression. The co-administration of both drugs led to significantly more synergistic results in terms of reducing cardiac toxicity. In conclusion, montelukast and Klotho either alone or in combination were confirmed to be effective in suppressing DOX-induced cardiac toxicity in rats.
Collapse
Affiliation(s)
- Heba A Elnoury
- Department of Pharmacology , Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Salwa A Elgendy
- Department of Pharmacology , Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Samar H Baloza
- Genetic and Genetic Engineering , Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Heba I Ghamry
- Department of Home Economics , College of Home Economics, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department , Turabah University College, Taif University, 21995, Saudi Arabia
| | | |
Collapse
|
23
|
Stenhouse C, Halloran KM, Moses RM, Seo H, Gaddy D, Johnson GA, Wu G, Suva LJ, Bazer FW. Effects of progesterone and interferon tau on ovine endometrial phosphate, calcium, and vitamin D signaling†. Biol Reprod 2022; 106:888-899. [PMID: 35134855 DOI: 10.1093/biolre/ioac027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
Given recent reports of expression of postnatal mineral transport regulators at the maternal-conceptus interface during the peri-implantation period, this study tested the hypothesis that progesterone (P4) and interferon tau (IFNT) regulate phosphate, calcium, and vitamin D signaling in the ovine endometrium. Mature Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on day 7 of the estrous cycle. Ewes received daily intramuscular injections of 50 mg of P4 in corn oil vehicle and 75 mg of progesterone receptor antagonist (RU486) in corn oil from days 8 to 15, and twice-daily intrauterine injections of either control proteins (CX) or IFNT (25 μg/uterine horn/day) from days 11 to 15 resulting in four treatment groups: P4 + CX; P4 + IFNT; RU486 + P4 + CX; and RU486 + P4 + IFNT. On day 16, ewes were hysterectomized. RU486 + P4 + CX treated ewes had lower concentrations of 25 (OH) D in plasma than P4 + CX treated ewes (P < 0.05). Endometria from ewes treated with IFNT had greater expression of FGF23 (P < 0.01), S100A9 (P < 0.05), and S100A12 (P = 0.05) mRNAs and lower expression of ADAM10 mRNA (P < 0.01) than of ewes treated with CX proteins. Expression of FGF23 mRNA was greater in endometria of ewes that received RU486 + P4 + IFNT than in ewes that received RU486 + P4 + CX (hormone × protein interaction, P < 0.05). The expression of S100G mRNA was greater in endometria of ewes that received P4 + IFNT compared to ewes that received RU486 + P4 + IFNT (P < 0.05; hormone × protein interaction, P < 0.01). These data implicate P4 and IFNT in the regulation of phosphate, calcium, and vitamin D signaling during the peri-implantation period of pregnancy and provide a platform for continued mechanistic investigations.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | | | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Gregory A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
24
|
Franco ML, Beyerstedt S, Rangel ÉB. Klotho and Mesenchymal Stem Cells: A Review on Cell and Gene Therapy for Chronic Kidney Disease and Acute Kidney Disease. Pharmaceutics 2021; 14:pharmaceutics14010011. [PMID: 35056905 PMCID: PMC8778857 DOI: 10.3390/pharmaceutics14010011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) and acute kidney injury (AKI) are public health problems, and their prevalence rates have increased with the aging of the population. They are associated with the presence of comorbidities, in particular diabetes mellitus and hypertension, resulting in a high financial burden for the health system. Studies have indicated Klotho as a promising therapeutic approach for these conditions. Klotho reduces inflammation, oxidative stress and fibrosis and counter-regulates the renin-angiotensin-aldosterone system. In CKD and AKI, Klotho expression is downregulated from early stages and correlates with disease progression. Therefore, the restoration of its levels, through exogenous or endogenous pathways, has renoprotective effects. An important strategy for administering Klotho is through mesenchymal stem cells (MSCs). In summary, this review comprises in vitro and in vivo studies on the therapeutic potential of Klotho for the treatment of CKD and AKI through the administration of MSCs.
Collapse
Affiliation(s)
- Marcella Liciani Franco
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
| | - Stephany Beyerstedt
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
| | - Érika Bevilaqua Rangel
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
- Nephrology Division, Federal University of São Paulo, Sao Paulo 04038-901, Brazil
- Correspondence: ; Tel.: +55-11-2151-2148
| |
Collapse
|
25
|
Alesci A, Fumia A, Lo Cascio P, Miller A, Cicero N. Immunostimulant and Antidepressant Effect of Natural Compounds in the Management of Covid-19 Symptoms. J Am Coll Nutr 2021; 41:840-854. [PMID: 34550044 DOI: 10.1080/07315724.2021.1965503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the use of natural compounds as adjuvant treatments and alternatives to traditional pharmacological therapies has become increasingly popular. These compounds have a wide range of biological effects, such as: antioxidant, anti-aging, hypocholesterolizing, hypoglycemic, antitumoral, antidepressant, anxiolytic activity, etc. Almost all of these compounds are easily available and are contained in different foods. At the end of 2019 the Coronavirus SARS-CoV-2 appeared in China and quickly spread throughout the world, causing a pandemic. The most common symptoms of this infection are dry cough, fever, dyspnea, and in severe cases bilateral interstitial pneumonia, with consequences that can lead to death. The nations, in trying to prevent the spread of infection, have imposed social distancing and lockdown measures on their citizens. This had a strong psychological-social impact, leading to phobic, anxious and depressive states. Pharmacological therapy could be accompanied by treatment with several natural compounds, such as vitamins, baicalein, zinc and essential oils. These compounds possess marked immunostimulant activity, strengthening the immune response and mitigating interactions between the virus and the host cell. They also have an antidepressant effect, acting on certain neurotransmitters.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
26
|
Understanding the Stony Bridge between Osteoporosis and Vascular Calcification: Impact of the FGF23/Klotho axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7536614. [PMID: 34539972 PMCID: PMC8448600 DOI: 10.1155/2021/7536614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
A relationship between osteoporosis (OP) and vascular calcification (VC) is now proposed. There are common mechanisms underlying the regulation of them. Fibroblast growth factor- (FGF-) 23 and Klotho are hormones associated with the metabolic axis of osteovascular metabolism. Most recently, it was suggested that the FGF23-klotho axis is associated with increasing incidence of fractures and is potentially involved in the progression of the aortic-brachial stiffness ratio. Herein, we discussed the potential role of the FGF23/Klotho axis in the pathophysiology of OP and VC. We want to provide an update review in order to allow a better understanding of the potential role of the FGF23/Klotho axis in comorbidity of OP and VC. We believe that a better understanding of the relationship between both entities can help in proposing new therapeutic targets for reducing the increasing prevalence of OP and VC in the aging population.
Collapse
|
27
|
Typiak M, Kulesza T, Rachubik P, Rogacka D, Audzeyenka I, Angielski S, Saleem MA, Piwkowska A. Role of Klotho in Hyperglycemia: Its Levels and Effects on Fibroblast Growth Factor Receptors, Glycolysis, and Glomerular Filtration. Int J Mol Sci 2021; 22:7867. [PMID: 34360633 PMCID: PMC8345972 DOI: 10.3390/ijms22157867] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023] Open
Abstract
Hyperglycemic conditions (HG), at early stages of diabetic nephropathy (DN), cause a decrease in podocyte numbers and an aberration of their function as key cells for glomerular plasma filtration. Klotho protein was shown to overcome some negative effects of hyperglycemia. Klotho is also a coreceptor for fibroblast growth factor receptors (FGFRs), the signaling of which, together with a proper rate of glycolysis in podocytes, is needed for a proper function of the glomerular filtration barrier. Therefore, we measured levels of Klotho in renal tissue, serum, and urine shortly after DN induction. We investigated whether it influences levels of FGFRs, rates of glycolysis in podocytes, and albumin permeability. During hyperglycemia, the level of membrane-bound Klotho in renal tissue decreased, with an increase in the shedding of soluble Klotho, its higher presence in serum, and lower urinary excretion. The addition of Klotho increased FGFR levels, especially FGFR1/FGFR2, after their HG-induced decrease. Klotho also increased levels of glycolytic parameters of podocytes, and decreased podocytic and glomerular albumin permeability in HG. Thus, we found that the decrease in the urinary excretion of Klotho might be an early biomarker of DN and that Klotho administration may have several beneficial effects on renal function in DN.
Collapse
Affiliation(s)
- Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Moin A. Saleem
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK;
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
28
|
Mao J, Wang M, Ni L, Gong W, Jiang X, Zhang Q, Zhang M, Wen D, Chen J. Local NF-κB Activation Promotes Parathyroid Hormone Synthesis and Secretion in Uremic Patients. Endocrinology 2021; 162:6257872. [PMID: 33912936 DOI: 10.1210/endocr/bqab084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Secondary hyperparathyroidism (SHPT) in uremic patients is characterized by parathyroid gland (PTG) hyperplasia and parathyroid hormone (PTH) elevation. Previously, we demonstrated that NF-κB activation contributed to parathyroid cell proliferation in rats with chronic kidney disease. Although vitamin D inhibits inflammation and ameliorates SHPT, the contribution of vitamin D deficiency to SHPT via local NF-κB activation remains to be clarified. PTGs collected from 10 uremic patients with advanced SHPT were used to test the expressions of vitamin D receptor (VDR), NF-κB, and proliferating cell nuclear antigen (PCNA). Freshly excised PTG tissues were incubated for 24 hours in vitro with VDR activator (VDRA) calcitriol or NF-κB inhibitor pyrrolidine thiocarbamate (PDTC). Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to investigate the regulation of PTH transcription by NF-κB. We found higher levels of activated NF-κB and lower expression of VDR in nodular hyperplastic PTGs than in diffuse hyperplasia. In cultured PTG tissues, treatment with VDRA or PDTC inhibited NF-κB activation and PCNA expression, and downregulated preproPTH mRNA and intact PTH levels. ChIP assays demonstrated the presence of NF-κB binding sites in PTH promoter. Furthermore, in luciferase reporter assays, addition of exogenous p65 significantly increased PTH luciferase activity by 2.4-fold (P < 0.01), while mutation of NF-κB binding site at position -908 of the PTH promoter suppressed p65-induced PTH reporter activity (P < 0.01). In summary, local NF-κB activation contributes to SHPT and mediates the transcriptional activation of PTH directly in uremic patients. Vitamin D deficiency may be involved in SHPT via the activation of NF-κB pathway.
Collapse
Affiliation(s)
- Jianping Mao
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Mengjing Wang
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Li Ni
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Wen Gong
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xinxin Jiang
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Qian Zhang
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Minmin Zhang
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Donghai Wen
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jing Chen
- Division of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
29
|
Typiak M, Piwkowska A. Antiinflammatory Actions of Klotho: Implications for Therapy of Diabetic Nephropathy. Int J Mol Sci 2021; 22:ijms22020956. [PMID: 33478014 PMCID: PMC7835923 DOI: 10.3390/ijms22020956] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 12/11/2022] Open
Abstract
Klotho was initially introduced as an antiaging molecule. Klotho deficiency significantly reduces lifespan, and its overexpression extends it and protects against various pathological phenotypes, especially renal disease. It was shown to regulate phosphate and calcium metabolism, protect against oxidative stress, downregulate apoptosis, and have antiinflammatory and antifibrotic properties. The course of diabetes mellitus and diabetic nephropathy resembles premature cellular senescence and causes the activation of various proinflammatory and profibrotic processes. Klotho was shown to exert many beneficial effects in these disorders. The expression of Klotho protein is downregulated in early stages of inflammation and diabetic nephropathy by proinflammatory factors. Therefore, its therapeutic effects are diminished in this disorder. Significantly lower urine levels of Klotho may serve as an early biomarker of renal involvement in diabetes mellitus. Recombinant Klotho administration and Klotho overexpression may have immunotherapeutic potential for the treatment of both diabetes and diabetic nephropathy. Therefore, the current manuscript aims to characterize immunopathologies occurring in diabetes and diabetic nephropathy, and tries to match them with antiinflammatory actions of Klotho. It also gives reasons for Klotho to be used in diagnostics and immunotherapy of these disorders.
Collapse
Affiliation(s)
- Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland;
- Correspondence:
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland;
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
30
|
Mongelli A, Atlante S, Barbi V, Bachetti T, Martelli F, Farsetti A, Gaetano C. Treating Senescence like Cancer: Novel Perspectives in Senotherapy of Chronic Diseases. Int J Mol Sci 2020; 21:ijms21217984. [PMID: 33121118 PMCID: PMC7663758 DOI: 10.3390/ijms21217984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
The WHO estimated around 41 million deaths worldwide each year for age-related non-communicable chronic diseases. Hence, developing strategies to control the accumulation of cell senescence in living organisms and the overall aging process is an urgently needed problem of social relevance. During aging, many biological processes are altered, which globally induce the dysfunction of the whole organism. Cell senescence is one of the causes of this modification. Nowadays, several drugs approved for anticancer therapy have been repurposed to treat senescence, and others are under scrutiny in vitro and in vivo to establish their senomorphic or senolytic properties. In some cases, this research led to a significant increase in cell survival or to a prolonged lifespan in animal models, at least. Senomorphics can act to interfere with a specific pathway in order to restore the appropriate cellular function, preserve viability, and to prolong the lifespan. On the other hand, senolytics induce apoptosis in senescent cells allowing the remaining non–senescent population to preserve or restore tissue function. A large number of research articles and reviews recently addressed this topic. Herein, we would like to focus attention on those chemical agents with senomorphic or senolytic properties that perspectively, according to literature, suggest a potential application as senotherapeutics for chronic diseases.
Collapse
Affiliation(s)
- Alessia Mongelli
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
| | - Sandra Atlante
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
| | - Veronica Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
| | - Tiziana Bachetti
- Direzione Scientifica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy;
| | - Fabio Martelli
- Laboratorio di Cardiologia Molecolare, Policlinico San Donato IRCCS, San Donato Milanese, 20097 Milano; Italy,
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI), National Research Council (CNR), 00185 Rome, Italy
- Correspondence: (A.F.); (C.G.)
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
- Correspondence: (A.F.); (C.G.)
| |
Collapse
|
31
|
Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, Aging, and the Failing Kidney. Front Endocrinol (Lausanne) 2020; 11:560. [PMID: 32982966 PMCID: PMC7481361 DOI: 10.3389/fendo.2020.00560] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Klotho has been recognized as a gene involved in the aging process in mammals for over 30 years, where it regulates phosphate homeostasis and the activity of members of the fibroblast growth factor (FGF) family. The α-Klotho protein is the receptor for Fibroblast Growth Factor-23 (FGF23), regulating phosphate homeostasis and vitamin D metabolism. Phosphate toxicity is a hallmark of mammalian aging and correlates with diminution of Klotho levels with increasing age. As such, modulation of Klotho activity is an attractive target for therapeutic intervention in the diseasome of aging; in particular for chronic kidney disease (CKD), where Klotho has been implicated directly in the pathophysiology. A range of senotherapeutic strategies have been developed to directly or indirectly influence Klotho expression, with varying degrees of success. These include administration of exogenous Klotho, synthetic and natural Klotho agonists and indirect approaches, via modulation of the foodome and the gut microbiota. All these approaches have significant potential to mitigate loss of physiological function and resilience accompanying old age and to improve outcomes within the diseasome of aging.
Collapse
Affiliation(s)
- Sarah Buchanan
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emilie Combet
- School of Medicine, Dentistry & Nursing, Human Nutrition, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Peter Stenvinkel
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
32
|
Budhwar S, Sethi K, Chakraborty M. A Rapid Advice Guideline for the Prevention of Novel Coronavirus Through Nutritional Intervention. Curr Nutr Rep 2020; 9:119-128. [PMID: 32578027 PMCID: PMC7308604 DOI: 10.1007/s13668-020-00325-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review An unexpected and sudden outbreak of a novel infection known as a coronavirus (COVID-19) has imposed important problems to global well-being and economy. Based upon current researches, this virus is spreading from one human to another through respiratory droplets, i.e. cough and sneeze. Till now, there has not been any specific treatment found for this virus. Hence, there is a critical need to discover alternative techniques to cope with the current scenario. Recent Findings This review conducted an online search for prevention of coronavirus infection with the help of nutritional interventions. It has been observed that the effect of the virus is mostly on the individual with low immunity, individual affected with diseases like diabetes, and individual using any immune-suppressed drug or having past history of major surgeries or severe medical conditions. Summary Therefore, consuming foods which boost immunity helps in preventing respiratory-related disorder or suppressing diseases-related problems, which could be helpful in controlling the spread of this virus. In conclusion, it has been suggested that before the beginning of generalised treatments and interventions in each infected patient, nutritional status should be evaluated, as it can help in creating a specific nutrition intervention for the infected individual.
Collapse
Affiliation(s)
- Savita Budhwar
- Department of Nutrition Biology, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Mahendragarh, Haryana, 123031, India.
| | - Kashika Sethi
- Department of Nutrition Biology, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Mahendragarh, Haryana, 123031, India
| | - Manali Chakraborty
- Department of Nutrition Biology, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Mahendragarh, Haryana, 123031, India
| |
Collapse
|
33
|
Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR, Bohn T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020; 12:E1562. [PMID: 32471251 PMCID: PMC7352291 DOI: 10.3390/nu12061562] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus-disease 2019 (COVID-19) was announced as a global pandemic by the World Health Organization. Challenges arise concerning how to optimally support the immune system in the general population, especially under self-confinement. An optimal immune response depends on an adequate diet and nutrition in order to keep infection at bay. For example, sufficient protein intake is crucial for optimal antibody production. Low micronutrient status, such as of vitamin A or zinc, has been associated with increased infection risk. Frequently, poor nutrient status is associated with inflammation and oxidative stress, which in turn can impact the immune system. Dietary constituents with especially high anti-inflammatory and antioxidant capacity include vitamin C, vitamin E, and phytochemicals such as carotenoids and polyphenols. Several of these can interact with transcription factors such as NF-kB and Nrf-2, related to anti-inflammatory and antioxidant effects, respectively. Vitamin D in particular may perturb viral cellular infection via interacting with cell entry receptors (angiotensin converting enzyme 2), ACE2. Dietary fiber, fermented by the gut microbiota into short-chain fatty acids, has also been shown to produce anti-inflammatory effects. In this review, we highlight the importance of an optimal status of relevant nutrients to effectively reduce inflammation and oxidative stress, thereby strengthening the immune system during the COVID-19 crisis.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Alex Brito
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First Moscow Medical University, Trubetskay Str. 8, 119991 Moscow, Russia
| | - Giulia Dingeo
- Independent Researcher, Val de Marne, 94999 Paris, France;
| | - Sofia Sosa Fernandez Del Campo
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Hanen Samouda
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Michael R. La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA;
- Center for Health Research, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| |
Collapse
|
34
|
Ramez M, Ramezani F, Nasirinezhad F, Rajabi H. High‐intensity interval training increases myocardial levels of Klotho and protects the heart against ischaemia–reperfusion injury. Exp Physiol 2020; 105:652-665. [DOI: 10.1113/ep087994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Maral Ramez
- Department of Exercise physiologyFaculty of Physical Education and Sport Sciences, Kharazmi University Tehran Iran
| | - Fatemeh Ramezani
- Physiology Research Center and Physiology DepartmentFaculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center and Physiology DepartmentFaculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Hamid Rajabi
- Department of Exercise physiologyFaculty of Physical Education and Sport Sciences, Kharazmi University Tehran Iran
| |
Collapse
|
35
|
Suassuna PGDA, Cherem PM, de Castro BB, Maquigussa E, Cenedeze MA, Lovisi JCM, Custódio MR, Sanders-Pinheiro H, de Paula RB. αKlotho attenuates cardiac hypertrophy and increases myocardial fibroblast growth factor 21 expression in uremic rats. Exp Biol Med (Maywood) 2019; 245:66-78. [PMID: 31847589 DOI: 10.1177/1535370219894302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In chronic kidney disease (CKD), evidence suggests that soluble αKlotho (sKlotho) has cardioprotective effects. Contrariwise, high circulating levels of fibroblast growth factor 23 (FGF23) are related to uremic cardiomyopathy development. Recently, it has been demonstrated that sKlotho can act as a soluble FGF23 co-receptor, allowing sKlotho to modulate FGF23 actions in the myocardium, leading to the activation of cardioprotective pathways. Fibroblast growth factor 21 (FGF21) is a cardiomyokine with sKlotho-like protective actions and has never been evaluated in uremic cardiomyopathy. Here, we aimed to evaluate whether recombinant αKlotho (rKlotho) replacement can attenuate cardiac remodeling in an established uremic cardiomyopathy, and to explore its impact on myocardial FGF21 expression. Forty-six male Wistar rats were divided into three groups: control, CKD-untreated, and CKD treated with rKlotho (CKD + KL). CKD was induced by 5/6 nephrectomy. From weeks 4–8, the control and CKD-untreated groups received vehicle, whereas the CKD + KL group received subcutaneous rKlotho replacement (0.01 mg/kg) every 48 h. Myocardial remodeling was evaluated by heart weight/tibia length (HW/TL) ratio, echocardiographic parameters, myocardial histomorphometry, and myocardial expression of β-myosin heavy chain (MHCβ), alpha smooth muscle actin (αSMA), transient receptor potential cation channel 6 (TRPC6), and FGF21. As expected, CKD animals had reduced levels of sKlotho and increased serum FGF23 levels. Compared to the control group, manifest myocardial remodeling was present in the CKD-untreated group, while it was attenuated in the CKD + KL group. Furthermore, cardiomyocyte diameter and interstitial fibrotic area were reduced in the CKD + KL group compared to the CKD-untreated group. Similarly, rKlotho replacement was associated with reduced myocardial expression of TRPC6, MHCβ, and αSMA and a higher expression of FGF21. rKlotho showed cardioprotective effects by attenuating myocardial remodeling and reducing TRPC6 expression. Interestingly, rKlotho replacement was also associated with increased myocardial FGF21 expression, suggesting that an interaction between the two cardioprotective pathways needs to be further explored. Impact statement This study aimed to evaluate whether rKlotho replacement can attenuate cardiac remodeling in a post-disease onset therapeutic reasoning and explore the impact on myocardial FGF21 expression. This study contributes significantly to the literature, as the therapeutic effects of rKlotho replacement and FGF21 myocardial expression have not been widely evaluated in a setting of uremic cardiomyopathy. For the first time, it has been demonstrated that subcutaneous rKlotho replacement may attenuate cardiac remodeling in established uremic cardiomyopathy and increase myocardial expression of FGF21, suggesting a correlation between αKlotho and myocardial FGF21 expression. The possibility of interaction between the αKlotho and FGF21 cardioprotective pathways needs to be further explored, but, if confirmed, would point to a therapeutic potential of FGF21 in uremic cardiomyopathy.
Collapse
Affiliation(s)
- Paulo Giovani de Albuquerque Suassuna
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil.,Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Paula Marocolo Cherem
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Bárbara Bruna de Castro
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Edgar Maquigussa
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - Marco Antonio Cenedeze
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - Júlio Cesar Moraes Lovisi
- Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Melani Ribeiro Custódio
- Nephrology Division, Department of Medicine, University of São Paulo, São Paulo 01246-903, Brazil
| | - Helady Sanders-Pinheiro
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil.,Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Rogério Baumgratz de Paula
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil.,Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
36
|
Xing Y, Smith MJ, Goetz CA, McElmurry RT, Parker SL, Min D, Hollander GA, Weinberg KI, Tolar J, Stefanski HE, Blazar BR. Thymic Epithelial Cell Support of Thymopoiesis Does Not Require Klotho. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3320-3328. [PMID: 30373854 PMCID: PMC6275142 DOI: 10.4049/jimmunol.1800670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022]
Abstract
Age-related thymic involution is characterized by a decrease in thymic epithelial cell (TEC) number and function parallel to a disruption in their spatial organization, resulting in defective thymocyte development and proliferation as well as peripheral T cell dysfunction. Deficiency of Klotho, an antiaging gene and modifier of fibroblast growth factor signaling, causes premature aging. To investigate the role of Klotho in accelerated age-dependent thymic involution, we conducted a comprehensive analysis of thymopoiesis and peripheral T cell homeostasis using Klotho-deficient (Kl/Kl) mice. At 8 wk of age, Kl/Kl mice displayed a severe reduction in the number of thymocytes (10-100-fold reduction), especially CD4 and CD8 double-positive cells, and a reduction of both cortical and medullary TECs. To address a cell-autonomous role for Klotho in TEC biology, we implanted neonatal thymi from Klotho-deficient and -sufficient mice into athymic hosts. Kl/Kl thymus grafts supported thymopoiesis equivalently to Klotho-sufficient thymus transplants, indicating that Klotho is not intrinsically essential for TEC support of thymopoiesis. Moreover, lethally irradiated hosts given Kl/Kl or wild-type bone marrow had normal thymocyte development and comparably reconstituted T cells, indicating that Klotho is not inherently essential for peripheral T cell reconstitution. Because Kl/Kl mice have higher levels of serum phosphorus, calcium, and vitamin D, we evaluated thymus function in Kl/Kl mice fed with a vitamin D-deprived diet. We observed that a vitamin D-deprived diet abrogated thymic involution and T cell lymphopenia in 8-wk-old Kl/Kl mice. Taken together, our data suggest that Klotho deficiency causes thymic involution via systemic effects that include high active vitamin D levels.
Collapse
Affiliation(s)
- Yan Xing
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Michelle J Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Christine A Goetz
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Ron T McElmurry
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Sarah L Parker
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Dullei Min
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medicine, Stanford University, Palo Alto, CA 94304
| | - Georg A Hollander
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland; and
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Kenneth I Weinberg
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medicine, Stanford University, Palo Alto, CA 94304
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Heather E Stefanski
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455;
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
37
|
Zhang B, Xu J, Quan Z, Qian M, Liu W, Zheng W, Yin F, Du J, Zhi Y, Song N. Klotho Protein Protects Human Keratinocytes from UVB-Induced Damage Possibly by Reducing Expression and Nuclear Translocation of NF-κB. Med Sci Monit 2018; 24:8583-8591. [PMID: 30481165 PMCID: PMC6278307 DOI: 10.12659/msm.910687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background UV-related skin disease such as actinic keratosis is a major concern in public health. In view of the cell injury induced by UVB, Klotho protein it is an ideal therapy to eliminate UVB-induced cell damages and the associated signaling pathways. Material/Methods To gain insights into the potential role of Klotho and the underlying molecular mechanism, we constructed a Klotho-overexpress HaCaT cell line and assessed the protection against UVB insults. The effects of exposure to UVB radiation on the human keratinocyte HaCaT cells, including cell growth, apoptosis, and changes of selected biomarkers, were measured by CCK-8, flow cytometry, Quantitative real-time PCR, and Western blot analysis. Results We found that enhanced NF-κB activity was accompanied by decreased expression of the anti-aging protein Klotho upon UVB stimulation, which was further confirmed with in vivo experiments. Overexpression of Klotho was able to considerably alleviate the UVB-induced damages to cells and reversed the UVB-caused biomarker changes to a great extent, which was comparable to the effects of administration of NF-κB inhibitor PDTC, suggesting the inhibition of nuclear translocation and DNA-binding activity of NF-κB. Furthermore, Klotho overexpression was proved to decrease the nuclear expression of NF-κB as much as the treatment with PDTC, which provides support for the direct regulation of NF-κB by Klotho. Conclusions Collectively, our work provides new insight into the potential role of Klotho in the context of UVB-induced injuries in human keratinocytes, as well as providing the basis for future study of new therapies against UV-related skin disease.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Jin Xu
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Zhe Quan
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Miao Qian
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Wei Liu
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Wanfang Zheng
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Fang Yin
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Jiru Du
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Yuanting Zhi
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Ningjing Song
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
38
|
Lee GY, Han SN. The Role of Vitamin E in Immunity. Nutrients 2018; 10:nu10111614. [PMID: 30388871 PMCID: PMC6266234 DOI: 10.3390/nu10111614] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022] Open
Abstract
Vitamin E is a fat-soluble antioxidant that can protect the polyunsaturated fatty acids (PUFAs) in the membrane from oxidation, regulate the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), and modulate signal transduction. Immunomodulatory effects of vitamin E have been observed in animal and human models under normal and disease conditions. With advances in understating of the development, function, and regulation of dendritic cells (DCs), macrophages, natural killer (NK) cells, T cells, and B cells, recent studies have focused on vitamin E’s effects on specific immune cells. This review will summarize the immunological changes observed with vitamin E intervention in animals and humans, and then describe the cell-specific effects of vitamin E in order to understand the mechanisms of immunomodulation and implications of vitamin E for immunological diseases.
Collapse
Affiliation(s)
- Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea.
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea.
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
39
|
Abstract
Chronic kidney disease (CKD) is an inherently systemic disease that refers to a long-term loss of kidney function. The progression of CKD has repercussions for other organs, leading to many kinds of extrarenal complications. Intensive studies are now being undertaken to reveal the risk factors and pathophysiological mechanism of this disease. During the past 20 years, increasing evidence from clinical and basic studies has indicated that klotho, which was initially known as an anti-aging gene and is mainly expressed in the kidney, is significantly correlated with the development and progression of CKD and its complications. Here, we discuss in detail the role and pathophysiological implications of klotho in ion disorders, the inflammation response, vascular calcification, mineral bone disorders, and renal fibrosis in CKD. Based on the pathogenic mechanism of klotho deficiency and klotho decline in urine early in CKD stage 2 and even earlier in CKD stage 1, it is not difficult to understand that soluble klotho can serve as an early and sensitive marker of CKD. Moreover, the prevention of klotho decline by several mechanisms can attenuate renal injuries, retard CKD progression, ameliorate extrarenal complications, and improve renal function. In this review, we focus on the functions and pathophysiological implications of klotho in CKD and its extrarenal complications as well as its potential applications as a diagnostic and/or prognostic biomarker for CKD and as a novel treatment strategy to improve and decrease the burden of comorbidity in CKD.
Collapse
|
40
|
Ye H, Su B, Ni H, Li L, Chen X, You X, Zhang H. microRNA-199a may be involved in the pathogenesis of lupus nephritis via modulating the activation of NF-κB by targeting Klotho. Mol Immunol 2018; 103:235-242. [PMID: 30316188 DOI: 10.1016/j.molimm.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
Abstract
Klotho is considered to have renal protective effect by prohibiting the activation of the nuclear factor (NF)-κB pathway, while the role of microRNA-199a (miR-199a)/Klotho in lupus nephritis (LN) is still unknown. A single dose of pristane (0.5 ml) was intraperitoneally injected into 8 weeks-old female mice to establish the LN model. MiR-199a mimic or miR-199a inhibitor, Klotho plasmid or Klotho siRNA, and miR-199a inhibitor plus si-Klotho were transfected into lipopolysaccharides (LPS) stimulated human embryonic kidney 293 T (HEK293 T) cells. Western Blot was adopted to measure p-P65 expression. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the supernatant were determined by enzyme-linked immunosorbent assay (ELISA). The expression of Klotho was suppressed by miR-199a through direct binding to the three prime untranslated regions (3'-UTR). The high miR-199a level was accompanied by low Klotho expression in the LN kidney. MiR-199a promoted LPS-induced NF-κB activation and improved the secretion of TNF-α and IL-1β by regulation of Klotho in HEK293 T cells. If miR-199a antagomir was administrated after 48 h of pristane administration, the expression of p-P65 and the secretion of TNF-α and IL-1β were significantly down-regulated in LN kidney. Although the direct involvement and detailed mechanism of miR-199a in LN still need further investigation, our data show that MiR-199a could regulate the activation of NF-κB by directly targeting Klotho.
Collapse
Affiliation(s)
- Hong Ye
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, PR China
| | - Bofeng Su
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Haizhen Ni
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, 325000, Zhejiang Province, PR China
| | - Linlin Li
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, PR China
| | - Xuduan Chen
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, PR China
| | - Xiaohan You
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, 325000, Zhejiang Province, PR China
| | - Huidi Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, 325000, Zhejiang Province, PR China
| |
Collapse
|
41
|
Kan S, Zhang W, Mao J, Wang M, Ni L, Zhang M, Zhang Q, Chen J. NF-κB activation contributes to parathyroid cell proliferation in chronic kidney disease. J Nephrol 2018; 31:941-951. [DOI: 10.1007/s40620-018-0530-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/26/2018] [Indexed: 12/20/2022]
|
42
|
Słomiński B, Ryba-Stanisławowska M, Skrzypkowska M, Myśliwska J, Myśliwiec M. The KL-VS polymorphism of KLOTHO gene is protective against retinopathy incidence in patients with type 1 diabetes. Biochim Biophys Acta Mol Basis Dis 2017; 1864:758-763. [PMID: 29247834 DOI: 10.1016/j.bbadis.2017.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS KLOTHO is an anti-ageing circulating hormone involved in insulin signaling, inflammation and vascular homeostasis through its protective effects on the endothelium and antioxidant actions. The common functional "KL-VS" variant of the KLOTHO gene is reproducibly associated with longevity in humans. Large number of studies have evaluated close relationship between KLOTHO protein and diabetes but the association between KL-VS variant and retinopathy in type 1 diabetes mellitus (T1D) is unknown. Therefore, in the present study we examined the association between the KL-VS polymorphism and the risk of diabetic retinopathy (DR) in patients with T1D. METHODS We examined 400 patients with T1D and 350 healthy age-matched controls. The analysis concerned KL-VS polymorphism along with the levels of serum inflammatory (CRP, TNF-α) and anti-inflammatory (IL-10) markers, pro-angiogenic (angiogenin) and anti-angiogenic interferon gamma-induced protein 10 (IP-10) factors as well as adhesion molecules (ICAM-1, ICAM-3). RESULTS We did not find significant association between T1D and KL-VS alleles. However, we observed that the incidence of KL-VS genotype is lower in a group with retinopathy in comparison to diabetic patients without this complication. Moreover, we established that KL-VS carriers had the lowest levels of inflammatory markers, pro-angiogenic factors and adhesion molecules. Simultaneously, the KL-VS carriers had increased serum levels of anti-inflammatory and anti-angiogenic cytokines than holders bearing wild type genotype. CONCLUSIONS In conclusion, the findings of our studies suggest that the functional KL-VS variant of the KLOTHO gene protects against the development of retinopathy in patients with T1D.
Collapse
Affiliation(s)
- Bartosz Słomiński
- Department of Immunology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | | | - Maria Skrzypkowska
- Department of Immunology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jolanta Myśliwska
- Department of Immunology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Chair & Clinics of Paediatrics, Diabetology and Endocrinology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| |
Collapse
|
43
|
Anti-aging factor, serum alpha-Klotho, as a marker of acute physiological stress, and a predictor of ICU mortality, in patients with septic shock. J Crit Care 2017; 44:323-330. [PMID: 29268200 DOI: 10.1016/j.jcrc.2017.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Genetic deletions decreasing serum alpha-Klotho (alpha-KL) have been associated with rapid aging, multi-organ failure and increased mortality in experimental sepsis. We hypothesized that lower alpha-KL obtained at the onset of septic shock correlates with higher mortality. MATERIALS AND METHODS Prospective cohort of 104 adult patients with septic shock. Alpha-KL was measured via ELISA on serum collected on the day of enrollment (within 72h from the onset of shock). Relationship between alpha-KL and clinical outcome measures was evaluated in uni- and multi-variable models. RESULTS Median (IQR) alpha-KL was 816 (1020.4) pg/mL and demonstrated a bimodal distribution with two distinct populations, Cohort A [n=97, median alpha-KL 789.3 (767.1)] and Cohort B [n=7, median alpha-KL 4365.1(1374.4), >1.5 IQR greater than Cohort A]. Within Cohort A, ICU non-survivors had significantly higher serum alpha-KL compared to survivors as well as significantly higher APACHE II and SOFA scores, rates of mechanical ventilation, and serum BUN, creatinine, calcium, phosphorus and lactate (all p≤0.05). Serum alpha-KL≥1005, the highest tertile, was an independent predictor of ICU mortality when controlling for co-variates (p=0.028, 95% CI 1.143-11.136). CONCLUSIONS Elevated serum alpha-KL in patients with septic shock is independently associated with higher mortality. Further studies are needed to corroborate these findings.
Collapse
|
44
|
Navas-Enamorado I, Bernier M, Brea-Calvo G, de Cabo R. Influence of anaerobic and aerobic exercise on age-related pathways in skeletal muscle. Ageing Res Rev 2017; 37:39-52. [PMID: 28487241 PMCID: PMC5549001 DOI: 10.1016/j.arr.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Navas-Enamorado
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla 41013, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|