1
|
Karapapak M, Kara ZMY, Düzgün E. The Predictive Utility of Circulating PCSK9 Levels on Diabetic Retinopathy Stage. Curr Eye Res 2024; 49:1107-1113. [PMID: 39086188 DOI: 10.1080/02713683.2024.2386360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE To investigate the value of proprotein-converting subtilisin kexin type 9 (PCSK9) levels in type 2 diabetes mellitus (T2D) patients with different stages of diabetic retinopathy (DR) and to compare these findings with a healthy control group without diabetes mellitus (DM). METHODS A total of 135 patients, 100 of whom were patients with T2D and 35 of whom were in the health control group, were included in this prospective study. T2D patients were divided into three groups: the first group included 34 people with T2D without DR, the second group had 32 people with non-proliferative DR (NPDR), and the third group had 34 people with proliferative DR (PDR). Serum PCSK9 levels were analyzed and compared between the groups. RESULTS Forty-nine percent of the participants were female, and the mean age was 64 ± 9.1 years, with no statistically significant results between the four groups in terms of age and sex. The mean serum PCSK9 value was significantly different (p = 0.01) when all groups were evaluated, and statistically significant change was observed with the progression of DR. When serum PCSK9 levels were evaluated in all T2D patients (groups 1, 2, and 3), a medium-level correlation was observed with low-density lipoprotein (p < 0.05). CONCLUSION Serum PCSK9 values differed significantly in diabetic patients compared to the control group. One should be clinically cautious about the usefulness of circulating PCSK9 concentrations as an indicator of the risk of diabetic retinopathy.
Collapse
Affiliation(s)
- Murat Karapapak
- Department of Ophthalmology, Basaksehir Cam and Sakura City Hospital, University of Health Science, Istanbul, Turkey
| | - Zeynep Mine Yalçınkaya Kara
- Department of Biochemistry, Şişli Hamidiye Etfal Training and Research Hospital, University of Health Science, Istanbul, Turkey
| | - Eyüp Düzgün
- Department of Ophthalmology, Sultan Abdülhamid Han Training and Research Hospital, University of Health Science, Istanbul, Turkey
| |
Collapse
|
2
|
Luciani L, Pedrelli M, Parini P. Modification of lipoprotein metabolism and function driving atherogenesis in diabetes. Atherosclerosis 2024; 394:117545. [PMID: 38688749 DOI: 10.1016/j.atherosclerosis.2024.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, characterized by raised blood glucose levels and impaired lipid metabolism resulting from insulin resistance and relative insulin deficiency. In diabetes, the peculiar plasma lipoprotein phenotype, consisting in higher levels of apolipoprotein B-containing lipoproteins, hypertriglyceridemia, low levels of HDL cholesterol, elevated number of small, dense LDL, and increased non-HDL cholesterol, results from an increased synthesis and impaired clearance of triglyceride rich lipoproteins. This condition accelerates the development of the atherosclerotic cardiovascular disease (ASCVD), the most common cause of death in T2DM patients. Here, we review the alteration of structure, functions, and distribution of circulating lipoproteins and the pathophysiological mechanisms that induce these modifications in T2DM. The review analyzes the influence of diabetes-associated metabolic imbalances throughout the entire process of the atherosclerotic plaque formation, from lipoprotein synthesis to potential plaque destabilization. Addressing the different pathophysiological mechanisms, we suggest improved approaches for assessing the risk of adverse cardiovascular events and clinical strategies to reduce cardiovascular risk in T2DM and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lorenzo Luciani
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Interdisciplinary Center for Health Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Guerra-Ávila PL, Guzmán TJ, Vargas-Guerrero B, Domínguez-Rosales JA, Cervantes-Garduño AB, Salazar-Montes AM, Sánchez-Orozco LV, Gurrola-Díaz CM. Comparative Screening of the Liver Gene Expression Profiles from Type 1 and Type 2 Diabetes Rat Models. Int J Mol Sci 2024; 25:4151. [PMID: 38673735 PMCID: PMC11050131 DOI: 10.3390/ijms25084151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Experimental animal models of diabetes can be useful for identifying novel targets related to disease, for understanding its physiopathology, and for evaluating emerging antidiabetic treatments. This study aimed to characterize two rat diabetes models: HFD + STZ, a high-fat diet (60% fat) combined with streptozotocin administration (STZ, 35 mg/kg BW), and a model with a single STZ dose (65 mg/kg BW) in comparison with healthy rats. HFD + STZ- induced animals demonstrated a stable hyperglycemia range (350-450 mg/dL), whereas in the STZ-induced rats, we found glucose concentration values with a greater dispersion, ranging from 270 to 510 mg/dL. Moreover, in the HFD + STZ group, the AUC value of the insulin tolerance test (ITT) was found to be remarkably augmented by 6.2-fold higher than in healthy animals (33,687.0 ± 1705.7 mg/dL/min vs. 5469.0 ± 267.6, respectively), indicating insulin resistance (IR). In contrast, a more moderate AUC value was observed in the STZ group (19,059.0 ± 3037.4 mg/dL/min) resulting in a value 2.5-fold higher than the average exhibited by the control group. After microarray experiments on liver tissue from all animals, we analyzed genes exhibiting a fold change value in gene expression <-2 or >2 (p-value <0.05). We found 27,686 differentially expressed genes (DEG), identified the top 10 DEGs and detected 849 coding genes that exhibited opposite expression patterns between both diabetes models (491 upregulated genes in the STZ model and 358 upregulated genes in HFD + STZ animals). Finally, we performed an enrichment analysis of the 849 selected genes. Whereas in the STZ model we found cellular pathways related to lipid biosynthesis and metabolism, in the HFD + STZ model we identified pathways related to immunometabolism. Some phenotypic differences observed in the models could be explained by transcriptomic results; however, further studies are needed to corroborate these findings. Our data confirm that the STZ and the HFD + STZ models are reliable experimental models for human T1D and T2D, respectively. These results also provide insight into alterations in the expression of specific liver genes and could be utilized in future studies focusing on diabetes complications associated with impaired liver function.
Collapse
Affiliation(s)
- Paloma Lucía Guerra-Ávila
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
| | - Tereso J. Guzmán
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Belinda Vargas-Guerrero
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
| | - José Alfredo Domínguez-Rosales
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
| | - Alejandra Beatriz Cervantes-Garduño
- Laboratorio de Genómica Clínica, Facultad de Odontología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México C.P. 04510, Mexico;
| | - Adriana María Salazar-Montes
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
| | - Laura Verónica Sánchez-Orozco
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
| | - Carmen Magdalena Gurrola-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (C.U.C.S.), Universidad de Guadalajara, Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara C.P. 44350, Mexico; (P.L.G.-Á.); (T.J.G.); (B.V.-G.); (J.A.D.-R.); (A.M.S.-M.); (L.V.S.-O.)
| |
Collapse
|
4
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Xu JN, Wang TT, Shu H, Shi SY, Tao LC, Li JJ. Insight into the role of PCSK9 in glucose metabolism. Clin Chim Acta 2023:117444. [PMID: 37315725 DOI: 10.1016/j.cca.2023.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Diabetes mellitus (DM) is strongly associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD). Proprotein convertase subtilisin/kexin type 9 (PCSK9) was recently identified as an important regulator of circulating low-density lipoprotein-cholesterol (LDL-C) levels via degradation of the LDL receptor, proving to be a valid target to improve lipoprotein profiles and cardiovascular outcomes in patients with ASCVD. Beyond LDL receptor processing and cholesterol homeostasis, the PCSK9 protein has recently been verified to be associated with glucose metabolism. Importantly, clinical trials suggest that treatment with PCSK9 inhibitors for patients with DM is more effective. Hence, in this review, we summarize the current findings derived from experimental, preclinical, and clinical studies regarding the association between PCSK9 and glucose metabolism, including the relationship of PCSK9 genetic mutations to glucose metabolism and diabetes, the link between plasma PCSK9 concentrations and glucose metabolic parameters, the effects of glucose-lowering drugs on plasma PCSK9 levels and the impacts of PCSK9 inhibitors on cardiovascular outcomes of patients with DM. Clinically, exploring this field may improve our understanding regarding the roles of PCSK9 in glucose metabolism and may offer an in-depth interpretation of how PCSK9 inhibitors exert effects on the treatment of patients with DM.
Collapse
Affiliation(s)
- Jia-Ni Xu
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou, 213000, China
| | - Ting-Ting Wang
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou, 213000, China
| | - Hong Shu
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou, 213000, China
| | - Shun-Yi Shi
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou, 213000, China
| | - Li-Chan Tao
- The Third Affiliated Hospital of Soochow University, Juqian Road, Changzhou, 213000, China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China.
| |
Collapse
|
6
|
PCSK9: Associated with cardiac diseases and their risk factors? Arch Biochem Biophys 2020; 704:108717. [PMID: 33307067 DOI: 10.1016/j.abb.2020.108717] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022]
Abstract
PCSK9 plays a critical role in cholesterol metabolism via the PCSK9-LDLR axis. Liver-derived, circulating PCSK9 has become a novel drug target in lipid-lowering therapy. Accumulative evidence supports the possible association between PCSK9 and cardiac diseases and their risk factors. PCSK9 exerts various effects in the heart independently of LDL-cholesterol regulation. Acute myocardial infarction (AMI) induces local and systemic inflammation and reactive oxygen species generation, resulting in increased PCSK9 expression in hepatocytes and cardiomyocytes. PCSK9 upregulation promotes excessive autophagy and apoptosis in cardiomyocytes, thereby contributing to cardiac insufficiency. PCSK9 might also participate in the pathophysiology of heart failure by regulating fatty acid metabolism and cardiomyocyte contractility. It also promotes platelet activation and coagulation in patients with atrial fibrillation. PCSK9 is an independent predictor of aortic valve calcification and accelerates calcific aortic valve disease by regulating lipoprotein(a) catabolism. Accordingly, the use of PCSK9 inhibitors significantly reduced infarct sizes and arrhythmia and improves cardiac contractile function in a rat model of AMI. Circulating PCSK9 levels are positively correlated with age, diabetes mellitus, obesity, and hypertension. Here, we reviewed recent clinical and experimental studies exploring the association between PCSK9, cardiac diseases, and their related risk factors and aiming to identify possible underlying mechanisms.
Collapse
|
7
|
St-Amand R, Ngo Sock ÉT, Quinn S, Lavoie JM, St-Pierre DH. Two weeks of western diet disrupts liver molecular markers of cholesterol metabolism in rats. Lipids Health Dis 2020; 19:192. [PMID: 32825820 PMCID: PMC7442981 DOI: 10.1186/s12944-020-01351-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background The present study was designed to test the hypothesis that in the liver, excessive fat accumulation impairs cholesterol metabolism mainly by altering the low-density lipoprotein-receptor (LDL-R) pathway. Method Young male Wistar rats were fed standard (SD), high fat (HFD; 60% kcal) or Western (WD; 40% fat + 35% sucrose (17.5% fructose)) diets for 2 or 6 weeks. Results Weight gain (~ 40 g) was observed only following 6 weeks of the obesogenic diets (P < 0.01). Compared to the 2-week treatment, obesogenic diets tripled fat pad weight (~ 20 vs 7 g) after 6 weeks. Hepatic triglyceride (TG) levels were greater in response to both the WD and HFD compared to the SD (P < 0.01) at 2 and 6 weeks and their concentrations were greater (P < 0.05) in WD than HFD at 2 weeks. Plasma total cholesterol levels were higher (P < 0.05) in animals submitted to WD. After 2 and 6 weeks, liver expression of LDL-R, proprotein convertase subtilisin/kexin 9 (PCSKk9) and sterol regulatory element binding protein 2 (SREBP2), involved in LDL-cholesterol uptake, was lower in animals submitted to WD than in others treated with HFD or SD (P < 0.01). Similarly, low-density lipoprotein-receptor-related protein 1 (LRP1) and acyl-CoA cholesterol acyltransferase-2 (ACAT-2) mRNA levels were lower (P < 0.01) among WD compared to SD-fed rats. Expression of the gene coding the main regulator of endogenous cholesterol synthesis, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR) was reduced in response to WD compared to SD and HFD at 2 (P < 0.001) and 6 (P < 0.05) weeks. Being enriched in fructose, the WD strongly promoted the expression of carbohydrate-response element binding protein (ChREBP) and acetyl-CoA carboxylase (ACC), two key regulators of de novo lipogenesis. Conclusion These results show that the WD promptly increased TG levels in the liver by potentiating fat storage. This impaired the pathway of hepatic cholesterol uptake via the LDL-R axis, promoting a rapid increase in plasma total cholesterol levels. These results indicate that liver fat content is a factor involved in the regulation of plasma cholesterol.
Collapse
Affiliation(s)
- Roxane St-Amand
- École de Kinésiologie et des Sciences de l'Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Émilienne T Ngo Sock
- École de Kinésiologie et des Sciences de l'Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Samantha Quinn
- Department of Exercise Sciences, Université du Québec à Montréal, 141, Avenue Président-Kennedy, C.P. 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Jean-Marc Lavoie
- École de Kinésiologie et des Sciences de l'Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - David H St-Pierre
- Department of Exercise Sciences, Université du Québec à Montréal, 141, Avenue Président-Kennedy, C.P. 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada.
| |
Collapse
|
8
|
Melendez QM, Wooten CJ, Krishnaji ST, Knagge K, Kirchner D, Lopez D. Identification of Novel Proteins Interacting with Proprotein Convertase Subtilisin/Kexin 9. INTERNATIONAL JOURNAL OF BIOMEDICAL INVESTIGATION 2020; 3:123. [PMID: 32587953 PMCID: PMC7316369 DOI: 10.31531/2581-4745.1000123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High levels of cholesterol, especially as low-density lipoprotein (LDL), are a well-known risk factor for atherosclerotic-related diseases. The key atherogenic property of LDL is its ability to form atherosclerotic plaque. Proprotein convertase subtilisin/kexin-9 (PCSK9) is an indirect regulator of plasma LDL levels by controlling the number of LDL receptor molecules expressed at the plasma membrane, especially in the liver. Herein, we performed a combination of affinity chromatography, mass spectrometry analysis and identification, and gene expression studies to identify proteins that interact with PCSK9. Through these studies, we identified three proteins, alpha-1-antitrypsin (A1AT), alpha-1-microglobulin/bikunin precursor (AMBP), and apolipoprotein H (APOH) expressed by C3A cells that interact with PCSK9. The expression levels of A1AT and APOH increased in cells treated with MITO+ medium, a condition previously shown to affect the function of PCSK9, as compared to treating with Regular (control) medium. However, AMBP expression did not change in response to the treatments. Additional studies are required to determine which of these proteins can modulate the expression/function of PCSK9. The identification of endogenous modulators of PCSK9's function could lead to the development of novel diagnostic tests or treatment options for patients suffering hypercholesterolemia in combination with other chronic metabolic diseases.
Collapse
Affiliation(s)
- Quantil M. Melendez
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, USA
| | - Catherine J. Wooten
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, USA
| | | | - Kevin Knagge
- David H Murdock Research Institute, Kannapolis, USA
| | | | - Dayami Lopez
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, USA
| |
Collapse
|
9
|
Hypoglycemic and Hypolipidemic Effects of Phellinus Linteus Mycelial Extract from Solid-State Culture in A Rat Model of Type 2 Diabetes. Nutrients 2019; 11:nu11020296. [PMID: 30704063 PMCID: PMC6412584 DOI: 10.3390/nu11020296] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
Hypoglycemic and hypolipidemic effects of P. linteus have been observed in numerous studies, but the underlying molecular mechanisms are unclear. In this study, we prepared P. linteus extract (PLE) from mycelia of solid-state culture, and evaluated its hypoglycemic and hypolipidemic effects in rat models of high-fat diet (HFD)-induced and low-dose streptozotocin (STZ)-induced type 2 diabetes. PLE treatment effectively reduced blood glucose levels, and improved insulin resistance and lipid and lipoprotein profiles. The hypoglycemic effect of PLE was based on inhibition of key hepatic gluconeogenesis enzymes (FBPase, G6Pase) expression and hepatic glycogen degradation, and consequent reduction of hepatic glucose production. PLE also: (i) enhanced expression of CPT1A and ACOX1 (key proteins involved in fatty acid β-oxidation) and low-density lipoprotein receptor (LDLR) in liver, thus promoting clearance of triglycerides and LDL-C; (ii) inhibited expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in liver, thus reducing cholesterol production; (iii) displayed strong hepatoprotective and renal protective effects. Our findings indicate that PLE has strong potential functional food application in adjuvant treatment of type 2 diabetes with dyslipidemia.
Collapse
|
10
|
Bojanin D, Vekic J, Milenkovic T, Vukovic R, Zeljkovic A, Stefanovic A, Janac J, Ivanisevic J, Mitrovic K, Miljkovic M, Spasojevic-Kalimanovska V. Association between proprotein convertase subtilisin/kexin 9 (PCSK9) and lipoprotein subclasses in children with type 1 diabetes mellitus: Effects of glycemic control. Atherosclerosis 2019; 280:14-20. [DOI: 10.1016/j.atherosclerosis.2018.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/01/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022]
|
11
|
Melendez QM, Wooten CJ, Lopez D. Atorvastatin and lovastatin, but not pravastatin, increased cellular complex formation between PCSK9 and the LDL receptor in human hepatocyte-like C3A cells. Biochem Biophys Res Commun 2017; 492:103-108. [PMID: 28802576 DOI: 10.1016/j.bbrc.2017.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Statins are the first-line treatment for hypercholesterolemic patients. Herein, the effects of three statins on complex formation between proprotein convertase subtilisin-kexin 9 (PCSK9) and the low density lipoprotein receptor (LDLR), a critical step for the PCSK9-dependent degradation of LDLR in the lysosome, were examined. Human hepatocyte-like C3A cells grown in control (containing 10% fetal bovine serum) or MITO+ (supplemented with BD™ MITO + serum extender) medium were also treated with atorvastatin (Atorv), lovastatin (Lov), or pravastatin (Prav) for 24 h. RNA and protein expression studies and determinations of PCSK9/LDLR complex formation were performed. As expected, the statins increased the expression of PCSK9 and LDLR independently of the medium employed. Interestingly, Atov and Lov caused increases in PCSK9/LDLR complex formation, whereas Prav decreased complex formation when compared to cells treated without drugs. These results may explain why Prav works better for statin intolerant patients than other statins such as Atorv and Lov.
Collapse
Affiliation(s)
- Quantil M Melendez
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Catherine J Wooten
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Dayami Lopez
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
12
|
Hypercholesterolemia: The role of PCSK9. Arch Biochem Biophys 2017; 625-626:39-53. [DOI: 10.1016/j.abb.2017.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023]
|
13
|
Momtazi AA, Banach M, Pirro M, Stein EA, Sahebkar A. PCSK9 and diabetes: is there a link? Drug Discov Today 2017; 22:883-895. [DOI: 10.1016/j.drudis.2017.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/08/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
|
14
|
Hosseinpour F, Shomali T, Rafieian-Kopaei M. Hypocholesterolemic activity of cornelian cherry (Cornus mas L.) fruits. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 14:/j/jcim.ahead-of-print/jcim-2017-0007/jcim-2017-0007.xml. [PMID: 28731315 DOI: 10.1515/jcim-2017-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022]
Abstract
Background Lipid profile disturbances are important risk factors for cardiovascular events in patients with diabetes mellitus and finding safe and multifaceted agents is persuaded in this regard. This study aimed to evaluate the effect of cornelian cherry dried powder (CCDP) on serum lipid profile as well as liver antioxidant capacity, HMG-CoA reductase level and activity, and LDL receptor level in streptozotocin-induced diabetic rats. Methods Forty-eight male adult Wistar rats were randomly allocated into eight equal groups and were treated for 4 weeks as follows: negative control (normal rats, basic diet); positive control (diabetic rats, basic diet), T1 to T4 groups: diabetic rats fed with basic diet containing 0.25, 0.5, 1 and 2 g/ 100 g BW CCDP, respectively; T5: diabetic rats fed with basic diet plus 10 mg/kg lovastatin in drinking water and T6: normal rats fed with basic diet containing 1 g/ 100 g BW CCDP. Results Administration of CCDP had no significant effect on serum glucose levels in diabetic rats however decreased total cholesterol, low-density lipoprotein cholesterol (LDL-C) and increased high-density lipoprotein cholesterol (HDL-C) levels and liver antioxidant capacity as compared to positive control rats (p<0.05). Although HMG-CoA reductase level showed a significant decrease only in T3 group, its activity was reduced in all diabetic CCDP and lovastatin-treated groups as compared to positive control. LDL receptor level remained statistically the same among positive control and CCDP-treated groups. Conclusions In conclusion, the present study confirms hypocholesterolemic effect of CCDP in diabetic rats and demonstrated that this effect was at least partly due to inhibition of liver HMG-CoA reductase activity.
Collapse
|
15
|
Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res Cardiol 2017; 112:32. [PMID: 28439730 PMCID: PMC5403857 DOI: 10.1007/s00395-017-0619-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022]
Abstract
Ischemic heart disease is the main cause of death worldwide and is accelerated by increased levels of low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a potent circulating regulator of LDL-C through its ability to induce degradation of the LDL receptor (LDLR) in the lysosome of hepatocytes. Only in the last few years, a number of breakthroughs in the understanding of PCSK9 biology have been reported illustrating how PCSK9 activity is tightly regulated at several levels by factors influencing its transcription, secretion, or by extracellular inactivation and clearance. Two humanized antibodies directed against the LDLR-binding site in PCSK9 received approval by the European and US authorities and additional PCSK9 directed therapeutics are climbing up the phases of clinical trials. The first outcome data of the PCSK9 inhibitor evolocumab reported a significant reduction in the composite endpoint (cardiovascular death, myocardial infarction, or stroke) and further outcome data are awaited. Meanwhile, it became evident that PCSK9 has (patho)physiological roles in several cardiovascular cells. In this review, we summarize and discuss the recent biological and clinical data on PCSK9, the regulation of PCSK9, its extra-hepatic activities focusing on cardiovascular cells, molecular concepts to target PCSK9, and finally briefly summarize the data of recent clinical studies.
Collapse
|
16
|
Laugier-Robiolle S, Vergès B, Le Bras M, Gand E, Bouillet B, Saulnier PJ, Le May C, Pichelin M, Maréchaud R, Petit JM, Hadjadj S, Cariou B. Glycaemic control influences the relationship between plasma PCSK9 and LDL cholesterol in type 1 diabetes. Diabetes Obes Metab 2017; 19:448-451. [PMID: 27804190 DOI: 10.1111/dom.12819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022]
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is a critical regulator of LDL cholesterol metabolism. Little is known, however, about the regulation of PCSK9 in patients with type 1 diabetes (T1D). In the present study, we aimed to determine the relationship between circulating PCSK9 and metabolic variables in T1D. Plasma PCSK9 levels were measured in 195 people with T1D (mean age 38.8 years, mean diabetes duration 17.2 years, mean glycated haemoglobin [HbA1c] 8.3%), who were free of any lipid-lowering agent. Plasma PCSK9 was positively correlated with LDL cholesterol (P = .0007), triglycerides (P = .004), apolipoprotein B (P = .005), HbA1c (P = .003), systolic (P = .003) and diastolic (P = .001) blood pressure and body mass index (0.02). In multivariate analysis, PCSK9 concentration was independently associated with HbA1c (P = .02) and LDL cholesterol (P = .03). After classifying patients according to HbA1c tertile, the correlation between PCSK9 and LDL cholesterol was only observed in the highest tertile (P = .0006; Rho = 0.43), whereas no correlation was found in the lowest and intermediate tertiles. This study suggests that good glycaemic control abolishes the positive relationship between PCSK9 and LDL cholesterol in patients with T1D; however, the underlying molecular mechanisms remain to be established.
Collapse
Affiliation(s)
| | - Bruno Vergès
- Department of Endocrinology, INSERM CRI 866, CHU Dijon, Université Bourgogne, Dijon, France
| | - Maëlle Le Bras
- Department of Endocrinology, l'Institut du Thorax, CHU Nantes, Nantes, France
| | - Elise Gand
- Endocrinology - Diabetology and CIC1402, CHU Poitiers, Poitiers, France
| | - Benjamin Bouillet
- Department of Endocrinology, INSERM CRI 866, CHU Dijon, Université Bourgogne, Dijon, France
| | | | - Cédric Le May
- l'Institut du Thorax, INSERM, CNRS, Nantes University, Nantes, France
| | - Matthieu Pichelin
- Department of Endocrinology, l'Institut du Thorax, INSERM, CNRS, CHU Nantes, Nantes University, Nantes, France
| | - Richard Maréchaud
- Endocrinology - Diabetology and CIC1402, CHU Poitiers, Poitiers, France
| | - Jean-Michel Petit
- Department of Endocrinology, INSERM CRI 866, CHU Dijon, Université Bourgogne, Dijon, France
| | - Samy Hadjadj
- Endocrinology - Diabetology and CIC1402, CHU Poitiers, Poitiers, France
- INSERM, CIC1402, Poitiers, France
- UFR Médecine Pharmacie, University of Poitiers, Poitiers, France
| | - Bertrand Cariou
- Department of Endocrinology, l'Institut du Thorax, INSERM, CNRS, CHU Nantes, Nantes University, Nantes, France
| |
Collapse
|
17
|
Lavoie JM. Dynamics of hepatic and intestinal cholesterol and bile acid pathways: The impact of the animal model of estrogen deficiency and exercise training. World J Hepatol 2016; 8:961-975. [PMID: 27621762 PMCID: PMC4990760 DOI: 10.4254/wjh.v8.i23.961] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/25/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
Abstract
Plasma cholesterol level is determined by a complex dynamics that involves transport lipoproteins which levels are tightly dependent on how the liver and the intestine regulate cholesterol and biliary acid metabolism. Regulation of cholesterol and biliary acids by the liver and the intestine is in turn coupled to a large array of enzymes and transporters that largely influence the inflow and the outflow of cholesterol and biliary acids through these organs. The activity of the key regulators of cholesterol and biliary acids may be influenced by several external factors such as pharmacological drugs and the nutritional status. In recent years, more information has been gathered about the impact of estrogens on regulation of cholesterol in the body. Exposure to high levels of estrogens has been reported to promote cholesterol gallstone formation and women are twice as likely as men to develop cholesterol gallstones. The impact of estrogen withdrawal, such as experienced by menopausal women, is therefore of importance and more information on how the absence of estrogens influence cholesterol regulation is started to come out, especially through the use of animal models. An interesting alternative to metabolic deterioration due to estrogen deficiency is exercise training. The present review is intended to summarize the present information that links key regulators of cholesterol and biliary acid pathways in liver and intestine to the absence of estrogens in an animal model and to discuss the potential role of exercise training as an alternative.
Collapse
|
18
|
Yang SH, Li S, Zhang Y, Xu RX, Guo YL, Zhu CG, Wu NQ, Cui CJ, Sun J, Li JJ. Positive correlation of plasma PCSK9 levels with HbA1c in patients with type 2 diabetes. Diabetes Metab Res Rev 2016; 32:193-9. [PMID: 26377225 DOI: 10.1002/dmrr.2712] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been demonstrated to be involved in not only lipid metabolism but also glucose homeostasis. Glycated haemoglobin (HbA1c ) is a 'gold standard' for monitoring long-term glycaemic control. However, the correlation of plasma PCSK9 levels with HbA1c remains undetermined. METHODS We consecutively enrolled 805 subjects undergoing coronary angiography, including 176 patients with type 2 diabetes mellitus (T2DM) and 629 non-diabetic patients. The baseline characteristics were collected, and serum PCSK9 level was assessed by ELISA. Univariable regression analysis and multiple-variable regression analysis were used to examine the associations of PCSK9 with HbA1c . Furthermore, the HbA1c was compared across the tertiles of PCSK9 levels. And also, PCSK9 levels were compared in poorly controlled (HbA1c ≥ 7.0%) and well-controlled (HbA1c < 7.0%) patients with T2DM. RESULTS PCSK9 levels were positively correlated with low-density lipoprotein cholesterol in both T2DM and non-T2DM. Univariable regression analysis revealed a positive association between PCSK9 and HbA1c in patients with T2DM (β = 0.255, p = 0.001) but not in patients without diabetes (β = 0.061, p = 0.128). Multiple-variable regression analysis exhibited that PCSK9 was independently correlated with HbA1c in T2DM after adjustment for traditional atherosclerotic risk factors (β = 0.197, p = 0.020). Moreover, HbA1c level was higher in patients with the highest tertile of PCSK9 than that in the lowest tertile (p = 0.042). Additionally, higher levels of PCSK9 were found in poorly controlled group compared with the well-controlled group (p = 0.029). CONCLUSIONS Data suggest a positive correlation of PCSK9 levels with HbA1c in patients with T2DM but not in patients without T2DM, indicating a potential role of PCSK9 in T2DM. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sheng-Hua Yang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Yan Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Chuan-Jue Cui
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Jing Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| |
Collapse
|
19
|
Lenarczyk M, Su J, Haworth ST, Komorowski R, Fish BL, Migrino RQ, Harmann L, Hopewell JW, Kronenberg A, Patel S, Moulder JE, Baker JE. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation. Pharmacol Res Perspect 2015; 3:e00145. [PMID: 26171225 PMCID: PMC4492761 DOI: 10.1002/prp2.145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 01/20/2023] Open
Abstract
The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age-matched, sham-irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total- and LDL-cholesterol (low-density lipoprotein-cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9 days after irradiation mitigated TBI-induced increases in total- and LDL-cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri-arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20–120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation-induced cardiac disease.
Collapse
Affiliation(s)
- Marek Lenarczyk
- Division of Cardiothoracic Surgery, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Jidong Su
- Division of Cardiothoracic Surgery, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Steven T Haworth
- Department of Medicine, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Richard Komorowski
- Department of Pathology, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin Milwaukee, Wisconsin
| | | | - Leanne Harmann
- Division of Cardiovascular Medicine, Medical College of Wisconsin Milwaukee, Wisconsin
| | - John W Hopewell
- Green Templeton College and Particle Therapy Cancer Research Institute, University of Oxford Oxford, United Kingdom
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory Berkeley, California
| | - Shailendra Patel
- Division of Endocrinology, Medical College of Wisconsin Milwaukee, Wisconsin ; Clement J. Zablocki Veterans Affairs Medical Center Milwaukee, Wisconsin
| | - John E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin Milwaukee, Wisconsin
| | - John E Baker
- Division of Cardiothoracic Surgery, Medical College of Wisconsin Milwaukee, Wisconsin ; Department of Pharmacology and Toxicology, Medical College of Wisconsin Milwaukee, Wisconsin ; Children's Research Institute, Children's Hospital of Wisconsin Milwaukee, Wisconsin
| |
Collapse
|
20
|
Miao J, Manthena PV, Haas ME, Ling AV, Shin DJ, Graham MJ, Crooke RM, Liu J, Biddinger SB. Role of Insulin in the Regulation of Proprotein Convertase Subtilisin/Kexin Type 9. Arterioscler Thromb Vasc Biol 2015; 35:1589-96. [PMID: 26023080 DOI: 10.1161/atvbaha.115.305688] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds the low-density lipoprotein receptor and targets it for degradation, has emerged as an important regulator of serum cholesterol levels and cardiovascular disease risk. Although much work is currently focused on developing therapies for inhibiting PCSK9, the endogenous regulation of PCSK9, particularly by insulin, remains unclear. The objective of these studies was to determine the effects of insulin on PCSK9 in vitro and in vivo. APPROACH AND RESULTS Using rat hepatoma cells and primary rat hepatocytes, we found that insulin increased PCSK9 expression and increased low-density lipoprotein receptor degradation in a PCSK9-dependent manner. In parallel, hepatic Pcsk9 mRNA and plasma PCSK9 protein levels were reduced by 55% to 75% in mice with liver-specific knockout of the insulin receptor; 75% to 88% in mice made insulin-deficient with streptozotocin; and 65% in ob/ob mice treated with antisense oligonucleotides against the insulin receptor. However, antisense oligonucleotide-mediated knockdown of insulin receptor in lean, wild-type mice had little effect. In addition, we found that fasting was able to reduce PCSK9 expression by 80% even in mice that lack hepatic insulin signaling. CONCLUSIONS Taken together, these data indicate that although insulin induces PCSK9 expression, it is not the sole or even dominant regulator of PCSK9 under all conditions.
Collapse
Affiliation(s)
- Ji Miao
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA (J.M., P.V.M., M.E.H., A.V.L., D.-J.S., S.B.B.); Cardiovascular Disease Research, Isis Pharmaceuticals, Carlsbad, CA (M.J.G., R.M.C.); and Department of Veterans Affairs, VA Palo Alto Healthcare System, CA (J.L.)
| | - Praveen V Manthena
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA (J.M., P.V.M., M.E.H., A.V.L., D.-J.S., S.B.B.); Cardiovascular Disease Research, Isis Pharmaceuticals, Carlsbad, CA (M.J.G., R.M.C.); and Department of Veterans Affairs, VA Palo Alto Healthcare System, CA (J.L.)
| | - Mary E Haas
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA (J.M., P.V.M., M.E.H., A.V.L., D.-J.S., S.B.B.); Cardiovascular Disease Research, Isis Pharmaceuticals, Carlsbad, CA (M.J.G., R.M.C.); and Department of Veterans Affairs, VA Palo Alto Healthcare System, CA (J.L.)
| | - Alisha V Ling
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA (J.M., P.V.M., M.E.H., A.V.L., D.-J.S., S.B.B.); Cardiovascular Disease Research, Isis Pharmaceuticals, Carlsbad, CA (M.J.G., R.M.C.); and Department of Veterans Affairs, VA Palo Alto Healthcare System, CA (J.L.)
| | - Dong-Ju Shin
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA (J.M., P.V.M., M.E.H., A.V.L., D.-J.S., S.B.B.); Cardiovascular Disease Research, Isis Pharmaceuticals, Carlsbad, CA (M.J.G., R.M.C.); and Department of Veterans Affairs, VA Palo Alto Healthcare System, CA (J.L.)
| | - Mark J Graham
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA (J.M., P.V.M., M.E.H., A.V.L., D.-J.S., S.B.B.); Cardiovascular Disease Research, Isis Pharmaceuticals, Carlsbad, CA (M.J.G., R.M.C.); and Department of Veterans Affairs, VA Palo Alto Healthcare System, CA (J.L.)
| | - Rosanne M Crooke
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA (J.M., P.V.M., M.E.H., A.V.L., D.-J.S., S.B.B.); Cardiovascular Disease Research, Isis Pharmaceuticals, Carlsbad, CA (M.J.G., R.M.C.); and Department of Veterans Affairs, VA Palo Alto Healthcare System, CA (J.L.)
| | - Jingwen Liu
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA (J.M., P.V.M., M.E.H., A.V.L., D.-J.S., S.B.B.); Cardiovascular Disease Research, Isis Pharmaceuticals, Carlsbad, CA (M.J.G., R.M.C.); and Department of Veterans Affairs, VA Palo Alto Healthcare System, CA (J.L.)
| | - Sudha B Biddinger
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA (J.M., P.V.M., M.E.H., A.V.L., D.-J.S., S.B.B.); Cardiovascular Disease Research, Isis Pharmaceuticals, Carlsbad, CA (M.J.G., R.M.C.); and Department of Veterans Affairs, VA Palo Alto Healthcare System, CA (J.L.).
| |
Collapse
|
21
|
Cui CJ, Li S, Li JJ. PCSK9 and its modulation. Clin Chim Acta 2014; 440:79-86. [PMID: 25444750 DOI: 10.1016/j.cca.2014.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/21/2014] [Accepted: 10/31/2014] [Indexed: 12/22/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), a newly-recognized protein, plays a key role in regulating cholesterol homeostasis. PCSK9 reduces hepatic low-density lipoprotein receptors (LDLRs) thereby increasing LDL-cholesterol (LDL-C). Recently, biologic and genetic research proposed several approaches to inhibit or reduce PCSK9 to improve lipid profile and cardiovascular performance in patients with dyslipidemia, particularly hypercholesterolemia. Of note, PCSK9 is a secreted protein under tight control by multiple modulators. Therefore, elucidating the factors that influence PCSK9 would enhance our understanding of PCSK9 and potentially day-to-day management of these patients at high cardiovascular risk. This review will focus on genetic variants, physiologic processes, pharmacologic agents and pathologic conditions related to PCSK9 in order to assess current and future therapeutic strategies targeting this molecule.
Collapse
Affiliation(s)
- Chuan-Jue Cui
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beilishi Road 167, Beijing 100037, PR China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beilishi Road 167, Beijing 100037, PR China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beilishi Road 167, Beijing 100037, PR China.
| |
Collapse
|
22
|
|
23
|
Awan Z, Dubuc G, Faraj M, Dufour R, Seidah NG, Davignon J, Rabasa-Lhoret R, Baass A. The effect of insulin on circulating PCSK9 in postmenopausal obese women. Clin Biochem 2014; 47:1033-9. [PMID: 24721682 DOI: 10.1016/j.clinbiochem.2014.03.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND PCSK9 (proprotein convertase subtilisin/kexin type 9) promotes the degradation of the LDLR (LDL receptor) in hepatocytes, leading to an increase in plasma LDL-C (LDL cholesterol). Previous animal studies have shown that insulin stimulates PCSK9 transcription and observational human studies showed a positive correlation between plasma PCSK9 concentration and fasting insulinemia. OBJECTIVE The purpose of this study was to investigate the effects of chronic and acute hyperinsulinemia on PCSK9 in a large cohort of human subjects as well as at a cellular level. METHODS The in vivo effect of hyperinsulinemia on plasma PCSK9 concentration was studied using euglycemic-hyperinsulinemic clamps in 82 non-diabetic post-menopausal obese patients. We studied the in vitro effects of insulin stimulation on PCSK9 mRNA as well as on protein expression and secretion in HepG2 and Huh7 cells. RESULTS Analysis of the pre and post-clamp data revealed a 15.4% (p<0.001) lowering of plasma PCSK9 concentration after acute insulin induction. In vitro studies post-insulin stimulation showed that mRNA levels of PCSK9 reduced by 25% in HepG2 cells (p<0.027) and by 59% in Huh7 cells (p<0.01). Intracellular concentration of PCSK9 were 10% lower in HepG2 cells (p<0.05) and 35% lower in Huh7 cells (p<0.05). CONCLUSIONS Our results show an inhibitory effect of acute hyperinsulinemia on PCSK9 in humans both in vitro and in vivo. This data may assist in evaluating PCSK9 levels in individuals on insulin therapy.
Collapse
Affiliation(s)
- Zuhier Awan
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), QC, Canada.
| | - Geneviève Dubuc
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montreal (IRCM), QC, Canada
| | - May Faraj
- Platform for Research in Obesity, Metabolism and Diabetes (PROMD), Metabolic Unit Laboratory, Clinical Research Institute of Montreal (IRCM), QC, Canada; Department of Nutrition, Faculty of Medicine, University of Montreal, QC, Canada
| | - Robert Dufour
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montreal (IRCM), QC, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), QC, Canada
| | - Jean Davignon
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montreal (IRCM), QC, Canada
| | - Rémi Rabasa-Lhoret
- Platform for Research in Obesity, Metabolism and Diabetes (PROMD), Metabolic Unit Laboratory, Clinical Research Institute of Montreal (IRCM), QC, Canada; Department of Nutrition, Faculty of Medicine, University of Montreal, QC, Canada; Montreal Diabetes Research Center (MDRC) and Endocrinology Division of Montreal University Hospital (CHUM), QC, Canada
| | - Alexis Baass
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montreal (IRCM), QC, Canada; Platform for Research in Obesity, Metabolism and Diabetes (PROMD), Metabolic Unit Laboratory, Clinical Research Institute of Montreal (IRCM), QC, Canada; Department of Medicine, Faculty of Medicine, McGill University, QC, Canada
| |
Collapse
|
24
|
Veilleux A, Grenier É, Marceau P, Carpentier AC, Richard D, Levy E. Intestinal Lipid Handling. Arterioscler Thromb Vasc Biol 2014; 34:644-53. [DOI: 10.1161/atvbaha.113.302993] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alain Veilleux
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Émilie Grenier
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Picard Marceau
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - André C. Carpentier
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Denis Richard
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Emile Levy
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| |
Collapse
|
25
|
Hoenig M, Traas AM, Schaeffer DJ. Evaluation of routine hematology profile results and fructosamine, thyroxine, insulin, and proinsulin concentrations in lean, overweight, obese, and diabetic cats. J Am Vet Med Assoc 2013; 243:1302-9. [DOI: 10.2460/javma.243.9.1302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Tao R, Xiong X, DePinho RA, Deng CX, Dong XC. FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. J Biol Chem 2013; 288:29252-9. [PMID: 23974119 DOI: 10.1074/jbc.m113.481473] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Elevated LDL-cholesterol is a risk factor for the development of cardiovascular disease. Thus, proper control of LDL-cholesterol homeostasis is critical for organismal health. Genetic analysis has identified PCSK9 (proprotein convertase subtilisin/kexin type 9) as a crucial gene in the regulation of LDL-cholesterol via control of LDL receptor degradation. Although biochemical characteristics and clinical implications of PCSK9 have been extensively investigated, epigenetic regulation of this gene is largely unknown. In this work we have discovered that Sirt6, an NAD(+)-dependent histone deacetylase, plays a critical role in the regulation of the Pcsk9 gene expression in mice. Hepatic Sirt6 deficiency leads to elevated Pcsk9 gene expression and LDL-cholesterol as well. Mechanistically, we have demonstrated that Sirt6 can be recruited by forkhead transcription factor FoxO3 to the proximal promoter region of the Pcsk9 gene and deacetylates histone H3 at lysines 9 and 56, thereby suppressing the gene expression. Also remarkably, overexpression of Sirt6 in high fat diet-fed mice lowers LDL-cholesterol. Overall, our data suggest that FoxO3 and Sirt6, two longevity genes, can reduce LDL-cholesterol levels through regulation of the Pcsk9 gene.
Collapse
Affiliation(s)
- Rongya Tao
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | | | | | | |
Collapse
|
27
|
Haas ME, Attie AD, Biddinger SB. The regulation of ApoB metabolism by insulin. Trends Endocrinol Metab 2013; 24:391-7. [PMID: 23721961 PMCID: PMC3810413 DOI: 10.1016/j.tem.2013.04.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/07/2023]
Abstract
The leading cause of death in diabetic patients is cardiovascular disease. Apolipoprotein B (ApoB)-containing lipoprotein particles, which are secreted and cleared by the liver, are essential for the development of atherosclerosis. Insulin plays a key role in the regulation of ApoB. Insulin decreases ApoB secretion by promoting ApoB degradation in the hepatocyte. In parallel, insulin promotes clearance of circulating ApoB particles by the liver via the low-density lipoprotein receptor (LDLR), LDLR-related protein 1 (LRP1), and heparan sulfate proteoglycans (HSPGs). Consequently, the insulin-resistant state of type 2 diabetes (T2D) is associated with increased secretion and decreased clearance of ApoB. Here, we review the mechanisms by which insulin controls the secretion and uptake of ApoB in normal and diabetic livers.
Collapse
Affiliation(s)
- Mary E Haas
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
28
|
Cariou B, Langhi C, Le Bras M, Bortolotti M, Lê KA, Theytaz F, Le May C, Guyomarc'h-Delasalle B, Zaïr Y, Kreis R, Boesch C, Krempf M, Tappy L, Costet P. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr Metab (Lond) 2013; 10:4. [PMID: 23298392 PMCID: PMC3548771 DOI: 10.1186/1743-7075-10-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/22/2012] [Indexed: 11/12/2022] Open
Abstract
Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity. Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.
Collapse
|
29
|
Selmanoğlu G, Karacaoğlu E, Kiliç A, Koçkaya EA, Akay MT. Toxicity of food contaminant furan on liver and kidney of growing male rats. ENVIRONMENTAL TOXICOLOGY 2012; 27:613-622. [PMID: 21254322 DOI: 10.1002/tox.20673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 10/05/2010] [Accepted: 10/09/2010] [Indexed: 05/30/2023]
Abstract
Furan is a chemical used in some industrial products and occurs naturally in heat-treated foods. We aimed to investigate the effects of orally administered furan on liver and kidney in growing Wistar male rats for 90 days. In this respect, biochemical, morphological, histopathological, and histomorphometrical examinations were performed. Three- to 4-week aged rats were divided into five groups of eight animals each; control, oil control; 2, 4, 8 mg/kg/day furan treatment groups. At the end of the experiment, antioxidant enzyme activities and serum AST, ALT, HDL, Urea, etc. levels were analyzed. Malondialdehyde (MDA) levels, superoxide dismutase (SOD), catalase (CAT), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were also measured in liver homogenates. Also, liver and kidney were examined morphologically and histopathologically under light microscopy. According to the results of biochemical analysis, ALT, ALP, and LDL levels in treatment groups were significantly different compared with control groups. While LDL levels in treatment groups increased significantly, ALT and ALP levels decreased significantly. No significant changes were observed in liver MDA levels, superoxide dismutase and catalase activities in treatment groups. While IL-6 levels did not change in treatment groups, furan caused dose-dependent increases in liver TNF-α level of rats. In treatment groups, absolute and relative liver weights changed significantly, however, no significant changes were observed in kidney and relative kidney weights. Hyperemic blood vessels in the liver and congestion, edema, fibrosis, and tubular damage in the kidney of rats treated with furan were observed histopathologically. According to histomorphometric examinations, glomeruli diameters and glomerular volume decreased in the kidneys of rats in treatment groups.
Collapse
Affiliation(s)
- Güldeniz Selmanoğlu
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey.
| | | | | | | | | |
Collapse
|
30
|
Ferri N. Proprotein convertase subtilisin/kexin type 9: from the discovery to the development of new therapies for cardiovascular diseases. SCIENTIFICA 2012; 2012:927352. [PMID: 24278757 PMCID: PMC3820617 DOI: 10.6064/2012/927352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/28/2012] [Indexed: 06/02/2023]
Abstract
The identification of the HMG-CoA reductase inhibitors, statins, has represented a dramatic innovation of the pharmacological modulation of hypercholesterolemia and associated cardiovascular diseases. However, not all patients receiving statins achieve guideline-recommended low density lipoprotein (LDL) cholesterol goals, particularly those at high risk. There remains, therefore, an unmet medical need to develop additional well-tolerated and effective agents to lower LDL cholesterol levels. The discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9), a secretory protein that posttranscriptionally regulates levels of low density lipoprotein receptor (LDLR) by inducing its degradation, has opened a new era of pharmacological modulation of cholesterol homeostasis. This paper summarizes the current knowledge of the basic molecular mechanism underlying the regulatory effect of LDLR expression by PCSK9 obtained from in vitro cell-cultured studies and the analysis of the crystal structure of PCSK9. It also describes the epidemiological and experimental evidences of the regulatory effect of PCSK9 on LDL cholesterol levels and cardiovascular diseases and summarizes the different pharmacological approaches under development for inhibiting PCSK9 expression, processing, and the interaction with LDLR.
Collapse
Affiliation(s)
- Nicola Ferri
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
31
|
Vergès B, Duvillard L, Brindisi MC, Gautier E, Krempf M, Costet P, Cariou B. Lack of association between plasma PCSK9 and LDL-apoB100 catabolism in patients with uncontrolled type 2 diabetes. Atherosclerosis 2011; 219:342-8. [DOI: 10.1016/j.atherosclerosis.2011.07.098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/04/2011] [Accepted: 07/14/2011] [Indexed: 11/26/2022]
|
32
|
Jun JY, Ma Z, Segar L. Spontaneously diabetic Ins2(+/Akita):apoE-deficient mice exhibit exaggerated hypercholesterolemia and atherosclerosis. Am J Physiol Endocrinol Metab 2011; 301:E145-54. [PMID: 21447785 PMCID: PMC3129838 DOI: 10.1152/ajpendo.00034.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/25/2011] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) increases the risk of adverse coronary events. Among risk factors, dyslipidemia due to altered hepatic lipoprotein metabolism plays a central role in diabetic atherosclerosis. Nevertheless, the likely alterations in plasma lipid/lipoprotein profile remain unclear, especially in the context of spontaneously developed T1D and atherosclerosis. To address this question, we generated Ins2(+/Akita):apoE(-/-) mouse by cross-breeding Ins2(+/Akita) mouse (which has Ins2 gene mutation, causing pancreatic β-cell apoptosis and insulin deficiency) with apoE(-/-) mouse. Ins2(+/Akita):apoE(-/-) mice developed T1D spontaneously at 4-5 wk of age. At 25 wk of age and while on a standard chow diet, diabetic Ins2(+/Akita):apoE(-/-) mice exhibited an approximately threefold increase in atherosclerotic plaque in association with an approximatelty twofold increase in plasma non-HDL cholesterol, predominantly in the LDL fraction, compared with nondiabetic controls. To determine factors contributing to the exaggerated hypercholesterolemia, we assessed hepatic VLDL secretion and triglyceride content, expression of hepatic lipoprotein receptors, and plasma apolipoprotein composition. Diabetic Ins2(+/Akita):apoE(-/-) mice exhibited diminished VLDL secretion by ~50%, which was accompanied by blunted Akt phosphorylation in response to insulin infusion and decreased triglyceride content in the liver. Although the expression of hepatic LDL receptor was not affected, there was a significant reduction in the expression of lipolysis-stimulated lipoprotein receptor (LSR) by ~28%. Moreover, there was a marked decrease in plasma apoB-100 with a significant increase in apoB-48 and apoC-III levels. In conclusion, exaggerated hypercholesterolemia and atherosclerosis in spontaneously diabetic Ins2(+/Akita):apoE(-/-) mice may be attributable to impaired lipoprotein clearance in the setting of diminished expression of LSR and altered apolipoprotein composition of lipoproteins.
Collapse
Affiliation(s)
- John Y Jun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
33
|
Cariou B, Le May C, Costet P. Clinical aspects of PCSK9. Atherosclerosis 2011; 216:258-65. [PMID: 21596380 DOI: 10.1016/j.atherosclerosis.2011.04.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a circulating protein that impairs LDL clearance by promoting the LDL receptor (LDLR) degradation. PCSK9 has emerged as a new pharmacological target for hypercholesterolemia, and different PCSK9 inhibitors are now evaluated in clinical trials. Here, we propose an overview of the clinical perspectives of PCSK9. First, we describe the clinical features of patients with PCSK9 mutations, and how these variations impact the cardiovascular risk. Then, we extensively discuss the potential role of circulating PCSK9 as a new biomarker of lipid metabolism. Indeed, many studies conducted in healthy and type 2 diabetic patients have tested the association of circulating PCSK9 with LDL-cholesterol as well as with multiple metabolic parameters. The overall picture of the clinical relevance of circulating PCSK9 is complicated by the effect of nutritional status and hypolipidemic drugs such as statins, fibrates, ezetimibe on plasma PCSK9 concentrations. Finally, we present a brief overview of the available therapeutic strategies to inhibit PCSK9.
Collapse
Affiliation(s)
- Bertrand Cariou
- INSERM, UMR915, L'Institut du Thorax, F-44000 Nantes, France.
| | | | | |
Collapse
|
34
|
Kappelle PJ, Lambert G, Dullaart RP. Plasma proprotein convertase subtilisin–kexin type 9 does not change during 24h insulin infusion in healthy subjects and type 2 diabetic patients. Atherosclerosis 2011; 214:432-5. [DOI: 10.1016/j.atherosclerosis.2010.10.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/18/2010] [Accepted: 10/22/2010] [Indexed: 11/17/2022]
|
35
|
Abstract
PURPOSE OF REVIEW Remnant lipoproteins that persist in the bloodstream after each meal have become increasingly important contributors to atherosclerotic vascular disease, owing to the spread of overnutrition, underexertion, obesity, insulin resistance, and type 2 diabetes. Here, we review recent work that clarified long-standing controversies over the molecular mediators of remnant clearance by the liver, as well as their dysregulation - but possible correction - during alterations in caloric balance. RECENT FINDINGS Two endocytic receptors, the syndecan-1 heparan sulfate proteoglycan (HSPG) and the LDL receptor, plus one docking receptor, SR-BI, significantly contribute to normal hepatic remnant catabolism. Compelling evidence exists for dysfunction of the syndecan-1 HSPG in diabetic states. The major molecular defect identified so far in poorly controlled type 1 diabetes is impaired hepatic HSPG assembly. In contrast, the primary defect in hepatic HSPGs in type 2 diabetes appears to arise from accelerated de-sulfation, owing to the induction of a sulfatase. Moreover, short-term caloric restriction restores hepatic expression of this sulfatase towards normal. SUMMARY Correct identification of hepatic remnant receptors has finally allowed investigations of their molecular dysregulation in diabetes and related conditions. New work points to novel therapeutic targets to correct postprandial dyslipoproteinemia and its consequent arterial damage.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | |
Collapse
|
36
|
Mousavi SA, Berge KE, Leren TP. The unique role of proprotein convertase subtilisin/kexin 9 in cholesterol homeostasis. J Intern Med 2009; 266:507-19. [PMID: 19930098 DOI: 10.1111/j.1365-2796.2009.02167.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The LDL receptor (LDLR) plays an essential role in the regulation of plasma (LDL) cholesterol concentrations by virtue of its ability to clear plasma LDL. Down-regulation of the LDLR by proprotein convertase subtilisin/kexin 9 (PCSK9) has recently emerged as a regulatory mechanism that controls plasma LDL cholesterol concentrations. Studies in which PCSK9 is over-expressed in mice, have demonstrated that PCSK9, by enhancing hepatic LDLR degradation, decreases the availability of the LDLR for LDL uptake, resulting in increased plasma LDL cholesterol levels. However, PCSK9 has also recently been shown to mediate down-regulation of surface receptors other than the LDLR, suggesting that it may have much broader roles than initially thought.
Collapse
Affiliation(s)
- S A Mousavi
- Medical Genetics Laboratory, Department of Medical Genetics, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | |
Collapse
|
37
|
PCSK9 is expressed in pancreatic delta-cells and does not alter insulin secretion. Biochem Biophys Res Commun 2009; 390:1288-93. [PMID: 19878649 DOI: 10.1016/j.bbrc.2009.10.138] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 10/23/2009] [Indexed: 12/26/2022]
Abstract
PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a proprotein convertase that plays a key role in cholesterol homeostasis by decreasing hepatic low-density lipoprotein receptor (LDLR) protein expression. Here, we investigated the expression and the function of PCSK9 in pancreatic islets. Immunohistochemistry analysis showed that PCSK9 co-localized specifically with somatostatin in human pancreatic delta-cells, with no expression in alpha- and beta-cells. PCSK9 seems not to be secreted by mouse isolated islets maintained in culture. Pcsk9-deficiency led to a 200% increase in LDLR protein content in mouse isolated islets, mainly in beta-cells. Conversely, incubation of islets with recombinant PCSK9 almost abolished LDLR expression. However, Pcsk9-deficiency did not alter cholesterol content nor glucose-stimulated insulin secretion in mouse islets. Finally, invivo glucose tolerance was similar in Pcsk9(+/+) and Pcsk9(-/-) mice under basal conditions and following streptozotocin treatment. These results suggest, at least in mice, that PCSK9 does not alter insulin secretion.
Collapse
|
38
|
Baass A, Dubuc G, Tremblay M, Delvin EE, O'Loughlin J, Levy E, Davignon J, Lambert M. Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population-based sample of children and adolescents. Clin Chem 2009; 55:1637-45. [PMID: 19628659 DOI: 10.1373/clinchem.2009.126987] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein convertase that posttranslationally promotes the degradation of the low-density lipoprotein receptor (LDLR) in hepatocytes and increases plasma LDL cholesterol (LDL-C). Heterozygote gain-of-function mutations of PCSK9 are associated with the familial hypercholesterolemia phenotype, whereas loss-of-function variants are associated with reduced LDL-C concentrations and lower coronary risk. Plasma PCSK9 correlates with body mass index, triglyceridemia, total cholesterol, and LDL-C in adults, but no data are available in youth. METHODS We studied 1739 French Canadian youth ages 9, 13, and 16 years who participated in the Quebec Child and Adolescent Health and Social Survey, a province-wide school-based survey conducted in 1999. An ELISA assay was used to measure plasma PSCK9. RESULTS The mean (SD) plasma PCSK9 concentration was 84.7 (24.7) microg/L in the sample. In boys, plasma PCSK9 decreased with age, whereas the inverse was true for girls. There were statistically significant positive associations between PCSK9 and fasting glucose, insulin, and HOMA-IR (homeostasis model assessment of insulin resistance). In multivariable analysis, a 10% higher fasting insulin was associated with a 1%-2% higher PCSK9 in both sexes. There were also positive associations between PCSK9 and total cholesterol, LDL-C, and triglycerides, as well as with HDL-C and apolipoproteins A1 and B. CONCLUSIONS PCSK9 is associated with age, sex, and multiple metabolic markers in youth. A novel finding is that PCSK9 is associated with fasting insulinemia, which suggests that PCSK9 could play a role in the development of dyslipidemia associated with the metabolic syndrome. .
Collapse
Affiliation(s)
- Alexis Baass
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montreal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Persson L, Gälman C, Angelin B, Rudling M. Importance of proprotein convertase subtilisin/kexin type 9 in the hormonal and dietary regulation of rat liver low-density lipoprotein receptors. Endocrinology 2009; 150:1140-6. [PMID: 19008317 DOI: 10.1210/en.2008-1281] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hormonal or dietary challenge can stimulate hepatic low-density lipoprotein receptor (LDLR) expression through posttranscriptional mechanisms. We here tested whether such observations may be due to regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9). Treatment with glucagon resulted in a 2-fold increase in hepatic LDLR protein expression, whereas its mRNA levels were reduced; this occurred simultaneously with a 70% reduction in PCSK9 expression. Insulin treatment resulted in responses opposite to those seen by treatment with glucagon. Furthermore, high-dose ethinylestradiol treatment reduced PCSK9 expression by half. Finally, feeding of rats with dietary cholesterol reduced PCSK9 expression, resulting in an increased number of hepatic LDLRs despite a reduction of LDLR mRNA levels. Regulation of PCSK9 occurred in part through sterol regulatory element binding protein-2, but changes in this cholesterol-controlled transcription factor could not explain all hormonal effects seen. We conclude that the hormonal and dietary regulation of hepatic LDLRs also involves posttranscriptional regulation by PCSK9. The identification of PCSK9 regulation by these various treatments is important in understanding of the physiological function of this protein and points to new targets for therapeutic treatments to increase hepatic LDLR numbers.
Collapse
Affiliation(s)
- Lena Persson
- Department of Endocrinology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | |
Collapse
|
41
|
PCSK9: an enigmatic protease. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:184-91. [PMID: 18280815 DOI: 10.1016/j.bbalip.2008.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/11/2007] [Accepted: 01/15/2008] [Indexed: 01/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in cholesterol metabolism by controlling the levels of low density lipoprotein (LDL) particles that circulate in the bloodstream. Several gain-of-function and loss-of-function mutations in the PCSK9 gene, that occur naturally, have been identified and linked to hypercholesterolemia and hypocholesterolemia, respectively. PCSK9 expression has been shown to be regulated by sterol regulatory element binding proteins (SREBPs) and statins similar to other genes involved in cholesterol homeostasis. The most critical finding concerning PCSK9 is that this protease is able to influence the number of LDL receptor molecules expressed on the cell surface. Studies have demonstrated that PCSK9 acts mainly by enhancing degradation of LDL receptor protein in the liver. Inactivation of PCSK9 in mice reduces plasma cholesterol levels primarily by increasing hepatic expression of LDL receptor protein and thereby accelerating clearance of circulating LDL cholesterol. The objective of this review is to summarize the current information related to the regulation and function of PCSK9 and to identify gaps in our present knowledge.
Collapse
|