1
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
2
|
Gonçalves S, Peixoto F, da Silveria TFF, Barros L, Gaivão I. Antigenotoxic and cosmetic potential of elderberry ( Sambucus nigra) extract: protection against oxidative DNA damage. Food Funct 2024; 15:10795-10810. [PMID: 39400280 DOI: 10.1039/d4fo03217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The integrity of the genome is under constant threat from both endogenous and exogenous factors that induce oxidative stress and accelerate ageing. The demand for natural and organic cosmetics is rising due to the harmful effects of synthetic genotoxic agents on human health and the environment. Elderberry (Sambucus nigra L.), a fruit rich in bioactive compounds such as polyphenols, has demonstrated significant antioxidant properties. This study aimed to evaluate elderberry extract's chemical characterization and biological activities in peripheral blood mononuclear cells exposed to streptonigrin and H2O2, both known for causing DNA damage. The antigenotoxic evaluation and antioxidant assays (ABTS and DPPH) were conducted to assess its biological properties. Using the Comet assay enhanced with formamidopyrimidine-DNA glycosylase (Fpg) to detect oxidized purines, we found that elderberry extract significantly reduced DNA damage. These findings suggest that elderberry has potential as a natural alternative to synthetic ingredients in cosmetics, offering protective benefits against DNA damage and contributing to anti-ageing and skin health.
Collapse
Affiliation(s)
- Sara Gonçalves
- Centre for Animal Sciences and Veterinary Studies (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Francisco Peixoto
- Centro de Química de Vila Real (CQVR), Biology and Environment Department, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Tayse F F da Silveria
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel Gaivão
- Centre for Animal Sciences and Veterinary Studies (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Li T, Tong Q, Wang Z, Yang Z, Sun Y, Cai J, Xu Q, Lu Y, Liu X, Lin K, Qian Y. Epigallocatechin-3-Gallate Inhibits Atrial Fibrosis and Reduces the Occurrence and Maintenance of Atrial Fibrillation and its Possible Mechanisms. Cardiovasc Drugs Ther 2024; 38:895-916. [PMID: 37000367 DOI: 10.1007/s10557-023-07447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Atrial fibrosis is one of the main causes of the onset and recurrence of atrial fibrillation (AF), for which there is no effective treatment. The aim of this study was to investigate the effect and mechanism of epigallocatechin-3-gallate (EGCG) on AF in rats. METHODS The rat model of AF was established by rapid pacing induction after angiotensin-II (Ang-II) induced atrial fibrosis to verify the relationship between atrial fibrosis and the AF. The expression levels of TGF-β/Smad3 pathway molecules and lysyl oxidase (LOX) in AF were detected. Subsequently, EGCG was used to intervene Ang-II-induced atrial fibrosis to explore the role of EGCG in the treatment of AF and its inhibitory mechanism on fibrosis. It was further verified that EGCG inhibited the production of collagen and the expression of LOX through the TGF-β/Smad3 pathway at the cellular level. RESULTS The results showed that the induction rate and maintenance time of AF in rats increased with the increase of the degree of atrial fibrosis. Meanwhile, the expressions of Col I, Col III, molecules related to TGF-β/Smad3 pathway, and LOX increased significantly in the atrial tissues of rats in the Ang-II induced group. EGCG could reduce the occurrence and maintenance time of AF by inhibiting the degree of Ang-induced rat atrial fibrosis. Cell experiments confirmed that EGCG could reduce the synthesis of collagen and the expression of LOX in cardiac fibroblast induced by Ang-II. The possible mechanism is to down-regulate the expression of genes and proteins related to the TGF-β/Smad3 pathway. CONCLUSION EGCG could downregulate the expression levels of collagen and LOX by inhibiting the TGF-β/Smad3 signaling pathway, alleviating Ang-II-induced atrial fibrosis, which in turn inhibited the occurrence and curtailed the duration of AF.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Tong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengjie Wang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqi Yang
- West China Medical School /West China Hospital, Sichuan University, Chengdu, China
| | - Yiren Sun
- West China Medical School /West China Hospital, Sichuan University, Chengdu, China
| | - Jie Cai
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyue Xu
- Department of Clinical Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yuan Lu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xuemei Liu
- Chinese Journal of Thoracic and Cardiovascular Surgery, West China Hospital Press, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Lin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Yang J, Geng Y, Zhao B, Liu T, Luo JL, Gao XJ. Green tea polyphenols alleviate TBBPA-induced gastric inflammation and apoptosis by modulating the ROS-PERK/IRE-1/ATF6 pathway in mouse models. Food Funct 2024; 15:10179-10189. [PMID: 39301672 DOI: 10.1039/d4fo03012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Green tea polyphenols (GTP), an important phytochemical in the daily human diet, bind to various cellular receptors and exert anti-inflammatory and antioxidant benefits. The environmental contaminant tetrabromobisphenol A (TBBPA) enters the digestive system through multiple pathways, resulting in oxidative stress (OS), gastroenteritis, and mucosal injury. The aim of this study was to explore the molecular mechanisms of TBBPA-induced gastritis in mice treated with GTP in vivo and in an in vitro model. The results showed that exposure to TBBPA increased reactive oxygen species (ROS) levels, activated oxidative stress (OS) induced endoplasmic reticulum stress (ERS), and the expression of endoplasmic reticulum stress-related factors (e.g., GRP78, PERK, IRE-1, ATF-6, etc.) increased. The inflammatory pathway NF-κB was activated, and the pro-inflammatory factors TNF-α, IL-1β, and IL-6 increased, while triggering a cascade reaction mediated by caspase-3. However, the addition of GTP could inhibit OS, restore the balance of endoplasmic reticulum homeostasis, and improve the inflammatory infiltration and apoptosis of gastric mucosal epithelial cells. Therefore, GTP alleviated ERS, reduced inflammation and apoptosis, and restored the gastric mucosal barrier by alleviating TBBPA-induced OS in mouse gastric tissues and GES-1 cells. This provides basic information for exploring the antioxidant mechanism of GTP and further investigating the toxic effects of TBBPA on mouse gastric mucosa.
Collapse
Affiliation(s)
- Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Yuan Geng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Tianjing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Ji-Long Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| |
Collapse
|
5
|
Verma K, Chandane-Tak M, Gaikwad SY, Mukherjee A, Kumar S. Optimizing rosemary oil nanoemulsion loaded with nelfinavir and epigallocatechin gallate: A Design Expert® endorsed approach for enhanced neuroAIDS management. Int J Biol Macromol 2024; 280:135885. [PMID: 39307507 DOI: 10.1016/j.ijbiomac.2024.135885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/21/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
This study focuses on optimizing the delivery of Nelfinavir (NFV), a vital protease inhibitor in antiretroviral therapy, and Epigallocatechin gallate (EGCG), a potent adjunctive anti- human immunodeficiency virus (anti-HIV) agent found in green tea. The challenge lies in NFV's low intrinsic dissolution rate, significant p-gp efflux, and high hepatic metabolism, necessitating frequent and high-dose administration. Our objective was to develop a nanoemulsion loaded with NFV and EGCG to enhance oral delivery, expediting antiretroviral effects for NeuroAIDS treatment. After meticulous excipient screening, we selected Tween 40 as the surfactant and polyethylene glycol 400 (PEG 400) as the co-surfactant. Employing a Quality by Design (QbD) approach with statistical multivariate methods, we optimized the nanoemulsion that exhibited a droplet size of 83.21 nm, polydispersity index (PDI) of 2.289, transmittance of 95.20 %, zeta potential of 1.495 mV, pH of 6.95, refractive index of 1.40, viscosity of 24.00 ± 0.42 mPas, and conductivity of 0.162 μS/cm. Pharmacokinetic studies demonstrated superior in vivo absorption of the optimized nanoemulsion compared to NFV and EGCG suspension. The optimized nanoemulsion showcased higher Cmax of NFV (9.75 ± 1.23 μg/mL) and EGCG (27.7 ± 1.22 μg/mL) in the brain, along with NFV (26.44 ± 1.44 μg/mL) and EGCG (313.20 ± 5.53 μg/mL) in the plasma. This study advocates for the potential of NFV and EGCG-loaded nanoemulsion in combination antiretroviral therapy (cART) for effective NeuroAIDS management.
Collapse
Affiliation(s)
- Kunal Verma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET) NH-58, Delhi-Roorkee Highway, Meerut 250005, Uttar Pradesh, India
| | - Madhuri Chandane-Tak
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, Maharashtra, India
| | - Shraddha Y Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, Maharashtra, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, Maharashtra, India.
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET) NH-58, Delhi-Roorkee Highway, Meerut 250005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Bozkurt ILYAS, Halici ZEKAI, Zirh ELHAMBAHADOR, Palabiyik-Yucelik SAZIYESEZIN. EGCG alleviates Ochratoxin A-induced pyroptosis in rat's kidney by inhibiting NLRP3/Caspase-1/GSDMD signaling pathway. Food Chem Toxicol 2024:115006. [PMID: 39299375 DOI: 10.1016/j.fct.2024.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Ochratoxin A (OTA) exposure is inevitable due to its contamination in foods, and there is no treatment for the OTA induced organ toxicity. We evaluate the effect of epigallocatechin gallate (EGCG) on the nephrotoxicity caused by OTA, and to reveal the relationship of this effect with the NLRP3/Caspase-1/GSDMD pathway dependent pyroptosis. 40 male Wistar albino rats divided into 5 groups (n=8, per group) 0.5 mg/kg/day OTA were administered to the rats and 50 mg/kg and 100 mg/kg EGCG were administered to the groups by gavage orally for 14 days. Serum urea and creatinine levels increased significantly with OTA exposure. Similarly, it was determined that significant changes in oxidative stress parameters with OTA exposure in kidney tissue. Also, there was a significant increase in kidney tissue TGF-β, NF-κB, IL-1β, IL-18, NLRP3, Caspase-1 and GSDMD mRNA expressions with OTA exposure. EGCG administration augmented a dose-dependent decrease in the aforementioned parameters. NLRP3/Caspase-1/GSDMD pathway is induced in the kidneys due to OTA exposure were shown with this study. Potent antioxidant EGCG could alleviate the pathways specified with this study in OTA nephrotoxicity and its supplementation may be effective strategies for the protection.
Collapse
Affiliation(s)
- I L Y A S Bozkurt
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Z E K A I Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - E L H A M B A H A D O R Zirh
- Department of Histology and Embryology, Faculty of Medicine, TOBB University of Economics and Technology, 06510, Ankara, Turkey
| | | |
Collapse
|
7
|
Wu X, Koch M, Martínez FPP, Schirhagl R, Włodarczyk-Biegun MK. Quantum Sensing Unravels Antioxidant Efficacy Within PCL/Matrigel Skin Equivalents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403729. [PMID: 39246220 DOI: 10.1002/smll.202403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Skin equivalents (SE) that recapitulate biological and mechanical characteristics of the native tissue are promising platforms for assessing cosmetics and studying fundamental biological processes. Methods to achieve SEs with well-organized structure, and ideal biological and mechanical properties are limited. Here, the combination of melt electrowritten PCL scaffolds and cell-laden Matrigel to fabricate SE is described. The PCL scaffold provides ideal structural and mechanical properties, preventing deformation of the model. The model consists of a top layer for seeding keratinocytes to mimic the epidermis, and a bottom layer of Matrigel-based dermal compartment with fibroblasts. The compressive modulus and the biological properties after 3-day coculture indicate a close resemblance with the native skin. Using the SE, a testing system to study the damage caused by UVA irradiation and evaluate antioxidant efficacy is established. The effectiveness of Tea polyphenols (TPs) and L-ascorbic acid (Laa) is compared based on free radical generation. TPs are demonstrated to be more effective in downregulating free radical generation. Further, T1 relaxometry is used to detect the generation of free radicals at a single-cell level, which allows tracking of the same cell before and after UVA treatment.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbruecken, Germany
| | - Felipe P Perona Martínez
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Małgorzata K Włodarczyk-Biegun
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- Biotechnology Centre, The Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| |
Collapse
|
8
|
Zhang M, Fang Z, Wang J, Ding R, Fang H, Chen R. Unexpectedly high antibacterial ability of water in copper pot with tiny amount of plant leaves. WATER RESEARCH X 2024; 24:100238. [PMID: 39155948 PMCID: PMC11327398 DOI: 10.1016/j.wroa.2024.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024]
Abstract
Water disinfection by copper vessels has been prevalent over thousands of years. Unfortunately, people are still suffering from the bacterial pollution in drinking water. Here we show that, only through steeping with tiny amounts of common plant leaves, the room-temperature water in copper pots has unexpectedly high antibacterial ability. Remarkably, copper ions released from copper pots into water are in concentrations lower than the WHO safety threshold for drinking water, and have effective antibacterial ability when water contains specific leave components (polyphenols and/or lignin). Our computations show that the key to enhance antibacterial ability is the great increase in the proportion of Cu+ induced by aromatic rings in these leave components, which has been demonstrated by our experiments. The findings may disclose the mystery of copper vessels for water disinfection, and more importantly, provide effective antibacterial applications in industries and daily lives, by safely using copper ions together with biocompatible natural substances.
Collapse
Affiliation(s)
- Min Zhang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325000, China
| | - Zhening Fang
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Jun Wang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325000, China
| | - Rui Ding
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325000, China
| | - Haiping Fang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325000, China
| | - Ruoyang Chen
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325000, China
| |
Collapse
|
9
|
León D, Reyes ME, Weber H, Gutiérrez Á, Tapia C, Silva R, Viscarra T, Buchegger K, Ili C, Brebi P. In Vitro Effect of Epigallocatechin Gallate on Heme Synthesis Pathway and Protoporphyrin IX Production. Int J Mol Sci 2024; 25:8683. [PMID: 39201369 PMCID: PMC11354225 DOI: 10.3390/ijms25168683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Photodynamic therapy (PDT) treats nonmelanoma skin cancer. PDT kills cells through reactive oxygen species (ROS), generated by interaction among cellular O2, photosensitizer and specific light. Protoporphyrin IX (PpIX) is a photosensitizer produced from methyl aminolevulinate (MAL) by heme group synthesis (HGS) pathway. In PDT-resistant cells, PDT efficacy has been improved by addition of epigallocatechin gallate (EGCG). Therefore, the aim of this work is to evaluate the effect of EGCG properties over MAL-TFD and PpIX production on A-431 cell line. EGCG's role over cell proliferation (flow cytometry and wound healing assay) and clonogenic capability (clonogenic assay) was evaluated in A-431 cell line, while the effect of EGCG over MAL-PDT was determined by cell viability assay (MTT), PpIX and ROS detection (flow cytometry), intracellular iron quantification and gene expression of HGS enzymes (RT-qPCR). Low concentrations of EGCG (<50 µM) did not have an antiproliferative effect over A-431 cells; however, EGCG inhibited clonogenic cell capability. Furthermore, EGCG (<50 µM) improved MAL-PDT cytotoxicity, increasing PpIX and ROS levels, exerting a positive influence on PpIX synthesis, decreasing intracellular iron concentration and modifying HGS enzyme gene expression such as PGB (upregulated) and FECH (downregulated). EGCG inhibits clonogenic capability and modulates PpIX synthesis, enhancing PDT efficacy in resistant cells.
Collapse
Affiliation(s)
- Daniela León
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
| | - María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (M.E.R.); (R.S.)
| | - Helga Weber
- Biomedicine and Traslational Research Laboratory, Centro de Excelencia en Medicina Traslacional (CEMT), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Álvaro Gutiérrez
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4780000, Chile
| | - Claudio Tapia
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4780000, Chile
| | - Ramón Silva
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (M.E.R.); (R.S.)
| | - Tamara Viscarra
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Biomedicine and Traslational Research Laboratory, Centro de Excelencia en Medicina Traslacional (CEMT), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Kurt Buchegger
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
| |
Collapse
|
10
|
Sarkar B, Rana N, Singh C, Singh A. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5483-5511. [PMID: 38472370 DOI: 10.1007/s00210-024-03027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients' new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.
Collapse
Affiliation(s)
- Biplob Sarkar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Srinagar, 249161, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
11
|
Yang Y, Du Y, Cui B. Polyphenols targeting multiple molecular targets and pathways for the treatment of vitiligo. Front Immunol 2024; 15:1387329. [PMID: 39119340 PMCID: PMC11306171 DOI: 10.3389/fimmu.2024.1387329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Vitiligo, a pigmentary autoimmune disorder, is marked by the selective loss of melanocytes in the skin, leading to the appearance of depigmented patches. The principal pathological mechanism is the melanocyte destruction mediated by CD8+ T cells, modulated by oxidative stress and immune dysregulation. Vitiligo affects both physical health and psychological well-being, diminishing the quality of life. Polyphenols, naturally occurring compounds with diverse pharmacological properties, including antioxidant and anti-inflammatory activities, have demonstrated efficacy in managing various dermatological conditions through multiple pathways. This review provides a comprehensive analysis of vitiligo and the therapeutic potential of natural polyphenolic compounds. We examine the roles of various polyphenols in vitiligo management through antioxidant and immunomodulatory effects, melanogenesis promotion, and apoptosis reduction. The review underscores the need for further investigation into the precise molecular mechanisms of these compounds in vitiligo treatment and the exploration of their combination with current therapies to augment therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Bingnan Cui
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Liu Y, Long Y, Fang J, Liu G. Advances in the Anti-Atherosclerotic Mechanisms of Epigallocatechin Gallate. Nutrients 2024; 16:2074. [PMID: 38999821 PMCID: PMC11243004 DOI: 10.3390/nu16132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Atherosclerosis (AS) is a common clinical sickness and the major pathological basis of ischemic cardiocerebrovascular diseases (CCVDs). The pathogenesis of AS involves a variety of risk factors, and there is a lack of effective preventive and curative drugs that can completely treat AS. In recent years, with the improvement of people's living standards and changes in dietary habits, the morbidity and mortality rates of AS are on the rise, and the age of onset tends to be younger. The formation of AS is closely related to a variety of factors, and the main factors include lipid metabolism disorders, endothelial damage, inflammation, unstable plaques, etc. Epigallocatechin gallate (EGCG), as one of the main components of catechins, has a variety of pharmacological effects, and its role in the prevention of AS and the protection of cardiovascular and cerebral blood vessels has been highly valued. Recent epidemiological investigations and various in vivo and ex vivo experiments have shown that EGCG is capable of resisting atherosclerosis and reducing the morbidity and mortality of AS. In this paper, we reviewed the anti-AS effects of EGCG and its mechanisms in recent years, including the regulation of lipid metabolism, regulation of intestinal flora disorders, improvement of vascular endothelial cell functions, inhibition of inflammatory factors expression, regulation of inflammatory signaling pathways, inhibition of matrix metalloproteinase (MMP) expression, and inhibition of platelet aggregation, which are helpful for the prevention of cardiocerebrovascular diseases.
Collapse
Affiliation(s)
- Yihui Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yiling Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Wnuk E, Zwolak I, Kochanowicz E. The physiological levels of epigallocatechin gallate (EGCG) enhance the Cd-induced oxidative stress and apoptosis in CHO-K1 cells. Sci Rep 2024; 14:13625. [PMID: 38871787 DOI: 10.1038/s41598-024-64478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Currently, the increasing pollution of the environment by heavy metals is observed, caused both by natural factors and those related to human activity. They pose a significant threat to human health and life. It is therefore important to find an effective way of protecting organisms from their adverse effects. One potential product showing a protective effect is green tea. It has been shown that EGCG, which is found in large amounts in green tea, has strong antioxidant properties and can therefore protect cells from the adverse effects of heavy metals. Therefore, the aim of the study was to investigate the effect of EGCG on cells exposed to Cd. In the study, CHO-K1 cells (Chinese hamster ovary cell line) were treated for 24 h with Cd (5 and 10 µM) and EGCG (0.5 and 1 µM) together or separately. Cell viability, ATP content, total ROS activity, mitochondrial membrane potential and apoptosis potential were determined. The results showed that, in tested concentrations, EGCG enhanced the negative effect of Cd. Further analyses are needed to determine the exact mechanism of action of EGCG due to the small number of publications on the subject and the differences in the results obtained in the research.
Collapse
Affiliation(s)
- Ewa Wnuk
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty Medicine, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland.
| | - Iwona Zwolak
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty Medicine, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland
| | - Elzbieta Kochanowicz
- Department of Molecular Biology, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1I, 20-708, Lublin, Poland
| |
Collapse
|
14
|
Wang M, Yu A, Han W, Chen J, Lu C, Tu X. Self-assembled metal-phenolic nanocomplexes comprised of green tea catechin for tumor-specific ferroptosis. Mater Today Bio 2024; 26:101040. [PMID: 38590984 PMCID: PMC10999486 DOI: 10.1016/j.mtbio.2024.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Ferroptosis, a newly discovered form of regulated cell death, has garnered significant attention in the field of tumor therapy. However, the presence of overexpressed glutathione (GSH) and insufficient levels of H2O2 in the tumor microenvironment (TME) hinders the occurrence of ferroptosis. In response to these challenges, here we have constructed the self-assembled nanocomplexes (FeE NPs) utilizing epigallocatechin-3-gallate (EGCG) from green tea polyphenols and metal ions (Fe3+) as components. After grafting PEG, the nanocomplexes (FeE@PEG NPs) exhibit good biocompatibility and synergistically enhanced tumor-inhibitory properties. FeE@PEG NPs can be disassembled by H2O2 in the TME, leading to the rapid release of Fe3+ and EGCG. The released Fe3+ produces large amounts of toxic •OH by the Fenton reactions while having minimal impact on normal cells. The generated •OH effectively induces lipid peroxidation, which leads to ferroptosis in tumor cells. Meanwhile, the released EGCG can autoxidize to produce H2O2, which further promotes the production of •OH radicals and increases lipid peroxide levels. Moreover, EGCG also depletes the high levels of intracellular GSH, leading to an intracellular redox imbalance and triggering ferroptosis. This study provides new insights into advancing anticancer ferroptosis through rational material design, offering promising avenues for future research.
Collapse
Affiliation(s)
- Min Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Aoling Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wen Han
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jingyi Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgery Research Institute of Fujian Province, Fuzhou, Fujian, 350001, China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Xiankun Tu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgery Research Institute of Fujian Province, Fuzhou, Fujian, 350001, China
| |
Collapse
|
15
|
Lv H, Qian D, Xu S, Fan G, Qian Q, Cha D, Qian X, Zhou G, Lu B. Modulation of long noncoding RNAs by polyphenols as a novel potential therapeutic approach in lung cancer: A comprehensive review. Phytother Res 2024; 38:3240-3267. [PMID: 38739454 DOI: 10.1002/ptr.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Shuhua Xu
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dongsheng Cha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Guoping Zhou
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| |
Collapse
|
16
|
Ponnusamy A, Niluswan K, Prodpran T, Kim JT, Rhim JW, Benjakul S. Storage stability of Asian seabass oil-in-water Pickering emulsion packed in pouches made from electrospun and solvent casted bilayer films from poly lactic acid/chitosan-gelatin blend containing epigallocatechin gallate. Int J Biol Macromol 2024; 265:130760. [PMID: 38462097 DOI: 10.1016/j.ijbiomac.2024.130760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Bilayer pouches were fabricated with chitosan (CS)-fish gelatin (FG) mixture containing epigallocatechin gallate (EGCG) deposited over the poly lactic acid (PLA) film through solvent casting and electrospinning techniques. Pickering emulsions (PE) of Asian seabass depot fat oil stabilized by zein colloidal particles were packed in bilayer pouches and stored at 28 ± 2 °C. The PE packed in pouch containing EGCG had higher emulsion and oxidative stability after 30 days of storage as witnessed by the smaller droplet size and lower values of thiobarbituric acid reactive substances, peroxide, conjugated diene and volatile compounds in comparison with control (PE packed in monolayer PLA pouch) (P < 0.05). EGCG incorporated pouch retained more linoleic acid (C18:2 n-6) and linolenic acid (C18:3 n-9) in emulsion than PLA pouch. Therefore, pouch from bilayer PLA/CS-FG films comprising EGCG could serve as active packaging and extended the shelf life of Pickering emulsion.
Collapse
Affiliation(s)
- Arunachalasivamani Ponnusamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Krisana Niluswan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
17
|
Mahmoodi M, Shateri Z, Nouri M, Vali M, Nasimi N, Sohrabi Z, Dabbaghmanesh MH, Makhtoomi M. The association between healthy beverage index and sarcopenia in Iranian older adults: a case-control study. BMC Geriatr 2024; 24:244. [PMID: 38468213 PMCID: PMC10929141 DOI: 10.1186/s12877-024-04790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Sarcopenia is a progressive disease with age-related loss of skeletal muscle mass, strength, and function. No study has investigated the association between healthy beverage index (HBI) and sarcopenia in older adults. Therefore, the present study aimed to investigate the association between HBI and sarcopenia in Iranian older adults. METHODS In the present case-control study, 80 sarcopenic and 80 non-sarcopenic participants matched in sex were included. Body composition was measured using bioelectrical impedance analysis. Handgrip strength (HGS), skeletal muscle mass index (SMI), and gait speed were utilized to confirm sarcopenia. Also, a food frequency questionnaire was used to evaluate food intake. HBI score was calculated based on ten sub-components of the total beverages. Moreover, logistic regression was applied to assess the association between HBI and sarcopenia. RESULTS In the crude model, we observed no significant association between HBI and the odds of sarcopenia. Still, after adjusting the confounders, the odds of developing sarcopenia decreased significantly in the second and last tertiles (T) (T2- odds ratio (OR) = 0.04, 95% confidence interval (CI): 0.01-0.25 and T3- OR = 0.10, 95% CI: 0.01-0.60). CONCLUSIONS Our findings indicated that HBI is inversely related to the chance of sarcopenia. Therefore, to reduce the odds of sarcopenia, it is recommended to consume healthy drinks such as fruit juices and milk.
Collapse
Affiliation(s)
- Marzieh Mahmoodi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mehran Nouri
- Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohebat Vali
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Nasimi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sohrabi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maede Makhtoomi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Lee HW, Choi JH, Seo D, Gavaachimed L, Choi J, Park S, Min NY, Lee DH, Bang HW, Ham SW, Kim JW, Lee SC, Rhee S, Seo SB, Lee KH. EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119659. [PMID: 38216089 DOI: 10.1016/j.bbamcr.2024.119659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
The effects of EGCG on the selective death of cancer cells by modulating antioxidant pathways through autophagy were explored in various normal and cancer cells. EGCG positively regulated the p62-KEAP1-NRF2-HO-1 pathway in normal cells, while negatively regulating it in cancer cells, leading to selective apoptotic death of cancer cells. In EGCG-treated MRC5 cells (EGCG-MRC5), autophagic flux was blocked, which was accompanied by the formation of p62-positive aggregates. However, EGCG-treated HeLa cells (EGCG-HeLa) showed incomplete autophagic flux and no aggregate formation. The levels of P-ULK1 S556 and S758 increased in EGCG-MRC5 through AMPK-mTOR cooperative interaction. In contrast, EGCG treatment in HeLa cells led to AMPK-induced mTOR inactivation, resulting in abrogation of P-ULK1 S556 and S758 levels. AMPK knockout in EGCG-HeLa restored positive regulation of the p62-mediated pathway, which was accompanied by increased P-mTOR S2448 and P-ULK1 S758 levels. Knockdown of 67LR in EGCG-HeLa abolished AMPK activity but did not restore the p62-mediated pathway. Surprisingly, both AMPK knockout and 67LR knockdown in EGCG-HeLa markedly increased cell viability, despite differential regulation of the antioxidant enzyme HO-1. In conclusion, EGCG induces the selective death of cancer cells through the modulation of at least two autophagy-dependent and independent regulatory pathways: negative regulation involves the mTOR-ULK1 (S556 and S758)-p62-KEAP1-NRF2-HO-1 axis via AMPK activation, whereas positive regulation occurs through the 67LR-AMPK axis.
Collapse
Affiliation(s)
- Ho Woon Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Jee-Hye Choi
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Dongbeom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Lkhagvasuren Gavaachimed
- Department of Science of Cultural Properties, Graduate School, Chung-Ang University, Seoul, Republic of Korea
| | - Jaesung Choi
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sehwan Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Na Young Min
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Dong Ho Lee
- Da Vinci College of General Education, Chung-Ang University, Seoul, Republic of Korea
| | - Hyo-Weon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Wook Ham
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Kwang-Ho Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea; Department of Science of Cultural Properties, Graduate School, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Binoy A, Kothari M, Sahadevan R, Poddar S, Kar P, Sadhukhan S. Protein S-palmitoylation is markedly inhibited by 4″-alkyl ether lipophilic derivatives of EGCG, the major green tea polyphenol: In vitro and in silico studies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184264. [PMID: 38104647 DOI: 10.1016/j.bbamem.2023.184264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/27/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
S-palmitoylation is a dynamic lipid-based protein post-translational modification facilitated by a family of protein acyltransferases (PATs) commonly known as DHHC-PATs or DHHCs. It is the only lipid modification that is reversible, and this very fact uniquely qualifies it for therapeutic interventions through the development of DHHC inhibitors. Herein, we report that 4″-alkyl ether lipophilic derivatives of EGCG can effectively inhibit protein S-palmitoylation in vitro. With the help of metabolic labeling followed by copper(I)-catalyzed azide-alkyne cycloaddition Click reaction, we demonstrate that 4″-C14 EGCG and 4″-C16 EGCG markedly inhibited S-palmitoylation in various mammalian cells including HEK 293T, HeLa, and MCF-7 using both in gel fluorescence as well as confocal microscopy. Further, these EGCG derivatives were able to attenuate the S-palmitoylation to the basal level in DHHC3-overexpressed cells, suggesting that they are plausibly targeting DHHCs. Confocal microscopy data qualitatively reflected spatial and temporal distribution of S-palmitoylated proteins in different sub-cellular compartments and the inhibitory effects of 4″-C14 EGCG and 4″-C16 EGCG were clearly observed in the native cellular environment. Our findings were further substantiated by in silico analysis which revealed promising binding affinity and interactions of 4″-C14 EGCG and 4″-C16 EGCG with key amino acid residues present in the hydrophobic cleft of the DHHC20 enzyme. We also demonstrated the successful inhibition of S-palmitoylation of GAPDH by 4″-C16 EGCG. Taken together, our in vitro and in silico data strongly suggest that 4″-C14 EGCG and 4″-C16 EGCG can act as potent inhibitors for S-palmitoylation and can be employed as a complementary tool to investigate S-palmitoylation.
Collapse
Affiliation(s)
- Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India
| | - Manan Kothari
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India
| | - Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453552, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India; Physical & Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Kerala 678623, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678623, India.
| |
Collapse
|
20
|
Wu X, Wang Y, Wang D, Wang Z, Yang M, Yang L, Wang F, Wang W, Zhang X. Formation of EGCG oxidation self-assembled nanoparticles and their antioxidant activity in vitro and hepatic REDOX regulation activity in vivo. Food Funct 2024; 15:2181-2196. [PMID: 38315103 DOI: 10.1039/d3fo05309a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol in tea and exerts several health-promoting effects. It easily autoxidizes into complex polymers and becomes deactivated due to the presence of multiple phenolic hydroxyl structures. Nonetheless, the morphology and biological activity of complex EGCG polymers are yet to be clarified. The present study demonstrated that EGCG autoxidation self-assembled nanoparticles (ENPs) exhibit antioxidant activity in vitro and hepatic REDOX homeostasis regulation activity in vivo. Also, the formation of ENPs during the EGCG autoxidation process was based on the intermolecular interaction forces that maintain the stability of the nanoparticles. Similar to EGCG, ENPs are scavengers of reactive oxygen species and hydroxyl radicals in vitro and also regulate hepatic REDOX activity through liver redox enzymes, including thioredoxin reductase (TrxR), thioredoxin (Trx), glutathione reductase (GR), glutaredoxin (Grx), and glutathione S-transferase (GST) in vivo. Moreover, ENPs activate the NRF2 antioxidant-responsive element pathway, exerting a detoxification effect at high doses. Unlike EGCG, ENPs do not cause liver damage at low doses and also maintain liver biosafety at high doses through self-assembly, forming large particles, which is supported by the unchanged levels of liver damage biomarkers, including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver γ-phosphorylated histone 2AX (γ-H2AX), and P53-related genes (Thbs, MDM2, P53, and Bax). Collectively, these findings revealed that ENPs, with adequate biosafety and regulation of hepatic redox activity in vivo, may serve as substitutes with significant potential for antioxidant applications or as food additives to overcome the instability and liver toxicity of EGCG.
Collapse
Affiliation(s)
- Ximing Wu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, School of Biological and Food Engineering, Hefei Normal University, Hefei, 230601, China.
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Yijun Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Mingchuan Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Lumin Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Fuming Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, School of Biological and Food Engineering, Hefei Normal University, Hefei, 230601, China.
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
21
|
Belfiore E, Di Prima G, Angellotti G, Panzarella V, De Caro V. Plant-Derived Polyphenols to Prevent and Treat Oral Mucositis Induced by Chemo- and Radiotherapy in Head and Neck Cancers Management. Cancers (Basel) 2024; 16:260. [PMID: 38254751 PMCID: PMC10813700 DOI: 10.3390/cancers16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Oral Mucositis (OM) is the most common side effect due to chemotherapy and radiotherapy, which are the conventional treatment options for head and neck cancers. OM is a severe inflammatory condition characterized by multifactorial etiopathogenesis. It further negatively affects patients' quality of life by severe impairment of normal oral functions. Consequently, it is mandatory to identify new effective therapeutic approaches to both prevent and treat OM while also avoiding any recurrence. Polyphenols recently attracted the interest of the scientific community due to their low toxicity and wide range of biological activities making them ideal candidates for several applications in the odontostomatological field, particularly against OM. This review collects the in vivo studies and the clinical trials conducted over the past 13 years evaluating the preventive and curative effects of several polyphenolic compounds towards chemo- and radiotherapy-induced OM, both when administered alone or as a plant-extracted phytocomplex. The literature fully confirms the usefulness of these molecules, thus opening the possibility of their clinical application. However, polyphenol limitations (e.g., unfavourable physicochemical properties and susceptibility to degradation) have emerged. Consequently, the interest of the scientific community should be focused on developing innovative delivery systems able to stabilize polyphenols, thus facilitating topical administration and maximizing their efficacy.
Collapse
Affiliation(s)
- Elena Belfiore
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Giulia Di Prima
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Giuseppe Angellotti
- Institute of Nanostructured Materials, National Research Council, Via U. La Malfa 153, 90146 Palermo, Italy;
| | - Vera Panzarella
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| |
Collapse
|
22
|
Unno K, Taguchi K, Hase T, Meguro S, Nakamura Y. DNA Mutagenicity of Hydroxyhydroquinone in Roasted Coffee Products and Its Suppression by Chlorogenic Acid, a Coffee Polyphenol, in Oxidative-Damage-Sensitive SAMP8 Mice. Int J Mol Sci 2024; 25:720. [PMID: 38255794 PMCID: PMC10815437 DOI: 10.3390/ijms25020720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Hydroxyhydroquinone (HHQ) is an oxidative component produced by roasting coffee beans and has been reported to generate relatively large amounts of reactive oxygen species (ROS). In this study, we used senescence-accelerated mouse prone 8 (SAMP8) mice to determine whether HHQ consumption increases oxidative-stress-induced injury, because in SAMP8 mice, the activity of 8-oxoguanine DNA glycosylase 1, which repairs oxidative modifications in DNA, is decreased. The results showed that two out of twelve (16.7%) HHQ-treated mice presented polyuria and glucosuria around 2 months after the start of treatment, indicating that HHQ may act as a mutagen against SAMP8 mice, which is sensitive to oxidative damage. No abnormalities were observed in the chlorogenic acid (coffee polyphenol, CPP)-treated group. The concentration of hydrogen peroxide in the serum of SAMP8 mice was significantly higher than that in SAMR1 (senescence-resistant) control mice, and the concentration was further increased in the HHQ-treated group. CPP, when coexisting with HHQ at the rate contained in roasted coffee, decreased the amount of hydrogen peroxide in the serum of SAMP8 mice. Although CPP can act both oxidatively and antioxidatively as a polyphenol, CPP acts more antioxidatively when coexisting with HHQ. Thus, the oxidative effect of HHQ was shown to be counteracted by CPP.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| | - Tadashi Hase
- Research and Development, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan;
| | - Shinichi Meguro
- Biological Science Research, Kao Corporation, Akabane, Ichikai-machi, Haga-gun 321-3497, Japan;
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| |
Collapse
|
23
|
Sharma A, Anurag, Kaur J, Kesharwani A, Parihar VK. Antimicrobial Potential of Polyphenols: An Update on Alternative for Combating Antimicrobial Resistance. Med Chem 2024; 20:576-596. [PMID: 38584534 DOI: 10.2174/0115734064277579240328142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The last decade has encountered an increasing demand for plant-based natural antibiotics. This demand has led to more research-based investigations for natural sources of antimicrobial agents and published reports demonstrating that plant extracts are widely applied in modern medicine, reporting potential activity that may be due to polyphenol compounds. Interestingly, the effects of polyphenols on the sensitivity of bacteria to antibiotics have not been well-studied. Hence, the current review encompasses the prospective application of plant-based phenolic extracts from plants of Indian origin. The emergence of resistance to antimicrobial agents has increased the inefficacy of many antimicrobial drugs. Several strategies have been developed in recent times to overcome this issue. A combination of antimicrobial agents is employed for the failing antibiotics, which restores the desirable effect but may have toxicity-related issues. Phytochemicals such as some polyphenols have demonstrated their potent activity as antimicrobial agents of natural origin to work against resistance issues. These agents alone or in combination with certain antibiotics have been shown to enhance the antimicrobial activity against a spectrum of microbes. However, the information regarding the mechanisms and structure-activity relationships remains elusive. The present review also focuses on the possible mechanisms of natural compounds based on their structure- activity relationships for incorporating polyphenolic compounds in the drug-development processes. Besides this work, polyphenols could reduce drug dosage and may diminish the unhidden or hidden side effects of antibiotics. Pre-clinical findings have provided strong evidence that polyphenolic compounds, individually and in combination with already approved antibiotics, work well against the development of resistance. However, more studies must focus on in vivo results, and clinical research needs to specify the importance of polyphenol-based antibacterials in clinical trials.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Jasleen Kaur
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, 226002, UP, India
| | - Anuradha Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| |
Collapse
|
24
|
Sidhu D, Vasundhara M, Dey P. The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155207. [PMID: 38000106 DOI: 10.1016/j.phymed.2023.155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND The intestinal-level host-microbiota interaction has been implicated in the pathogenesis of chronic diseases. The current review is intended to provide a comprehensive insight into deciphering whether intestinal-level bioactivities mediate the overall metabolic health benefits of green tea catechins. PURPOSE We have comprehensively discussed pre-clinical and clinical evidences of intestinal-level changes in metabolism, microbiota, and metabolome due to catechin-rich green tea treatments, ultimately limiting metabolic diseases. Exclusive emphasis has been given to purified catechins and green tea, and discussions on extraintestinal mechanisms of metabolic health benefits were avoided. METHODS A literature search for relevant pre-clinical and clinical studies was performed in various online databases (e.g., PubMed) using specific keywords (e.g., catechin, intestine, microbiota). Out of all the referred literature, ∼15% belonged to 2021-2023, ∼51% were from 2011-2020, and ∼32% from 2000-2010. RESULT The metabolic health benefits of green tea catechins are indeed influenced by the intestinal-level bioactivities, including reduction of mucosal inflammation and oxidative stress, attenuation of gut barrier dysfunction, decrease in intestinal lipid absorption and metabolism, favorable modulation of mucosal nuclear receptor signaling, alterations of the luminal global metabolome, and mitigation of the gut dysbiosis. The results from the recent clinical studies support the pre-clinical evidences. The challenges and pitfalls of the currently available knowledge on catechin bioactivities have been discussed, and constructive directions to harness the translational benefits of green tea through future interventions have been provided. CONCLUSION The metabolism, metabolome, and microbiota at the intestinal epithelia play critical roles in catechin metabolism, pharmacokinetics, bioavailability, and bioactivities. Especially the reciprocal interaction between the catechins and the gut microbiota dictates the metabolic benefits of catechins.
Collapse
Affiliation(s)
- Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| |
Collapse
|
25
|
Marçal R, Sousa P, Marques A, Pereira V, Guilherme S, Barreto A, Costas B, Rocha RJM, Pacheco M. Exploring the Antioxidant and Genoprotective Potential of Salicornia ramosissima Incorporation in the Diet of the European Seabass ( Dicentrarchus labrax). Animals (Basel) 2023; 14:93. [PMID: 38200822 PMCID: PMC10778275 DOI: 10.3390/ani14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
The identification of novel feed materials as a source of functional ingredients is a topical priority in the finfish aquaculture sector. Due to the agrotechnical practices associated and phytochemical profiling, halophytes emerge as a new source of feedstuff for aquafeeds, with the potential to boost productivity and environmental sustainability. Therefore, the present study aimed to assess the potential of Salicornia ramosissima incorporation (2.5, 5, and 10%), for 2 months, in the diet of juvenile European seabass, seeking antioxidant (in the liver, gills, and blood) and genoprotective (DNA and chromosomal integrity in blood) benefits. Halophyte inclusion showed no impairments on growth performance. Moreover, a tissue-specific antioxidant improvement was apparent, namely through the GSH-related defense subsystem, but revealing multiple and complex mechanisms. A genotoxic trigger (regarded as a pro-genoprotective mechanism) was identified in the first month of supplementation. A clear protection of DNA integrity was detected in the second month, for all the supplementation levels (and the most prominent melioration at 10%). Overall, these results pointed out a functionality of S. ramosissima-supplemented diets and a promising way to improve aquaculture practices, also unraveling a complementary novel, low-value raw material, and a path to its valorization.
Collapse
Affiliation(s)
- Raquel Marçal
- CESAM—Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.); (A.M.); (V.P.); (S.G.); (M.P.)
| | - Pedro Sousa
- CESAM—Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.); (A.M.); (V.P.); (S.G.); (M.P.)
| | - Ana Marques
- CESAM—Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.); (A.M.); (V.P.); (S.G.); (M.P.)
| | - Vitória Pereira
- CESAM—Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.); (A.M.); (V.P.); (S.G.); (M.P.)
| | - Sofia Guilherme
- CESAM—Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.); (A.M.); (V.P.); (S.G.); (M.P.)
| | - André Barreto
- Riasearch, Lda., 3870-168 Murtosa, Portugal; (A.B.); (R.J.M.R.)
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal;
- School of Medicine and Biomedical Sciences (ICBAS-UP), University of Porto, 4050-313 Porto, Portugal
| | - Rui J. M. Rocha
- Riasearch, Lda., 3870-168 Murtosa, Portugal; (A.B.); (R.J.M.R.)
| | - Mário Pacheco
- CESAM—Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.S.); (A.M.); (V.P.); (S.G.); (M.P.)
| |
Collapse
|
26
|
Wang Z, Li D, Liu X, Zhang M, Zhu B, Liu D, Zhou D. Dual regulations on texture and water mobility of shrimp surimi gel with sustained-release epigallocatechin-3-gallate in γ-cyclodextrin metal organic frameworks: Insights into functionality and mechanisms. Food Res Int 2023; 174:113522. [PMID: 37986425 DOI: 10.1016/j.foodres.2023.113522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) could demonstrate crosslinking effects on myofibrillar proteins, yet its proneness to self-aggregation could bring excessive crosslinking and water loss within gels, hindering its application as an additive during thermal gelation process. Here, encapsulation with the γ-cyclodextrin metal organic framework (γ-CD-MOF) before the use of EGCG was found to play a dual role: alleviating over-crosslinking of proteins and elevating water retention within gels. Results showed that EGCG got a sustainable release throughout the thermal process due to the gradual fracture of O-K coordinate bounds and structural collapse of γ-CD-MOF. Mechanism insights revealed that the use of EGCG loaded γ-CD-MOF (EGCG@γ-CD-MOF) could regulate formation efficiency on disulfide bounds and promote protonation transition of the amino groups in proteins. Moreover, EGCG@γ-CD-MOF brought a higher retention of phenols within gels through preventing oxidative transformation of phenols towards quinones, which were verified to display a higher affinity towards myosin via molecular calculations.
Collapse
Affiliation(s)
- Zonghan Wang
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Deyang Li
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyang Liu
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Min Zhang
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Dayong Zhou
- National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
27
|
Vafaei S, Ciebiera M, Omran MM, Ghasroldasht MM, Yang Q, Leake T, Wolfe R, Ali M, Al-Hendy A. Evidence-Based Approach for Secondary Prevention of Uterine Fibroids (The ESCAPE Approach). Int J Mol Sci 2023; 24:15972. [PMID: 37958957 PMCID: PMC10648339 DOI: 10.3390/ijms242115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Uterine fibroids (UFs) are common tumors in women of reproductive age. It is imperative to comprehend UFs' associated risk factors to facilitate early detection and prevention. Simple relying on surgical/pharmacological treatment of advanced disease is not only highly expensive, but it also deprives patients of good quality of life (QOL). Unfortunately, even if the disease is discovered early, no medical intervention is traditionally initiated until the disease burden becomes high, and only then is surgical intervention performed. Furthermore, after myomectomy, the recurrence rate of UFs is extremely high with the need for additional surgeries and other interventions. This confused approach is invasive and extremely costly with an overall negative impact on women's health. Secondary prevention is the management of early disease to slow down its progression or even halt it completely. The current approach of watchful observation for early disease is considered a major missed opportunity in the literature. The aim of this article is to present an approach named the ESCAPE (Evidence-Based Approach for Secondary Prevention) of UF management. It comprises simple, inexpensive, and safe steps that can arrest the development of UFs, promote overall reproductive health, decrease the number of unnecessary surgeries, and save billions of health care systems' dollars worldwide.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (M.M.O.); (M.M.G.); (Q.Y.)
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, 35-302 Rzeszow, Poland
| | - Mervat M. Omran
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (M.M.O.); (M.M.G.); (Q.Y.)
| | - Mohammad Mousaei Ghasroldasht
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (M.M.O.); (M.M.G.); (Q.Y.)
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (M.M.O.); (M.M.G.); (Q.Y.)
| | - Tanya Leake
- The White Dress Project, Atlanta, GA 30309, USA; (T.L.); (R.W.)
| | - Rochelle Wolfe
- The White Dress Project, Atlanta, GA 30309, USA; (T.L.); (R.W.)
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (M.M.O.); (M.M.G.); (Q.Y.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (S.V.); (M.M.O.); (M.M.G.); (Q.Y.)
| |
Collapse
|
28
|
Al-Rawaf HA, Gabr SA, Alghadir AH. Potential roles of circulating microRNAs in the healing of type 1 diabetic wounds treated with green tea extract: molecular and biochemical study. Heliyon 2023; 9:e22020. [PMID: 38027999 PMCID: PMC10665742 DOI: 10.1016/j.heliyon.2023.e22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background Circulating miRNAs have been implicated in various aspects of diabetic wound healing, including inflammation, angiogenesis, and extracellular matrix remodeling. Thus, in alternative herbal medicine strategies, miRNAs will be potential therapeutic molecular targets in nonhealing wounds. These could be valuable elements for understanding the molecular basis of diabetic wound healing and could be used as good elements in bioinformatics. Objectives To elucidate the molecular mechanisms of microRNAs in association with apoptosis-inducing genes in controlling skin wound healing in diabetic wounds treated with green tea polyphenols (GTPs). Methods Green tea hydro extract (GTE) at doses of100-200 mg/ml was topically applied to the skin tissues of rats with T1DM induced by a single dose of streptozotocin (STZ; 100 mg/kg, in 0.01 M sodium citrate, pH 4.3-4.5) injected intraperitoneally for seven consecutive days to induce T1DM. The rats were treated with green tea for three weeks. A sterile surgical blade was used to inflict a circular wound approximately 2 cm in diameter on the anterior-dorsal side of previously anesthetized rats by a combination of ketamine hydrochloride (50 mg/kg, i.e., body weight) and xylazine hydrochloride. Afterward, the molecular roles of the circulating miRNAs miR-21, miR-23a, miR-146a, and miR-29b and apoptotic genes were determined by quantitative real-time PCR to evaluate Bax, Caspase-3, and Bcl-2 in wound healing. In addition, HPLC analysis was also performed to estimate the active polyphenols (GTPs) present in the hydro extract of green tea leaves. Results Wound healing was improved in diabetic skin wounds following treatment with GTE at doses of 100-200 mg/dl for three weeks. The wound parameters contraction, epithelialization, and scar formation significantly improved in a short time (14 days) compared to the longer periods identified in diabetic non-treated rats (20 days) and the standard control (15.5 days). Molecular analyses reported a significant increase in the levels of miR-21, miR-23a, and miR-146a and a decrease in the levels of miR-29b in green tea-treated diabetic rats compared to those in the standard control and STZ-diabetic non-treated rats. In addition, the molecular apoptotic genes Bax and caspase-3 significantly increased, and the BcL-2 gene significantly decreased following treatment with green tea polyphenols. Conclusions The data showed that active green tea polyphenols (GTPs) present in GTE significantly improved diabetic wound healing by controlling apoptotic genes and the circulating microRNAs miR-21, miR-23a, miR-146a, and miR-29b, which might be involved in cellular apoptosis and angiogenesis processes. Thus, to establish a future model for the treatment of diabetic wounds, further studies are needed to understand the potential association of these biological parameters with the wound-healing process in diabetic wounds.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Wang C, Bai M, Sun Z, Yao N, Zhang A, Guo S, Asemi Z. Epigallocatechin-3-gallate and cancer: focus on the role of microRNAs. Cancer Cell Int 2023; 23:241. [PMID: 37838685 PMCID: PMC10576883 DOI: 10.1186/s12935-023-03081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 10/16/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that affect gene expression. The role of miRNAs in different types of cancers has been published and it was shown that several miRNAs are inappropriately expressed in different cancers. Among the mechanisms that can cause this lack of proper expression are epigenetics, chromosomal changes, polymorphisms or defects in processing proteins. Recent research shows that phytochemicals, including epigallocatechin-3-gallate (EGCG), exert important epigenetic-based anticancer effects such as pro-apoptotic or anti proliferative through miRNA gene silencing. Given that EGCG is able to modulate a variety of cancer-related process i.e., angiogenesis, proliferation, metastasis and apoptosis via targeting various miRNAs such as let-7, miR-16, and miR-210. The discovery of new miRNAs and the differences observed in their expression when exposed to EGCG provides evidence that targeting these miRNAs may be beneficial as a form of treatment. In this review, we aim to provide an overview, based on current knowledge, on how phytochemicals, including epigallocatechin-3-gallate, can be considered as potential miRNAs modulator to improve efficacy of current cancer treatments.
Collapse
Affiliation(s)
- Chunguang Wang
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Meiling Bai
- Basic Medical College of Hebei North University, Zhang Jiakou, 075000, Hebei, China.
| | - Zhiguang Sun
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Nan Yao
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Aiting Zhang
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Shengyu Guo
- The First Affiliated Hospital of Hebei North University, Zhang Jiakou, 075000, Hebei, China
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
30
|
Guan X, Liu N, Zhu Z, Xu Y, Xiong D, Li X. Association of tea and its extracts with colorectal adenomas: meta-analysis and systematic review. Front Nutr 2023; 10:1241848. [PMID: 37867491 PMCID: PMC10585173 DOI: 10.3389/fnut.2023.1241848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background There are many studies on the association of tea and its extracts with colorectal adenomas, but the results have varied. The study aims to investigate the effect of tea and its extracts on colorectal adenomas using meta analysis and systematic review. Methods Literature was obtained through PubMed, Cochrane Library, Embase and Chinese BioMedical Literature Service System since the establishment of the database until April 31, 2023. Search terms include adenomas, polyps, colorectal, rectal, rectum, tea, epigallocatechin, drinking and beverages. Meta-regression analysis was used to infer the source of heterogeneity. Heterogeneity was assessed using I2 statistics and Q test. The effect measures were odds ratio (OR) and 95% confidence interval (95% CI). Stata17.0 software was used for data processing. Results The findings indicated that study design (t = 0.78, P = 0.454), types of tea intake (t = 1.35, P = 0.205), occurrences (t = -0.19, P = 0.852), regions (t = 1.13, P = 0.281) and grades of adenomas (t = 0.06, P = 0.952) were statistical homogeneity. Tea and its extracts were negatively correlated with the risk of colorectal adenomas (OR = 0.81, 95% CI: 0.66-0.98). No publication bias was found in this study (t = -0.22, P = 0.828) and the results are robust. Conclusion This study suggests that tea and its extracts have a certain protective effect on colorectal adenomas, which provides scientific evidence for preventive strategies for colorectal adenomas. As for the causal relationship between tea and its extracts on colorectal adenomas, further prospective studies are needed.
Collapse
Affiliation(s)
- Xifei Guan
- Department of Big Data in Health Science, and Center for Clinical Big Data and Statistics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nawen Liu
- Department of Big Data in Health Science, and Center for Clinical Big Data and Statistics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhixin Zhu
- Department of Big Data in Health Science, and Center for Clinical Big Data and Statistics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanxue Xu
- Department of Nursing, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dehai Xiong
- Department of General Surgery, Three Gorges Affiliated Hospital, Chongqing University, Chongqing, China
| | - Xiuyang Li
- Department of Big Data in Health Science, and Center for Clinical Big Data and Statistics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Medjahed Z, Chaher-Bazizi N, Atmani-Kilani D, Ahmane N, Ruiz-Larrea MB, Sanz JIR, Charid I, Amant F, Fonayet JV, Saidene N, Atmani D, Richard T. A novel flavonol glycoside and six derivatives of quercetin and kaempferol from Clematis flammula with antioxidant and anticancer potentials. Fitoterapia 2023; 170:105642. [PMID: 37567483 DOI: 10.1016/j.fitote.2023.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Clematis flammula leaves are traditionally used in Algeria to treat rheumatoid arthritis. Our aim was to identify the main compounds in this plant in order to characterize its antioxidant and anticancer activities. A new flavonol compound, kaempferol 3-O-[(6-O- caffeoyl)- glucosyl(1 → 2)]-(6-Ocaffeoyl) glucoside-7-O-rhamnoside (6) along with six known flavonol molecules were isolated from an ethanolic extract of Clematis flammula leaves. The chemical structures of these flavonols were elucidated using NMR and high resolution-MS spectroscopies. Antioxidant activities of the extract were revealed through its elimination of superoxide radical (O2.-) produced enzymatically (49.7 ± 1.52% at 50 μg/ml) and non-enzymatically (34 ± 1.2% at 100 μg/ml), probably related to its inhibition of the xanthine oxidase form of the xanthine oxidoreductase (XOR) enzyme (25.05 ± 2.33 μg/mL at 100 μg/mL), but mostly to that of the NADH oxidase form of the enzyme (69.16 ± 4.0%). Cytotoxicity tests of the extract on human hepatoma cell line HepG2 and ovarian cancer cell lines A2780 and OVCAR3 were promising especially regarding A2780 cell line (IC50: 77.0 μg/mL), which was comparable to taxol (IC50:76.9 μg/mL).
Collapse
Affiliation(s)
- Zineb Medjahed
- Laboratoire de Toxicologie Moléculaire, Faculté des Sciences de la Nature et de la Vie, Université de Jijel, 18000 Jijel, Algérie
| | - Nassima Chaher-Bazizi
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Dina Atmani-Kilani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie.
| | - Nadjia Ahmane
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Marie Begoña Ruiz-Larrea
- Department of Physiology, Medicine and Nursery School, University of the Basque Country, Leioa, Spain
| | - José Ignacio Ruiz Sanz
- Department of Physiology, Medicine and Nursery School, University of the Basque Country, Leioa, Spain
| | - Imane Charid
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Frédéric Amant
- Department of Oncology, Gynecologic Oncology, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Josep Valls Fonayet
- Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Naima Saidene
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Djebbar Atmani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Tristan Richard
- Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| |
Collapse
|
32
|
Maliar T, Maliarová M, Blažková M, Kunštek M, Uváčková Ľ, Viskupičová J, Purdešová A, Beňovič P. Simultaneously Determined Antioxidant and Pro-Oxidant Activity of Randomly Selected Plant Secondary Metabolites and Plant Extracts. Molecules 2023; 28:6890. [PMID: 37836733 PMCID: PMC10574746 DOI: 10.3390/molecules28196890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Oxidative stress is a well-known phenomenon arising from physiological and nonphysiological factors, defined by the balance between antioxidants and pro-oxidants. While the presence and uptake of antioxidants are crucial, the pro-oxidant effects have not received sufficient research attention. Several methods for assessing pro-oxidant activity, utilizing various mechanisms, have been published. In this paper, we introduce a methodology for the simultaneous determination of antioxidant and pro-oxidant activity on a single microplate in situ, assuming that the FRAP method can measure both antioxidant and pro-oxidant activity due to the generation of pro-oxidant Fe2+ ions in the Fenton reaction. Systematic research using this rapid screening method may help to distinguish between compounds with dominant antioxidant efficacy and those with dominant pro-oxidant effects. Our preliminary study has revealed a dominant pro-oxidant effect for compounds with a higher number of oxygen heteroatoms, especially sp2 hybridized compounds (such as those containing keto groups), such as flavonoids and plant extracts rich in these structural types. Conversely, catechins, carotenoids, and surprisingly, extracts from birch leaves and chestnut leaves have demonstrated dominant antioxidant activity over pro-oxidant. These initial findings have sparked significant interest in the systematic evaluation of a more extensive collection of compounds and plant extracts using the developed method.
Collapse
Affiliation(s)
- Tibor Maliar
- Department of Chemistry and Environmnetal Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.M.); (A.P.); (P.B.)
| | - Mária Maliarová
- Department of Chemistry and Environmnetal Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.M.); (A.P.); (P.B.)
| | - Marcela Blažková
- National Agricultural and Food Centre, Hlohovecká 2, 951 41 Lužianky, Slovakia; (M.B.); (M.K.)
- Department of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Marek Kunštek
- National Agricultural and Food Centre, Hlohovecká 2, 951 41 Lužianky, Slovakia; (M.B.); (M.K.)
- Department of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Ľubica Uváčková
- Department of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Jana Viskupičová
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | - Andrea Purdešová
- Department of Chemistry and Environmnetal Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.M.); (A.P.); (P.B.)
| | - Patrik Beňovič
- Department of Chemistry and Environmnetal Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.M.); (A.P.); (P.B.)
| |
Collapse
|
33
|
Song HY, Deng ML, Yang JF, Ma J, Shu FF, Cheng WJ, Zhu XQ, Zou FC, He JJ. Transcriptomic, 16S ribosomal ribonucleic acid and network pharmacology analyses shed light on the anticoccidial mechanism of green tea polyphenols against Eimeria tenella infection in Wuliangshan black-boned chickens. Parasit Vectors 2023; 16:330. [PMID: 37726789 PMCID: PMC10510215 DOI: 10.1186/s13071-023-05922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Eimeria tenella is an obligate intracellular parasitic protozoan that invades the chicken cecum and causes coccidiosis, which induces acute lesions and weight loss. Elucidating the anticoccidial mechanism of action of green tea polyphenols could aid the development of anticoccidial drugs and resolve the problem of drug resistance in E. tenella. METHODS We constructed a model of E. tenella infection in Wuliangshan black-boned chickens, an indigenous breed of Yunnan Province, China, to study the efficacy of green tea polyphenols against the infection. Alterations in gene expression and in the microbial flora in the cecum were analyzed by ribonucleic acid (RNA) sequencing and 16S ribosomal RNA (rRNA) sequencing. Quantitative real-time polymerase chain reaction was used to verify the host gene expression data obtained by RNA sequencing. Network pharmacology and molecular docking were used to clarify the interactions between the component green tea polyphenols and the targeted proteins; potential anticoccidial herbs were also analyzed. RESULTS Treatment with the green tea polyphenols led to a reduction in the lesion score and weight loss of the chickens induced by E. tenella infection. The expression of matrix metalloproteinase 7 (MMP7), MMP1, nitric oxide synthase 2 and ephrin type-A receptor 2 was significantly altered in the E. tenella infection plus green tea polyphenol-treated group and in the E. tenella infection group compared with the control group; these genes were also predicted targets of tea polyphenols. Furthermore, the tea polyphenol (-)-epigallocatechin gallate acted on most of the targets, and the molecular docking analysis showed that it has good affinity with interferon induced with helicase C domain 1 protein. 16S ribosomal RNA sequencing showed that the green tea polyphenols had a regulatory effect on changes in the fecal microbiota induced by E. tenella infection. In total, 171 herbs were predicted to act on two or three targets in MMP7, MMP1, nitric oxide synthase 2 and ephrin type-A receptor 2. CONCLUSIONS Green tea polyphenols can directly or indirectly regulate host gene expression and alter the growth of microbiota. The results presented here shed light on the mechanism of action of green tea polyphenols against E. tenella infection in chickens, and have implications for the development of novel anticoccidial products.
Collapse
Affiliation(s)
- Hai-Yang Song
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Meng-Ling Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jian-Fa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jun Ma
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Fan-Fan Shu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Wen-Jie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Feng-Cai Zou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
34
|
Della Via FI, Alvarez MC, Basting RT, Saad STO. The Effects of Green Tea Catechins in Hematological Malignancies. Pharmaceuticals (Basel) 2023; 16:1021. [PMID: 37513933 PMCID: PMC10385775 DOI: 10.3390/ph16071021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Green tea catechins are bioactive polyphenol compounds which have attracted significant attention for their diverse biological activities and potential health benefits. Notably, epigallocatechin-3-gallate (EGCG) has emerged as a potent apoptosis inducer through mechanisms involving caspase activation, modulation of Bcl-2 family proteins, disruption of survival signaling pathways and by regulating the redox balance, inducing oxidative stress. Furthermore, emerging evidence suggests that green tea catechins can modulate epigenetic alterations, including DNA methylation and histone modifications. In addition to their apoptotic actions, ROS signaling effects and reversal of epigenetic alterations, green tea catechins have shown promising results in promoting the differentiation of leukemia cells. This review highlights the comprehensive actions of green tea catechins and provides valuable insights from clinical trials investigating the therapeutic potential of green tea catechins in leukemia treatment. Understanding these multifaceted mechanisms and the outcomes of clinical trials may pave the way for the development of innovative strategies and the integration of green tea catechins into clinical practice for improving leukemia patient outcomes.
Collapse
Affiliation(s)
- Fernanda Isabel Della Via
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Marisa Claudia Alvarez
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Rosanna Tarkany Basting
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| |
Collapse
|
35
|
Ng TK, Chu KO, Wang CC, Pang CP. Green Tea Catechins as Therapeutic Antioxidants for Glaucoma Treatment. Antioxidants (Basel) 2023; 12:1320. [PMID: 37507860 PMCID: PMC10376590 DOI: 10.3390/antiox12071320] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness and visual impairment, affecting more than 80 million individuals worldwide. Oxidative stress and inflammation-induced neurodegenerative insults to retinal ganglion cells are the main pathogenesis of glaucoma. Retinal ganglion cells, the retinal neurons transmitting the visual signals to the visual cortex in the brain, have very limited regeneration or recovery capacity after damages. Apart from intraocular pressure-lowering treatments, there is still no clinically effective treatment to rescue the degeneration of retinal ganglion cells in glaucoma. Dietary antioxidants are easily accessible and can be applied as supplements assisting in the clinical treatments. Catechins, a chemical family of flavonoids, are the phenolic compounds found in many plants, especially in green tea. The anti-oxidative and anti-inflammatory properties of green tea catechins in vitro and in vivo have been well proven. They could be a potential treatment ameliorating retinal ganglion cell degeneration in glaucoma. In this review, the chemistry, pharmacokinetics, and therapeutic properties of green tea catechins were summarized. Research updates on the biological effects of green tea catechins in cellular and animal experimental glaucoma models were reviewed. In addition, clinical potentials of green tea catechins for glaucoma treatment were also highlighted.
Collapse
Affiliation(s)
- Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
36
|
Kooshki L, Zarneshan SN, Fakhri S, Moradi SZ, Echeverria J. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154686. [PMID: 36804755 DOI: 10.1016/j.phymed.2023.154686] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunctionality which results in disability and human life-threatening events. In recent decades, NDDs are on the rise. Besides, conventional drugs have not shown potential effectiveness to attenuate the complications of NDDs. So, exploring novel therapeutic agents is an urgent need to combat such disorders. Accordingly, growing evidence indicates that polyphenols and alkaloids are promising natural candidates, possessing several beneficial pharmacological effects against diseases. Considering the complex pathophysiological mechanisms behind NDDs, Janus kinase (JAK), insulin receptor substrate (IRS), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT) seem to play critical roles during neurodegeneration/neuroregeneration. In this line, modulation of the JAK/STAT and IRS/PI3K signaling pathways and their interconnected mediators by polyphenols/alkaloids could play pivotal roles in combating NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, aging, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), depression and other neurological disorders. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of polyphenols/alkaloids as multi-target natural products against NDDs which are critically passing through the modulation of the JAK/STAT and IRS/PI3K signaling pathways. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of polyphenols and alkaloids on the JAK/STAT and IRS/PI3K signaling pathways in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including Scopus, PubMed, ScienceDirect, and associated reference lists. RESULTS In the present study 141 articles were included from a total of 1267 results. The results showed that phenolic compounds such as curcumin, epigallocatechin-3-gallate, and quercetin, and alkaloids such as berberine could be introduced as new strategies in combating NDDs through JAK/STAT and IRS/PI3K signaling pathways. This is the first systematic review that reveals the correlation between the JAK/STAT and IRS/PI3K axis which is targeted by phytochemicals in NDDs. Hence, this review highlighted promising insights into the neuroprotective potential of polyphenols and alkaloids through the JAK/STAT and IRS/PI3K signaling pathway and interconnected mediators toward neuroprotection. CONCLUSION Amongst natural products, phenolic compounds and alkaloids are multi-targeting agents with the most antioxidants and anti-inflammatory effects possessing the potential of combating NDDs with high efficacy and lower toxicity. However, additional reports are needed to prove the efficacy and possible side effects of natural products.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
37
|
Hazimeh D, Massoud G, Parish M, Singh B, Segars J, Islam MS. Green Tea and Benign Gynecologic Disorders: A New Trick for An Old Beverage? Nutrients 2023; 15:1439. [PMID: 36986169 PMCID: PMC10054707 DOI: 10.3390/nu15061439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Green tea is harvested from the tea plant Camellia sinensis and is one of the most widely consumed beverages worldwide. It is richer in antioxidants than other forms of tea and has a uniquely high content of polyphenolic compounds known as catechins. Epigallocatechin-3-gallate (EGCG), the major green tea catechin, has been studied for its potential therapeutic role in many disease contexts, including pathologies of the female reproductive system. As both a prooxidant and antioxidant, EGCG can modulate many cellular pathways important to disease pathogenesis and thus has clinical benefits. This review provides a synopsis of the current knowledge on the beneficial effects of green tea in benign gynecological disorders. Green tea alleviates symptom severity in uterine fibroids and improves endometriosis through anti-fibrotic, anti-angiogenic, and pro-apoptotic mechanisms. Additionally, it can reduce uterine contractility and improve the generalized hyperalgesia associated with dysmenorrhea and adenomyosis. Although its role in infertility is controversial, EGCG can be used as a symptomatic treatment for menopause, where it decreases weight gain and osteoporosis, as well as for polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
| | | | | | | | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Liu C, Wu H, Duan H, Hou Y, Wang S, Liu Y, Zhang X, Zhao H, Gong L, Wan H, Zeng B, Quan X, Cui M, Chen L, Jin M, Wang Q, Gao Z, Huang W. An EGCG-mediated self-assembled micellar complex acts as a bioactive drug carrier. Food Chem 2023; 418:135939. [PMID: 36948024 DOI: 10.1016/j.foodchem.2023.135939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Epigallocatechin gallate (EGCG) has attracted the increasing attention of many researchers, especially in the field of tumor therapy. However, EGCG has poor fat solubility, low stability, low bioavailability, and a high effective dose in vivo. Traditional drug delivery methods are difficult to deliver the water-soluble EGCG efficiently and in high doses to tumor sites. To address these issues, a new type of strategy has been tried in this study to transform EGCG from a "Bioactive natural ingredient" into a "Bioactive drug carrier". Briefly, the EGCG was modified with a fat-soluble 9-fluorene methoxy carbonyl (Fmoc) motif, and the obtained EGCG-Fmoc showed a considerable improvement in lipid solubility and stability. Interestingly, EGCG-Fmoc obtained the characteristic of self-assembly in water, making it easier to take up by tumor cells. Furthermore, the self-assembled nanocomplex exhibited paclitaxel encapsulation performance and could achieve the dual delivery of EGCG and paclitaxel.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Pharmacy, Yanbian University, Yanji, Jilin 133000, PR China
| | - Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yan Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Pharmacy, Yanbian University, Yanji, Jilin 133000, PR China
| | - Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Pharmacy, Yanbian University, Yanji, Jilin 133000, PR China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Heming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Hongshuang Wan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin 133000, PR China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin 133000, PR China
| | - Xiuquan Quan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin 133000, PR China
| | - Minhu Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Gastroenterology, Yanbian University Hospital, Yanji, Jilin 133000, PR China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
39
|
Sahadevan R, Binoy A, Vechalapu SK, Nanjan P, Sadhukhan S. In situ global proteomics profiling of EGCG targets using a cell-permeable and Click-able bioorthogonal probe. Int J Biol Macromol 2023; 237:123991. [PMID: 36907293 DOI: 10.1016/j.ijbiomac.2023.123991] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Despite possessing a wide spectrum of biological activities, molecular targets of EGCG remain elusive and as a result, its precise mode of action is still unknown. Herein, we have developed a novel cell-permeable and Click-able bioorthogonal probe for EGCG, YnEGCG for in situ detection and identification of its interacting proteins. The strategic structural modification on YnEGCG allowed it to retain innate biological activities of EGCG (IC50 59.52 ± 1.14 μM and 9.07 ± 0.01 μM for cell viability and radical scavenging activity, respectively). Chemoproteomics profiling identified 160 direct EGCG targets, with H:L ratio ≥ 1.10 from the list of 207 proteins, including multiple new proteins that were previously unknown. The targets were broadly distributed in various subcellular compartments suggesting a polypharmacological mode of action of EGCG. GO analysis revealed that the primary targets belonged to the enzymes that regulate key metabolic processes including glycolysis and energy homeostasis, also the cytoplasm (36 %) and mitochondria (15.6 %) contain the majority of EGCG targets. Further, we validated that EGCG interactome was closely associated with apoptosis indicating its role in inducing toxicity in cancer cells. For the first time, this in situ chemoproteomics approach could identify a direct and specific EGCG interactome under physiological conditions in an unbiased manner.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sai K Vechalapu
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India
| | - Pandurangan Nanjan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India; Physical & Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Kerala, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala, India.
| |
Collapse
|
40
|
Zhang Y, Zhang Y, Ma R, Sun W, Ji Z. Antibacterial Activity of Epigallocatechin Gallate (EGCG) against Shigella flexneri. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4676. [PMID: 36981585 PMCID: PMC10048926 DOI: 10.3390/ijerph20064676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Shigella flexneri (S. flexneri), a major intestinal pathogen, is a global public health concern. The biofilms formed by S. flexneri threaten environmental safety, since they could promote the danger of environmental contamination and strengthen the disease-causing properties of bacteria. Epigallocatechin gallate (EGCG) is an important catechin in tea, which has a high antibacterial activity. However, its antibacterial mechanism is still unclear. This research aims to quantify the antibacterial function and investigate the possible mechanism of EGCG inhibition of S. flexneri. The minimum inhibitory concentration (MIC) of EGCG against planktonic S. flexneri in the investigation was measured to be 400 μg/mL. Besides, SDS-PAGE and field emission scanning electron microscopy showed that EGCG interfered with protein synthesis and changed bacteria morphology. Through controlling the expression of the mdoH gene, EGCG was found to be able to prevent an S. flexneri biofilm extracellular polysaccharide from forming, according to experiments utilizing the real-time PCR test. Additional research revealed that EGCG might stimulate the response of S. flexneri to oxidative stress and prevent bacterial growth. These findings suggest that EGCG, a natural compound, may play a substantial role in S. flexneri growth inhibition.
Collapse
Affiliation(s)
- Yini Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Yeyue Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Ruiqing Ma
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Wanting Sun
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Zheng Ji
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| |
Collapse
|
41
|
Structures and Anti-Allergic Activities of Natural Products from Marine Organisms. Mar Drugs 2023; 21:md21030152. [PMID: 36976202 PMCID: PMC10056057 DOI: 10.3390/md21030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
In recent years, allergic diseases have occurred frequently, affecting more than 20% of the global population. The current first-line treatment of anti-allergic drugs mainly includes topical corticosteroids, as well as adjuvant treatment of antihistamine drugs, which have adverse side effects and drug resistance after long-term use. Therefore, it is essential to find alternative anti-allergic agents from natural products. High pressure, low temperature, and low/lack of light lead to highly functionalized and diverse functional natural products in the marine environment. This review summarizes the information on anti-allergic secondary metabolites with a variety of chemical structures such as polyphenols, alkaloids, terpenoids, steroids, and peptides, obtained mainly from fungi, bacteria, macroalgae, sponges, mollusks, and fish. Molecular docking simulation is applied by MOE to further reveal the potential mechanism for some representative marine anti-allergic natural products to target the H1 receptor. This review may not only provide insight into information about the structures and anti-allergic activities of natural products from marine organisms but also provides a valuable reference for marine natural products with immunomodulatory activities.
Collapse
|
42
|
Oh JW, Muthu M, Pushparaj SSC, Gopal J. Anticancer Therapeutic Effects of Green Tea Catechins (GTCs) When Integrated with Antioxidant Natural Components. Molecules 2023; 28:molecules28052151. [PMID: 36903395 PMCID: PMC10004647 DOI: 10.3390/molecules28052151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
After decades of research and development concerning cancer treatment, cancer is still at large and very much a threat to the global human population. Cancer remedies have been sought from all possible directions, including chemicals, irradiation, nanomaterials, natural compounds, and the like. In this current review, we surveyed the milestones achieved by green tea catechins and what has been accomplished in cancer therapy. Specifically, we have assessed the synergistic anticarcinogenic effects when green tea catechins (GTCs) are combined with other antioxidant-rich natural compounds. Living in an age of inadequacies, combinatorial approaches are gaining momentum, and GTCs have progressed much, yet there are insufficiencies that can be improvised when combined with natural antioxidant compounds. This review highlights that there are not many reports in this specific area and encourages and recommends research attention in this direction. The antioxidant/prooxidant mechanisms of GTCs have also been highlighted. The current scenario and the future of such combinatorial approaches have been addressed, and the lacunae in this aspect have been discussed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Republic of Korea
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Correspondence: ; Tel.: +91-44-66726677; Fax: +91-44-2681-1009
| |
Collapse
|
43
|
Parinandi NL, Liaugminas A, Oliver PJ, Varadharaj S, Yenigalla A, Elliott AC, Arutla S, Campbell SJ, Kotha SR, Sherwani SI, Kutala VK, McDaniel JC, Maddipati KR, Kuppusamy P, Hund TJ. Classic Phytochemical Antioxidant and Lipoxygenase Inhibitor, Nordihydroguaiaretic Acid, Activates Phospholipase D through Oxidant Signaling and Tyrosine Phosphorylation Leading to Cytotoxicity in Lung Vascular Endothelial Cells. Cell Biochem Biophys 2023:10.1007/s12013-023-01128-1. [PMID: 36820994 DOI: 10.1007/s12013-023-01128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Nordihydroguaiaretic acid (NDGA), a dicatechol and phytochemical polyphenolic antioxidant and an established inhibitor of human arachidonic acid (AA) 5-lipoxygenase (LOX) and 15-LOX, is widely used to ascertain the role of LOXs in vascular endothelial cell (EC) function. As the modulatory effect of NDGA on phospholipase D (PLD), an important lipid signaling enzyme in ECs, thus far has not been reported, here we have investigated the modulation of PLD activity and its regulation by NDGA in the bovine pulmonary artery ECs (BPAECs). NDGA induced the activation of PLD (phosphatidic acid formation) in cells in a dose- and time-dependent fashion that was significantly attenuated by iron chelator and antioxidants. NDGA induced the formation of reactive oxygen species (ROS) in cells in a dose- and time-dependent manner as evidenced from fluorescence microscopy and fluorimetry of ROS and electron paramagnetic resonance spectroscopy of oxygen radicals. Also, NDGA caused a dose-dependent loss of intracellular glutathione (GSH) in BPAECs. Protein tyrosine kinase (PTyK)-specific inhibitors significantly attenuated NDGA-induced PLD activation in BPAECs. NDGA also induced a dose- and time-dependent phosphorylation of tyrosine in proteins in cells. NDGA caused in situ translocation and relocalization of both PLD1 and PLD2 isoforms, in a time-dependent fashion. Cyclooxygenase (COX) inhibitors were ineffective in attenuating NDGA-induced PLD activation in BPAECs, thus ruling out the activation of COXs by NDGA. NDGA inhibited the AA-LOX activity and leukotriene C4 (LTC4) formation in cells. On the other hand, the 5-LOX-specific inhibitors, 5, 8, 11, 14-eicosatetraynoic acid and kaempferol, were ineffective in activating PLD in BPAECs. Antioxidants and PTyK-specific inhibitors effectively attenuated NDGA cytotoxicity in BPAECs. The PLD-specific inhibitor, 5-fluoro-2-indolyl deschlorohalopemide (FIPI), significantly attenuated and protected against the NDGA-induced PLD activation and cytotoxicity in BPAECs. For the first time, these results demonstrated that NDGA, the classic phytochemical polyphenolic antioxidant and LOX inhibitor, activated PLD causing cytotoxicity in ECs through upstream oxidant signaling and protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Narasimham L Parinandi
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Alex Liaugminas
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Patrick J Oliver
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Saradhadevi Varadharaj
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Anita Yenigalla
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Austin C Elliott
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Sukruthi Arutla
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Steven J Campbell
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Sainath R Kotha
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Shariq I Sherwani
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Vijay K Kutala
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jodi C McDaniel
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Krishna Rao Maddipati
- Department of Pathology and Lipidomics Core Facility, Wayne State University, Detroit, MI, 48202, USA
| | - Periannan Kuppusamy
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03756, USA
| | - Thomas J Hund
- Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
44
|
Volpe-Fix AR, de França E, Silvestre JC, Thomatieli-Santos RV. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods 2023; 12:foods12050916. [PMID: 36900433 PMCID: PMC10001084 DOI: 10.3390/foods12050916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Food bioactive compounds (FBC) comprise a vast class of substances, including polyphenols, with different chemical structures, and they exert physiological effects on individuals who consume them, such as antioxidant and anti-inflammatory action. The primary food sources of the compounds are fruits, vegetables, wines, teas, seasonings, and spices, and there are still no daily recommendations for their intake. Depending on the intensity and volume, physical exercise can stimulate oxidative stress and muscle inflammation to generate muscle recovery. However, little is known about the role that polyphenols may have in the process of injury, inflammation, and muscle regeneration. This review aimed to relate the effects of supplementation with mentation with some polyphenols in oxidative stress and post-exercise inflammatory markers. The consulted papers suggest that supplementation with 74 to 900 mg of cocoa, 250 to 1000 mg of green tea extract for around 4 weeks, and 90 mg for up to 5 days of curcumin can attenuate cell damage and inflammation of stress markers of oxidative stress during and after exercise. However, regarding anthocyanins, quercetins, and resveratrol, the results are conflicting. Based on these findings, the new reflection that was made is the possible impact of supplementation associating several FBCs simultaneously. Finally, the benefits discussed here do not consider the existing divergences in the literature. Some contradictions are inherent in the few studies carried out so far. Methodological limitations, such as supplementation time, doses used, forms of supplementation, different exercise protocols, and collection times, create barriers to knowledge consolidation and must be overcome.
Collapse
Affiliation(s)
| | - Elias de França
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
| | - Jean Carlos Silvestre
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Campus Rosinha Viegas, Universidade Metropolitana de Santos, Santos 11045-002, Brazil
- Center for Applied Social Sciences, Universidade Católica de Santos, Santos 11015-002, Brazil
| | - Ronaldo Vagner Thomatieli-Santos
- Postgraduate Program in Psychobiology, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Correspondence:
| |
Collapse
|
45
|
Mu K, Kitts DD. Hydrogen Peroxide Produced from Selective Phenolic Acids in Cell Culture Underlies Caco-2 Changes in Cell Proliferation Parameters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3022-3032. [PMID: 36748840 DOI: 10.1021/acs.jafc.2c08830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The physicochemical property of phenolic acids to generate hydrogen peroxide (H2O2) in cell culture media has been underreported when describing multiple biological effects in vitro. Our aim was to focus on examining the relative capacity of four common phenolic acids widely consumed in the Western diet for autoxidation potential to generate H2O2 during in vitro culture. Furthermore, quantifying H2O2 derived from different phenolic acids cultured in Dulbecco's modified Eagle's medium (DMEM) was associated with changes in cell proliferation in non-differentiated human intestinal carcinoma cells. Results showed that the different percentage losses of phenolic acids, namely, caffeic (84.78 ± 1.51), chlorogenic (37.3 ± 0.38), ferulic (1.26 ± 0.78), and gallic (100%), paralleled a relative capacity to generate H2O2 when present in DMEM media for 24 h. The rate and total H2O2 generated was dependent on both phenolic acid type and concentration (p < 0.05). Gallic acid had the greatest capacity to generate H2O2 in culture without the presence of cells (p < 0.05). When cultured with non-differentiated Caco-2 cells, gallic acid evoked the greatest bioactivity that included cytotoxicity, anti-proliferation, apoptosis, and nuclear condensation, respectively (p < 0.05). Corresponding treatments with cells with phenolic acids in the presence of catalase confirmed that H2O2 generated from phenolic acid autoxidation was involved in cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Kaiwen Mu
- Food Science, Food Nutrition and Health Program. Faculty of Land and Food Systems; The University of British Columbia, 2205 East Mall, Vancouver V6T 1Z4, British Columbia, Canada
| | - David D Kitts
- Food Science, Food Nutrition and Health Program. Faculty of Land and Food Systems; The University of British Columbia, 2205 East Mall, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
46
|
Punmiya A, Prabhu A. Structural fingerprinting of pleiotropic flavonoids for multifaceted Alzheimer's disease. Neurochem Int 2023; 163:105486. [PMID: 36641110 DOI: 10.1016/j.neuint.2023.105486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease has emerged as one of the most challenging neurodegenerative diseases associated with dementia, loss of cognitive functioning and memory impairment. Despite enormous efforts to identify disease modifying technologies, the repertoire of currently approved drugs consists of a few symptomatic candidates that are not capable of halting disease progression. Moreover, these single mechanism drugs target only a small part of the pathological cascade and do not address most of the etiological basis of the disease. Development of therapies that are able to simultaneously tackle all the multiple interlinked causative factors such as amyloid protein aggregation, tau hyperphosphorylation, cholinergic deficit, oxidative stress, metal dyshomeostasis and neuro-inflammation has become the focus of intensive research in this domain. Flavonoids are natural phytochemicals that have demonstrated immense potential as medicinal agents due to their multiple beneficial therapeutic effects. The polypharmacological profile of flavonoids aligns well with the multifactorial pathological landscape of Alzheimer's disease, making them promising candidates to overcome the challenges of this neurodegenerative disorder. This review presents a detailed overview of the pleiotropic biology of flavonoids favourable for Alzheimer therapeutics and the structural basis for these effects. Structure activity trends for several flavonoid classes such as flavones, flavonols, flavanones, isoflavones, flavanols and anthocyanins are comprehensively analyzed in detail and presented.
Collapse
Affiliation(s)
- Amisha Punmiya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
47
|
Rasaei N, Ghaffarian-Ensaf R, Gholami F, Shiraseb F, Khadem A, Fatemi SF, Mirzaei K. The association between healthy beverage index and sarcopenic obesity among women with overweight and obesity: a cross-sectional study. BMC Endocr Disord 2023; 23:25. [PMID: 36717830 PMCID: PMC9887919 DOI: 10.1186/s12902-023-01274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Sarcopenic obesity is related to changes in body composition, loss of muscle mass, and raised adipose tissue. Beverage patterns are effective with changes in health status. Therefore, the aim of this study was to investigate the association between sarcopenic obesity (SO) and the healthy beverage index (HBI) in women with overweight and obesity. METHODS This cross-sectional study conducted on 210 overweight and obese (BMI ≥25 kg/m2) women aged 18-56 years. The measurement of skeletal muscle mass (SMM) and fat mass (FM) done by bioelectric impedance analyzer (BIA) (Inbody Co., Seoul, Korea) based on guidelines. The two lowest quintiles SMM and the two highest quintiles FM and body mass index (BMI) ≥30 are considered sarcopenic obesity in women. A validated and reliable semi-quantitative food-frequency questionnaire (FFQ) was used to evaluate the beverage dietary data. and RFS and NRFS was calculated. Biochemical assessments were quantified by standard approaches, and physical activity were evaluated by international physical activity questionnaire (IPAQ). RESULT In this cross-sectional study, 210 overweight and obese females took part (18-56) years old). The studies were carried out using binary logistic regression. After controlling for a wide variety of confounding variables such as age, energy intake, physical activity, education, and economic status, we found a negative association between HBI and risk of SO (OR = 0.29, 95% CI = 0.35 to 1.01, P = 0.05). CONCLUSION We observed that the odds of SO was reduced by 69% in participants with higher HBI score. More well-designed studies need to confirm our findings.
Collapse
Affiliation(s)
- Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | | | - Fatemeh Gholami
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Alireza Khadem
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyedeh Fatemeh Fatemi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Parish M, Massoud G, Hazimeh D, Segars J, Islam MS. Green Tea in Reproductive Cancers: Could Treatment Be as Simple? Cancers (Basel) 2023; 15:cancers15030862. [PMID: 36765820 PMCID: PMC9913717 DOI: 10.3390/cancers15030862] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Green tea originates from the tea plant Camellia sinensis and is one of the most widely consumed beverages worldwide. Green tea polyphenols, commonly known as catechins, are the major bioactive ingredients and account for green tea's unique health benefits. Epigallocatechin-3-gallate (EGCG), is the most potent catechin derivative and has been widely studied for its pro- and anti-oxidative effects. This review summarizes the chemical and chemopreventive properties of green tea in the context of female reproductive cancers. A comprehensive search of PubMed and Google Scholar up to December 2022 was conducted. All original and review articles related to green tea or EGCG, and gynecological cancers published in English were included. The findings of several in vitro, in vivo, and epidemiological studies examining the effect of green tea on reproductive cancers, including ovarian, cervical, endometrial, and vulvar cancers, are presented. Studies have shown that this compound targets specific receptors and intracellular signaling pathways involved in cancer pathogenesis. The potential benefits of using green tea in the treatment of reproductive cancers, alone or in conjunction with chemotherapeutic agents, are examined, shedding light on new therapeutic strategies for the management of female reproductive cancers.
Collapse
Affiliation(s)
| | | | | | - James Segars
- Correspondence: (J.S.); or (M.S.I.); Tel.: +1-410-614-2000 (J.S. & M.S.I.)
| | - Md Soriful Islam
- Correspondence: (J.S.); or (M.S.I.); Tel.: +1-410-614-2000 (J.S. & M.S.I.)
| |
Collapse
|
49
|
Liu T, Xiong CF, Zhang LJ, Jiao GH, Shi H, Feng J, Zhang XZ. Boosting Doxorubicin-Induced Mitochondria Apoptosis for the Monodrug-Mediated Combination of Chemotherapy and Chemodynamic Therapy. Adv Healthc Mater 2023; 12:e2202045. [PMID: 36239177 DOI: 10.1002/adhm.202202045] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/29/2022] [Indexed: 01/26/2023]
Abstract
Doxorubicin (Dox)-mediated generation of reactive oxygen radicals (ROS) for mitochondrial apoptosis is identified as a new cytotoxic mechanism in addition to the well-established one via nuclear DNA replication interference. However, this mechanism contributes far less than the latter to Dox therapy. This newly identified pathway to make Dox therapy function like the combination of chemodynamic therapy (CDT) and chemotherapy-mediated by Dox alone would be amplified. One-pot nanoconstruction (HEBD) is fabricated based on the chemical reactions driven assemblies among epigallocatechin gallate (EGCG), buthionine sulfoximine (BSO) and formaldehyde in aqueous mediums followed by Dox adsorption. Acid tumor microenvironments allow the liberation of EGCG, BSO, and Dox due to the breakage of Schiff base bonds. EGCG component in HEBD is responsible for targeting mitochondria and disrupting mitochondrial electron transport chain (mETC) to compel electrons leakage in favor of their capture by Dox to produce more ROS. EGCG-induced mETC disruption results in mitochondrial respiration inhibition with alleviated hypoxia in tumor cells while BSO inhibits glutathione biosynthesis to protect ROS from redox depletion, further boosting Dox-induced CDT. This strategy of amplifying CDT pathway for the Dox-mediated combined therapy could largely improve antitumor effect, extend lifespan of tumor-bearing mice, reduce risks of cardiotoxicity and metastasis.
Collapse
Affiliation(s)
- Tao Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Cheng-Feng Xiong
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Lin-Jun Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Guan-Hua Jiao
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Hui Shi
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
50
|
Olson KR, Derry PJ, Kent TA, Straub KD. The Effects of Antioxidant Nutraceuticals on Cellular Sulfur Metabolism and Signaling. Antioxid Redox Signal 2023; 38:68-94. [PMID: 35819295 PMCID: PMC9885552 DOI: 10.1089/ars.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
Significance: Nutraceuticals are ingested for health benefits, in addition to their general nutritional value. These dietary supplements have become increasingly popular since the late 20th century and they are a rapidly expanding global industry approaching a half-trillion U.S. dollars annually. Many nutraceuticals are promulgated as potent antioxidants. Recent Advances: Experimental support for the efficacy of nutraceuticals has lagged behind anecdotal exuberance. However, accumulating epidemiological evidence and recent, well-controlled clinical trials are beginning to support earlier animal and in vitro studies. Although still somewhat limited, encouraging results have been suggested in essentially all organ systems and against a wide range of pathophysiological conditions. Critical Issues: Health benefits of "antioxidant" nutraceuticals are largely attributed to their ability to scavenge oxidants. This has been criticized based on several factors, including limited bioavailability, short tissue retention time, and the preponderance of endogenous antioxidants. Recent attention has turned to nutraceutical activation of downstream antioxidant systems, especially the Keap1/Nrf2 (Kelch like ECH associated protein 1/nuclear factor erythroid 2-related factor 2) axis. The question now becomes, how do nutraceuticals activate this axis? Future Directions: Reactive sulfur species (RSS), including hydrogen sulfide (H2S) and its metabolites, are potent activators of the Keap1/Nrf2 axis and avid scavengers of reactive oxygen species. Evidence is beginning to accumulate that a variety of nutraceuticals increase cellular RSS by directly providing RSS in the diet, or through a number of catalytic mechanisms that increase endogenous RSS production. We propose that nutraceutical-specific targeting of RSS metabolism will lead to the design and development of even more efficacious antioxidant therapeutic strategies. Antioxid. Redox Signal. 38, 68-94.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine—South Bend, South Bend, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul J. Derry
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Thomas A. Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
| | - Karl D. Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, Arkansas, USA
- Department of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|