1
|
Cané L, Saffioti NA, Genetet S, Daza Millone MA, Ostuni MA, Schwarzbaum PJ, Mouro-Chanteloup I, Herlax V. Alpha hemolysin of E. coli induces hemolysis of human erythrocytes independently of toxin interaction with membrane proteins. Biochimie 2024; 216:3-13. [PMID: 37820991 DOI: 10.1016/j.biochi.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Alpha hemolysin (HlyA) is a hemolytic and cytotoxic protein secreted by uropathogenic strains of E. coli. The role of glycophorins (GPs) as putative receptors for HlyA binding to red blood cells (RBCs) has been debated. Experiments using anti-GPA/GPB antibodies and a GPA-specific epitope nanobody to block HlyA-GP binding on hRBCs, showed no effect on hemolytic activity. Similarly, the hemolysis induced by HlyA remained unaffected when hRBCs from a GPAnull/GPBnull variant were used. Surface Plasmon Resonance experiments revealed similar values of the dissociation constant between GPA and either HlyA, ProHlyA (inactive protoxin), HlyAΔ914-936 (mutant of HlyA lacking the binding domain to GPA) or human serum albumin, indicating that the binding between the proteins and GPA is not specific. Although far Western blot followed by mass spectroscopy analyses suggested that HlyA interacts with Band 3 and spectrins, hemolytic experiments on spectrin-depleted hRBCs and spherocytes, indicated these proteins do not mediate the hemolytic process. Our results unequivocally demonstrate that neither glycophorins, nor Band 3 and spectrins mediate the cytotoxic activity of HlyA on hRBCs, thereby challenging the HlyA-receptor hypothesis. This finding holds significant relevance for the design of anti-toxin therapeutic strategies, particularly in light of the growing antibiotic resistance exhibited by bacteria.
Collapse
Affiliation(s)
- Lucía Cané
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, Argentina
| | - Nicolás Andrés Saffioti
- Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Nanosistemas, Universidad de General San Martín, Avenida 25 de Mayo 1021, San Martín, Buenos Aires, Argentina
| | - Sandrine Genetet
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015, Paris, France
| | - María Antonieta Daza Millone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT- La Plata, CONICET. Universidad Nacional de La Plata, Sucursal 4 Casilla de Correo 16, 1900, La Plata, Argentina
| | - Mariano A Ostuni
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015, Paris, France
| | - Pablo J Schwarzbaum
- Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Vanesa Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, Argentina.
| |
Collapse
|
2
|
Dechavanne C, Dechavanne S, Bosch J, Metral S, Redinger KR, Watson QD, Ratsimbasoa AC, Roeper B, Krishnan S, Fong R, Bennett S, Carias L, Chen E, Salinas ND, Ghosh A, Tolia NH, Woost PG, Jacobberger JW, Colin Y, Gamain B, King CL, Zimmerman PA. Duffy antigen is expressed during erythropoiesis in Duffy-negative individuals. Cell Host Microbe 2023; 31:2093-2106.e7. [PMID: 38056457 PMCID: PMC10843566 DOI: 10.1016/j.chom.2023.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
The erythrocyte silent Duffy blood group phenotype in Africans is thought to confer resistance to Plasmodium vivax blood-stage infection. However, recent studies report P. vivax infections across Africa in Fy-negative individuals. This suggests that the globin transcription factor 1 (GATA-1) SNP underlying Fy negativity does not entirely abolish Fy expression or that P. vivax has developed a Fy-independent red blood cell (RBC) invasion pathway. We show that RBCs and erythroid progenitors from in vitro differentiated CD34 cells and from bone marrow aspirates from Fy-negative samples express a functional Fy on their surface. This suggests that the GATA-1 SNP does not entirely abolish Fy expression. Given these results, we developed an in vitro culture system for P. vivax and show P. vivax can invade erythrocytes from Duffy-negative individuals. This study provides evidence that Fy is expressed in Fy-negative individuals and explains their susceptibility to P. vivax with major implications and challenges for P. vivax malaria eradication.
Collapse
Affiliation(s)
- Celia Dechavanne
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA
| | - Sebastien Dechavanne
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA
| | - Jürgen Bosch
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA; InterRayBio, LLC, Cleveland, OH, USA
| | - Sylvain Metral
- Université Paris Cité and Université des Antilles, INSERM, BIGR, 75015 Paris, France
| | - Karli R Redinger
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA
| | - Quentin D Watson
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA
| | - Arsene C Ratsimbasoa
- University of Fianarantsoa, Fianarantsoa, Madagascar; CNARP (Centre National d'Application de Recherche Pharmaceutique), Antananarivo, Madagascar
| | - Brooke Roeper
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA
| | - Sushma Krishnan
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA
| | - Rich Fong
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA
| | - Seth Bennett
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA
| | - Lenore Carias
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA
| | - Edwin Chen
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nichole D Salinas
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anil Ghosh
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philip G Woost
- Case Comprehensive Cancer Center Flow Cytometry Core, Case Western Reserve University, Cleveland, OH, USA
| | - James W Jacobberger
- Case Comprehensive Cancer Center Flow Cytometry Core, Case Western Reserve University, Cleveland, OH, USA
| | - Yves Colin
- Université Paris Cité and Université des Antilles, INSERM, BIGR, 75015 Paris, France
| | - Benoit Gamain
- Université Paris Cité and Université des Antilles, INSERM, BIGR, 75015 Paris, France.
| | - Christopher L King
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA; Veterans Affairs Research Service, Cleveland, OH, USA.
| | - Peter A Zimmerman
- Center for Global Health & Disease, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Way JC, Burrill DR, Silver PA. Bioinspired Design of Artificial Signaling Systems. Biochemistry 2023; 62:178-186. [PMID: 35984429 PMCID: PMC9851155 DOI: 10.1021/acs.biochem.2c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Indexed: 02/02/2023]
Abstract
Natural systems use weak interactions and avidity effects to give biological systems high specificity and signal-to-noise ratios. Here we describe design principles for engineering fusion proteins that target therapeutic fusion proteins to membrane-bound signaling receptors by first binding to designer-chosen co-receptors on the same cell surface. The key design elements are separate protein modules, one that has no signaling activity and binds to a cell surface receptor with high affinity and a second that binds to a receptor with low or moderate affinity and carries out a desired signaling or inhibitory activity. These principles are inspired by natural cytokines such as CNTF, IL-2, and IL-4 that bind strongly to nonsignaling receptors and then signal through low-affinity receptors. Such designs take advantage of the fact that when a protein is anchored to a cell membrane, its local concentration is extremely high with respect to those of other membrane proteins, so a second-step, low-affinity binding event is favored. Protein engineers have used these principles to design treatments for cancer, anemia, hypoxia, and HIV infection.
Collapse
Affiliation(s)
- Jeffrey C. Way
- General
Biologics, Inc., 108
Fayerweather Street, Unit 2, Cambridge, Massachusetts 02138, United States
| | - Devin R. Burrill
- Department
of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Pamela A. Silver
- Department
of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Focosi D, Franchini M, Maggi F. Modified Hemagglutination Tests for COVID-19 Serology in Resource-Poor Settings: Ready for Prime-Time? Vaccines (Basel) 2022; 10:406. [PMID: 35335038 PMCID: PMC8953758 DOI: 10.3390/vaccines10030406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
During the ongoing COVID-19 pandemic, serology has suffered several manufacturing and budget bottlenecks. Kode technology exposes exogenous antigens on the surface of cells; in the case of red blood cells, modified cells are called kodecytes, making antibody-antigen reactions detectable by the old-fashioned hemagglutination test. In this commentary, we review evidence supporting the utility of SARS-CoV-2 Spike kodecytes for clinical diagnostic purposes and serosurveys in resource-poor settings.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
5
|
Li D, Peng Q, Huang C, Zang B, Ren J, Ji F, Muyldermans S, Jia L. Cytoplasmic Expression of Nanobodies with Formylglycine Generating Enzyme Tag and Conversion to a Bio-Orthogonal Aldehyde Group. Methods Mol Biol 2022; 2446:357-371. [PMID: 35157283 DOI: 10.1007/978-1-0716-2075-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanobodies (Nbs) can be successfully retrieved following phage, bacterial, yeast, or ribosome display of immune, synthetic, or naïve libraries. However, after panning, multiple individual Nb clones need to be screened and assessed for solubility, antigen specificity, affinity, and potential biological function. Therefore, it is highly desirable to have a convenient expression strategy to obtain sufficient protein for in-depth characterization of the Nbs. The presence of a purification and detection tag, as well as a chemically reactive group to enable simple generation of Nb derivatives, would be of great help in this regard. Here, we provide a general protocol for high yield cytoplasmic expression and purification of formylglycine generating enzyme (FGE)-tagged Nbs. The cysteine within the FGE tag is easily converted to formylglycine by passing the FGE-tag containing Nb over a continuous-flow bio-catalysis system. The aldehyde group within the formylglycine side chain at the C-terminal end of the Nb is suitably located for subsequent bio-orthogonal reactions to fluorescent dyes, biotin, polyethylene glycol, or chromatography resins. We also include methods for production of high yield recombinant FGE, as well as conditions for its immobilization on Sepharose to produce the continuous-flow bio-catalysis system.
Collapse
Affiliation(s)
- Da Li
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Qiang Peng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Chungdong Huang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Berlin Zang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
6
|
Redecke V, Tawaratsumida K, Larragoite ET, Williams ESCP, Planelles V, Spivak AM, Hirayama L, Elgort M, Swenson S, Smith R, Worthen B, Zimmerman R, Slev P, Cahoon B, Astill M, Häcker H. A rapid and affordable point of care test for antibodies against SARS-CoV-2 based on hemagglutination and artificial intelligence interpretation. Sci Rep 2021; 11:24507. [PMID: 34969960 PMCID: PMC8718524 DOI: 10.1038/s41598-021-04298-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Diagnostic tests that detect antibodies (AB) against SARS-CoV-2 for evaluation of seroprevalence and guidance of health care measures are important tools for managing the COVID-19 pandemic. Current tests have certain limitations with regard to turnaround time, costs and availability, particularly in point-of-care (POC) settings. We established a hemagglutination-based AB test that is based on bi-specific proteins which contain a dromedary-derived antibody (nanobody) binding red blood cells (RBD) and a SARS-CoV-2-derived antigen, such as the receptor-binding domain of the Spike protein (Spike-RBD). While the nanobody mediates swift binding to RBC, the antigen moiety directs instantaneous, visually apparent hemagglutination in the presence of SARS-CoV-2-specific AB generated in COVID-19 patients or vaccinated individuals. Method comparison studies with assays cleared by emergency use authorization demonstrate high specificity and sensitivity. To further increase objectivity of test interpretation, we developed an image analysis tool based on digital image acquisition (via a cell phone) and a machine learning algorithm based on defined sample-training and -validation datasets. Preliminary data, including a small clinical study, provides proof of principle for test performance in a POC setting. Together, the data support the interpretation that this AB test format, which we refer to as 'NanoSpot.ai', is suitable for POC testing, can be manufactured at very low costs and, based on its generic mode of action, can likely be adapted to a variety of other pathogens.
Collapse
Affiliation(s)
- Vanessa Redecke
- Laboratory of Innate Immunity and Signal Transduction, Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kazuki Tawaratsumida
- Laboratory of Innate Immunity and Signal Transduction, Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Erin T Larragoite
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Elizabeth S C P Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Adam M Spivak
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Lincoln Hirayama
- Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, UT, USA
| | - Marc Elgort
- Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, UT, USA
| | | | | | | | | | - Patricia Slev
- Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, UT, USA
| | | | - Mark Astill
- Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, UT, USA
| | - Hans Häcker
- Laboratory of Innate Immunity and Signal Transduction, Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Pillay TS, Muyldermans S. Application of Single-Domain Antibodies ("Nanobodies") to Laboratory Diagnosis. Ann Lab Med 2021; 41:549-558. [PMID: 34108282 PMCID: PMC8203438 DOI: 10.3343/alm.2021.41.6.549] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies have proven to be central in the development of diagnostic methods over decades, moving from polyclonal antibodies to the milestone development of monoclonal antibodies. Although monoclonal antibodies play a valuable role in diagnosis, their production is technically demanding and can be expensive. The large size of monoclonal antibodies (150 kDa) makes their re-engineering using recombinant methods a challenge. Single-domain antibodies, such as “nanobodies,” are a relatively new class of diagnostic probes that originated serendipitously during the assay of camel serum. The immune system of the camelid family (camels, llamas, and alpacas) has evolved uniquely to produce heavy-chain antibodies that contain a single monomeric variable antibody domain in a smaller functional unit of 12–15 kDa. Interestingly, the same biological phenomenon is observed in sharks. Since a single-domain antibody molecule is smaller than a conventional mammalian antibody, recombinant engineering and protein expression in vitro using bacterial production systems are much simpler. The entire gene encoding such an antibody can be cloned and expressed in vitro. Single-domain antibodies are very stable and heat-resistant, and hence do not require cold storage, especially when incorporated into a diagnostic kit. Their simple genetic structure allows easy re-engineering of the protein to introduce new antigen-binding characteristics or attach labels. Here, we review the applications of single-domain antibodies in laboratory diagnosis and discuss the future potential in this area.
Collapse
Affiliation(s)
- Tahir S Pillay
- Department of Chemical Pathology and NHLS- Tshwane Academic Division, University of Pretoria, Pretoria, South Africa.,Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa.,Department of Chemical Pathology, University of Pretoria, Prinshof Campus, Pretoria, South Africa
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Eaglesham JB, Garcia A, Berkmen M. Production of antibodies in SHuffle Escherichia coli strains. Methods Enzymol 2021; 659:105-144. [PMID: 34752282 DOI: 10.1016/bs.mie.2021.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies are globally important macromolecules, used for research, diagnostics, and as therapeutics. The common mammalian antibody immunoglobulin G (IgG) is a complex glycosylated macromolecule, composed of two heavy chains and two light chains held together by multiple disulfide bonds. For this reason, IgG and related antibody fragments are usually produced through secretion from mammalian cell lines, such as Chinese Hamster Ovary cells. However, there is growing interest in production of antibodies in prokaryotic systems due to the potential for rapid and cheap production in a highly genetically manipulable system. Research on oxidative protein folding in prokaryotes has enabled engineering of Escherichia coli strains capable of producing IgG and other disulfide bonded proteins in the cytoplasm, known as SHuffle. In this protocol, we provide a review of research on prokaryotic antibody production, guidelines on cloning of antibody expression constructs, conditions for an initial expression and purification experiment, and parameters which may be optimized for increased purification yields. Last, we discuss the limitations of prokaryotic antibody production, and highlight potential future avenues for research on antibody expression and folding.
Collapse
|
9
|
Haecker H, Redecke V, Tawaratsumida K, Larragoite E, Williams E, Planelles V, Spivak A, Hirayama L, Elgort M, Swenson S, Smith R, Worthen B, Zimmerman R, Slev P, Cahoon B, Astill M. A Rapid and Affordable Point-of-care Test for Detection of SARS-Cov-2-Specific Antibodies Based on Hemagglutination and Artificial Intelligence-Based Image Interpretation. RESEARCH SQUARE 2021. [PMID: 34312614 PMCID: PMC8312898 DOI: 10.21203/rs.3.rs-712902/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Diagnostic tests that detect antibodies (AB) against SARS-CoV-2 for evaluation of seroprevalence and guidance of health care measures are important tools for managing the COVID-19 pandemic. Current tests have certain limitations with regard to turnaround time, costs and availability, particularly in point-of-care (POC) settings. We established a hemagglutination-based AB test (HAT) that is based on bi-specific proteins which contain a dromedary-derived antibody (nanobody) binding red blood cells (RBD) and a SARS-CoV-2-derived antigen, such as the receptor-binding domain of the Spike protein (Spike-RBD). While the nanobody mediates swift binding to RBC, the antigen moiety directs instantaneous, visually apparent hemagglutination in the presence of SARS-CoV-2-specific AB generated in COVID-19 patients or vaccinated individuals. Method comparison studies with assays cleared by emergency use authorization (EUA) demonstrate high specificity and sensitivity. To further increase objectivity of test interpretation, we developed an image analysis tool based on digital image acquisition (via a cell phone) and a machine learning algorithm based on defined sample-training and –validation datasets. Preliminary data, including a small clinical study, provides proof of principle for test performance in a POC setting. Together, the data support the interpretation that this AB test format, which we refer to as ‘NanoSpot.ai’, is suitable for POC testing, can be manufactured at very low costs and, based on its generic mode of action, can likely be adapted to a variety of other pathogens.
Collapse
|
10
|
Kruse RL, Huang Y, Smetana H, Gehrie EA, Amukele TK, Tobian AA, Mostafa HH, Wang ZZ. A rapid, point-of-care red blood cell agglutination assay detecting antibodies against SARS-CoV-2. Biochem Biophys Res Commun 2021; 553:165-171. [PMID: 33773139 PMCID: PMC7959259 DOI: 10.1016/j.bbrc.2021.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/03/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has caused significant morbidity and mortality. There is an urgent need for serological tests to detect antibodies against SARS-CoV-2, which could be used to assess past infection, evaluate responses to vaccines in development, and determine individuals who may be protected from future infection. Current serological tests developed for SARS-CoV-2 rely on traditional technologies such as enzyme-linked immunosorbent assays (ELISA) and lateral flow assays, which have not scaled to meet the demand of hundreds of millions of antibody tests so far. Herein, we present an alternative method of antibody testing that depends on one protein reagent being added to patient serum/plasma or whole blood with direct, visual readout. Two novel fusion proteins, RBD-2E8 and B6-CH1-RBD, were designed to bind red blood cells (RBCs) via a single-chain variable fragment (scFv), thereby displaying the receptor-binding domain (RBD) of SARS-CoV-2 spike protein on the surface of RBCs. Mixing mammalian-derived RBD-2E8 and B6-CH1-RBD with convalescent COVID-19 patient serum and RBCs led to visible hemagglutination, indicating the presence of antibodies against SARS-CoV-2 RBD. B6-CH1-RBD made in bacteria was not as effective in inducing agglutination, indicating better recognition of RBD epitopes from mammalian cells. Given that our hemagglutination test uses methods routinely used in hospital clinical labs across the world for blood typing, we anticipate the test can be rapidly deployed at minimal cost. We anticipate our hemagglutination assay may find extensive use in low-resource settings for detecting SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Robert L. Kruse
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Corresponding author. Carnegie Building, Room 401, Johns Hopkins Hospital, 600N Wolfe St, Baltimore, MD, 21287, USA
| | - Yuting Huang
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD, USA,Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heather Smetana
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric A. Gehrie
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy K. Amukele
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron A.R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heba H. Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zack Z. Wang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Corresponding author
| |
Collapse
|
11
|
Townsend A, Rijal P, Xiao J, Tan TK, Huang KYA, Schimanski L, Huo J, Gupta N, Rahikainen R, Matthews PC, Crook D, Hoosdally S, Dunachie S, Barnes E, Street T, Conlon CP, Frater J, Arancibia-Cárcamo CV, Rudkin J, Stoesser N, Karpe F, Neville M, Ploeg R, Oliveira M, Roberts DJ, Lamikanra AA, Tsang HP, Bown A, Vipond R, Mentzer AJ, Knight JC, Kwok AJ, Screaton GR, Mongkolsapaya J, Dejnirattisai W, Supasa P, Klenerman P, Dold C, Baillie JK, Moore SC, Openshaw PJM, Semple MG, Turtle LCW, Ainsworth M, Allcock A, Beer S, Bibi S, Skelly D, Stafford L, Jeffrey K, O'Donnell D, Clutterbuck E, Espinosa A, Mendoza M, Georgiou D, Lockett T, Martinez J, Perez E, Gallardo Sanchez V, Scozzafava G, Sobrinodiaz A, Thraves H, Joly E. A haemagglutination test for rapid detection of antibodies to SARS-CoV-2. Nat Commun 2021; 12:1951. [PMID: 33782398 PMCID: PMC8007702 DOI: 10.1038/s41467-021-22045-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/17/2021] [Indexed: 11/24/2022] Open
Abstract
Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests do not require special equipment, are read by eye, have short development times, low cost and can be applied at the Point of Care. Here we describe a quantitative Haemagglutination test (HAT) for the detection of antibodies to the receptor binding domain of the SARS-CoV-2 spike protein. The HAT has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. We will supply aliquots of the test reagent sufficient for ten thousand test wells free of charge to qualified research groups anywhere in the world.
Collapse
Affiliation(s)
- Alain Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford, UK.
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| | - Pramila Rijal
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Julie Xiao
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford, UK
| | - Kuan-Ying A Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lisa Schimanski
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | | | - Philippa C Matthews
- Department of Microbiology and Infectious Diseases, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Derrick Crook
- Department of Microbiology and Infectious Diseases, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Sarah Hoosdally
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Susanna Dunachie
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Teresa Street
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Christopher P Conlon
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Justine Rudkin
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, USA
| | - Nicole Stoesser
- Department of Microbiology and Infectious Diseases, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Karpe
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rutger Ploeg
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Marta Oliveira
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - David J Roberts
- NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK
- BRC Haematology Theme and Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, USA
| | | | - Hoi Pat Tsang
- NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK
| | | | | | | | - Julian C Knight
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew J Kwok
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Medical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Piyada Supasa
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - J Kenneth Baillie
- Genetics and Genomics, Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Shona C Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Peter J M Openshaw
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Malcolm G Semple
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Lance C W Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Mark Ainsworth
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alice Allcock
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sally Beer
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Donal Skelly
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lizzy Stafford
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Katie Jeffrey
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | - Alexis Espinosa
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Maria Mendoza
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Teresa Lockett
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jose Martinez
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elena Perez
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | | | - Hannah Thraves
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Etienne Joly
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
12
|
Kodippili GC, Giger K, Putt KS, Low PS. DARC, Glycophorin A, Band 3, and GLUT1 Diffusion in Erythrocytes: Insights into Membrane Complexes. Biophys J 2020; 119:1749-1759. [PMID: 33069269 DOI: 10.1016/j.bpj.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022] Open
Abstract
Single-particle tracking offers a method to interrogate the organization of transmembrane proteins by measuring their mobilities within a cell's plasma membrane. Using this technique, the diffusion characteristics of the Duffy antigen (DARC), glycophorin A, band 3, and GLUT1 were compared under analogous conditions on intact human erythrocyte membranes. Microscopic diffusion coefficients revealed that the vast majority of all four transmembrane proteins exhibit very restricted movement but are not completely immobile. In fact, only 12% of GLUT1 resolved into a highly mobile subpopulation. Macroscopic diffusion coefficients and compartment sizes were also similar for all four proteins, with movements confined to the approximate dimensions of the "corrals" of the cortical spectrin cytoskeleton. Taken together, these data suggest that almost the entire populations of all four transmembrane proteins are immobilized by either the incorporation within large multiprotein complexes or entrapment within the protein network of the cortical spectrin cytoskeleton.
Collapse
Affiliation(s)
| | - Katie Giger
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana; Institute for Drug Discovery, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
13
|
Cheng H, Yang L, Cai Z, Qiao X, Du L, Hou J, Chen J, Zheng Q. Development of haemagglutination assay for titration of porcine circovirus type 2. Anal Biochem 2020; 598:113706. [PMID: 32275892 DOI: 10.1016/j.ab.2020.113706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 11/29/2022]
Abstract
Porcine circovirus type 2 (PCV2) was one of the most economically important viral pathogens in all the swine-producing countries and often resulted in tremendous economic losses for the swine industry. As PCV2 could not cause cytopathogenic effects while propagated in infected cells, many complicated experiments should be performed to titrate its virus titer. In this study we developed a simple and effective hemagglutination assay for titration of virus titer of PCV2. To develop the hemagglutination assay, a recombinant bispecific nanobody (BsNb) against PCV2 and chicken red blood cells (cRBCs) was constructed based on two nanobodies (NbPCV11 and NbRBC48) which were selected from the non-immunized nanobody library, respectively. The hemagglutination assay was used to titrate the virus titer of PCV2 propagated in cell culture by simple naked-eye observation within 30 min, with the detection limit of 104.09 tissue culture infective dose 50 (TCID50)/mL, excellent specificity and reproducibility. Therefore, the hemagglutination assay had potential to be a rapid, reliable, cost-effective, user-friendly qualitative and semi-quantitative tool for titration of virus titer of PCV2 during the vaccine manufacturing process.
Collapse
Affiliation(s)
- Haiwei Cheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Ministry of Agriculture, Key Laboratory of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Li Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zizheng Cai
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuwen Qiao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Ministry of Agriculture, Key Laboratory of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Luping Du
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Ministry of Agriculture, Key Laboratory of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Ministry of Agriculture, Key Laboratory of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Jin Chen
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Ministry of Agriculture, Key Laboratory of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China.
| | - Qisheng Zheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; National Research Center of Engineering and Technology for Veterinary Biologicals, Ministry of Agriculture, Key Laboratory of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China.
| |
Collapse
|
14
|
Barbon E, Ayme G, Mohamadi A, Ottavi J, Kawecki C, Casari C, Verhenne S, Marmier S, van Wittenberghe L, Charles S, Collaud F, Denis CV, Christophe OD, Mingozzi F, Lenting PJ. Single-domain antibodies targeting antithrombin reduce bleeding in hemophilic mice with or without inhibitors. EMBO Mol Med 2020; 12:e11298. [PMID: 32159286 PMCID: PMC7136963 DOI: 10.15252/emmm.201911298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023] Open
Abstract
Novel therapies for hemophilia, including non-factor replacement and in vivo gene therapy, are showing promising results in the clinic, including for patients having a history of inhibitor development. Here, we propose a novel therapeutic approach for hemophilia based on llama-derived single-domain antibody fragments (sdAbs) able to restore hemostasis by inhibiting the antithrombin (AT) anticoagulant pathway. We demonstrated that sdAbs engineered in multivalent conformations were able to block efficiently AT activity in vitro, restoring the thrombin generation potential in FVIII-deficient plasma. When delivered as a protein to hemophilia A mice, a selected bi-paratopic sdAb significantly reduced the blood loss in a model of acute bleeding injury. We then packaged this sdAb in a hepatotropic AAV8 vector and tested its safety and efficacy profile in hemophilic mouse models. We show that the long-term expression of the bi-paratopic sdAb in the liver is safe and poorly immunogenic, and results in sustained correction of the bleeding phenotype in hemophilia A and B mice, even in the presence of inhibitory antibodies to the therapeutic clotting factor.
Collapse
Affiliation(s)
- Elena Barbon
- Genethon, Institut National de la Santé et de la Recherche Médicale U951 IntegrareUniversité Paris‐SaclayUniversity of EvryEvryFrance
| | - Gabriel Ayme
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Amel Mohamadi
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | | - Charlotte Kawecki
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Caterina Casari
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Sebastien Verhenne
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Solenne Marmier
- Genethon, Institut National de la Santé et de la Recherche Médicale U951 IntegrareUniversité Paris‐SaclayUniversity of EvryEvryFrance
| | - Laetitia van Wittenberghe
- Genethon, Institut National de la Santé et de la Recherche Médicale U951 IntegrareUniversité Paris‐SaclayUniversity of EvryEvryFrance
| | - Severine Charles
- Genethon, Institut National de la Santé et de la Recherche Médicale U951 IntegrareUniversité Paris‐SaclayUniversity of EvryEvryFrance
| | - Fanny Collaud
- Genethon, Institut National de la Santé et de la Recherche Médicale U951 IntegrareUniversité Paris‐SaclayUniversity of EvryEvryFrance
| | - Cecile V Denis
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Olivier D Christophe
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Federico Mingozzi
- Genethon, Institut National de la Santé et de la Recherche Médicale U951 IntegrareUniversité Paris‐SaclayUniversity of EvryEvryFrance
| | - Peter J Lenting
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| |
Collapse
|
15
|
Lee J, Vernet A, Redfield K, Lu S, Ghiran IC, Way JC, Silver PA. Rational Design of a Bifunctional AND-Gate Ligand To Modulate Cell-Cell Interactions. ACS Synth Biol 2020; 9:191-197. [PMID: 31834794 DOI: 10.1021/acssynbio.9b00273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein "AND-gate" systems, in which a ligand acts only on cells with two different receptors, direct signaling activity to a particular cell type and avoid action on other cells. In a bifunctional AND-gate protein, the molecular geometry of the protein domains is crucial. Here we constructed a tissue-targeted erythropoietin (EPO) that stimulates red blood cell (RBC) production without triggering thrombosis. The EPO was directed to RBC precursors and mature RBCs by fusion to an anti-glycophorin A antibody V region. Many such constructs activated EPO receptors in vitro and stimulated RBC and not platelet production in mice but nonetheless enhanced thrombosis in mice and caused adhesion between RBCs and EPO-receptor-bearing cells. On the basis of a protein-structural model of the RBC surface, we rationally designed an anti-glycophorin-EPO fusion that does not induce cell adhesion in vitro or enhance thrombosis in vivo. Thus, mesoscale geometry can inform the design of synthetic-biological systems.
Collapse
Affiliation(s)
- Jungmin Lee
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston , Massachusetts 02115 , United States
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston , Massachusetts 02115 , United States
| | - Katherine Redfield
- Harvard-MIT Division of Health Sciences and Technology , Cambridge , Massachusetts 02139 , United States
| | - Shulin Lu
- Department of Medicine, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Ionita C Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston , Massachusetts 02115 , United States
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston , Massachusetts 02115 , United States
- Department of Systems Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
16
|
Liu H, Schittny V, Nash MA. Removal of a Conserved Disulfide Bond Does Not Compromise Mechanical Stability of a VHH Antibody Complex. NANO LETTERS 2019; 19:5524-5529. [PMID: 31257893 PMCID: PMC6975629 DOI: 10.1021/acs.nanolett.9b02062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/28/2019] [Indexed: 05/28/2023]
Abstract
Single-domain VHH antibodies are promising reagents for medical therapy. A conserved disulfide bond within the VHH framework region is known to be critical for thermal stability, however, no prior studies have investigated its influence on the stability of VHH antibody-antigen complexes under mechanical load. Here, we used single-molecule force spectroscopy to test the influence of a VHH domain's conserved disulfide bond on the mechanical strength of the interaction with its antigen mCherry. We found that although removal of the disulfide bond through cysteine-to-alanine mutagenesis significantly lowered VHH domain denaturation temperature, it had no significant impact on the mechanical strength of the VHH:mCherry interaction with complex rupture occurring at ∼60 pN at 103-104 pN/sec regardless of disulfide bond state. These results demonstrate that mechanostable binding interactions can be built on molecular scaffolds that may be thermodynamically compromised at equilibrium.
Collapse
Affiliation(s)
- Haipei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Valentin Schittny
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| |
Collapse
|
17
|
Li D, Ji F, Huang C, Jia L. High Expression Achievement of Active and Robust Anti-β2 microglobulin Nanobodies via E.coli Hosts Selection. Molecules 2019; 24:molecules24162860. [PMID: 31394739 PMCID: PMC6720793 DOI: 10.3390/molecules24162860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Nanobodies (VHHs) overcome many of the drawbacks of conventional antibodies, and the related technologies represent state-of-the-art and advanced applications in scientific research, pharmaceuticals, and therapies. In terms of productivity and economic cost, the cytoplasmic expression of VHHs in Escherichia coli (E. coli) is a good process for their recombinant production. The cytoplasmic environment of the host is critical to the affinity and stability of the recombinant VHHs in soluble form, yet the effects have not been studied. For this purpose, recombinant anti-β2 microglobulin VHHs were constructed and expressed in four commercialized E. coli hosts, including BL21 (DE3), Rosetta-gami B (DE3) pLysS, Origami 2 (DE3) and SHuffle T7 Express. The results showed that anti-β2 microglobulin (β2MG) VHHs expressed in different hosts exhibited distinctive differences in the affinity and structural characteristics. The VHHs expressed in Rosetta-gami B (DE3) pLysS possessed not only the greatest affinity of (equilibrium dissociation constant) KD = 4.68 × 10−8 M but also the highest yields compared with the VHHs expressed in BL21 (DE3), Origami 2 (DE3) and SHuffle T7 Express. In addition, the VHHs expressed in Rosetta-gami B (DE3) pLysS were more stable than the VHHs expressed in the rest three hosts. Thus far, we have successfully realized the high expression of the active and robust anti-β2MG VHHs in Rosetta-gami B (DE3) pLysS. The underlying principle of our study is able to guide the expression strategies of nanobodies on the context of industrial large-scale production.
Collapse
Affiliation(s)
- Da Li
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116023, China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116023, China
| | - Chundong Huang
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116023, China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and imaging, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116023, China.
| |
Collapse
|
18
|
Khoshtinat Nikkhoi S, Rahbarizadeh F, Ahmadvand D, Moghimi SM. Multivalent targeting and killing of HER2 overexpressing breast carcinoma cells with methotrexate-encapsulated tetra-specific non-overlapping variable domain heavy chain anti-HER2 antibody-PEG-liposomes: In vitro proof-of-concept. Eur J Pharm Sci 2018; 122:42-50. [DOI: 10.1016/j.ejps.2018.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/09/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
|
19
|
Ma W, Yang L, He L. Overview of the detection methods for equilibrium dissociation constant KD of drug-receptor interaction. J Pharm Anal 2018; 8:147-152. [PMID: 29922482 PMCID: PMC6004624 DOI: 10.1016/j.jpha.2018.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 01/27/2023] Open
Abstract
Drug-receptor interaction plays an important role in a series of biological effects, such as cell proliferation, immune response, tumor metastasis, and drug delivery. Therefore, the research on drug-receptor interaction is growing rapidly. The equilibrium dissociation constant (KD) is the basic parameter to evaluate the binding property of the drug-receptor. Thus, a variety of analytical methods have been established to determine the KD values, including radioligand binding assay, surface plasmon resonance method, fluorescence energy resonance transfer method, affinity chromatography, and isothermal titration calorimetry. With the invention and innovation of new technology and analysis method, there is a deep exploration and comprehension about drug-receptor interaction. This review discusses the different methods of determining the KD values, and analyzes the applicability and the characteristic of each analytical method. Conclusively, the aim is to provide the guidance for researchers to utilize the most appropriate analytical tool to determine the KD values.
Collapse
Affiliation(s)
| | | | - Langchong He
- School of Pharmacy, Xi’an Jiaotong University Health Science Center, No. 76, Yanta West Street, Xi’an, Shaanxi Province 710061, PR China
| |
Collapse
|
20
|
Hemmer C, Djennane S, Ackerer L, Hleibieh K, Marmonier A, Gersch S, Garcia S, Vigne E, Komar V, Perrin M, Gertz C, Belval L, Berthold F, Monsion B, Schmitt‐Keichinger C, Lemaire O, Lorber B, Gutiérrez C, Muyldermans S, Demangeat G, Ritzenthaler C. Nanobody-mediated resistance to Grapevine fanleaf virus in plants. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:660-671. [PMID: 28796912 PMCID: PMC5787842 DOI: 10.1111/pbi.12819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/16/2017] [Accepted: 08/04/2017] [Indexed: 05/03/2023]
Abstract
Since their discovery, single-domain antigen-binding fragments of camelid-derived heavy-chain-only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode-transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell-to-cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs.
Collapse
Affiliation(s)
- Caroline Hemmer
- Institut de biologie moléculaire des plantes du CNRSUniversité de StrasbourgStrasbourgFrance
- SVQVINRAUniversité de StrasbourgColmarFrance
| | | | - Léa Ackerer
- Institut de biologie moléculaire des plantes du CNRSUniversité de StrasbourgStrasbourgFrance
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut français de la vigne et du vinDomaine de l'EspiguetteLe Grau du RoiFrance
| | - Kamal Hleibieh
- Institut de biologie moléculaire des plantes du CNRSUniversité de StrasbourgStrasbourgFrance
| | | | | | | | | | | | | | | | | | - François Berthold
- Institut de biologie moléculaire des plantes du CNRSUniversité de StrasbourgStrasbourgFrance
| | - Baptiste Monsion
- Institut de biologie moléculaire des plantes du CNRSUniversité de StrasbourgStrasbourgFrance
| | | | | | - Bernard Lorber
- Institut de biologie moléculaire et cellulaire du CNRSStrasbourg CedexFrance
| | - Carlos Gutiérrez
- Research Institute of Biomedical and Health SciencesUniversity of Las Palmas de Gran CanariaArucasLas PalmasSpain
| | - Serge Muyldermans
- Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | | | - Christophe Ritzenthaler
- Institut de biologie moléculaire des plantes du CNRSUniversité de StrasbourgStrasbourgFrance
| |
Collapse
|
21
|
Veugelen S, Dewilde M, De Strooper B, Chávez-Gutiérrez L. Screening and Characterization Strategies for Nanobodies Targeting Membrane Proteins. Methods Enzymol 2016; 584:59-97. [PMID: 28065273 DOI: 10.1016/bs.mie.2016.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The study of membrane protein function and structure requires their successful detection, expression, solubilization, and/or reconstitution, which poses a challenging task and relies on the availability of suitable tools. Several research groups have successfully applied Nanobodies in the purification, as well as the functional and structural characterization of membrane proteins. Nanobodies are small, single-chain antibody fragments originating from camelids presenting on average a longer CDR3 which enables them to bind in cavities and clefts (such as active and allosteric sites). Notably, Nanobodies generally bind conformational epitopes making them very interesting tools to stabilize, dissect, and characterize specific protein conformations. In the clinic, several Nanobodies are under evaluation either as potential drug candidates or as diagnostic tools. In recent years, we have successfully generated high-affinity, conformation-sensitive anti-γ-secretase Nanobodies. γ-Secretase is a multimeric membrane protease involved in processing of the amyloid precursor protein with high clinical relevance as mutations in its catalytic subunit (Presenilin) cause early-onset Alzheimer's disease. Advancing our knowledge on the mechanisms governing γ-secretase intramembrane proteolysis through various strategies may lead to novel therapeutic avenues for Alzheimer's disease. In this chapter, we present the strategies we have developed and applied for the screening and characterization of anti-γ-secretase Nanobodies. These protocols could be of help in the generation of Nanobodies targeting other membrane proteins.
Collapse
Affiliation(s)
- S Veugelen
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - M Dewilde
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - B De Strooper
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium; UCL Institute of Neurology, London, United Kingdom
| | - L Chávez-Gutiérrez
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium.
| |
Collapse
|
22
|
Giger K, Habib I, Ritchie K, Low PS. Diffusion of glycophorin A in human erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2839-2845. [PMID: 27580023 DOI: 10.1016/j.bbamem.2016.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 11/19/2022]
Abstract
Several lines of evidence suggest that glycophorin A (GPA) interacts with band 3 in human erythrocyte membranes including: i) the existence of an epitope shared between band 3 and GPA in the Wright b blood group antigen, ii) the fact that antibodies to GPA inhibit the diffusion of band 3, iii) the observation that expression of GPA facilitates trafficking of band 3 from the endoplasmic reticulum to the plasma membrane, and iv) the observation that GPA is diminished in band 3 null erythrocytes. Surprisingly, there is also evidence that GPA does not interact with band 3, including data showing that: i) band 3 diffusion increases upon erythrocyte deoxygenation whereas GPA diffusion does not, ii) band 3 diffusion is greatly restricted in erythrocytes containing the Southeast Asian Ovalocytosis mutation whereas GPA diffusion is not, and iii) most anti-GPA or anti-band 3 antibodies do not co-immunoprecipitate both proteins. To try to resolve these apparently conflicting observations, we have selectively labeled band 3 and GPA with fluorescent quantum dots in intact erythrocytes and followed their diffusion by single particle tracking. We report here that band 3 and GPA display somewhat similar macroscopic and microscopic diffusion coefficients in unmodified cells, however perturbations of band 3 diffusion do not cause perturbations of GPA diffusion. Taken together the collective data to date suggest that while weak interactions between GPA and band 3 undoubtedly exist, GPA and band 3 must have separate interactions in the membrane that control their lateral mobility.
Collapse
Affiliation(s)
- Katie Giger
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Ibrahim Habib
- INSERM, UMR_S1134, Laboratory of Excellence GR-Ex, Université Paris-Diderot, Institut National de la Transfusion Sanguine, 75015 Paris, France
| | - Ken Ritchie
- Department of Physics, Purdue University, West Lafayette, IN 47907, United States
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
23
|
Ren G, Ke N, Berkmen M. Use of the SHuffle Strains in Production of Proteins. ACTA ACUST UNITED AC 2016; 85:5.26.1-5.26.21. [PMID: 27479507 DOI: 10.1002/cpps.11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Escherichia coli continues to be a popular expression host for the production of proteins, yet successful recombinant expression of active proteins to high yields remains a trial and error process. This is mainly due to decoupling of the folding factors of a protein from its native host, when expressed recombinantly in E. coli. Failure to fold could be due to many reasons but is often due to lack of post-translational modifications that are absent in E. coli. One such post-translational modification is the formation of disulfide bonds, a common feature of secreted proteins. The genetically engineered SHuffle cells offer an expression solution to proteins that require disulfide bonds for their folding and activity. The purpose of this protocol unit is to familiarize the researcher with the biology of SHuffle cells and guide the experimental design in order to optimize and increase the chances of successful expression of their desired protein of choice. Example of the expression and purification of a model disulfide-bonded protein DsbC is described in detail. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Na Ke
- New England Biolabs, Ipswich, Massachusetts
| | | |
Collapse
|
24
|
Wang Y, Fan Z, Shao L, Kong X, Hou X, Tian D, Sun Y, Xiao Y, Yu L. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. Int J Nanomedicine 2016; 11:3287-303. [PMID: 27499623 PMCID: PMC4959585 DOI: 10.2147/ijn.s107194] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Owing to peculiar properties of nanobody, including nanoscale size, robust structure, stable and soluble behaviors in aqueous solution, reversible refolding, high affinity and specificity for only one cognate target, superior cryptic cleft accessibility, and deep tissue penetration, as well as a sustainable source, it has been an ideal research tool for the development of sophisticated nanobiotechnologies. Currently, the nanobody has been evolved into versatile research and application tool kits for diverse biomedical and biotechnology applications. Various nanobody-derived formats, including the nanobody itself, the radionuclide or fluorescent-labeled nanobodies, nanobody homo- or heteromultimers, nanobody-coated nanoparticles, and nanobody-displayed bacteriophages, have been successfully demonstrated as powerful nanobiotechnological tool kits for basic biomedical research, targeting drug delivery and therapy, disease diagnosis, bioimaging, and agricultural and plant protection. These applications indicate a special advantage of these nanobody-derived technologies, already surpassing the “me-too” products of other equivalent binders, such as the full-length antibodies, single-chain variable fragments, antigen-binding fragments, targeting peptides, and DNA-based aptamers. In this review, we summarize the current state of the art in nanobody research, focusing on the nanobody structural features, nanobody production approach, nanobody-derived nanobiotechnology tool kits, and the potentially diverse applications in biomedicine and biotechnology. The future trends, challenges, and limitations of the nanobody-derived nanobiotechnology tool kits are also discussed.
Collapse
Affiliation(s)
- Yongzhong Wang
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Zhen Fan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Lei Shao
- State Key Laboratory of New Drugs and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai
| | - Xiaowei Kong
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Xianjuan Hou
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Dongrui Tian
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Ying Sun
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Yazhong Xiao
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
25
|
Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 2016; 21:1076-113. [DOI: 10.1016/j.drudis.2016.04.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022]
|
26
|
Krah S, Schröter C, Zielonka S, Empting M, Valldorf B, Kolmar H. Single-domain antibodies for biomedical applications. Immunopharmacol Immunotoxicol 2015; 38:21-8. [DOI: 10.3109/08923973.2015.1102934] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Kaczmarek JZ, Skottrup PD. Selection and characterization of camelid nanobodies towards urokinase-type plasminogen activator. Mol Immunol 2015; 65:384-90. [DOI: 10.1016/j.molimm.2015.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 01/17/2023]
|
28
|
Llama immunization with full-length VAR2CSA generates cross-reactive and inhibitory single-domain antibodies against the DBL1X domain. Sci Rep 2014; 4:7373. [PMID: 25487735 PMCID: PMC5376981 DOI: 10.1038/srep07373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022] Open
Abstract
VAR2CSA stands today as the leading vaccine candidate aiming to protect future pregnant women living in malaria endemic areas against the severe clinical outcomes of pregnancy associated malaria (PAM). The rational design of an efficient VAR2CSA-based vaccine relies on a profound understanding of the molecular interactions associated with P. falciparum infected erythrocyte sequestration in the placenta. Following immunization of a llama with the full-length VAR2CSA recombinant protein, we have expressed and characterized a panel of 19 nanobodies able to recognize the recombinant VAR2CSA as well as the surface of erythrocytes infected with parasites originating from different parts of the world. Domain mapping revealed that a large majority of nanobodies targeted DBL1X whereas a few of them were directed towards DBL4ε, DBL5ε and DBL6ε. One nanobody targeting the DBL1X was able to recognize the native VAR2CSA protein of the three parasite lines tested. Furthermore, four nanobodies targeting DBL1X reproducibly inhibited CSA adhesion of erythrocytes infected with the homologous NF54-CSA parasite strain, providing evidences that DBL1X domain is part or close to the CSA binding site. These nanobodies could serve as useful tools to identify conserved epitopes shared between different variants and to characterize the interactions between VAR2CSA and CSA.
Collapse
|
29
|
Ke N, Berkmen M. Production of Disulfide‐Bonded Proteins in
Escherichia coli. ACTA ACUST UNITED AC 2014; 108:16.1B.1-16.1B.21. [DOI: 10.1002/0471142727.mb1601bs108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Na Ke
- New England Biolabs Ipswich Massachusetts
| | | |
Collapse
|
30
|
De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol 2014; 32:263-70. [PMID: 24698358 DOI: 10.1016/j.tibtech.2014.03.001] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/17/2014] [Accepted: 03/05/2014] [Indexed: 01/25/2023]
Abstract
Since the serendipitous discovery 20 years ago of bona fide camelid heavy-chain antibodies, their single-domain antigen-binding fragments, known as VHHs or nanobodies, have received a progressively growing interest. As a result of the beneficial properties of these stable recombinant entities, they are currently highly valued proteins for multiple applications, including fundamental research, diagnostics, and therapeutics. Today, with the original patents expiring, even more academic and industrial groups are expected to explore innovative VHH applications. Here, we provide a thorough overview of novel implementations of VHHs as research and diagnostic tools, and of the recently evaluated production platforms for several VHHs and VHH-derived antibody formats.
Collapse
Affiliation(s)
- Thomas De Meyer
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Serge Muyldermans
- Structural Biology Research Center, VIB, 1050 Brussel, Belgium; Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| |
Collapse
|