1
|
Baig A. Ultracentrifugation Purification of Cache Valley Virus Using Iodixanol. Methods Mol Biol 2025; 2893:51-56. [PMID: 39671029 DOI: 10.1007/978-1-0716-4338-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Ultracentrifugation is an invaluable technique frequently used for either crude or highly purified viral preparations. Virus produced by cells is first cleared of cellular debris through benchtop centrifugation, then purified by ultracentrifugation in a stepwise iodixanol gradient solution. Here we describe the purification of Cache Valley virus using iodixanol, a nonionic, nontoxic, iso-osmotic solution.
Collapse
|
2
|
Boegelein L, Schreiber P, Philipp A, Nusshag C, Essbauer S, Zeier M, Krautkrämer E. Replication kinetics of pathogenic Eurasian orthohantaviruses in human mesangial cells. Virol J 2024; 21:241. [PMID: 39354507 PMCID: PMC11446005 DOI: 10.1186/s12985-024-02517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Eurasian pathogenic orthohantaviruses cause hemorrhagic fever with renal syndrome (HFRS) characterized by acute kidney injury (AKI). The virulence of orthohantaviruses varies enormously and direct infection of different renal cell types contribute to pathogenesis. Glomerular mesangial cells play an essential role in the interplay between kidney cells and proper kidney function. Therefore, we analyzed the replication competence of different orthohantavirus species in primary mesangial cells and a mesangial cell line. METHODS We tested the suitability of the mesangial cell line CIHGM-1 (conditionally immortalized human glomerular mesangial cells) as cell culture model for orthohantavirus kidney infection by comparison with primary human renal mesangial cells (HRMCs). We analyzed infection with high pathogenic Hantaan virus (HTNV), moderate pathogenic Puumala virus (PUUV) and non-/low-pathogenic Tula virus (TULV). RESULTS Effective viral spread was observed for PUUV only, whereas infection with HTNV and TULV was abortive. However, in contrast to TULV, HTNV exhibits an initially high infection rate and declines afterwards. This replication pattern was observed in HRMCs and CIHGM-1 cells. Viability or adhesion was neither impaired for PUUV-infected CIHGM-1 nor HRMCs. A loss of migration capacity was observed in PUUV-infected CIHGM-1 cells, but not in HRMCs. CONCLUSIONS The identification of differences in the replication competence of pathogenic orthohantavirus strains in renal mesangial cells is of special interest and may provide useful insights in the virus-specific mechanisms of orthohantavirus induced AKI. The use of CIHGM-1 cells will facilitate the research in a relevant cell culture system.
Collapse
Affiliation(s)
- Lukas Boegelein
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Pamela Schreiber
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Alexandra Philipp
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Sandra Essbauer
- Department Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, German Centre for Infection Research, Munich Partner Site, D-80937, Munich, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Ma R, Zheng X, Gu T, Liu Z, Hou S, Sun D, Ding Y, Wang F, Ying Q, Ma X, Kang H, Liu R, Lian J, Wu X. T-cell immunoglobulin and mucin 1 (TIM-1) mediates infection of Hantaan virus in Jurkat T cells. Virus Res 2024; 346:199394. [PMID: 38735439 PMCID: PMC11152704 DOI: 10.1016/j.virusres.2024.199394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Hantaan virus (HTNV) is a major public health concern due to its ability to cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia. Symptoms of HFRS include fever, hemorrhage, immune dysfunction and renal impairment, and severe cases can be fatal. T cell-mediated adaptive immune responses play a pivotal role in countering HTNV infection. However, our understanding of HTNV and T cell interactions in the disease progression is limited. In this study, we found that human CD4+ T cells can be directly infected with HTNV, thereby facilitating viral replication and production. Additionally, T-cell immunoglobulin and mucin 1 (TIM-1) participated in the process of HTNV infection of Jurkat T cells, and further observed that HTNV enters Jurkat T cells via the clathrin-dependent endocytosis pathway. These findings not only affirm the susceptibility of human CD4+ T lymphocytes to HTNV but also shed light on the viral tropism. Our research elucidates a mode of the interaction between the virus infection process and the immune system. Critically, this study provides new insights into the pathogenesis of HTNV and the implications for antiviral research.
Collapse
Affiliation(s)
- Ruixue Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xuyang Zheng
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianle Gu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ziyu Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shiyuan Hou
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Danni Sun
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yaxin Ding
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qikang Ying
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaohan Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Huarui Kang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Jianqi Lian
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
4
|
Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication 2024; 16:032008. [PMID: 38749416 PMCID: PMC11151171 DOI: 10.1088/1758-5090/ad4c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.
Collapse
Affiliation(s)
- Evelyn Zarate-Sanchez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| |
Collapse
|
5
|
Schreiber P, Friedrich AK, Gruber G, Nusshag C, Boegelein L, Essbauer S, Uhrig J, Zeier M, Krautkrämer E. Differences in the Susceptibility of Human Tubular Epithelial Cells for Infection with Orthohantaviruses. Viruses 2023; 15:1670. [PMID: 37632012 PMCID: PMC10459294 DOI: 10.3390/v15081670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Diseases induced by infection with pathogenic orthohantaviruses are characterized by a pronounced organ-specific manifestation. Pathogenic Eurasian orthohantaviruses cause hemorrhagic fever with renal syndrome (HFRS) with often massive proteinuria. Therefore, the use of a relevant kidney cell culture would be favorable to analyze the underlying cellular mechanisms of orthohantavirus-induced acute kidney injury (AKI). We tested different human tubular epithelial cell lines for their suitability as an in vitro infection model. Permissiveness and replication kinetics of highly pathogenic Hantaan virus (HTNV) and non-/low-pathogenic Tula virus (TULV) were analyzed in tubular epithelial cell lines and compared to human primary tubular epithelial cells. Ana-lysis of the cell line HK-2 revealed the same results for viral replication, morphological and functional effects as observed for HTNV in primary cells. In contrast, the cell lines RPTEC/TERT1 and TH1 demonstrated only poor infection rates after inoculation with HTNV and are unusable as an infection model. While pathogenic HNTV infects primary tubular and HK-2 cells, non-/low-pathogenic TULV infects neither primary tubular cells nor the cell line HK-2. Our results show that permissiveness of renal cells varies between orthohantaviruses with differences in pathogenicity and that HK-2 cells demonstrate a suitable in vitro model to study viral tropism and pathogenesis of orthohantavirus-induced AKI.
Collapse
Affiliation(s)
- Pamela Schreiber
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | - Gefion Gruber
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Lukas Boegelein
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Sandra Essbauer
- Bundeswehr Institute of Microbiology, Department Virology and Intracellular Agents, German Centre for Infection Research, Munich Partner Site, D-80937 Munich, Germany
| | - Josephine Uhrig
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
6
|
Nusshag C, Boegelein L, Schreiber P, Essbauer S, Osberghaus A, Zeier M, Krautkrämer E. Expression Profile of Human Renal Mesangial Cells Is Altered by Infection with Pathogenic Puumala Orthohantavirus. Viruses 2022; 14:v14040823. [PMID: 35458553 PMCID: PMC9025590 DOI: 10.3390/v14040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Acute kidney injury (AKI) with proteinuria is a hallmark of infections with Eurasian orthohantaviruses. Different kidney cells are identified as target cells of hantaviruses. Mesangial cells may play a central role in the pathogenesis of AKI by regulation of inflammatory mediators and signaling cascades. Therefore, we examined the characteristics of hantavirus infection on human renal mesangial cells (HRMCs). Receptor expression and infection with pathogenic Puumala virus (PUUV) and low-pathogenic Tula virus (TULV) were explored. To analyze changes in protein expression in infected mesangial cells, we performed a proteome profiler assay analyzing 38 markers of kidney damage. We compared the proteome profile of in vitro-infected HRMCs with the profile detected in urine samples of 11 patients with acute hantavirus infection. We observed effective productive infection of HRMCs with pathogenic PUUV, but only poor abortive infection for low-pathogenic TULV. PUUV infection resulted in the deregulation of proteases, adhesion proteins, and cytokines associated with renal damage. The urinary proteome profile of hantavirus patients demonstrated also massive changes, which in part correspond to the alterations observed in the in vitro infection of HRMCs. The direct infection of mesangial cells may induce a local environment of signal mediators that contributes to AKI in hantavirus infection.
Collapse
Affiliation(s)
- Christian Nusshag
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany; (C.N.); (L.B.); (P.S.); (A.O.); (M.Z.)
| | - Lukas Boegelein
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany; (C.N.); (L.B.); (P.S.); (A.O.); (M.Z.)
| | - Pamela Schreiber
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany; (C.N.); (L.B.); (P.S.); (A.O.); (M.Z.)
| | - Sandra Essbauer
- Bundeswehr Institute of Microbiology, Department Virology and Intracellular Agents, German Centre for Infection Research, Munich Partner Site, D-80937 Munich, Germany;
| | - Anja Osberghaus
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany; (C.N.); (L.B.); (P.S.); (A.O.); (M.Z.)
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany; (C.N.); (L.B.); (P.S.); (A.O.); (M.Z.)
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany; (C.N.); (L.B.); (P.S.); (A.O.); (M.Z.)
- Correspondence:
| |
Collapse
|
7
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke DS, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. Sci Rep 2021; 11:20398. [PMID: 34650161 PMCID: PMC8516859 DOI: 10.1038/s41598-021-99893-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 infection depends on binding its spike (S) protein to angiotensin-converting enzyme 2 (ACE2). The S protein expresses an RGD motif, suggesting that integrins may be co-receptors. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating cell entry and productive infection. We used flow cytometry and confocal microscopy to show that SARS-CoV-2R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn2+, which induces integrin extension, enhances cell entry of SARS-CoV-2R18. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2R18 with basal state integrins, but is ineffective against Mn2+-activated integrins. RGD-integrin antagonists inhibited SARS-CoV-2R18 binding regardless of integrin activation status. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand-binding function of integrins via a talin-dependent mechanism, and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα13. Using cell-permeable peptide inhibitors of talin and Gα13 binding to the cytoplasmic tail of an integrin's β subunit, we demonstrate that talin-mediated signaling is essential for productive infection.
Collapse
Affiliation(s)
- Peter Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Derek A Rinaldi
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Virginie Bondu
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Alison M Kell
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Steven Bradfute
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
8
|
Hägele S, Nusshag C, Müller A, Baumann A, Zeier M, Krautkrämer E. Cells of the human respiratory tract support the replication of pathogenic Old World orthohantavirus Puumala. Virol J 2021; 18:169. [PMID: 34404450 PMCID: PMC8369447 DOI: 10.1186/s12985-021-01636-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Transmission of all known pathogenic orthohantaviruses (family Hantaviridae) usually occurs via inhalation of aerosols contaminated with viral particles derived from infected rodents and organ manifestation of infections is characterized by lung and kidney involvement. Orthohantaviruses found in Eurasia cause hemorrhagic fever with renal syndrome (HFRS) and New World orthohantaviruses cause hantavirus cardiopulmonary syndrome (HCPS). However, cases of infection with Old World orthohantaviruses with severe pulmonary manifestations have also been observed. Therefore, human airway cells may represent initial targets for orthohantavirus infection and may also play a role in the pathogenesis of infections with Eurasian orthohantaviruses. METHODS We analyzed the permissiveness of primary endothelial cells of the human pulmonary microvasculature and of primary human epithelial cells derived from bronchi, bronchioles and alveoli for Old World orthohantavirus Puumala virus (PUUV) in vitro. In addition, we examined the expression of orthohantaviral receptors in these cell types. To minimize donor-specific effects, cells from two different donors were tested for each cell type. RESULTS Productive infection with PUUV was observed for endothelial cells of the microvasculature and for the three tested epithelial cell types derived from different sites of the respiratory tract. Interestingly, infection and particle release were also detected in bronchial and bronchiolar epithelial cells although expression of the orthohantaviral receptor integrin β3 was not detectable in these cell types. In addition, replication kinetics and viral release demonstrate enormous donor-specific variations. CONCLUSIONS The human respiratory epithelium is among the first targets of orthohantaviral infection and may contribute to virus replication, dissemination and pathogenesis of HFRS-causing orthohantaviruses. Differences in initial pulmonary infection due to donor-specific factors may play a role in the observed broad variance of severity and symptoms of orthohantavirus disease in patients. The absence of detectable levels of integrin αVβ3 surface expression on bronchial and small airway epithelial cells indicates an alternate mode of orthohantaviral entry in these cells that is independent from integrin β3.
Collapse
Affiliation(s)
- Stefan Hägele
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Alexander Müller
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Alexandra Baumann
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke D, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34312625 DOI: 10.1101/2021.07.20.453118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular entry of coronaviruses depends on binding of the viral spike (S) protein to a specific cellular receptor, the angiotensin-converting enzyme 2 (ACE2). Furthermore, the viral spike protein expresses an RGD motif, suggesting that cell surface integrins may be attachment co-receptors. However, using infectious SARS-CoV-2 requires a biosafety level 3 laboratory (BSL-3), which limits the techniques that can be used to study the mechanism of cell entry. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating both cell entry and productive infection. We used flow cytometry and confocal fluorescence microscopy to show that fluorescently labeled SARS-CoV-2 R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn 2+ , which activates integrins and induces integrin extension, enhances cell binding and entry of SARS-CoV-2 R18 in proportion to the fraction of integrins activated. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2 R18 with basal state integrins, but is ineffective against Mn 2+ -activated integrins. At the same time, RGD-integrin antagonists inhibited SARS-CoV-2 R18 binding regardless of integrin activity state. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand binding function of integrins via a talin dependent mechanism and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα 13 and induces cell spreading, retraction, migration, and proliferation. Using cell-permeable peptide inhibitors of talin, and Gα 13 binding to the cytoplasmic tail of an integrin's β subunit, we further demonstrate that talin-mediated signaling is essential for productive infection by SARS-CoV-2.
Collapse
|
10
|
Dieterle ME, Solà-Riera C, Ye C, Goodfellow SM, Mittler E, Kasikci E, Bradfute SB, Klingström J, Jangra RK, Chandran K. Genetic depletion studies inform receptor usage by virulent hantaviruses in human endothelial cells. eLife 2021; 10:e69708. [PMID: 34232859 PMCID: PMC8263056 DOI: 10.7554/elife.69708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hantaviruses are RNA viruses with known epidemic threat and potential for emergence. Several rodent-borne hantaviruses cause zoonoses accompanied by severe illness and death. However, assessments of zoonotic risk and the development of countermeasures are challenged by our limited knowledge of the molecular mechanisms of hantavirus infection, including the identities of cell entry receptors and their roles in influencing viral host range and virulence. Despite the long-standing presumption that β3/β1-containing integrins are the major hantavirus entry receptors, rigorous genetic loss-of-function evidence supporting their requirement, and that of decay-accelerating factor (DAF), is lacking. Here, we used CRISPR/Cas9 engineering to knockout candidate hantavirus receptors, singly and in combination, in a human endothelial cell line that recapitulates the properties of primary microvascular endothelial cells, the major targets of viral infection in humans. The loss of β3 integrin, β1 integrin, and/or DAF had little or no effect on entry by a large panel of hantaviruses. By contrast, loss of protocadherin-1, a recently identified entry receptor for some hantaviruses, substantially reduced hantavirus entry and infection. We conclude that major host molecules necessary for endothelial cell entry by PCDH1-independent hantaviruses remain to be discovered.
Collapse
Affiliation(s)
- Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Carles Solà-Riera
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska InstitutetStockholmSweden
| | - Chunyan Ye
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal MedicineAlbuquerqueUnited States
| | - Samuel M Goodfellow
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal MedicineAlbuquerqueUnited States
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Ezgi Kasikci
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Steven B Bradfute
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal MedicineAlbuquerqueUnited States
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska InstitutetStockholmSweden
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
11
|
A new inactivation method to facilitate cryo-EM of enveloped, RNA viruses requiring high containment: A case study using Venezuelan Equine Encephalitis Virus (VEEV). J Virol Methods 2019; 277:113792. [PMID: 31786314 DOI: 10.1016/j.jviromet.2019.113792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 01/07/2023]
Abstract
The challenges associated with operating electron microscopes (EM) in biosafety level 3 and 4 containment facilities have slowed progress of cryo-EM studies of high consequence viruses. We address this gap in a case study of Venezuelan Equine Encephalitis Virus (VEEV) strain TC-83. Chemical inactivation of viruses may physically distort structure, and hence to verify retention of native structure, we selected VEEV strain TC-83 to develop this methodology as this virus has a 4.8 Å resolution cryo-EM structure. In our method, amplified VEEV TC-83 was concentrated directly from supernatant through a 30 % sucrose cushion, resuspended, and chemically inactivated with 1 % glutaraldehyde. A second 30 % sucrose cushion removed any excess glutaraldehyde that might interfere with single particle analyses. A cryo-EM map of fixed, inactivated VEEV was determined to a resolution of 7.9 Å. The map retained structural features of the native virus such as the icosahedral symmetry, and the organization of the capsid core and the trimeric spikes. Our results suggest that our strategy can easily be adapted for inactivation of other enveloped, RNA viruses requiring BSL-3 or BSL-4 for cryo-EM. However, the validation of inactivation requires the oversight of Biosafety Committee for each Institution.
Collapse
|
12
|
Mittler E, Dieterle ME, Kleinfelter LM, Slough MM, Chandran K, Jangra RK. Hantavirus entry: Perspectives and recent advances. Adv Virus Res 2019; 104:185-224. [PMID: 31439149 DOI: 10.1016/bs.aivir.2019.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hantaviruses are important zoonotic pathogens of public health importance that are found on all continents except Antarctica and are associated with hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. Despite the significant disease burden they cause, no FDA-approved specific therapeutics or vaccines exist against these lethal viruses. The lack of available interventions is largely due to an incomplete understanding of hantavirus pathogenesis and molecular mechanisms of virus replication, including cellular entry. Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of virions and are necessary and sufficient to orchestrate virus attachment and entry. In vitro studies have implicated integrins (β1-3), DAF/CD55, and gC1qR as candidate receptors that mediate viral attachment for both Old World and New World hantaviruses. Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo, making it the first clade-specific host factor to be identified. Attachment of hantavirus particles to cellular receptors induces their internalization by clathrin-mediated, dynamin-independent, or macropinocytosis-like mechanisms, followed by particle trafficking to an endosomal compartment where the fusion of viral and endosomal membranes can occur. Following membrane fusion, which requires cholesterol and acid pH, viral nucleocapsids escape into the cytoplasm and launch genome replication. In this review, we discuss the current mechanistic understanding of hantavirus entry, highlight gaps in our existing knowledge, and suggest areas for future inquiry.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lara M Kleinfelter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Megan M Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
13
|
Protocadherin-1 is essential for cell entry by New World hantaviruses. Nature 2018; 563:559-563. [PMID: 30464266 DOI: 10.1038/s41586-018-0702-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/20/2018] [Indexed: 01/26/2023]
Abstract
The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS)1,2. No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1)3-6 as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV). In vitro, we show that the surface glycoproteins of ANDV and SNV directly recognize the outermost extracellular repeat domain of PCDH1-a member of the cadherin superfamily7,8-to exploit PCDH1 for entry. In vivo, genetic ablation of PCDH1 renders Syrian golden hamsters highly resistant to a usually lethal ANDV challenge. Targeting PCDH1 could provide strategies to reduce infection and disease caused by New World hantaviruses.
Collapse
|
14
|
Buranda T, Gineste C, Wu Y, Bondu V, Perez D, Lake KR, Edwards BS, Sklar LA. A High-Throughput Flow Cytometry Screen Identifies Molecules That Inhibit Hantavirus Cell Entry. SLAS DISCOVERY 2018; 23:634-645. [PMID: 29608398 DOI: 10.1177/2472555218766623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), which infects more than 200,000 people worldwide. Sin Nombre virus (SNV) and Andes virus (ANDV) cause the most severe form of HCPS, with case fatality ratios of 30%-40%. There are no specific therapies or vaccines for SNV. Using high-throughput flow cytometry, we screened the Prestwick Chemical Library for small-molecule inhibitors of the binding interaction between UV-inactivated and fluorescently labeled SNVR18 particles, and decay-accelerating factor (DAF) expressed on Tanoue B cells. Eight confirmed hit compounds from the primary screen were investigated further in secondary screens that included infection inhibition, cytotoxicity, and probe interference. Antimycin emerged as a bona fide hit compound that inhibited cellular infection of the major HCPS (SNV)- and HCPS (Hantaan)-causing viruses. Confirming our assay's ability to detect active compounds, orthogonal testing of the hit compound showed that antimycin binds directly to the virus particle and blocks recapitulation of physiologic integrin activation caused by SNV binding to the integrin PSI domain.
Collapse
Affiliation(s)
- Tione Buranda
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018.,2 Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Catherine Gineste
- 3 University of New Mexico Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yang Wu
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018
| | - Virginie Bondu
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018
| | - Dominique Perez
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018.,4 Department of Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Kaylin R Lake
- 5 Department of Biochemistry, University of New Mexico, Albuquerque, NM, USA
| | - Bruce S Edwards
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018.,3 University of New Mexico Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA.,4 Department of Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Larry A Sklar
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018.,3 University of New Mexico Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA.,4 Department of Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
15
|
Jiang DB, Zhang JP, Cheng LF, Zhang GW, Li Y, Li ZC, Lu ZH, Zhang ZX, Lu YC, Zheng LH, Zhang FL, Yang K. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy. Antiviral Res 2018; 150:174-182. [PMID: 29273568 DOI: 10.1016/j.antiviral.2017.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 01/22/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be due to the advantage afforded by lysosomal targeting after exogenous antigen processing initiation and major histocompatibility complex (MHC) class II antigen presentation trafficking. MHC II-restricted antigen recognition effectively primes HTNV-specific CD4+ T-cells, leading to the promotion of significant immune responses and immunological memory. An epitope-spreading phenomenon was observed, which mirrors the previous result from the Gn study, in which the dominant IFN-γ-responsive hot-spot epitopes were shared between HLA-II and H2d. Importantly, the pan-epitope reaction to Gc indicated that Gc should be with potential for use in further hantavirus DNA vaccine investigations.
Collapse
Affiliation(s)
- Dong-Bo Jiang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Jin-Peng Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Lin-Feng Cheng
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Guan-Wen Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Yun Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Zi-Chao Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Zhen-Hua Lu
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Zi-Xin Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Yu-Chen Lu
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Lian-He Zheng
- Department of Orthopedics, Tangdu Hospital, Xi'an, China.
| | - Fang-Lin Zhang
- Department of Microbiology, Fourth Military Medical University, Xi'an, China.
| | - Kun Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
16
|
Bondu V, Wu C, Cao W, Simons PC, Gillette J, Zhu J, Erb L, Zhang XF, Buranda T. Low-affinity binding in cis to P2Y 2R mediates force-dependent integrin activation during hantavirus infection. Mol Biol Cell 2017; 28:2887-2903. [PMID: 28835374 PMCID: PMC5638590 DOI: 10.1091/mbc.e17-01-0082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Atomic force microscopy is used to establish that low-affinity integrins bind in cis to P2Y2R. Integrin activation is initiated by a membrane-normal switchblade motion triggered by integrin priming after the virus binds to the integrin PSI domain. Tensile force between the P2Y2R and unbending integrin stimulates outside-in signaling. Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation.
Collapse
Affiliation(s)
- Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Chenyu Wu
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Wenpeng Cao
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Peter C Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jennifer Gillette
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jieqing Zhu
- Blood Research Institute, Bloodcenter of Wisconsin, Milwaukee, WI 53226
| | - Laurie Erb
- Department of Biochemistry, 540F Bond Life Sciences Center, Columbia, MO 65211
| | - X Frank Zhang
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131 .,Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
17
|
Chiang CF, Flint M, Lin JMS, Spiropoulou CF. Endocytic Pathways Used by Andes Virus to Enter Primary Human Lung Endothelial Cells. PLoS One 2016; 11:e0164768. [PMID: 27780263 PMCID: PMC5079659 DOI: 10.1371/journal.pone.0164768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/30/2016] [Indexed: 12/04/2022] Open
Abstract
Andes virus (ANDV) is the major cause of hantavirus pulmonary syndrome (HPS) in South America. Despite a high fatality rate (up to 40%), no vaccines or antiviral therapies are approved to treat ANDV infection. To understand the role of endocytic pathways in ANDV infection, we used 3 complementary approaches to identify cellular factors required for ANDV entry into human lung microvascular endothelial cells. We screened an siRNA library targeting 140 genes involved in membrane trafficking, and identified 55 genes required for ANDV infection. These genes control the major endocytic pathways, endosomal transport, cell signaling, and cytoskeleton rearrangement. We then used infectious ANDV and retroviral pseudovirions to further characterize the possible involvement of 9 of these genes in the early steps of ANDV entry. In addition, we used markers of cellular endocytosis along with chemical inhibitors of known endocytic pathways to show that ANDV uses multiple routes of entry to infect target cells. These entry mechanisms are mainly clathrin-, dynamin-, and cholesterol-dependent, but can also occur via a clathrin-independent manner.
Collapse
Affiliation(s)
- Cheng-Feng Chiang
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jin-Mann S. Lin
- Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Pavliga SN, Kompanets GG, Tsygankov VY. The Experimental Research (In Vitro) of Carrageenans and Fucoidans to Decrease Activity of Hantavirus. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:120-4. [PMID: 26943130 DOI: 10.1007/s12560-016-9233-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
The effect of carrageenans and fucoidans on the activity of Hantavirus is studied. It has been found that among carrageenans a significant antiviral effect is exerted by the ι-type, which decreases the viral titer by 2.5 log focus forming units per mL; among fucoidans, by a preparation from Laminaria cichorioides, which reduces the number of infected cells from 27.0 to 5.3 after pretreatment of both the macrophage culture and Hantavirus. The antiviral effect of fucoidan from Laminaria japonica is shown to grow in direct proportion to the increase of dose of the preparation.
Collapse
Affiliation(s)
- Stanislav N Pavliga
- School of Natural Sciences, Far Eastern Federal University (FEFU), Vladivostok, Russia
| | - Galina G Kompanets
- Somov Research Institute of Epidemiology and Microbiology, Vladivostok, Russia
| | - Vasiliy Yu Tsygankov
- School of Natural Sciences, Far Eastern Federal University (FEFU), Vladivostok, Russia.
- School of Biomedicine, Far Eastern Federal University (FEFU), 8 Sukhanova str., 690000, Vladivostok, Russia.
| |
Collapse
|
19
|
Li S, Rissanen I, Zeltina A, Hepojoki J, Raghwani J, Harlos K, Pybus OG, Huiskonen JT, Bowden TA. A Molecular-Level Account of the Antigenic Hantaviral Surface. Cell Rep 2016; 15:959-967. [PMID: 27117403 PMCID: PMC4858563 DOI: 10.1016/j.celrep.2016.03.082] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/29/2016] [Accepted: 03/22/2016] [Indexed: 11/26/2022] Open
Abstract
Hantaviruses, a geographically diverse group of zoonotic pathogens, initiate cell infection through the concerted action of Gn and Gc viral surface glycoproteins. Here, we describe the high-resolution crystal structure of the antigenic ectodomain of Gn from Puumala hantavirus (PUUV), a causative agent of hemorrhagic fever with renal syndrome. Fitting of PUUV Gn into an electron cryomicroscopy reconstruction of intact Gn-Gc spike complexes from the closely related but non-pathogenic Tula hantavirus localized Gn tetramers to the membrane-distal surface of the virion. The accuracy of the fitting was corroborated by epitope mapping and genetic analysis of available PUUV sequences. Interestingly, Gn exhibits greater non-synonymous sequence diversity than the less accessible Gc, supporting a role of the host humoral immune response in exerting selective pressure on the virus surface. The fold of PUUV Gn is likely to be widely conserved across hantaviruses. We describe the high-resolution crystal structure of a hantaviral Gn ectodomain Electron cryotomography analysis reveals the ultrastructure of Gn-Gc assembly X-ray fitting and mapping analysis reveals the antigenic hantavirus surface The Gn fold is likely to be widely conserved across this group of viruses
Collapse
Affiliation(s)
- Sai Li
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ilona Rissanen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Antra Zeltina
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jussi Hepojoki
- Department of Virology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
20
|
Wycoff K, Maclean J, Belle A, Yu L, Tran Y, Roy C, Hayden F. Anti-infective immunoadhesins from plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1078-93. [PMID: 26242703 PMCID: PMC4749143 DOI: 10.1111/pbi.12441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/24/2015] [Accepted: 06/27/2015] [Indexed: 05/22/2023]
Abstract
Immunoadhesins are recombinant proteins that combine the ligand-binding region of a receptor or adhesion molecule with immunoglobulin constant domains. All FDA-approved immunoadhesins are designed to modulate the interaction of a human receptor with its normal ligand, such as Etanercept (Enbrel(®) ), which interferes with the binding of tumour necrosis factor (TNF) to the TNF-alpha receptor and is used to treat inflammatory diseases such as rheumatoid arthritis. Like antibodies, immunoadhesins have long circulating half-lives, are readily purified by affinity-based methods and have the avidity advantages conferred by bivalency. Immunoadhesins that incorporate normal cellular receptors for viruses or bacterial toxins hold great, but as yet unrealized, potential for treating infectious disease. As decoy receptors, immunoadhesins have potential advantages over pathogen-targeted monoclonal antibodies. Planet Biotechnology has specialized in developing anti-infective immunoadhesins using plant expression systems. An immunoadhesin incorporating the cellular receptor for anthrax toxin, CMG2, potently blocks toxin activity in vitro and protects animals against inhalational anthrax. An immunoadhesin based on the receptor for human rhinovirus, ICAM-1, potently blocks infection of human cells by one of the major causes of the common cold. An immunoadhesin targeting the MERS coronavirus is in an early stage of development. We describe here the unique challenges involved in designing and developing immunoadhesins targeting infectious diseases in the hope of inspiring further research into this promising class of drugs.
Collapse
Affiliation(s)
| | | | | | - Lloyd Yu
- Planet Biotechnology Inc., Hayward, CA, USA
| | - Y Tran
- Planet Biotechnology Inc., Hayward, CA, USA
| | - Chad Roy
- Tulane National Primate Research Center, Covington, LA, USA
| | - Frederick Hayden
- University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
21
|
Elevated cytokines, thrombin and PAI-1 in severe HCPS patients due to Sin Nombre virus. Viruses 2015; 7:559-89. [PMID: 25674766 PMCID: PMC4353904 DOI: 10.3390/v7020559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
Sin Nombre Hantavirus (SNV, Bunyaviridae Hantavirus) is a Category A pathogen that causes Hantavirus Cardiopulmonary Syndrome (HCPS) with case fatality ratios generally ranging from 30% to 50%. HCPS is characterized by vascular leakage due to dysregulation of the endothelial barrier function. The loss of vascular integrity results in non-cardiogenic pulmonary edema, shock, multi-organ failure and death. Using Electric Cell-substrate Impedance Sensing (ECIS) measurements, we found that plasma samples drawn from University of New Mexico Hospital patients with serologically-confirmed HCPS, induce loss of cell-cell adhesion in confluent epithelial and endothelial cell monolayers grown in ECIS cultureware. We show that the loss of cell-cell adhesion is sensitive to both thrombin and plasmin inhibitors in mild cases, and to thrombin only inhibition in severe cases, suggesting an increasing prothrombotic state with disease severity. A proteomic profile (2D gel electrophoresis and mass spectrometry) of HCPS plasma samples in our cohort revealed robust antifibrinolytic activity among terminal case patients. The prothrombotic activity is highlighted by acute ≥30 to >100 fold increases in active plasminogen activator inhibitor (PAI-1) which, preceded death of the subjects within 48 h. Taken together, this suggests that PAI-1 might be a response to the severe pathology as it is expected to reduce plasmin activity and possibly thrombin activity in the terminal patients.
Collapse
|
22
|
Hepojoki J, Vaheri A, Strandin T. The fundamental role of endothelial cells in hantavirus pathogenesis. Front Microbiol 2014; 5:727. [PMID: 25566236 PMCID: PMC4273638 DOI: 10.3389/fmicb.2014.00727] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/03/2014] [Indexed: 01/17/2023] Open
Abstract
Hantavirus, a genus of rodent- and insectivore-borne viruses in the family Bunyaviridae, is a group of emerging zoonotic pathogens. Hantaviruses cause hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome in man, often with severe consequences. Vascular leakage is evident in severe hantavirus infections, and increased permeability contributes to the pathogenesis. This review summarizes the current knowledge on hantavirus interactions with hematopoietic and endothelial cells, and their effects on the increased vascular permeability.
Collapse
Affiliation(s)
- Jussi Hepojoki
- Department of Virology, Haartman Institute, University of Helsinki Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Haartman Institute, University of Helsinki Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Haartman Institute, University of Helsinki Helsinki, Finland
| |
Collapse
|
23
|
Buranda T, Swanson S, Bondu V, Schaefer L, Maclean J, Mo Z, Wycoff K, Belle A, Hjelle B. Equilibrium and kinetics of Sin Nombre hantavirus binding at DAF/CD55 functionalized bead surfaces. Viruses 2014; 6:1091-111. [PMID: 24618810 PMCID: PMC3970141 DOI: 10.3390/v6031091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/13/2014] [Accepted: 02/23/2014] [Indexed: 12/14/2022] Open
Abstract
Decay accelerating factor (DAF/CD55) is targeted by many pathogens for cell entry. It has been implicated as a co-receptor for hantaviruses. To examine the binding of hantaviruses to DAF, we describe the use of Protein G beads for binding human IgG Fc domain-functionalized DAF ((DAF)2-Fc). When mixed with Protein G beads the resulting DAF beads can be used as a generalizable platform for measuring kinetic and equilibrium binding constants of DAF binding targets. The hantavirus interaction has high affinity (24–30 nM; kon ~ 105 M−1s−1, koff ~ 0.0045 s−1). The bivalent (DAF)2-Fc/SNV data agree with hantavirus binding to DAF expressed on Tanoue B cells (Kd = 14.0 nM). Monovalent affinity interaction between SNV and recombinant DAF of 58.0 nM is determined from competition binding. This study serves a dual purpose of presenting a convenient and quantitative approach of measuring binding affinities between DAF and the many cognate viral and bacterial ligands and providing new data on the binding constant of DAF and Sin Nombre hantavirus. Knowledge of the equilibrium binding constant allows for the determination of the relative fractions of bound and free virus particles in cell entry assays. This is important for drug discovery assays for cell entry inhibitors.
Collapse
Affiliation(s)
- Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, MSC08 4640, Albuquerque, NM 87131, USA.
| | - Scarlett Swanson
- Department of Pathology, University of New Mexico School of Medicine, MSC08 4640, Albuquerque, NM 87131, USA.
| | - Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, MSC08 4640, Albuquerque, NM 87131, USA.
| | - Leah Schaefer
- Planet Biotechnology Inc., 25571 Clawiter Road, Hayward, CA 94545, USA.
| | - James Maclean
- Planet Biotechnology Inc., 25571 Clawiter Road, Hayward, CA 94545, USA.
| | - Zhenzhen Mo
- Planet Biotechnology Inc., 25571 Clawiter Road, Hayward, CA 94545, USA.
| | - Keith Wycoff
- Planet Biotechnology Inc., 25571 Clawiter Road, Hayward, CA 94545, USA.
| | - Archana Belle
- Planet Biotechnology Inc., 25571 Clawiter Road, Hayward, CA 94545, USA.
| | - Brian Hjelle
- Department of Pathology, University of New Mexico School of Medicine, MSC08 4640, Albuquerque, NM 87131, USA.
| |
Collapse
|
24
|
Krautkrämer E, Zeier M. Old World hantaviruses: aspects of pathogenesis and clinical course of acute renal failure. Virus Res 2014; 187:59-64. [PMID: 24412712 DOI: 10.1016/j.virusres.2013.12.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/09/2013] [Accepted: 12/24/2013] [Indexed: 12/31/2022]
Abstract
Hantavirus-associated diseases represent emerging infections that are ranked in the highest priority group of communicable diseases for surveillance and epidemiological research. In the last years, several novel hantavirus species were described and the number of host reservoir species harboring hantaviruses is also increasing. Reports of cases with severe or atypical clinical courses become also more frequent. These facts raise more and more questions concerning host reservoir specificity, pathogenicity and molecular mechanism of pathogenesis. Hantavirus disease is characterized by vascular leakage due to increased capillary permeability. The infection manifests often in the lung (hantaviral cardiopulmonary syndrome; HCPS) or in the kidney (hemorrhagic fever with renal syndrome, HFRS). The underlying mechanisms of both syndromes are probably similar despite the difference in organ tropism. Characterization of hantaviral replication cycle and of patient-specific determinants will help to identify factors responsible for the clinical symptoms and course.
Collapse
Affiliation(s)
- Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
25
|
Buranda T, BasuRay S, Swanson S, Agola J, Bondu V, Wandinger-Ness A. Rapid parallel flow cytometry assays of active GTPases using effector beads. Anal Biochem 2013; 442:149-57. [PMID: 23928044 DOI: 10.1016/j.ab.2013.07.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/23/2013] [Accepted: 07/28/2013] [Indexed: 12/13/2022]
Abstract
We describe a rapid assay for measuring the cellular activity of small guanine triphosphatases (GTPases) in response to a specific stimulus. Effector-functionalized beads are used to quantify in parallel multiple GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus.
Collapse
Affiliation(s)
- Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Krautkrämer E, Lehmann MJ, Bollinger V, Zeier M. Polar release of pathogenic Old World hantaviruses from renal tubular epithelial cells. Virol J 2012; 9:299. [PMID: 23194647 PMCID: PMC3546954 DOI: 10.1186/1743-422x-9-299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 11/26/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epithelio- and endotheliotropic viruses often exert polarized entry and release that may be responsible for viral spread and dissemination. Hantaviruses, mostly rodent-borne members of the Bunyaviridae family infect epithelial and endothelial cells of different organs leading to organ dysfunction or even failure. Endothelial and renal epithelial cells belong to the target cells of Old World hantavirus. Therefore, we examined the release of hantaviruses in several renal epithelial cell culture models. We used Vero cells that are commonly used in hantavirus studies and primary human renal epithelial cells (HREpC). In addition, we analyzed MDCKII cells, an epithelial cell line of a dog kidney, which represents a widely accepted in vitro model of polarized monolayers for their permissiveness for hantavirus infection. RESULTS Vero C1008 and primary HREpCs were grown on porous-support filter inserts for polarization. Monolayers were infected with hantavirus Hantaan (HTNV) and Puumala (PUUV) virus. Supernatants from the apical and basolateral chamber of infected cells were analyzed for the presence of infectious particles by re-infection of Vero cells. Viral antigen and infectious particles of HTNV and PUUV were exclusively detected in supernatants collected from the apical chamber of infected Vero C1008 cells and HREpCs. MDCKII cells were permissive for hantavirus infection and polarized MDCKII cells released infectious hantaviral particles from the apical surface corresponding to the results of Vero and primary human epithelial cells. CONCLUSIONS Pathogenic Old World hantaviruses are released from the apical surface of different polarized renal epithelial cells. We characterized MDCKII cells as a suitable polarized cell culture model for hantavirus infection studies.
Collapse
Affiliation(s)
- Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Maik J Lehmann
- Institute for Biology, Molecular Parasitology, Humboldt-UniversityBerlin, Berlin, Germany
| | - Vanessa Bollinger
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| |
Collapse
|
27
|
Papa A. Dobrava-Belgrade virus: Phylogeny, epidemiology, disease. Antiviral Res 2012; 95:104-17. [DOI: 10.1016/j.antiviral.2012.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/08/2012] [Accepted: 05/21/2012] [Indexed: 11/26/2022]
|
28
|
Hepojoki J, Strandin T, Lankinen H, Vaheri A. Hantavirus structure--molecular interactions behind the scene. J Gen Virol 2012; 93:1631-1644. [PMID: 22622328 DOI: 10.1099/vir.0.042218-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses of the genus Hantavirus, carried and transmitted by rodents and insectivores, are the exception in the vector-borne virus family Bunyaviridae, since viruses of the other genera are transmitted via arthropods. The single-stranded, negative-sense, RNA genome of hantaviruses is trisegmented into small, medium and large (S, M and L) segments. The segments, respectively, encode three structural proteins: nucleocapsid (N) protein, two glycoproteins Gn and Gc and an RNA-dependent RNA-polymerase. The genome segments, encapsidated by the N protein to form ribonucleoproteins, are enclosed inside a lipid envelope that is decorated by spikes composed of Gn and Gc. The virion displays round or pleomorphic morphology with a diameter of roughly 120-160 nm depending on the detection method. This review focuses on the structural components of hantaviruses, their interactions, the mechanisms behind virion assembly and the interactions that maintain virion integrity. We attempt to summarize recent results on the virion structure and to suggest mechanisms on how the assembly is driven. We also compare hantaviruses to other bunyaviruses with known structure.
Collapse
Affiliation(s)
- Jussi Hepojoki
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Hilkka Lankinen
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| |
Collapse
|
29
|
Pathogenic old world hantaviruses infect renal glomerular and tubular cells and induce disassembling of cell-to-cell contacts. J Virol 2011; 85:9811-23. [PMID: 21775443 DOI: 10.1128/jvi.00568-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Viral hemorrhagic fevers are characterized by enhanced permeability. One of the most affected target organs of hantavirus-induced hemorrhagic fever with renal syndrome is the kidney, and an infection often results in acute renal failure. To study the underlying cellular effects leading to kidney dysfunction, we infected human renal cell types in vitro that are critical for the barrier functions of the kidney, and we examined kidney biopsy specimens obtained from hantavirus-infected patients. We analyzed the infection and pathogenic effects in tubular epithelial and glomerular endothelial renal cells and in podocytes. Both epithelial and endothelial cells and podocytes were susceptible to hantavirus infection in vitro. The infection disturbed the structure and integrity of cell-to-cell contacts, as demonstrated by redistribution and reduction of the tight junction protein ZO-1 and the decrease in the transepithelial resistance in infected epithelial monolayers. An analysis of renal biopsy specimens from hantavirus-infected patients revealed that the expression and the localization of the tight junction protein ZO-1 were altered compared to renal biopsy specimens from noninfected individuals. Both tubular and glomerular cells were affected by the infection. Furthermore, the decrease in glomerular ZO-1 correlates with disease severity induced by glomerular dysfunction. The finding that different renal cell types are susceptible to hantaviral infection and the fact that infection results in the breakdown of cell-to-cell contacts provide useful insights in hantaviral pathogenesis.
Collapse
|
30
|
Buys KK, Jung KH, Smee DF, Furuta Y, Gowen BB. Maporal virus as a surrogate for pathogenic New World hantaviruses and its inhibition by favipiravir. Antivir Chem Chemother 2011; 21:193-200. [PMID: 21566265 DOI: 10.3851/imp1729] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pathogenic hantaviruses geographically distributed in the Old World cause haemorrhagic fever with renal syndrome (HFRS), whereas New World hantaviruses are the aetiological agents of hantavirus cardiopulmonary syndrome (HCPS). Ribavirin, a drug associated with toxicities, is presently indicated for treatment of HFRS, whereas treatment of the more frequently lethal HCPS is limited to supportive care. Because of the need for safe and effective antivirals to treat severe hantaviral infections, we evaluated favipiravir (T-705) against Dobrava and Maporal viruses as representative Old World and New World hantaviruses, respectively. Dobrava virus causes HFRS in Europe. Maporal virus (MPRLV), recently isolated from western Venezuela, is phylogenetically similar to Andes virus, the principal cause of HCPS in Argentina. METHODS Hantavirus replication in the presence of various inhibitors was measured by focus-forming unit assays and quantitative reverse transcriptase PCR. Phylogenetic relationships were assessed by the neighbour-joining and bootstrap consensus methods. RESULTS Here, we show that infection of Vero E6 cells with MPRLV is dependent on β3 integrins, similar to that reported for pathogenic hantaviruses. Furthermore, by analysis of molecular determinants associated with the G1 glycoprotein cytoplasmic tail, we show the close genetic proximity of MPRLV to other HCPS-causing hantaviruses in these regions predictive of pathogenicity. We also demonstrate anti-hantavirus activity by favipiravir with inhibitory concentrations ranging from 65 to 93 μM and selectivity indices>50. CONCLUSIONS Our data suggest that MPRLV may serve as a safer alternative to modelling infection caused by the highly lethal Andes virus and that hantaviruses are sensitive to the effects of favipiravir in cell culture.
Collapse
Affiliation(s)
- Kristin K Buys
- Institute for Antiviral Research and Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | | | | | | | | |
Collapse
|
31
|
Hantaviruses in the americas and their role as emerging pathogens. Viruses 2010; 2:2559-86. [PMID: 21994631 PMCID: PMC3185593 DOI: 10.3390/v2122559] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/15/2010] [Accepted: 11/24/2010] [Indexed: 12/17/2022] Open
Abstract
The continued emergence and re-emergence of pathogens represent an ongoing, sometimes major, threat to populations. Hantaviruses (family Bunyaviridae) and their associated human diseases were considered to be confined to Eurasia, but the occurrence of an outbreak in 1993–94 in the southwestern United States led to a great increase in their study among virologists worldwide. Well over 40 hantaviral genotypes have been described, the large majority since 1993, and nearly half of them pathogenic for humans. Hantaviruses cause persistent infections in their reservoir hosts, and in the Americas, human disease is manifest as a cardiopulmonary compromise, hantavirus cardiopulmonary syndrome (HCPS), with case-fatality ratios, for the most common viral serotypes, between 30% and 40%. Habitat disturbance and larger-scale ecological disturbances, perhaps including climate change, are among the factors that may have increased the human caseload of HCPS between 1993 and the present. We consider here the features that influence the structure of host population dynamics that may lead to viral outbreaks, as well as the macromolecular determinants of hantaviruses that have been regarded as having potential contribution to pathogenicity.
Collapse
|