1
|
Hurtado-Carneiro V, Juan-Arevalo Y, Flores CN, Herrero-De-Dios C, Perez-García A, Contreras C, Lopez M, Alvarez E, Sanz C. Enhanced thermogenesis in PAS Kinase-deficient male mice. Biochem Pharmacol 2025:116757. [PMID: 39824466 DOI: 10.1016/j.bcp.2025.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/15/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity. This has prompted an investigation into the potential role of PASK on energy expenditure through thermogenesis in adipose tissue. Our results indicate that PASK-deficient male mice exhibited higher brown adipose tissue (BAT) thermogenic activity and heat production. The inhibition of PASK function induces the expression of Uncoupling Protein 1 (UCP1) and the adipogenic marker peroxisome proliferator-activated receptor gamma (PPARγ) in BAT. In addition, PASK deficiency promotes the expression of UCP1 and other browning markers such as PR/SET Domain 16 (PRDM16) in inguinal white adipose tissue (WAT). PASK-deficient mice record an enhanced thermogenic response, even under stimuli such as β-3adrenergic receptor agonist or cold. This evidence reveals PASK as a new mechanism modulating BAT thermogenesis.
Collapse
Affiliation(s)
- Veronica Hurtado-Carneiro
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Spain; Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
| | - Yolanda Juan-Arevalo
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Spain; Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain
| | - Cinthya N Flores
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Spain; Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain
| | - Carmen Herrero-De-Dios
- Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain
| | - Ana Perez-García
- Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain
| | - Cristina Contreras
- Department of Physiology, Faculty of Pharmacy, Complutense University of Madrid, Spain; NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Lopez
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elvira Alvarez
- Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain
| | - Carmen Sanz
- Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain; Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain
| |
Collapse
|
2
|
Dalle S, Schouten M, Vanderbeke K, Van Parys E, Ramaekers M, Thomis M, Costamagna D, Koppo K. The CB1 antagonist Rimonabant improves muscle regeneration and remodels the inflammatory and endocannabinoid profile upon injury in male mice. Life Sci 2025; 361:123296. [PMID: 39645163 DOI: 10.1016/j.lfs.2024.123296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Skeletal muscle regeneration upon injury requires timely activation of inflammatory, myogenic, fibrotic, apoptotic and anabolic systems. Optimization of these features might improve the recovery process. Whereas recent data indicate that the endocannabinoid system, and more particularly cannabinoid receptor 1 (CB1) antagonism, is involved in the regulation of inflammatory, myogenic, fibrotic, apoptotic and anabolic pathways, it was never studied whether CB1 antagonism can improve muscle regeneration. The present study investigated the effect of the CB1 antagonist Rimonabant (10 mg/kg/d) on functional (5 days post-cardiotoxin injury; 5DPI) and molecular muscle responses (3DPI and 7DPI) in mice. Rimonabant prevented cardiotoxin-induced muscle strength loss 5DPI, increased myofiber growth (7DPI) and improved the muscle molecular profile 3DPI and 7DPI. In general, inflammation (e.g. p-p65NF-κB, CD80) and apoptosis (e.g. cleaved caspase-3, cleaved PARP) were downregulated by Rimonabant, whereas it upregulated the expression of Pax7 but other myogenic factors remained unaffected by rimonabant. In addition, Rimonabant restored the injury-induced (inflammatory) lipid profile to a large extent, including oxygenated fatty acids, unsaturated fatty acids and endocannabinoids such as 2-arachidonoyl glycerol and palmitoylethanolamide. Altogether, these data show that the endocannabinoid system might be a novel therapeutic target to improve muscle regeneration, which is relevant for age- and disease-related muscle degeneration.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium; MOVANT Research Group, Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium.
| | - Moniek Schouten
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Kaat Vanderbeke
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Evy Van Parys
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Monique Ramaekers
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Martine Thomis
- Physical Activity, Sports & Health Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Domiziana Costamagna
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| |
Collapse
|
3
|
Loehr JA, Latchman HK, Murphy RM, Cully TR. Extraction of Total Protein from Cardiomyocytes and Western Blotting Analysis. Methods Mol Biol 2025; 2894:151-161. [PMID: 39699817 DOI: 10.1007/978-1-0716-4342-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Using total protein lysates for Western blotting confers greater benefits than traditional approaches that use fractionated samples, where a portion of the sample is discarded during processing. By incorporating low-volume inputs, it is possible to identify any protein present in the sample where a suitable antibody is available. The inclusion of a calibration curve allows quantitative analyses to be undertaken. There are additional benefits including that only requiring a small input saves on precious samples. Using whole muscle lysates is necessary in order to ascertain specificity of antibodies for subsequent immunofluorescent methods.
Collapse
Affiliation(s)
- James A Loehr
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Heidy K Latchman
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Robyn M Murphy
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Tanya R Cully
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
4
|
Peyneau M, Zeller M, Paulet V, Noël B, Damiens MH, Szely N, Natsch A, Pallardy M, Chollet-Martin S, de Chaisemartin L, Kerdine-Römer S. Quaternary ammoniums activate human dendritic cells and induce a specific T-cell response in vitro. Allergol Int 2025; 74:105-114. [PMID: 39237430 DOI: 10.1016/j.alit.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND In many countries, neuro-muscular blocking agents (NMBAs) are the first cause of perioperative anaphylaxis. Epidemiological studies identified pholcodine, a quaternary ammonium-containing opiate as one of the sensitization sources. However, NMBA anaphylaxis exists in countries where pholcodine was unavailable, prompting the hypothesis of other sensitizing molecules, most likely quaternary ammonium compounds (QACs). Indeed, QACs are commonly used as disinfectants, antiseptics, preservatives, and detergents. Occupational exposure to QACs has been reported as a risk factor for NMBA anaphylaxis, but little is known about the sensitization mechanism and the capacity of these molecules to elicit an immune response. We aimed to establish the immunogenicity of QACs representative of the main existing chemical structures. METHODS We measured the sensitization potential of seven QACs (two polyquaterniums, three alkyl-ammoniums and two aromatic ammoniums) by using two standard dendritic cells (DCs) models (THP-1 cell line and monocyte derived-dendritic cells). The allergenicity of the sensitizing compounds was further tested in heterologous and autologous T-cell-DC co-culture models. RESULTS Amongst the seven molecules tested, four could modulate activation markers on DCs, and thus can be classified as chemical sensitizers (polyquaterniums-7 and -10, ethylhexadecyldimethylammonium and benzethonium). This activation was accompanied by the secretion of pro-inflammatory and maturation cytokines. Furthermore, activation by polyquaternium-7 could induce T-cell proliferation in heterologous and autologous coculture models, demonstrating that this molecule can induce a specific CD4+ T cell response. CONCLUSIONS We provide evidence at the cellular level that some QACs can elicit an immune response, which could be in line with the hypothesis of these molecules' role in NMBA sensitization.
Collapse
Affiliation(s)
- Marine Peyneau
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France; AP-HP, Service d'Immunologie Biologique, DMU BIOGEM, Hôpital Bichat, Paris, France
| | - Mathilde Zeller
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Virginie Paulet
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Benoît Noël
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Marie-Hélène Damiens
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Natacha Szely
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | | | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France
| | - Sylvie Chollet-Martin
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France; AP-HP, Service d'Immunologie Biologique, DMU BIOGEM, Hôpital Bichat, Paris, France
| | - Luc de Chaisemartin
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France; AP-HP, Service d'Immunologie Biologique, DMU BIOGEM, Hôpital Bichat, Paris, France
| | - Saadia Kerdine-Römer
- Université Paris-Saclay, Inserm, Inflammation, Microbiome & Immunosurveillance, Orsay, France.
| |
Collapse
|
5
|
Katsipis G, Lavrentiadou SN, Geromichalos GD, Tsantarliotou MP, Halevas E, Litsardakis G, Pantazaki AA. Evaluation of the Anti-Amyloid and Anti-Inflammatory Properties of a Novel Vanadium(IV)-Curcumin Complex in Lipopolysaccharides-Stimulated Primary Rat Neuron-Microglia Mixed Cultures. Int J Mol Sci 2024; 26:282. [PMID: 39796150 PMCID: PMC11720140 DOI: 10.3390/ijms26010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability. V-Cur, a novel hemocompatible Vanadium(IV)-curcumin complex with higher solubility and bioactivity than curcumin, is studied here. Co-cultures consisting of rat primary neurons and microglia were treated with LPS and/or curcumin or V-Cur. V-Cur disrupted LPS-induced overexpression of amyloid precursor protein (APP) and the in vitro aggregation of human insulin (HI), more effectively than curcumin. Cell stimulation with LPS also increased full-length, inactive, and total iNOS levels, and the inflammation markers IL-1β and TNF-α. Both curcumin and V-Cur alleviated these effects, with V-Cur reducing iNOS levels more than curcumin. Complementary insights into possible bioactivity mechanisms of both curcumin and V-Cur were provided by In silico molecular docking calculations on Aβ1-42, APP, Aβ fibrils, HI, and iNOS. This study renders curcumin-based compounds a promising anti-inflammatory intervention that may be proven a strong tool in the effort to mitigate neurodegenerative disease pathology and neuroinflammatory conditions.
Collapse
Affiliation(s)
- Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
| | - Sophia N. Lavrentiadou
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George D. Geromichalos
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria P. Tsantarliotou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleftherios Halevas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - George Litsardakis
- Laboratory of Materials for Electrotechnics, School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
| |
Collapse
|
6
|
Mestekemper AN, Pirschel W, Krieg N, Paulmann MK, Daniel C, Amann K, Coldewey SM. Reduction in Renal Heme Oxygenase-1 Is Associated with an Aggravation of Kidney Injury in Shiga Toxin-Induced Murine Hemolytic-Uremic Syndrome. Toxins (Basel) 2024; 16:543. [PMID: 39728801 DOI: 10.3390/toxins16120543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli, primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by Hmox1) in HUS has not yet been investigated. We hypothesized that HO-1, also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS. The effect of tamoxifen-induced Hmox1 gene deletion on renal HO-1 expression, disease progression and AKI was investigated in mice 7 days after HUS induction. Renal HO-1 levels were increased in Stx-challenged mice with tamoxifen-induced Hmox1 gene deletion (Hmox1R26Δ/Δ) and control mice (Hmox1lox/lox). This HO-1 induction was significantly lower (-43%) in Hmox1R26Δ/Δ mice compared to Hmox1lox/lox mice with HUS. Notably, the reduced renal HO-1 expression was associated with an exacerbation of kidney injury in mice with HUS as indicated by a 1.7-fold increase (p = 0.02) in plasma neutrophil gelatinase-associated lipocalin (NGAL) and a 1.3-fold increase (p = 0.06) in plasma urea, while other surrogate parameters for AKI (e.g., periodic acid Schiff staining, kidney injury molecule-1, fibrin deposition) and general disease progression (HUS score, weight loss) remained unchanged. These results indicate a potentially protective role of HO-1 in the pathogenesis of Stx-mediated AKI in HUS.
Collapse
Affiliation(s)
- Antonio N Mestekemper
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Wiebke Pirschel
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Nadine Krieg
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Maria K Paulmann
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sina M Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
7
|
Chiba T, Oda A, Zhang Y, Bons J, Bharathi SS, Pfister KE, Zhang BB, Richert AC, Schilling B, Goetzman ES, Sims-Lucas S. Loss of long-chain acyl-CoA dehydrogenase protects against acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619640. [PMID: 39484612 PMCID: PMC11526992 DOI: 10.1101/2024.10.22.619640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Proximal tubular epithelial cells (PTECs) are particularly vulnerable to acute kidney injury (AKI). While fatty acids are the preferred energy source for PTECs via fatty acid oxidation (FAO), FAO-mediated H 2 O 2 production in mitochondria has been shown to be a major source of oxidative stress. We have previously shown that a mitochondrial flavoprotein, long-chain acyl-CoA dehydrogenase (LCAD), which catalyzes a key step in mitochondrial FAO, directly produces H 2 O 2 in vitro . Further we have established that loss of a lysine deacylase, Sirtuin 5 ( Sirt5 -/- ), induces hypersuccinylation and inhibition of mitochondrial FAO genes to stimulate peroxisomal FAO and to protect against AKI. However, the role of LCAD has yet to be determined. Mass spectrometry data acquisition revealed that LCAD is hypersuccinylated in Sirt5 -/- kidneys after AKI. Following two distinct models of AKI, cisplatin treatment or renal ischemia/reperfusion (IRI), LCAD knockout mice ( LCAD -/- ) demonstrated renoprotection against AKI. Specifically, LCAD -/- kidneys displayed mitigated renal tubular injury, decreased oxidative stress, preserved mitochondrial function, enhanced peroxisomal FAO, and decreased ferroptotic cell death. LCAD deficiency confers protection against two distinct models of AKI. This suggests a therapeutically attractive mechanism whereby preserved mitochondrial respiration as well as enhanced peroxisomal FAO by loss of LCAD mediates renoprotection against AKI.
Collapse
|
8
|
Wijatniko BD, Ishii Y, Hirayama M, Suzuki T. Novel Peptides LFLLP and DFFL from Jack Bean Protein Hydrolysates Suppress the Inflammatory Response in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Foods 2024; 13:3198. [PMID: 39410232 PMCID: PMC11482615 DOI: 10.3390/foods13193198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
The production of inflammatory cytokines such as tumor necrosis factor (TNF)-α by activated macrophage cells plays an important role in the development of intestinal inflammation. The present study investigated the anti-inflammatory effect of the protein hydrolysates prepared from the jack bean (JBPHs), Canavalia ensiformis (L.) DC, using the enzyme Alcalase, in a murine macrophage model, RAW 264.7 cells, which were stimulated by lipopolysaccharides. JBPHs reduced the TNF-α expression at the protein and mRNA levels through the downregulation of cellular signaling pathways involved in nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), and p38. A combination of mass spectrometry and in silico approaches identified 10 potential anti-inflammatory peptides in the JBPHs, including LFLLP and DFFL. Interestingly, while LFLLP targeted the NF-κB pathway, DFFL targeted p38 and ERK to suppress the TNF-α production in the RAW 264.7 cells. In addition, LFLLP and DFFL were localized in the cytosol of the cells. These results demonstrated that LFLLP and DFFL were incorporated by RAW 264.7 cells and, at least in part, contributed to the reduction in TNF-α by JBPHs. These peptides isolated from JBPHs may well be utilized as new alternatives to alleviate intestinal inflammation.
Collapse
Affiliation(s)
- Bambang Dwi Wijatniko
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan; (B.D.W.); (Y.I.); (M.H.)
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yoshiki Ishii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan; (B.D.W.); (Y.I.); (M.H.)
| | - Makoto Hirayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan; (B.D.W.); (Y.I.); (M.H.)
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan; (B.D.W.); (Y.I.); (M.H.)
| |
Collapse
|
9
|
Camacho-Cardenosa M, Pulido-Escribano V, Torrecillas-Baena B, Quesada-Gómez JM, Herrera-Martínez AD, Sola-Guirado RR, Dorado G, Gálvez-Moreno MÁ, Casado-Díaz A. Combined Effects of Cyclic Hypoxic and Mechanical Stimuli on Human Bone Marrow Mesenchymal Stem Cell Differentiation: A New Approach to the Treatment of Bone Loss. J Clin Med 2024; 13:5805. [PMID: 39407866 PMCID: PMC11476683 DOI: 10.3390/jcm13195805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: The prevention and treatment of bone loss and osteoporotic fractures is a public health challenge. Combined with normobaric hypoxia, whole-body vibration has a high clinic potential in bone health and body composition. The effect of this therapy may be mediated by its action on bone marrow mesenchymal stem cells (MSCs). Objectives: Evaluate the effects of cyclic low-vibration stimuli and/or hypoxia on bone marrow-derived human MSC differentiation. Methods: MSCs were exposed four days per week, two hours/day, to hypoxia (3% O2) and/or vibration before they were induced to differentiate or during differentiation into osteoblasts or adipocytes. Gene and protein expression of osteoblastic, adipogenic, and cytoskeletal markers were studied, as well as extracellular matrix mineralization and lipid accumulation. Results: early osteoblastic markers increased in undifferentiated MSCs, pretreated in hypoxia and vibration. This pretreatment also increased mRNA levels of osteoblastic genes and beta-catenin protein in the early stages of differentiation into osteoblasts without increasing mineralization. When MSCs were exposed to vibration under hypoxia or normoxia during osteoblastic differentiation, mineralization increased with respect to cultures without vibrational stimuli. In MSCs differentiated into adipocytes, both in those pretreated as well as exposed to different conditions during differentiation, lipid formation decreased. Changes in adipogenic gene expression and increased beta-catenin protein were observed in cultures treated during differentiation. Conclusions: Exposure to cyclic hypoxia in combination with low-intensity vibratory stimuli had positive effects on osteoblastic differentiation and negative ones on adipogenesis of bone marrow-derived MSCs. These results suggest that in elderly or frail people with difficulty performing physical activity, exposure to normobaric cyclic hypoxia and low-density vibratory stimuli could improve bone metabolism and health.
Collapse
Affiliation(s)
- Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
| | - Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
| | - Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
| | - Jose Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
| | - Aura D. Herrera-Martínez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
| | - Rafael R. Sola-Guirado
- Department Mecánica, Escuela Politécnica Superior, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Gabriel Dorado
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain;
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08003 Madrid, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (V.P.-E.); (B.T.-B.); (J.M.Q.-G.); (A.D.H.-M.); (M.Á.G.-M.)
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08003 Madrid, Spain
| |
Collapse
|
10
|
Moreira S, Martins AD, Alves MG, Pastor LM, Seco-Rovira V, Oliveira PF, Pereira MDL. Aminocarb Exposure Induces Cytotoxicity and Endoplasmic Reticulum Stress-Mediated Apoptosis in Mouse Sustentacular Sertoli Cells: Implications for Male Infertility and Environmental Health. BIOLOGY 2024; 13:721. [PMID: 39336148 PMCID: PMC11429014 DOI: 10.3390/biology13090721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Exposure to pesticides, poses a significant threat to male fertility by compromising crucial cells involved in spermatogenesis. Aminocarb, is a widely used carbamate insecticide, although its detrimental effects on the male reproductive system, especially on sustentacular Sertoli cells, pivotal for spermatogenesis, remains poorly understood. In this study, we investigated the effects of escalating concentrations of aminocarb on a mouse Sertoli cell line, TM4. Assessments included cytotoxic analysis, mitochondrial biogenesis and membrane potential, expression of apoptotic proteins, caspase-3 activity, and oxidative stress evaluation. Our findings revealed a dose-dependent reduction in the proliferation and viability of TM4 cells following exposure to increasing concentrations of aminocarb. Notably, exposure to 5 μM of aminocarb induced depolarization of mitochondria membrane potential, and a significant decrease in the ratio of phosphorylated eIF2α to total eIF2α, suggesting heightened endoplasmic reticulum stress via the activation of the eIF2α pathway. Moreover, the same aminocarb concentration was demonstrated to increase both caspase-3 protein levels and activity, indicating an apoptotic induction. Collectively, our results demonstrate that aminocarb serves as an apoptotic inducer for mouse sustentacular Sertoli cells in vitro, suggesting its potential to modulate independent pathways of the apoptotic cascade. These findings underscore the deleterious impact of aminocarb on spermatogenic performance and male fertility, highlighting the urgent need for further investigation into its mechanisms of action and mitigation strategies to safeguard male fertility.
Collapse
Affiliation(s)
- Sílvia Moreira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO-Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana D Martins
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco G Alves
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luis Miguel Pastor
- Departamento de Biología Celular e Histología, Faculdad de Medicina, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30120 Murcia, Spain
| | - Vicente Seco-Rovira
- Departamento de Biología Celular e Histología, Faculdad de Medicina, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30120 Murcia, Spain
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO-Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Kshirsagar S, Islam MA, Reddy AP, Reddy PH. Resolving the current controversy of use and reuse of housekeeping proteins in ageing research: Focus on saving people's tax dollars. Ageing Res Rev 2024; 100:102437. [PMID: 39067773 PMCID: PMC11384260 DOI: 10.1016/j.arr.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
The use of housekeeping genes and proteins to normalize mRNA and protein levels in biomedical research has faced growing scrutiny. Researchers encounter challenges in determining the optimal frequency for running housekeeping proteins such as β-actin, Tubulin, and GAPDH for nuclear-encoded proteins, and Porin, HSP60, and TOM20 for mitochondrial proteins alongside experimental proteins. The regulation of these proteins varies with age, gender, disease progression, epitope nature, gel running conditions, and their reported sizes can differ among antibody suppliers. Additionally, anonymous readers have raised concerns about peer-reviewed and published articles, creating confusion and concern within the research and academic institutions. To clarify these matters, this minireview discusses the role of reference housekeeping proteins in Western blot analysis and outlines key considerations for their use as normalization controls. Instead of Western blotting of housekeeping proteins, staining of total proteins, using Amido Black and Coomassie Blue can be visualized the total protein content on a membrane. The reducing repeated Western blotting analysis of housekeeping proteins, will save resources, time and efforts and in turn increase the number of competitive grants from NIH and funding agencies. We also discussed the use of dot blots over traditional Western blots, when protein levels are low in rare tissues/specimens and cell lines. We sincerely hope that the facts, figures, and discussions presented in this article will clarify the current controversy regarding housekeeping protein(s) use, reuse, and functional aspects of housekeeping proteins. The contents presented in our article will be useful to students, scholars and researchers of all levels in cell biology, protein chemistry and mitochondrial research.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
12
|
Chau PK, Ryan E, Dalen KT, Haugen F. Timing of acute cold exposure determines UCP1 and FGF21 expression - Possible interactions between the thermal environment, thermoregulatory responses, and peripheral clocks. J Therm Biol 2024; 124:103938. [PMID: 39142264 DOI: 10.1016/j.jtherbio.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Thermoregulation is synchronized across the circadian cycle to uphold thermal homeostasis. To test if time-of-day matters for the response to environmental cold exposure, mice were acclimated to thermoneutrality (27 °C) for 2 months were subjected acutely (8 h) to cold ambient conditions (15 °C), whereas controls were maintained at thermoneutral conditions. The thermal exposure was tested in separate groups (N = 8) at three distinct time-of-day periods: in the LIGHT phase (L); the DARK phase (D); and a mix of the two (D + L). The magnitude of UCP1 protein and mRNA induction in brown adipose tissue (BAT) in response to acute cold exposure was time-of-day sensitive, peaking in LIGHT, whereas lower induction levels were observed in D + L, and DARK. Plasma levels of FGF21 were induced 3-fold by acute cold exposure at LIGHT and D + L, compared to the time-matched thermoneutral controls, whereas cold in DARK did not cause a significant increase of FGF21 plasma levels. Cold exposure affected, in BAT, the temporal mRNA expression patterns of core circadian clock components: Bmal1, Clock, Per1, Per3, Cry1, Cry2 Nr1d1, and Nr1d2, but in the liver, none of the transcripts were modified. Behavioral assessment using the Thermal Gradient Test (TGT) showed that acute cold exposure reduced cold sensitivity in D + L, but not in DARK. RNA-seq analyses of somatosensory neurons in DRG highlighted the role of the core circadian components in these cells, as well as transcriptional changes due to acute cold exposure. This elucidates the sensory system as a gauge and potential regulator of thermoregulatory responses based on circadian physiology. In conclusion, acute cold exposure elicits time-of-day specific effects on thermoregulatory pathways, which may involve underlying changes in thermal perception. These results have implications for efforts aimed at reducing risks associated with the organization of shift work in cold environments.
Collapse
Affiliation(s)
- Phong Kt Chau
- Division of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Elin Ryan
- Division of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition and Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Fred Haugen
- Division of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway.
| |
Collapse
|
13
|
Langer HT, Ramsamooj S, Dantas E, Murthy A, Ahmed M, Ahmed T, Hwang SK, Grover R, Pozovskiy R, Liang RJ, Queiroz AL, Brown JC, White EP, Janowitz T, Goncalves MD. Restoring adiponectin via rosiglitazone ameliorates tissue wasting in mice with lung cancer. Acta Physiol (Oxf) 2024; 240:e14167. [PMID: 38779820 PMCID: PMC11250533 DOI: 10.1111/apha.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
AIM To investigate systemic regulators of the cancer-associated cachexia syndrome (CACS) in a pre-clinical model for lung cancer with the goal to identify therapeutic targets for tissue wasting. METHODS Using the Kras/Lkb1 (KL) mouse model, we found that CACS is associated with white adipose tissue (WAT) dysfunction that directly affects skeletal muscle homeostasis. WAT transcriptomes showed evidence of reduced adipogenesis, and, in agreement, we found low levels of circulating adiponectin. To preserve adipogenesis and restore adiponectin levels, we treated mice with the PPAR-γ agonist, rosiglitazone. RESULTS Rosiglitazone treatment increased serum adiponectin levels, delayed weight loss, and preserved skeletal muscle and adipose tissue mass, as compared to vehicle-treated mice. The preservation of muscle mass with rosiglitazone was associated with increases in AMPK and AKT activity. Similarly, activation of the adiponectin receptors in muscle cells increased AMPK activity, anabolic signaling, and protein synthesis. CONCLUSION Our data suggest that PPAR-γ agonists may be a useful adjuvant therapy to preserve tissue mass in lung cancer.
Collapse
Affiliation(s)
- Henning Tim Langer
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shakti Ramsamooj
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anirudh Murthy
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mujmmail Ahmed
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tanvir Ahmed
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Seo-Kyoung Hwang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rahul Grover
- Weill Cornell Medical College, New York, NY, USA
| | - Rita Pozovskiy
- Hunter College, City University of New York, New York, NY, 10065, USA
| | - Roger J. Liang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andre Lima Queiroz
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin C. Brown
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Eileen P. White
- Department of Genetics, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Marcus D. Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
14
|
Matilla L, Martín-Núñez E, Navarro A, Garaikoetxea M, Fernández-Celis A, Goñi-Olóriz M, Gainza A, Fernández-Irigoyen J, Santamaría E, Tamayo I, Álvarez V, Sádaba R, Jover E, López-Andrés N. Neuropilin-1 sex-dependently modulates inflammatory, angiogenic and osteogenic phenotypes in the calcifying valve interstitial cell. Biochem Pharmacol 2024; 226:116336. [PMID: 38844264 DOI: 10.1016/j.bcp.2024.116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The pathological mechanisms underlying the sex-dependent presentation of calcific aortic stenosis (AS) remain poorly understood. We aim to analyse sex-specific responses of valve interstitial cells (VICs) to calcific environments and to identify new pathological and potentially druggable targets. First, VICs from stenotic patients were modelled using pro-calcifying media (HP). Both male and female VICs were inflamed upon calcific HP challenge, although the inflammatory response was higher in female VICs. The osteogenic and calcification responses were higher in male VICs. To identify new players involved in the responses to HP, proteomics analyses were performed on additional calcifying VICs. Neuropilin-1 (NRP-1) was significantly up-regulated in male calcifying VICs and that was confirmed in aortic valves (AVs), especially nearby neovessels and calcifications. Regardless of the sex, NRP-1 expression was correlated to inflammation, angiogenesis and osteogenic markers, but with stronger associations in male AVs. To further evidence the role of NRP-1, in vitro experiments of silencing or supplementation with soluble NRP-1 (sNRP-1) were performed. NRP-1 silencing or addition of sNRP-1 reduced/mended the expression of any sex-specific response triggered by HP. Moreover, NRP-1 regulation contributed to significantly diminish the baseline enhanced expression of pro-inflammatory, pro-angiogenic and pro-osteogenic markers mainly in male VICs. Validation studies were conducted in stenotic AVs. In summary, pharmacologic targeting of NRP-1 could be used to target sex-specific phenotypes in AS as well as to exert protective effects by reducing the basal expression of pathogenic markers only in male VICs.
Collapse
Affiliation(s)
- Lara Matilla
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Ernesto Martín-Núñez
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Adela Navarro
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Mattie Garaikoetxea
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Miriam Goñi-Olóriz
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Alicia Gainza
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Ibai Tamayo
- Research Methodology Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Virginia Álvarez
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Rafael Sádaba
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Eva Jover
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain.
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain.
| |
Collapse
|
15
|
Kobayashi Y, Kurokawa H, Tokinoya K, Matsui H. Monascus pigment prevent the oxidative cytotoxicity in myotube derived hydrogen peroxide. J Clin Biochem Nutr 2024; 75:33-39. [PMID: 39070528 PMCID: PMC11273274 DOI: 10.3164/jcbn.22-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/09/2023] [Indexed: 07/30/2024] Open
Abstract
The amounts of Reactive oxygen species (ROS) become higher by strenuous exercises which consume larger amounts of oxygen in active muscles. Since these ROS directly injured muscles, the high ROS concentration involves muscle fatigue. Thus, an immediate ROS scavenging system in the muscle is desired. Since Monascus pigment (MP) involves physiologically active substances which scavenge ROS, it may be a clue to save the muscle injury. However, there are no reports examining MP effects on oxidative stress in skeletal muscle. In this study, we investigated the effect and mechanism of MP on skeletal muscle cells damaged by oxidative stress. The ability to directly eliminate ROS was evaluated by mixing MP solutions with •OH and O2 •-, a type of ROS. The effect of peroxidation in C2C12 cells was evaluated by cell viability assay and Western blotting. MP scavenges •OH and O2 •-. MP treatment increases the survival rate under oxidative stress. At that time, the expression of catalase was increased: the enzyme change H2O2 into H2O to rescue the cells under oxidative stress. We conclude that monascus pigment suppressed myotube damage under oxidative stress by both non-enzymatic ROS scavenging and up-regulation of catalase expression.
Collapse
Affiliation(s)
- Yusei Kobayashi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan
| | - Hiromi Kurokawa
- Algae Biomass Energy System R&D Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Katsuyuki Tokinoya
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, Research Fellow of the Japan Society for the Promotion of Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Embodied Wisdom Division, Center for Liberal Education and Learning, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Hirofumi Matsui
- Algae Biomass Energy System R&D Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
16
|
Han X, Knauss EA, Fuente MDL, Li W, Conlon RA, LePage DF, Jiang W, Renna SA, McKenzie SE, Nieman MT. A mouse model of the protease-activated receptor 4 Pro310Leu variant has reduced platelet reactivity. J Thromb Haemost 2024; 22:1715-1726. [PMID: 38508397 DOI: 10.1016/j.jtha.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Protease-activated receptor 4 (PAR4) mediates thrombin signaling on platelets and other cells. Our recent structural studies demonstrated that a single nucleotide polymorphism in extracellular loop 3 and PAR4-P310L (rs2227376) leads to a hyporeactive receptor. OBJECTIVES The goal of this study was to determine how the hyporeactive PAR4 variant in extracellular loop 3 impacts platelet function in vivo using a novel knock-in mouse model (PAR4-322L). METHODS A point mutation was introduced into the PAR4 gene F2rl3 via CRISPR/Cas9 to create PAR4-P322L, the mouse homolog to human PAR4-P310L. Platelet response to PAR4 activation peptide (AYPGKF), thrombin, ADP, and convulxin was monitored by αIIbβ3 integrin activation and P-selectin translocation using flow cytometry or platelet aggregation. In vivo responses were determined by the tail bleeding assay and the ferric chloride-induced carotid artery injury model. RESULTS PAR4-P/L and PAR4-L/L platelets had a reduced response to AYPGKF and thrombin measured by P-selectin translocation or αIIbβ3 activation. The response to ADP and convulxin was unchanged among genotypes. In addition, both PAR4-P/L and PAR4-L/L platelets showed a reduced response to thrombin in aggregation studies. There was an increase in the tail bleeding time for PAR4-L/L mice. The PAR4-P/L and PAR4-L/L mice both showed an extended time to arterial thrombosis. CONCLUSION PAR4-322L significantly reduced platelet responsiveness to AYPGKF and thrombin, which is in agreement with our previous structural and cell signaling studies. In addition, PAR4-322L had prolonged arterial thrombosis time. Our mouse model provides a foundation to further evaluate the role of PAR4 in other pathophysiological contexts.
Collapse
Affiliation(s)
- Xu Han
- Case Western Reserve University School of Medicine, Department of Pharmacology, Cleveland, Ohio, USA
| | - Elizabeth A Knauss
- Case Western Reserve University School of Medicine, Department of Pharmacology, Cleveland, Ohio, USA
| | - Maria de la Fuente
- Case Western Reserve University School of Medicine, Department of Pharmacology, Cleveland, Ohio, USA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia, USA
| | - Ronald A Conlon
- Case Transgenic and Targeting Facility, Case Western Reserve University, Cleveland, Ohio, USA
| | - David F LePage
- Case Transgenic and Targeting Facility, Case Western Reserve University, Cleveland, Ohio, USA
| | - Weihong Jiang
- Case Transgenic and Targeting Facility, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stephanie A Renna
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven E McKenzie
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marvin T Nieman
- Case Western Reserve University School of Medicine, Department of Pharmacology, Cleveland, Ohio, USA.
| |
Collapse
|
17
|
Suzuki J. Effects of exercise training with intermittent hyperoxic intervention on endurance performance and muscle metabolic properties in male mice. Physiol Rep 2024; 12:e16117. [PMID: 38898524 PMCID: PMC11186743 DOI: 10.14814/phy2.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to investigate how intermittent hyperoxic exposure (three cycles of 21% O2 [10 min] and 30% O2 [15 min]) affects exercise performance in mice. Three hours after the acute exposure, there was an observed increase in mRNA levels of phosphofructokinase (Bayes factor [BF] ≥ 10), mitochondrial transcription factor-A (BF ≥10), PPAR-α (BF ≥3), and PPAR-γ (BF ≥3) in the red gastrocnemius muscle (Gr). Four weeks of exercise training under intermittent (INT), but not continuous (HYP), hyperoxia significantly (BF ≥30) increased maximal exercise capacity compared to normoxic exercise-trained (ET) group. INT group exhibited significantly higher activity levels of 3-hydroxyacyl-CoA-dehydrogenase (HAD) in Gr (BF = 7.9) compared to ET group. Pyruvate dehydrogenase complex activity levels were significantly higher in INT group compared to ET group in white gastrocnemius, diaphragm, and left ventricle (BF ≥3). NT-PGC1α protein levels in Gr (BF = 7.7) and HAD activity levels in Gr (BF = 6.9) and soleus muscles (BF = 3.3) showed a significant positive correlation with maximal work values. These findings suggest that exercise training under intermittent hyperoxia is a beneficial strategy for enhancing endurance performance by improving fatty acid and pyruvic acid utilization.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise Physiology, Health and Sports Sciences, Course of Sports Education, Department of EducationHokkaido University of EducationIwamizawaHokkaidoJapan
| |
Collapse
|
18
|
Chen F, Chen Z, Wu HT, Chen XX, Zhan P, Wei ZY, Ouyang Z, Jiang X, Shen A, Luo MH, Liu Q, Zhou YP, Qin A. Mesenchymal Stem Cell-Derived Exosomes Attenuate Murine Cytomegalovirus-Infected Pneumonia via NF-κB/NLRP3 Signaling Pathway. Viruses 2024; 16:619. [PMID: 38675960 PMCID: PMC11054941 DOI: 10.3390/v16040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Reactivation and infection with cytomegalovirus (CMV) are frequently observed in recipients of solid organ transplants, bone marrow transplants, and individuals with HIV infection. This presents an increasing risk of allograft rejection, opportunistic infection, graft failure, and patient mortality. Among immunocompromised hosts, interstitial pneumonia is the most critical clinical manifestation of CMV infection. Recent studies have demonstrated the potential therapeutic benefits of exosomes derived from mesenchymal stem cells (MSC-exos) in preclinical models of acute lung injury, including pneumonia, ARDS, and sepsis. However, the role of MSC-exos in the pathogenesis of infectious viral diseases, such as CMV pneumonia, remains unclear. In a mouse model of murine CMV-induced pneumonia, we observed that intravenous administration of mouse MSC (mMSC)-exos reduced lung damage, decreased the hyperinflammatory response, and shifted macrophage polarization from the M1 to the M2 phenotype. Treatment with mMSC-exos also significantly reduced the infiltration of inflammatory cells and pulmonary fibrosis. Furthermore, in vitro studies revealed that mMSC-exos reversed the hyperinflammatory phenotype of bone marrow-derived macrophages infected with murine CMV. Mechanistically, mMSC-exos treatment decreased activation of the NF-κB/NLRP3 signaling pathway both in vivo and in vitro. In summary, our findings indicate that mMSC-exo treatment is effective in severe CMV pneumonia by reducing lung inflammation and fibrosis through the NF-κB/NLRP3 signaling pathway, thus providing promising therapeutic potential for clinical CMV infection.
Collapse
Affiliation(s)
- Fei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Center for Cancer Research and Translational Medicine, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhida Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Hui-Ting Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Xin-Xiang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Peiqi Zhan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Zheng-Yi Wei
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Zizhang Ouyang
- Department of Pharmaceutical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China;
| | - Xueyan Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue-Peng Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Aiping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Sixth Affiliated Hospital, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; (F.C.); (Z.C.); (H.-T.W.); (X.-X.C.); (P.Z.); (Z.-Y.W.); (X.J.); (A.S.)
| |
Collapse
|
19
|
Bitterli T, Schmid D, Ettinger L, Krupkova O, Bach FC, Tryfonidou MA, Meij BP, Pozzi A, Steffen F, Wuertz‐Kozak K, Smolders LA. Targeted screening of inflammatory mediators in spontaneous degenerative disc disease in dogs reveals an upregulation of the tumor necrosis superfamily. JOR Spine 2024; 7:e1292. [PMID: 38222814 PMCID: PMC10782068 DOI: 10.1002/jsp2.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2024] Open
Abstract
Background The regulation of inflammatory mediators in the degenerating intervertebral disc (IVD) and corresponding ligamentum flavum (LF) is a topic of emerging interest. The study aimed to investigate the expression of a broad array of inflammatory mediators in the degenerated LF and IVD using a dog model of spontaneous degenerative disc disease (DDD) to determine potential treatment targets. Methods LF and IVD tissues were collected from 22 normal dogs (Pfirrmann grades I and II) and 18 dogs affected by DDD (Pfirrmann grades III and IV). A qPCR gene array was used to investigate the expression of 80 inflammatory genes for LF and IVD tissues, whereafter targets of interest were investigated in additional tissue samples using qPCR, western blot (WB), and immunohistochemistry. Results Tumor necrosis factor superfamily (TNFSF) signaling was identified as a regulated pathway in DDD, based on the significant regulation (n-fold ± SD) of various TNFSF members in the degenerated IVD, including nerve growth factor (NGF; -8 ± 10), CD40LG (464 ± 442), CD70 (341 ± 336), TNFSF Ligand 10 (9 ± 8), and RANKL/TNFSF Ligand 11 (85 ± 74). In contrast, TNFSF genes were not significantly affected in the degenerated LF compared to the control LF. Protein expression of NGF (WB) was significantly upregulated in both the degenerated LF (4.4 ± 0.5) and IVD (11.3 ± 5.6) compared to the control group. RANKL immunopositivity was significantly upregulated in advanced stages of degeneration (Thompson grades IV and V) in the nucleus pulposus and annulus fibrosus of the IVD, but not in the LF. Conclusions DDD involves a significant upregulation of various TNFSF members, with tissue-specific expression profiles in LF and IVD tissues. The differential involvement of TNFSF members within multiple spinal tissues from the same individual provides new insights into the inflammatory processes involved in DDD and may provide a basis to formulate hypotheses for the determination of potential treatment targets.
Collapse
Affiliation(s)
- Thomas Bitterli
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - David Schmid
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Ladina Ettinger
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Olga Krupkova
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Spine SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of Basel & University Hospital Basel, Tissue EngineeringBaselSwitzerland
| | - Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Björn P. Meij
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Antonio Pozzi
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Frank Steffen
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Karin Wuertz‐Kozak
- Institute for Biomechanics, ETH ZurichZurichSwitzerland
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
- Schön Clinic Munich Harlaching, Spine CenterAcademic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria)MunichGermany
| | - Lucas A. Smolders
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
20
|
DeNies MS, Liu AP, Schnell S. Seeing beyond the blot: A critical look at assumptions and raw data interpretation in Western blotting. Biomol Concepts 2024; 15:bmc-2022-0047. [PMID: 38557557 DOI: 10.1515/bmc-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Rapid advancements in technology refine our understanding of intricate biological processes, but a crucial emphasis remains on understanding the assumptions and sources of uncertainty underlying biological measurements. This is particularly critical in cell signaling research, where a quantitative understanding of the fundamental mechanisms governing these transient events is essential for drug development, given their importance in both homeostatic and pathogenic processes. Western blotting, a technique developed decades ago, remains an indispensable tool for investigating cell signaling, protein expression, and protein-protein interactions. While improvements in statistical analysis and methodology reporting have undoubtedly enhanced data quality, understanding the underlying assumptions and limitations of visual inspection in Western blotting can provide valuable additional information for evaluating experimental conclusions. Using the example of agonist-induced receptor post-translational modification, we highlight the theoretical and experimental assumptions associated with Western blotting and demonstrate how raw blot data can offer clues to experimental variability that may not be fully captured by statistical analyses and reported methodologies. This article is not intended as a comprehensive technical review of Western blotting. Instead, we leverage an illustrative example to demonstrate how assumptions about experimental design and data normalization can be revealed within raw data and subsequently influence data interpretation.
Collapse
Affiliation(s)
- Maxwell S DeNies
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Allen P Liu
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Santiago Schnell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Applied & Computational Mathematics & Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
21
|
Mao L, Schneider JW, Robinson AS. Rosmarinic acid enhances CHO cell productivity and proliferation through activation of the unfolded protein response and the mTOR pathway. Biotechnol J 2024; 19:e2300397. [PMID: 37897814 DOI: 10.1002/biot.202300397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Rosmarinic acid (RA) has gained attraction in bioprocessing as a media supplement to improve cellular proliferation and protein production. Here, we observe up to a two-fold increase in antibody production with RA-supplementation, and a concentration-dependent effect of RA on cell proliferation for fed-batch Chinese hamster ovary (CHO) cell cultures. Contrary to previously reported antioxidant activity, RA increased the reactive oxygen species (ROS) levels, stimulated endoplasmic reticulum (ER) stress, activated the unfolded protein response (UPR), and elicited DNA damage. Despite such stressful events, RA appeared to maintained cell health via mammalian target of rapamycin (mTOR) pathway activation; both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) were stimulated in RA-supplemented cultures. By reversing such mTOR pathway activity through either chemical inhibitor addition or siRNA knockdown of genes regulating the mTORC1 and mTORC2 complexes, antibody production, UPR signaling, and stress-induced DNA damage were reduced. Further, the proliferative effect of RA appeared to be regulated selectively by mTORC2 activation and have reproduced this observation by using the mTORC2 stimulator SC-79. Analogously, knockdown of mTORC2 strongly reduced X-box binding protein 1 (XBP1) splicing, which would be expected to reduce antibody folding and secretion, sugging that reduced mTORC2 would correlate with reduced antibody levels. The crosstalk between mTOR activation and UPR upregulation may thus be related directly to the enhanced productivity. Our results show the importance of the mTOR and UPR pathways in increasing antibody productivity, and suggest that RA supplementation may obviate the need for labor-intensive genetic engineering by directly activating pathways favorable to cell culture performance.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - James W Schneider
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Fisker FA, Voss TS, Svart MV, Kampmann U, Vendelbo MH, Bengtsen MB, Lauritzen ES, Møller N, Jessen N. Insulin Signaling Is Preserved in Skeletal Muscle During Early Diabetic Ketoacidosis. J Clin Endocrinol Metab 2023; 109:e155-e162. [PMID: 37554078 DOI: 10.1210/clinem/dgad464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND AND AIMS During diabetic ketoacidosis (DKA), muscle tissue develops a profound insulin resistance that complicates reversal of this potentially lethal condition. We have investigated mediators of insulin action in human skeletal muscle during total insulin withdrawal in patients with type 1 diabetes, under the hypothesis that initial phases of DKA are associated with impaired postreceptor signaling. MATERIALS AND METHODS Muscle biopsies were obtained during a randomized, controlled, crossover trial involving 9 patients with type 1 diabetes. The subjects were investigated during a high-dose insulin clamp preceded by either: (1) insulin-controlled euglycemia (control) or (2) total insulin withdrawal for 14 hours. Insulin action in skeletal muscle and whole-body substrate metabolism were investigated using western blot analysis and indirect calorimetry respectively. RESULTS During insulin withdrawal, insulin-stimulated dephosphorylation of glycogen synthase decreased by ∼30% (P < .05) compared with the control situation. This was associated with a decrease in glucose oxidation by ∼30% (P < .05). Despite alterations in glucose metabolism, insulin transduction to glucose transport and protein synthesis (Akt, AS160, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E binding protein) was intact, and glucose transporter (GLUT4) and mitochondrial proteins (succinate dehydrogenase complex, subunit A and prohibitin 1) protein expression were unaffected by the intervention. CONCLUSION DKA impairs insulin-stimulated activation of glycogen synthase, whereas insulin signal transduction to glucose transport and protein synthesis remains intact. Reversal of insulin resistance during treatment of DKA should target postreceptor mediators of glucose uptake. CLINICAL TRIAL REGISTRATION NUMBER NCT02077348.
Collapse
Affiliation(s)
- Frederikke A Fisker
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Thomas S Voss
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Mads V Svart
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Mikkel H Vendelbo
- Department of Nuclear Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Mads B Bengtsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Esben S Lauritzen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Niels Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Patitucci C, Hernández-Camacho JD, Vimont E, Yde S, Cokelaer T, Chaze T, Giai Gianetto Q, Matondo M, Gazi A, Nemazanyy I, Stroud DA, Hock DH, Donnarumma E, Wai T. Mtfp1 ablation enhances mitochondrial respiration and protects against hepatic steatosis. Nat Commun 2023; 14:8474. [PMID: 38123539 PMCID: PMC10733382 DOI: 10.1038/s41467-023-44143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatic steatosis is the result of imbalanced nutrient delivery and metabolism in the liver and is the first hallmark of Metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD is the most common chronic liver disease and involves the accumulation of excess lipids in hepatocytes, inflammation, and cancer. Mitochondria play central roles in liver metabolism yet the specific mitochondrial functions causally linked to MASLD remain unclear. Here, we identify Mitochondrial Fission Process 1 protein (MTFP1) as a key regulator of mitochondrial and metabolic activity in the liver. Deletion of Mtfp1 in hepatocytes is physiologically benign in mice yet leads to the upregulation of oxidative phosphorylation (OXPHOS) activity and mitochondrial respiration, independently of mitochondrial biogenesis. Consequently, liver-specific knockout mice are protected against high fat diet-induced steatosis and metabolic dysregulation. Additionally, Mtfp1 deletion inhibits mitochondrial permeability transition pore opening in hepatocytes, conferring protection against apoptotic liver damage in vivo and ex vivo. Our work uncovers additional functions of MTFP1 in the liver, positioning this gene as an unexpected regulator of OXPHOS and a therapeutic candidate for MASLD.
Collapse
Affiliation(s)
- Cecilia Patitucci
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France
| | | | - Elodie Vimont
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France
| | - Sonny Yde
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Biomics Technological Platform, Université Paris Cité, Paris, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France
| | - Thibault Chaze
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France
| | - Anastasia Gazi
- Institut Pasteur Ultrastructural Bio Imaging, UTechS, Université Paris Cité, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, SFR Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Erminia Donnarumma
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France
| | - Timothy Wai
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France.
| |
Collapse
|
24
|
Mareš P, Uttl L, Laczó M, BenSalem Z, Vondráková K, Fábera P, Tsenov G, Kubová H. Adenosine A1 Receptors Participate in Excitability Changes after Cortical Epileptic Afterdischarges in Immature Rats. Pharmaceuticals (Basel) 2023; 16:1733. [PMID: 38139859 PMCID: PMC10747633 DOI: 10.3390/ph16121733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Background: Postictal refractoriness, i.e., the inability to elicit a new epileptic seizure immediately after the first one, is present in mature animals. Immature rats did not exhibit this refractoriness, and it is replaced by postictal potentiation. In addition to the immediate postictal potentiation, there is a delayed potentiation present at both ages. These phenomena were studied using cortical epileptic afterdischarges as a model. Objective: We aimed to analyze participation of adenosine A1 receptors in postictal potentiation and depression. Methods: Adenosine A1 receptors were studied by means of Western blotting in the cerebral cortex with a focus on the age groups studied electrophysiologically. Stimulation and recording electrodes were implanted epidurally in 12- and 25-day-old rats. The first stimulation always induced conditioning epileptic afterdischarge (AD), and 1 min after its end, the stimulation was repeated to elicit the second, testing AD. Then, the drugs were administered and paired stimulations were repeated 10 min later. A selective agonist CCPA (0.5 and 1 mg/kg i.p.) and a selective antagonist DPCPX (0.1, 0.5 and 1 mg/kg i.p.) were used to examine the possible participation of adenosine A1 receptors. Results: Control younger animals exhibited potentiation of the testing AD and a moderate increase in both conditioning and testing ADs after an injection of saline. The A1 receptor agonist CCPA shortened both post-drug ADs, and neither potentiation was present. The administration of an antagonist DPCPX resulted in marked prolongation of the conditioning AD (delayed potentiation), and the second testing AD was shorter than the post-drug conditioning AD, i.e., there was no longer immediate potentiation of ADs. To eliminate effects of the solvent dimethylsulfoxide, we added experiments with DPCPX suspended with the help of Tween 80. The results were similar, only the prolongation of ADs was not as large, and the testing ADs were significantly depressed. The older control group exhibited a nearly complete suppression of the first testing AD. There was no significant change in the conditioning and testing ADs after CCPA (delayed potentiation was blocked). Both groups of DPCPX-treated rats (with DMSO or Tween) exhibited significant augmentation of delayed potentiation but no significant difference in the immediate depression. Adenosine A1 receptors were present in the cerebral cortex of both age groups, and their quantity was higher in 12- than in 25-day-old animals. Conclusions: An agonist of the A1 receptor CCPA suppressed both types of postictal potentiation in 12-day-old rats, whereas the A1 antagonist DPCPX suppressed immediate potentiation but markedly augmented the delayed one. Immediate postictal refractoriness in 25-day-old rats was only moderately (non-significantly) affected; meanwhile, the delayed potentiation was strongly augmented.
Collapse
Affiliation(s)
- Pavel Mareš
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic (H.K.)
| | - Libor Uttl
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic (H.K.)
- National Institute of Mental Health, 25067 Klecany, Czech Republic
| | - Martina Laczó
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic (H.K.)
- Department of Neurology, Second Faculty of Medicine, Motol University Hospital, Charles University, 15006 Prague, Czech Republic
| | - Zina BenSalem
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic (H.K.)
| | - Kateřina Vondráková
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic (H.K.)
| | - Petr Fábera
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic (H.K.)
- Department of Neurology, Second Faculty of Medicine, Motol University Hospital, Charles University, 15006 Prague, Czech Republic
| | - Grygoriy Tsenov
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic (H.K.)
- National Institute of Mental Health, 25067 Klecany, Czech Republic
| | - Hana Kubová
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic (H.K.)
| |
Collapse
|
25
|
Shimoura CG, Stubbs CY, Chaudhari S, Dinh VQ, Mathis KW. Targeted stimulation of the vagus nerve reduces renal injury in female mice with systemic lupus erythematosus. Auton Neurosci 2023; 250:103129. [PMID: 37950930 PMCID: PMC11259125 DOI: 10.1016/j.autneu.2023.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/13/2023]
Abstract
Pharmacological stimulation of the vagus nerve has been shown to suppress inflammation and reduce blood pressure in a murine model of systemic lupus erythematosus (SLE) that is characterized by hypertension, inflammation, renal injury and dysautonomia. The present study aims to directly stimulate vagal nerves at the level of the dorsal motor nucleus of the vagus (DMV) using designer receptors exclusively activated by designer drugs (DREADDs) to determine if there is similar protection and confirm mechanism. Female NZBWF1/J (SLE) mice and NZW/LacJ mice (controls, labeled as NZW throughout) received bilateral microinjections of pAAV-hSyn-hM3D(Gq)-mCherry or control virus into the DMV at 31 weeks of age. After two weeks of recovery and viral transfection, the DREADD agonist clozapine-N-oxide (CNO; 3 mg/kg) was injected subcutaneously for an additional 14 days. At 35 weeks, mean arterial pressure (MAP; mmHg) was increased in SLE mice compared to NZW mice, but selective activation of DMV neurons did not significantly alter MAP in either group. SLE mice had higher indices of renal injury including albumin excretion rate (μg/day), glomerulosclerosis index, interstitial fibrosis, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) compared to NZW mice. Selective DMV neuronal activation reduced albumin excretion rate, glomerulosclerosis, interstitial fibrosis, and NGAL in SLE mice but not NZW mice. Together, these data indicate that selective activation of neurons within the DMV by DREADD protects the kidney suggesting an important role of vagus-mediated pathways in the progression of renal injury in SLE.
Collapse
Affiliation(s)
- Caroline Gusson Shimoura
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Cassandra Y Stubbs
- Department of Internal Medicine, Division of Rheumatic Diseases, University of Texas Southwestern, Dallas, TX, United States of America
| | - Sarika Chaudhari
- Department of Internal Medicine, Division of Rheumatic Diseases, University of Texas Southwestern, Dallas, TX, United States of America
| | - Viet Q Dinh
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Keisa W Mathis
- Department of Internal Medicine, Division of Rheumatic Diseases, University of Texas Southwestern, Dallas, TX, United States of America.
| |
Collapse
|
26
|
Nayyar D, Yan X, Xu G, Shi M, Garnham AP, Mathai ML, McAinch AJ. Gynostemma Pentaphyllum Increases Exercise Performance and Alters Mitochondrial Respiration and AMPK in Healthy Males. Nutrients 2023; 15:4721. [PMID: 38004115 PMCID: PMC10675532 DOI: 10.3390/nu15224721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
This research aimed to determine the effects of Gynostemma pentaphyllum (G. pentaphyllum) on exercise performance, AMP-activated protein kinase (AMPK), and mitochondrial signaling in human muscle. This randomized double-blind placebo control crossover study provided placebo or 450 mg of G. pentaphyllum dried leaf extract equivalent to 2.25 g of dry leaf per day for four weeks to 16 healthy untrained young males, separated by four weeks wash-out. Following 4-week supplementation with G. pentaphyllum, participants had significantly lower leptin and blood glucose levels and improved time trial performance over 20 km, which corresponded with a higher muscle oxygen flux compared to placebo. Muscle AMPK Thr172 phosphorylation significantly increased after 60 min exercise following G. pentaphyllum supplementation. AMPK Thr172 phosphorylation levels relative to total AMPK increased earlier following exercise with G. pentaphyllum compared to placebo. Total ACC-α was lower following G. pentaphyllum supplementation compared to placebo. While further research is warranted, G. pentaphyllum supplementation improved exercise performance in healthy untrained males, which corresponded with improved mitochondrial respiration, altered AMPK and ACC, and decreased plasma leptin and glucose levels.
Collapse
Affiliation(s)
- Deepti Nayyar
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Xu Yan
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Guoqin Xu
- College of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China;
| | - Min Shi
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Andrew P. Garnham
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Michael L. Mathai
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| |
Collapse
|
27
|
Musyaju S, Modi HR, Flerlage WJ, Scultetus AH, Shear DA, Pandya JD. Revert total protein normalization method offers a reliable loading control for mitochondrial samples following TBI. Anal Biochem 2023; 680:115301. [PMID: 37673410 DOI: 10.1016/j.ab.2023.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Owing to evidence that mitochondrial dysfunction plays a dominant role in the traumatic brain injury (TBI) pathophysiology, the Western blot (WB) based immunoblotting method is widely employed to identify changes in the mitochondrial protein expressions after neurotrauma. In WB method, the housekeeping proteins (HKPs) expression is routinely used as an internal control for sample normalization. However, the traditionally employed HKPs can be susceptible to complex cascades of TBI pathogenesis, leading to their inconsistent expression. Remarkably, our data illustrated here that mitochondrial HKPs, including Voltage-dependent anion channels (VDAC), Complex-IV, Cytochrome C and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) yielded altered expressions following penetrating TBI (PTBI) as compared to Sham. Therefore, our goal was to identify more precise normalization procedure in WB. Adult male Sprague Dawley rats (N = 6 rats/group) were used to perform PTBI, and the novel REVERT Total Protein (RTP) method was used to quantify mitochondrial protein load consistency between samples at 6 h and 24 h post-injury. Notably, the RTP method displayed superior protein normalization compared to HKPs method with higher sensitivity at both time-points between experimental groups. Our data favors application of RTP based normalization to accurately quantify protein expression where inconsistent HKPs may be evident in neuroscience research.
Collapse
Affiliation(s)
- Sudeep Musyaju
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - William J Flerlage
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Jignesh D Pandya
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| |
Collapse
|
28
|
Bzdęga W, Kurzyna PF, Harasim-Symbor E, Hołownia A, Chabowski A, Konstantynowicz-Nowicka K. How Does CBG Administration Affect Sphingolipid Deposition in the Liver of Insulin-Resistant Rats? Nutrients 2023; 15:4350. [PMID: 37892425 PMCID: PMC10609522 DOI: 10.3390/nu15204350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Cannabigerol (CBG), a non-psychotropic phytocannabinoid found in Cannabis sativa plants, has been the focus of recent studies due to its potential therapeutic properties. We proposed that by focusing on sphingolipid metabolism, which plays a critical role in insulin signaling and the development of insulin resistance, CBG may provide a novel therapeutic approach for metabolic disorders, particularly insulin resistance. METHODS In a rat model of insulin resistance induced by a high-fat, high-sucrose diet (HFHS), we aimed to elucidate the effect of intragastrically administered CBG on hepatic sphingolipid deposition and metabolism. Moreover, we also elucidated the expression of sphingolipid transporters and changes in the sphingolipid concentration in the plasma. RESULTS The results, surprisingly, showed a lack of changes in de novo ceramide synthesis pathway enzymes and significant enhancement in the expression of enzymes involved in ceramide catabolism, which was confirmed by changes in hepatic sphingomyelin, sphinganine, sphingosine-1-phosphate, and sphinganine-1-phosphate concentrations. CONCLUSIONS The results suggest that CBG treatment may modulate sphingolipid metabolism in the liver and plasma, potentially protecting the liver against the development of metabolic disorders such as insulin resistance.
Collapse
Affiliation(s)
- Wiktor Bzdęga
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (W.B.); (P.F.K.); (E.H.-S.); (A.C.)
| | - Piotr Franciszek Kurzyna
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (W.B.); (P.F.K.); (E.H.-S.); (A.C.)
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (W.B.); (P.F.K.); (E.H.-S.); (A.C.)
| | - Adam Hołownia
- Department of Pharmacology, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (W.B.); (P.F.K.); (E.H.-S.); (A.C.)
| | | |
Collapse
|
29
|
Xu W, Ishii Y, Rini DM, Yamamoto Y, Suzuki T. Microbial metabolite n-butyrate upregulates intestinal claudin-23 expression through SP1 and AMPK pathways in mouse colon and human intestinal Caco-2 cells. Life Sci 2023; 329:121952. [PMID: 37467886 DOI: 10.1016/j.lfs.2023.121952] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
AIMS Regulation of the intestinal barrier is closely related to intestinal microbial metabolism. This study investigated the role of intestinal microflora in the regulation of the tight junction (TJ) barrier in epithelial cells, focusing on the microbial metabolite n-butyrate, a major short-chain fatty acid, using mice and human intestinal Caco-2 cells. MATERIALS AND METHODS Whole transcriptome analysis with RNA sequencing and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were performed in the colon of germ-free (GF) and specific pathogen-free (SPF) mice. Claudin-23 expression was examined by qRT-PCR, immunoblotting, and immunofluorescence in Caco-2 cells treated with n-butyrate. Luciferase reporter assay was performed to examine the effect of n-butyrate on claudin-23 transcriptional activity. The siRNA targeting the transcription factor SP1 and pharmacological inhibitor of AMPK were used in combination. TJ permeability was examined in canine kidney MDCKII cells stably expressing human claudin-23. KEY FINDINGS Cldn23 mRNA expression was downregulated in the colon of GF mice (0.6-fold) compared to that in SPF mice. n-Butyrate upregulated claudin-23 mRNA (1.7-fold) and protein (2.1-fold) expression as well as increased the transcriptional activity (15-fold) of CLDN23 in Caco-2 cells. The n-butyrate-mediated increase in claudin-23 expression and transcriptional activity was reduced by inhibition of SP1 and AMPK. Exogenously expressed human claudin-23 in MDCKII cells did not affect TJ permeability to ions and macromolecules. SIGNIFICANCE n-Butyrate regulates intestinal claudin-23 expression through the SP1 and AMPK pathways. This mechanism may be involved in the beneficial effects of n-butyrate-mediated intestinal homeostasis.
Collapse
Affiliation(s)
- Wenxi Xu
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima 739-8528, Japan
| | - Yoshiki Ishii
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima 739-8528, Japan
| | - Dina Mustika Rini
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima 739-8528, Japan; Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional "Veteran" Jawa Timur, Surabaya 60294, Indonesia
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima 739-8528, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima 739-8528, Japan.
| |
Collapse
|
30
|
Willot Q, du Toit A, de Wet S, Huisamen EJ, Loos B, Terblanche JS. Exploring the connection between autophagy and heat-stress tolerance in Drosophila melanogaster. Proc Biol Sci 2023; 290:20231305. [PMID: 37700658 PMCID: PMC10498041 DOI: 10.1098/rspb.2023.1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Mechanisms aimed at recovering from heat-induced damages are closely associated with the ability of ectotherms to survive exposure to stressful temperatures. Autophagy, a ubiquitous stress-responsive catabolic process, has recently gained renewed attention as one of these mechanisms. By increasing the turnover of cellular structures as well as the clearance of long-lived protein and protein aggregates, the induction of autophagy has been linked to increased tolerance to a range of abiotic stressors in diverse ectothermic organisms. However, whether a link between autophagy and heat-tolerance exists in insect models remains unclear despite broad ecophysiological implications thereof. Here, we explored the putative association between autophagy and heat-tolerance using Drosophila melanogaster as a model. We hypothesized that (i) heat-stress would cause an increase of autophagy in flies' tissues, and (ii) rapamycin exposure would trigger a detectable autophagic response in adults and increase their heat-tolerance. In line with our hypothesis, we report that flies exposed to heat-stress present signs of protein aggregation and appear to trigger an autophagy-related homoeostatic response as a result. We further show that rapamycin feeding causes the systemic effect associated with target of rapamycin (TOR) inhibition, induces autophagy locally in the fly gut, and increases the heat-stress tolerance of individuals. These results argue in favour of a substantial contribution of autophagy to the heat-stress tolerance mechanisms of insects.
Collapse
Affiliation(s)
- Quentin Willot
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Andre du Toit
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Sholto de Wet
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Elizabeth J. Huisamen
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - John S. Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
31
|
Sule R, Rivera G, Gomes AV. Western blotting (immunoblotting): history, theory, uses, protocol and problems. Biotechniques 2023; 75:99-114. [PMID: 36971113 DOI: 10.2144/btn-2022-0034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Western blotting (immunoblotting) is a powerful and commonly used technique that is capable of detecting or semiquantifying an individual protein from complex mixtures of proteins extracted from cells or tissues. The history surrounding the origin of western blotting, the theory behind the western blotting technique, a comprehensive protocol and the uses of western blotting are presented. Lesser known and significant problems in the western blotting field and troubleshooting of common problems are highlighted and discussed. This work is a comprehensive primer and guide for new western blotting researchers and those interested in a better understanding of the technique or getting better results.
Collapse
Affiliation(s)
- Rasheed Sule
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Gabriela Rivera
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
32
|
Wang Z, Wang X, Chen Y, Wang C, Chen L, Jiang M, Liu X, Zhang X, Feng Y, Xu J. Loss and recovery of myocardial mitochondria in mice under different tail suspension time: Apoptosis and mitochondrial fission, fusion and autophagy. Exp Physiol 2023; 108:1189-1202. [PMID: 37565298 PMCID: PMC10988507 DOI: 10.1113/ep090518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Long-term weightlessness in animals can cause changes in myocardial structure and function, in which mitochondria play an important role. Here, a tail suspension (TS) Kunming mouse (Mus musculus) model was used to simulate the effects of weightlessness on the heart. We investigated the effects of 2 and 4 weeks of TS (TS2 and TS4) on myocardial mitochondrial ultrastructure and oxidative respiratory function and on the molecular mechanisms of apoptosis and mitochondrial fission, autophagy and fusion-related signalling. Our study revealed significant changes in the ultrastructural features of cardiomyocytes in response to TS. The results showed: (1) mitochondrial swelling and disruption of cristae in TS2, but mitochondrial recovery and denser cristae in TS4; (2) an increase in the total number of mitochondria and number of sub-mitochondria in TS4; (3) no significant changes in the nuclear ultrastructure or DNA fragmentation among the two TS groups and the control group; (4) an increase in the bax/bcl-2 protein levels in the two TS groups, indicating increased activation of the bax-mediated apoptosis pathway; (5) no change in the phosphorylation ratio of dynamin-related protein 1 in the two TS groups; (6) an increase in the protein levels of optic atrophy 1 and mitofusin 2 in the two TS groups; and (7) in comparison to the TS2 group, an increase in the phosphorylation ratio of parkin and the ratio of LC3II to LC3I in TS4, suggesting an increase in autophagy. Taken together, these findings suggest that mitochondrial autophagy and fusion levels increased after 4 weeks of TS, leading to a restoration of the bax-mediated myocardial apoptosis pathway observed after 2 weeks of TS. NEW FINDINGS: What is the central question of this study? What are the effects of 2 and 4 weeks of tail suspension on myocardial mitochondrial ultrastructure and oxidative respiratory function and on the molecular mechanisms of apoptosis and mitochondrial fission, autophagy and fusion-related signalling? What is the main finding and its importance? Increased mitochondrial autophagy and fusion levels after 4 weeks of tail suspension help to reshape the morphology and increase the number of myocardial mitochondria.
Collapse
Affiliation(s)
- Zhe Wang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Xing‐Chen Wang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Ya‐Fei Chen
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Chuan‐Li Wang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Le Chen
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Ming‐Yue Jiang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Xi‐Wei Liu
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Xiao‐Xuan Zhang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Yong‐Zhen Feng
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Jin‐Hui Xu
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| |
Collapse
|
33
|
Langer HT, Ramsamooj S, Dantas E, Murthy A, Ahmed M, Hwang SK, Grover R, Pozovskiy R, Liang RJ, Queiroz AL, Brown JC, White EP, Janowitz T, Goncalves AMD. Restoring adiponectin via rosiglitazone ameliorates tissue wasting in mice with lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551241. [PMID: 37577571 PMCID: PMC10418114 DOI: 10.1101/2023.07.31.551241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The cancer associated cachexia syndrome (CACS) is a systemic metabolic disorder resulting in loss of body weight due to skeletal muscle and adipose tissues atrophy. CACS is particularly prominent in lung cancer patients, where it contributes to poor quality of life and excess mortality. Using the Kras/Lkb1 (KL) mouse model, we found that CACS is associated with white adipose tissue (WAT) dysfunction that directly affects skeletal muscle homeostasis. WAT transcriptomes showed evidence of reduced adipogenesis, and, in agreement, we found low levels of circulating adiponectin. To preserve adipogenesis and restore adiponectin levels, we treated mice with the PPAR-γ agonist, rosiglitazone. Rosiglitazone treatment increased serum adiponectin levels, delayed weight loss, and preserved skeletal muscle and adipose tissue mass, as compared to vehicle-treated mice. The preservation of muscle mass with rosiglitazone was associated with increases in AMPK and AKT activity. Similarly, activation of the adiponectin receptors in muscle cells increased AMPK activity, anabolic signaling, and protein synthesis. Our data suggest that PPAR-γ agonists may be a useful adjuvant therapy to preserve tissue mass in lung cancer.
Collapse
Affiliation(s)
- Henning Tim Langer
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shakti Ramsamooj
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anirudh Murthy
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mujmmail Ahmed
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Seo-Kyoung Hwang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rahul Grover
- Weill Cornell Medical College, New York, NY, USA
| | - Rita Pozovskiy
- Hunter College, City University of New York, New York, NY, 10065, USA
| | - Roger J Liang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andre Lima Queiroz
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin C Brown
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Eileen P White
- Department of Genetics, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - And Marcus D Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
34
|
Torrecillas-Baena B, Camacho-Cardenosa M, Quesada-Gómez JM, Moreno-Moreno P, Dorado G, Gálvez-Moreno MÁ, Casado-Díaz A. Non-Specific Inhibition of Dipeptidyl Peptidases 8/9 by Dipeptidyl Peptidase 4 Inhibitors Negatively Affects Mesenchymal Stem Cell Differentiation. J Clin Med 2023; 12:4632. [PMID: 37510747 PMCID: PMC10380885 DOI: 10.3390/jcm12144632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
DPP4 may play a relevant role in MSC differentiation into osteoblasts or adipocytes. Dipeptidyl peptidase 4 (DPP4) inhibitors (DPP4i), such as sitagliptin and vildagliptin, are used as antidiabetic drugs. However, vildagliptin is not a specific DPP4i and also inhibits DPP8/9, which is involved in energy metabolism and immune regulation. The aim of this study is to evaluate how sitagliptin, vildagliptin or 1G244 (a DPP8/9 specific inhibitor) may influence cell viability, as well as osteogenic and adipogenic differentiation in human mesenchymal stem cells (MSC). Viability, apoptosis, osteoblastogenesis and adipogenesis markers, as well as protein synthesis of β-catenin, were studied in MSC cultures induced to differentiate into osteoblasts or adipocytes in the presence or absence of sitagliptin, vildagliptin or 1G244. The two tested DPP4i did not affect MSC viability, but 1G244 significantly decreased it in MSC and osteoblast-induced cells. Additionally, 1G244 and vildagliptin inhibited osteogenesis and adipogenesis, unlike sitagliptin. Therefore, inhibition of DPP4 did not affect MSC viability and differentiation, whereas inhibition of DPP8/9 negatively affected MSC. To the best of our knowledge, these results show for the first time that DPP8/9 have an important role in the viability and differentiation of human MSC. This data can be considered for human clinical use of drugs affecting DPP8/9 activity.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Paloma Moreno-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Gabriel Dorado
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
- Departamento Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
35
|
Rees PA, Lowy RJ. Optimizing reduction of western blotting analytical variations: Use of replicate test samples, multiple normalization methods, and sample loading positions. Anal Biochem 2023:115198. [PMID: 37302777 DOI: 10.1016/j.ab.2023.115198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023]
Abstract
Western blot (WB) analysis is widely used, but obtaining consistent results can be problematic, especially when using multiple gels. This study examines WB performance by explicitly applying a method commonly used to test analytical instrumentation. Test samples were lysates from RAW 264.7 murine macrophages treated with LPS to activate MAPK and NF-kB signaling targets. Samples from the pooled cell lysates placed in every lane on multiple gels were analyzed by WBs for levels of p-ERK, ERK, IkBβ and non-target protein. Different normalization methods and sample groupings were applied to the density values and the resulting coefficients of variation (CV) and ratios of maximal to minimal values (Max/Min) were compared. Ideally with identical sample replicates the CVs would be 0 and the Max/Min 1; deviation indicating introduction of variability by the WB process. Common normalizations to reduce analytical variance, total lane protein, % Control, and p-ERK/ERK ratios, did not have the lowest CVs or Max/Min values. Normalization using the sum of target protein values combined with analytical replication most effectively reduced variability, resulting CV and Max/Min values as low as 5-10% and 1.1. These methods should allow reliable interpretation of complex experiments that require samples to be placed on multiple gels.
Collapse
Affiliation(s)
- Phyllis A Rees
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - R Joel Lowy
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
36
|
Najt CP, Adhikari S, Heden TD, Cui W, Gansemer ER, Rauckhorst AJ, Markowski TW, Higgins L, Kerr EW, Boyum MD, Alvarez J, Brunko S, Mehra D, Puchner EM, Taylor EB, Mashek DG. Organelle interactions compartmentalize hepatic fatty acid trafficking and metabolism. Cell Rep 2023; 42:112435. [PMID: 37104088 PMCID: PMC10278152 DOI: 10.1016/j.celrep.2023.112435] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/09/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Organelle interactions play a significant role in compartmentalizing metabolism and signaling. Lipid droplets (LDs) interact with numerous organelles, including mitochondria, which is largely assumed to facilitate lipid transfer and catabolism. However, quantitative proteomics of hepatic peridroplet mitochondria (PDM) and cytosolic mitochondria (CM) reveals that CM are enriched in proteins comprising various oxidative metabolism pathways, whereas PDM are enriched in proteins involved in lipid anabolism. Isotope tracing and super-resolution imaging confirms that fatty acids (FAs) are selectively trafficked to and oxidized in CM during fasting. In contrast, PDM facilitate FA esterification and LD expansion in nutrient-replete medium. Additionally, mitochondrion-associated membranes (MAM) around PDM and CM differ in their proteomes and ability to support distinct lipid metabolic pathways. We conclude that CM and CM-MAM support lipid catabolic pathways, whereas PDM and PDM-MAM allow hepatocytes to efficiently store excess lipids in LDs to prevent lipotoxicity.
Collapse
Affiliation(s)
- Charles P Najt
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Santosh Adhikari
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Timothy D Heden
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Wenqi Cui
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Erica R Gansemer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Evan W Kerr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Matthew D Boyum
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jonas Alvarez
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Brunko
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Dushyant Mehra
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Elias M Puchner
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
37
|
Nguyen A, Lugarini F, David C, Hosnani P, Alagöz Ç, Friedrich A, Schlütermann D, Knotkova B, Patel A, Parfentev I, Urlaub H, Meinecke M, Stork B, Faesen AC. Metamorphic proteins at the basis of human autophagy initiation and lipid transfer. Mol Cell 2023:S1097-2765(23)00321-0. [PMID: 37209685 DOI: 10.1016/j.molcel.2023.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Autophagy is a conserved intracellular degradation pathway that generates de novo double-membrane autophagosomes to target a wide range of material for lysosomal degradation. In multicellular organisms, autophagy initiation requires the timely assembly of a contact site between the ER and the nascent autophagosome. Here, we report the in vitro reconstitution of a full-length seven-subunit human autophagy initiation supercomplex built on a core complex of ATG13-101 and ATG9. Assembly of this core complex requires the rare ability of ATG13 and ATG101 to switch between distinct folds. The slow spontaneous metamorphic conversion is rate limiting for the self-assembly of the supercomplex. The interaction of the core complex with ATG2-WIPI4 enhances tethering of membrane vesicles and accelerates lipid transfer of ATG2 by both ATG9 and ATG13-101. Our work uncovers the molecular basis of the contact site and its assembly mechanisms imposed by the metamorphosis of ATG13-101 to regulate autophagosome biogenesis in space and time.
Collapse
Affiliation(s)
- Anh Nguyen
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Francesca Lugarini
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Céline David
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Pouya Hosnani
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany; University Medical Centre Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Çağla Alagöz
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Annabelle Friedrich
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Barbora Knotkova
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany; University Medical Centre Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Anoshi Patel
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany
| | - Iwan Parfentev
- Max-Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Göttingen, Germany
| | - Henning Urlaub
- Max-Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Göttingen, Germany; University Medical Centre Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Göttingen, Germany
| | - Michael Meinecke
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany; University Medical Centre Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alex C Faesen
- Max-Planck Institute for Multidisciplinary Sciences, Laboratory of Biochemistry of Signal Dynamics, Göttingen, Germany.
| |
Collapse
|
38
|
Lorentzen KA, Hernanz R, Pinilla E, Nyengaard JR, Wogensen L, Simonsen U. Sex-Dependent Impairment of Endothelium-Dependent Relaxation in Aorta of Mice with Overexpression of Hyaluronan in Tunica Media. Int J Mol Sci 2023; 24:8436. [PMID: 37176139 PMCID: PMC10179165 DOI: 10.3390/ijms24098436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic macroangiopathy is characterized by increased extracellular matrix deposition, including excessive hyaluronan accumulation, vessel thickening and stiffness, and endothelial dysfunction in large arteries. We hypothesized that the overexpression of hyaluronan in the tunica media also led to endothelial cell (EC) dysfunction. To address this hypothesis, we investigated the following in the aortas of mice with excessive hyaluronan accumulation in the tunica media (HAS-2) and wild-type mice: EC dysfunction via myograph studies, nitric oxide (NO) bioavailability via diaminofluorescence, superoxide formation via dihydroethidium fluorescence, and the distances between ECs via stereological methods. EC dysfunction, characterized by blunted relaxations in response to acetylcholine and decreased NO bioavailability, was found in the aortas of male HAS-2 mice, while it was unaltered in the aortas of female HAS-2 mice. Superoxide levels increased and extracellular superoxide dismutase (ecSOD) expression decreased in the aortas of male and female HAS-2 mice. The EC-EC distances and LDL receptor expression were markedly increased in the HAS-2 aortas of male mice. Our findings suggest hyaluronan increases oxidative stress in the vascular wall and that together with increased EC distance, it is associated with a sex-specific decrease in NO levels and endothelial dysfunction in the aorta of male HAS-2 transgenic mice.
Collapse
Affiliation(s)
- Karen Axelgaard Lorentzen
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8000 Aarhus, Denmark
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, 8000 Aarhus, Denmark
| | - Raquel Hernanz
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, 8000 Aarhus, Denmark
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, 8000 Aarhus, Denmark
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging, The Department of Clinical Medicine—Stereology, Aarhus University, 8000 Aarhus, Denmark
| | - Lise Wogensen
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8000 Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
39
|
Isayama K, Rini DM, Yamamoto Y, Suzuki T. Propionate regulates tight junction barrier by increasing endothelial-cell selective adhesion molecule in human intestinal Caco-2 cells. Exp Cell Res 2023; 425:113528. [PMID: 36842619 DOI: 10.1016/j.yexcr.2023.113528] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
Regulation of the intestinal barrier is closely associated with intestinal microbial metabolism. This study investigated the role of propionate, a major short-chain fatty acid produced by intestinal microorganisms, in the regulation of the tight junction (TJ) barrier in human intestinal Caco-2 cells. Propionate strengthened TJ barrier integrity, as indicated by decreased permeability to macromolecules and increased transepithelial electrical resistance in Caco-2 cells. DNA microarray analysis revealed that propionate upregulated endothelial cell-selective adhesion molecule (ESAM), a TJ-associated protein, without any increase in other TJ proteins. The upregulation of ESAM was confirmed using quantitative reverse transcription-PCR, immunoblotting, and immunofluorescence analyses. Luciferase promoter analysis demonstrated that propionate induced the transcriptional activation of ESAM. The effects of propionate were sensitive to nilotinib inhibition of NR2C2. Overexpression of human ESAM (hESAM) in canine kidney epithelial MDCK-II cells lowered the permeability to macromolecules in a manner similar to that of propionate-treated Caco-2 cells. hESAM overexpression facilitated calcium-induced assembly of the TJ complex in MDCK-II cells. Taken together, propionate strengthened the intestinal TJ barrier by increasing ESAM levels in Caco-2 cells.
Collapse
Affiliation(s)
- Kana Isayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Dina Mustika Rini
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan; Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional "Veteran", Surabaya, Jawa Timur, 60294, Indonesia
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
40
|
Dobson DA, Holle LA, Lin FC, Huffman JE, Luyendyk JP, Flick MJ, Smith NL, de Vries PS, Morrison AC, Wolberg AS. Novel genetic regulators of fibrinogen synthesis identified by an in vitro experimental platform. J Thromb Haemost 2023; 21:522-533. [PMID: 36696182 PMCID: PMC10111212 DOI: 10.1016/j.jtha.2022.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Fibrinogen has an established, essential role in both coagulation and inflammatory pathways, and these processes are deeply intertwined in the development of thrombotic and atherosclerotic diseases. Previous studies aimed to better understand the (patho) physiological actions of fibrinogen by characterizing the genomic contribution to circulating fibrinogen levels. OBJECTIVES Establish an in vitro approach to define functional roles between genes within these loci and fibrinogen synthesis. METHODS Candidate genes were selected on the basis of their proximity to genetic variants associated with fibrinogen levels and expression in hepatocytes and HepG2 cells. HepG2 cells were transfected with small interfering RNAs targeting candidate genes and cultured in the absence or presence of the proinflammatory cytokine interleukin-6. Effects on fibrinogen protein production, gene expression, and cell growth were assessed by immunoblotting, real-time polymerase chain reaction, and cell counts, respectively. RESULTS HepG2 cells secreted fibrinogen, and stimulation with interleukin-6 increased fibrinogen production by 3.4 ± 1.2 fold. In the absence of interleukin-6, small interfering RNA knockdown of FGA, IL6R, or EEPD1 decreased fibrinogen production, and knockdown of LEPR, PDIA5, PLEC, SHANK3, or CPS1 increased production. In the presence of interleukin-6, knockdown of FGA, IL6R, or ATXN2L decreased fibrinogen production. Knockdown of FGA, IL6R, EEPD1, LEPR, PDIA5, PLEC, or CPS1 altered transcription of one or more fibrinogen genes. Knocking down ATXN2L suppressed inducible but not basal fibrinogen production via a post-transcriptional mechanism. CONCLUSIONS We established an in vitro platform to define the impact of select gene products on fibrinogen production. Genes identified in our screen may reveal cellular mechanisms that drive fibrinogen production as well as fibrin(ogen)-mediated (patho)physiological mechanisms.
Collapse
Affiliation(s)
- Dre'Von A Dobson
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - Lori A Holle
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - Feng-Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences Institute, University of North Carolina at Chapel Hill, NC, USA
| | | | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle WA, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle WA, USA; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA, USA
| | - Alanna C Morrison
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Marshall RN, Morgan PT, Smeuninx B, Quinlan JI, Brook MS, Atherton PJ, Smith K, Wilkinson DJ, Breen L. Myofibrillar Protein Synthesis and Acute Intracellular Signaling with Elastic Band Resistance Exercise in Young and Older Men. Med Sci Sports Exerc 2023; 55:398-408. [PMID: 36731005 DOI: 10.1249/mss.0000000000003061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Resistance exercise training (RET) attenuates age-related muscle and strength loss ("sarcopenia"). However, compared with machine-based RET, the efficacy of cost-effective, accessible elastic band RET (EB-RET) for muscle adaptive remodeling lacks supporting mechanistic evidence. METHODS Eight young (YM; 24 ± 4 yr) and eight older (OM; 68 ± 6 yr) untrained males consumed an oral stable isotope tracer (D 2 O) combined with serial vastus lateralis muscle biopsies to measure integrated myofibrillar protein synthesis (iMyoPS) and regulatory signaling over ~48 h before (habitual) and after an acute bout of EB-RET (6 × 12 repetitions at ~70% of one-repetition maximum). iMyoPS was determined via gas chromatography-pyrolysis-isotope ratio mass spectroscopy and regulatory signaling expression by immunoblot. RESULTS Habitual iMyoPS did not differ between YM and OM (1.62% ± 0.21% vs 1.43% ± 0.47%·d -1 , respectively, P = 0.128). There was a significant increase in iMyoPS after EB-RET in YM (2.23% ± 0.69%·d -1 , P = 0.02), but not OM (1.75% ± 0.54%·d -1 , P = 0.30). EB-RET increased the phosphorylation of key anabolic signaling proteins similarly in YM and OM at 1 h postexercise, including p-IRS-1 Ser636/639 , p-Akt Ser473 , p-4EBP-1 Thr37/46 , p-P70S6K Thr389 , and p-RPS6 Ser240/244 , whereas p-TSC2 Thr1462 and p-mTOR Ser2448 increased only in YM (all P < 0.05). There were no differences in the expression of amino acid transporters/sensors or proteolytic markers after EB-RET. CONCLUSIONS iMyoPS was elevated after EB-RET in YM but not OM. However, the increase in acute anabolic signaling with EB-RET was largely similar between groups. In conclusion, the capacity for EB-RET to stimulate iMyoPS may be impaired in older age. Further work may be necessary to optimize prescriptive programming in YM and OM.
Collapse
|
42
|
Macedo GC, Kreifeldt M, Goulding SP, Okhuarobo A, Sidhu H, Contet C. Chronic MAP4343 reverses escalated alcohol drinking in a mouse model of alcohol use disorder. Neuropsychopharmacology 2023; 48:821-830. [PMID: 36670228 PMCID: PMC10066354 DOI: 10.1038/s41386-023-01529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023]
Abstract
Alcohol use disorders can be driven by negative reinforcement. Alterations of the microtubule cytoskeleton have been associated with mood regulation in the context of depression. Notably, MAP4343, a pregnenolone derivative known to promote tubulin assembly, has antidepressant properties. In the present study, we tested the hypothesis that MAP4343 may reduce excessive alcohol drinking in a mouse model of alcohol dependence by normalizing affect during withdrawal. Adult male C57BL/6J mice were given limited access to voluntary alcohol drinking and ethanol intake escalation was induced by chronic intermittent ethanol (CIE) vapor inhalation. Chronic, but not acute, administration of MAP4343 reduced ethanol intake and this effect was more pronounced in CIE-exposed mice. There was a complex interaction between the effects of MAP4343 and alcohol on affective behaviors. In the elevated plus maze, chronic MAP4343 tended to increase open-arm exploration in alcohol-naive mice but reduced it in alcohol-withdrawn mice. In the tail suspension test, chronic MAP4343 reduced immobility selectively in Air-exposed alcohol-drinking mice. Finally, chronic MAP4343 countered the plasma corticosterone reduction induced by CIE. Parallel analysis of tubulin post-translational modifications revealed lower α-tubulin acetylation in the medial prefrontal cortex of CIE-withdrawn mice. Altogether, these data support the relevance of microtubules as a therapeutic target for the treatment of AUD.
Collapse
Affiliation(s)
- Giovana C Macedo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Kreifeldt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Scott P Goulding
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Agbonlahor Okhuarobo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Faculty of Pharmacy, Department of Pharmacology & Toxicology, University of Benin, Benin City, Nigeria
| | - Harpreet Sidhu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Candice Contet
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
43
|
Wang Q, Han W, Ma C, Wang T, Zhong J. Western blot normalization: Time to choose a proper loading control seriously. Electrophoresis 2023; 44:854-863. [PMID: 36645159 DOI: 10.1002/elps.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Recent research has questioned the validity of housekeeping proteins in Western blot. Our present study proposed new ideas for Western blot normalization that improved the reproducibility of scientific research. We used the Gene Expression Omnibus (GEO) database and the web tool GEO2R to exclude unstable housekeeping genes quickly. In ischemic heart tissues, actin and tubulin changed significantly, whereas no statistically significant changes were observed in the expression of genes relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Besides, the reliability of GAPDH was further examined by Western blot. Additionally, unstable housekeeping genes were found in other animal models of cardiovascular medicine. We also found that sodium dodecyl sulfate and temperature significantly impacted the results of Ponceau S staining. Membranes stained with Ponceau S after immunodetection could avoid this interference, and the coefficients of variation for post-immunodetection staining are lower than those produced by GAPDH immunodetection. Overall, we described a new use of differential gene expression analysis and proposed a modified Ponceau S staining method, which provided researchers with a proper loading control for Western blot and hence could improve reproducibility in research.
Collapse
Affiliation(s)
- Qinhong Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Wenqiang Han
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Chuanzhen Ma
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Tianyu Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Jingquan Zhong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China.,Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, P. R. China
| |
Collapse
|
44
|
Alawadhi M, Kilarkaje N, Mouihate A, Al-Bader MD. Role of progesterone on dexamethasone-induced alterations in placental vascularization and progesterone receptors in rats†. Biol Reprod 2023; 108:133-149. [PMID: 36322157 DOI: 10.1093/biolre/ioac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/04/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is manifested by lower maternal progesterone levels, smaller placental size, and decreased placental vascularity indicated by lower expression of vascular endothelial growth factor (VEGF). Studies showed that progesterone increases angiogenesis and induces VEGF expression in different tissues. Therefore, the aim of the present study is to evaluate the effect of progesterone on placental vascular bed and VEGF expression and the modulation of nuclear and membranous progesterone receptors (PR) in dexamethasone-induced rat IUGR model. METHODS Pregnant Sprague-Dawley rats were allocated into four groups and given intraperitoneal injections of either saline, dexamethasone, dexamethasone, and progesterone or progesterone. Injections started on gestation day (DG) 15 and lasted until the days of euthanization (19 and 21 DG). Enzyme-linked immunosorbent assay was used to evaluate plasma progesterone levels. Real-time PCR and western blotting were used to evaluate gene and protein expressions of VEGF, and PR in labyrinth and basal placental zones. Immunohistochemistry was used to locate VEGF and different PRs in placental cells. Immunofluorescence was used to monitor the expression of blood vessel marker (αSMA). RESULTS Dexamethasone decreased the vascular bed fraction and the expression of VEGF in both placental zones. Progesterone co-treatment with dexamethasone prevented this reduction. Nuclear and membrane PRs showed tissue-specific expression in different placental zones and responded differently to both dexamethasone and progesterone. CONCLUSIONS Progesterone treatment improves the outcomes in IUGR pregnancy. Progesterone alleviated DEX-induced IUGR probably by promoting placental VEGF and angiogenesis.
Collapse
Affiliation(s)
- Mariam Alawadhi
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Narayana Kilarkaje
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Maie D Al-Bader
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
45
|
Marshall RN, McKendry J, Smeuninx B, Seabright AP, Morgan PT, Greig C, Breen L. Acute resistance exercise training does not augment mitochondrial remodelling in master athletes or untrained older adults. Front Physiol 2023; 13:1097988. [PMID: 36685204 PMCID: PMC9846504 DOI: 10.3389/fphys.2022.1097988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Ageing is associated with alterations to skeletal muscle oxidative metabolism that may be influenced by physical activity status, although the mechanisms underlying these changes have not been unraveled. Similarly, the effect of resistance exercise training (RET) on skeletal muscle mitochondrial regulation is unclear. Methods: Seven endurance-trained masters athletes ([MA], 74 ± 3 years) and seven untrained older adults ([OC]. 69 ± 6 years) completed a single session of knee extension RET (6 x 12 repetitions, 75% 1-RM, 120-s intra-set recovery). Vastus lateralis muscle biopsies were collected pre-RET, 1 h post-RET, and 48h post-RET. Skeletal muscle biopsies were analyzed for citrate synthase (CS) enzyme activity, mitochondrial content, and markers of mitochondrial quality control via immunoblotting. Results: Pre-RET CS activity and protein content were ∼45% (p < .001) and ∼74% greater in MA compared with OC (p = .006). There was a significant reduction (∼18%) in CS activity 48 h post-RET (p < .05) in OC, but not MA. Pre-RET abundance of individual and combined mitochondrial electron transport chain (ETC) complexes I-V were significantly greater in MA compared with OC, as were markers of mitochondrial fission and fusion dynamics (p-DRP-1Ser616, p-MFFSer146, OPA-1 & FIS-1, p < .05 for all). Moreover, MA displayed greater expression of p-AMPKThr172, PGC1α, TFAM, and SIRT-3 (p < .05 for all). Notably, RET did not alter the expression of any marker of mitochondrial content, biogenesis, or quality control in both OC and MA. Conclusion: The present data suggest that long-term aerobic exercise training supports superior skeletal muscle mitochondrial density and protein content into later life, which may be regulated by greater mitochondrial quality control mechanisms and supported via superior fission-fusion dynamics. However, a single session of RET is unable to induce mitochondrial remodelling in the acute (1h post-RET) and delayed (48 h post-RET) recovery period in OC and MA.
Collapse
Affiliation(s)
- Ryan Neil Marshall
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
| | - James McKendry
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Benoit Smeuninx
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
| | - Alex Peter Seabright
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
| | - Paul T. Morgan
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
| | - Carolyn Greig
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
- NIHR Biomedical Research Centre, Birmingham, United Kingdom
| | - Leigh Breen
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
- NIHR Biomedical Research Centre, Birmingham, United Kingdom
| |
Collapse
|
46
|
Suzuki J. Endurance exercise under short-duration intermittent hypoxia promotes endurance performance via improving muscle metabolic properties in mice. Physiol Rep 2022; 10:e15534. [PMID: 36514879 PMCID: PMC9748492 DOI: 10.14814/phy2.15534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/13/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023] Open
Abstract
This study was designed to (1) investigate the effects of acute exercise under intermittent hypoxia on muscle mRNA and protein levels, and (2) clarify the mechanisms by which exercise under intermittent hypoxia improves endurance capacity. Experiment-1: Male mice were subjected to either acute endurance exercise, exercise under hypoxia (14% O2 ), exercise under intermittent hypoxia (Int, three cycles of room air [10 min] and 14% O2 [15 min]). At 3 h after exercise under intermittent hypoxia, sirtuin-6 mRNA levels and nuclear prolyl hydroxylases-2 protein levels were significantly upregulated in white gastrocnemius muscle in the Int group. Experiment-2: Mice were assigned to sedentary control (Sed), normoxic exercise-trained (ET), hypoxic exercise-trained (HYP) or exercise-trained under intermittent hypoxia (INT) groups. Exercise capacity was significantly greater in the INT group than in the ET and HYP group. Activity levels of citrate synthase were significantly greater in the INT group than in the HYP group in soleus (SOL) and red gastrocnemius muscles. In SOL, nuclear N-terminal PGC1α levels were considerably increased by the INT training (95% confidence interval [CI]: 1.09-1.79). The INT significantly increased pyruvate dehydrogenase complex activity levels in left ventricle (LV). Monocarboxylate transporter-4 protein levels were significantly increased after the INT training in LV. Capillary-to-fiber ratio values were significantly increased in SOL and were substantially increased in LV (CI: 1.10-1.22) after the INT training. These results suggest that exercise training under intermittent hypoxia represents a beneficial strategy for increasing endurance performance via improving metabolic properties and capillary profiles in several hind-leg muscles and the heart.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise Physiology, Health and Sports Sciences, Course of Sports Education, Department of EducationHokkaido University of EducationIwamizawaJapan
| |
Collapse
|
47
|
Antioxidant and Anticancer Potentials of the Olive and Sesame Mixture against Dimethylhydrazine-Induced Colorectal Cancer in Wistar Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5440773. [PMID: 36262974 PMCID: PMC9576397 DOI: 10.1155/2022/5440773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022]
Abstract
Cancer is one of the leading causes of death worldwide, and natural agents have shown some promise in fighting it. Thus, the present study tried to evaluate the healing potential of an equal combination of olive and sesame extract (MOS) against the colorectal cancerous lesions that were induced by dimethylhydrazine (DMH) in male rats and also compare the anticarcinogenic potential of the MOS and vitamin E with each other. Therefore, the mixture of equal olive and sesame extract (MOS) was used as the main treatment, alongside vitamin E as a parallel treatment. This study examined the red blood cell (RBC) and white blood cell (WBC) levels, biochemical indices, lactate dehydrogenase (LDH), C-reactive protein (CRP), total protein (TP), creatine kinase (CPK), albumin, and the colon tissue pathology, as well as the level of protein expression of the adenomatous polyposis coli (APC), proliferating cell nuclear antigen (PCNA), carcinoembryonic antigen (CEA), and platelet-derived growth factor (PDGF). Also, the tissue stress markers including total antioxidant capacity (TAC), malondialdehyde (MDA), and superoxide dismutase (SOD) were analyzed. Overall, the results represented a significant reduction in the congestion, mitotic index, inflammation, and cell destruction in the MOS group compared to the DMH group. In terms of the oxidative stress level, a significant increase was observed in the DMH group in comparison with the DMH-MOS group (P < 0.05), and the MOS significantly increased TAC level (P < 0.05). Furthermore, the DMH+MOS-exposed group exhibited a significantly lower expression of the PCNA, CEA, and PDGF proteins than those of the DMH group. Overall, the MOS showed that it can effectively prevent DMH-induced colon lesions. This mixture, as a strong antioxidant agent, can be clinically applied for preventing and treating colorectal cancer, the effectiveness of which is higher than that of vitamin E.
Collapse
|
48
|
Stain-Free total-protein normalization enhances the reproducibility of Western blot data. Anal Biochem 2022; 654:114840. [PMID: 35931182 DOI: 10.1016/j.ab.2022.114840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022]
Abstract
We compared the accuracy of three common methods of total protein normalization. The Stain-Free method was accurate across different types/brands of western blotting membrane and for various protein loads, unlike Ponceau S and Amido Black. Normalizing to the housekeeping proteins Actin and β-Tubulin could match the accuracy of the Stain-Free method. However, compared to Actin or β-Tubulin, normalizing to the Stain-Free signal reduced variability that led to enhanced reproducibility and a reduction in the number of samples needed to obtain statistically significant results by >50%. Stain-Free normalization can enhance the reproducibility and hence the confidence in Western Blot data.
Collapse
|
49
|
BAG3 Attenuates Ischemia-Induced Skeletal Muscle Necroptosis in Diabetic Experimental Peripheral Artery Disease. Int J Mol Sci 2022; 23:ijms231810715. [PMID: 36142618 PMCID: PMC9502689 DOI: 10.3390/ijms231810715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Peripheral artery disease (PAD) is characterized by impaired blood flow to the lower extremities, resulting in ischemic limb injuries. Individuals with diabetes and PAD typically have more severe ischemic limb injuries and limb amputations, but the mechanisms involved are poorly understood. Previously, we identified BAG3 as a gene within a mouse genetic locus termed limb salvage QTL1 on mouse chromosome 7 that determined the extent of limb necrosis following ischemic injury in C57Bl/6 mice. Whether BAG3 deficiency plays a role in the severe ischemic injury observed in diabetic PAD is not known. In vitro, we found simulated ischemia enhanced BAG3 expression in primary human skeletal muscle cells, whereas BAG3 knockdown increased necroptosis markers and decreased cell viability. In vivo, ischemic skeletal muscles from hind limbs of high-fat diet (HFD)-fed mice showed poor BAG3 expression compared to normal chow diet (NCD)-fed mice, and this was associated with increased limb amputations. BAG3 overexpression in ischemic skeletal muscles from hind limbs of HFD mice rescued limb amputation and improved autophagy, necroptosis, skeletal muscle function and regeneration. Therefore, BAG3 deficiency in ischemic skeletal muscles contributes to the severity of ischemic limb injury in diabetic PAD, likely through autophagy and necroptosis pathways.
Collapse
|
50
|
Carles A, Schlernitzauer A, Vignes M, Cros G, Magous R, Maurice T, Oiry C. Heptafluoroisobutyronitrile (C 4F 7N), a gas used for insulating and arc quenching in electrical switchgear, is neurotoxic in the mouse brain. Toxicology 2022; 480:153319. [PMID: 36100137 DOI: 10.1016/j.tox.2022.153319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Fluoronitrile gas (C4F7N, CAS number 42532-60-5) is one of the most promising candidates as insulating and/or breaking medium in high and medium voltage electrical equipment. Besides its promising properties, C4F7N gas is however not devoid of acute toxicity when used pure or in gas mixtures. The toxicity was not extensively analyzed and reported. The aim of the present study was to analyze in mice the consequences of a single exposure to C4F7N gas, at different concentrations and different timepoints after exposure. Male and female Swiss mice were exposed to breathable air or C4F7N gas, at 800 ppmv or 1500 ppmv, for 4 h on day 0. Behavioral tests (spontaneous alternation in the Y-maze and object recognition) were performed on days 1, 7 and 14 to assess memory alterations. The animals were then sacrificed and their brains dissected for biochemical analyses or fixed with paraformaldehyde for histology and immunohistochemistry. Results showed behavioral impairments and memory deficits, with impairments of alternation at days 1 and 7 and object recognition at day 14. Histological alterations of pyramidal neuronal layer in the hippocampus, neuroinflammatory astroglial reaction, and microglial alterations were observed, more marked in female than male mice. Moreover, the biochemical analyses done in the brain of 1500 ppmv exposed female mice showed a reductive stress with decreased lipid peroxidation and release of cytochrome c, leading to apoptosis with increases in caspase-9 cleavage and γ-H2AX/H2AX ratio. Finally, electrophysiological analyses using a multi-electrode array allowed the measure of the extracellular activity of pyramidal neurons in the CA2 area and revealed that exposure to the gas not only prevented the induction of long-term potentiation but even provoked an epileptoid-like activity in some neurons suggesting major alterations of synaptic plasticity. This study therefore showed that an acute exposure of mice to C4F7N gas provoked, particularly in female animals, memory alterations and brain toxicity characterized by a reductive stress, microglial toxicity, loss of synaptic plasticity and apoptosis. Its use in industrial installations must be done with extreme caution.
Collapse
Affiliation(s)
- Allison Carles
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; ©MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Michel Vignes
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gérard Cros
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Richard Magous
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Tangui Maurice
- ©MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France.
| | - Catherine Oiry
- ©MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|